Files
swift-mirror/stdlib/public/runtime/Metadata.cpp
Mike Ash 513f5fb17a [swift-inspect] Add a mode to search for and dump generic metadata without metadata iteration enabled.
We scan the target's initial allocation pool, and all 16kB heap allocations. We check each pointer-aligned offset within those areas, and try to read it as Swift metadata and get a name from it. If that fails, quietly move on. It's very unlikely for some random memory to look enough like Swift metadata for this to produce a name, so this works very well to print the generic metadata instantiated in the remote process without requiring `SWIFT_DEBUG_ENABLE_METADATA_ALLOCATION_ITERATION`.

rdar://161120936
2025-09-26 10:52:35 -04:00

8228 lines
303 KiB
C++

//===--- Metadata.cpp - Swift Language ABI Metadata Support ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of the metadata ABI functions.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/LibPrespecialized.h"
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
// Avoid defining macro max(), min() which conflict with std::max(), std::min()
#define NOMINMAX
#include <windows.h>
#endif
#include "BytecodeLayouts.h"
#include "MetadataCache.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/MathUtils.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangler.h"
#include "swift/RemoteInspection/GenericMetadataCacheEntry.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/ExistentialContainer.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Once.h"
#include "swift/Runtime/Portability.h"
#include "swift/Strings.h"
#include "swift/Threading/Mutex.h"
#include "swift/Threading/ThreadSanitizer.h"
#include "llvm/ADT/StringExtras.h"
#include <algorithm>
#include <cctype>
#include <cinttypes>
#include <condition_variable>
#include <new>
#include <unordered_set>
#include <vector>
#if SWIFT_PTRAUTH
#include <ptrauth.h>
#endif
#if SWIFT_OBJC_INTEROP
extern "C" void _objc_setClassCopyFixupHandler(void (* _Nonnull newFixupHandler)
(Class _Nonnull oldClass, Class _Nonnull newClass));
#endif
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ErrorObject.h"
#include "ExistentialMetadataImpl.h"
#include "GenericCacheEntry.h"
#include "Private.h"
#include "swift/Runtime/Debug.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Hashing.h"
#if SWIFT_OBJC_INTEROP
#include "ObjCRuntimeGetImageNameFromClass.h"
#endif
#include <cstdio>
#if defined(__APPLE__) && defined(VM_MEMORY_SWIFT_METADATA)
#define VM_TAG_FOR_SWIFT_METADATA VM_MAKE_TAG(VM_MEMORY_SWIFT_METADATA)
#else
#define VM_TAG_FOR_SWIFT_METADATA (-1)
#endif
using namespace swift;
using namespace metadataimpl;
#if defined(__APPLE__)
// Binaries using noncopyable types check the address of the symbol
// `swift_runtimeSupportsNoncopyableTypes` before exposing any noncopyable
// type metadata through in-process reflection, to prevent existing code
// that expects all types to be copyable from crashing or causing bad behavior
// by copying noncopyable types. The runtime does not yet support noncopyable
// types, so we explicitly define this symbol to be zero for now. Binaries
// weak-import this symbol so they will resolve it to a zero address on older
// runtimes as well.
//
// Note: If this symbol's value ever gets updated, the corresponding condition
// handled by IRGen MUST be updated in tandem.
__asm__(" .globl _swift_runtimeSupportsNoncopyableTypes\n");
__asm__(".set _swift_runtimeSupportsNoncopyableTypes, 0\n");
#endif
// GenericParamDescriptor is a single byte, so while it's difficult to
// imagine needing even a quarter this many generic params, there's very
// little harm in doing it.
const GenericParamDescriptor
swift::ImplicitGenericParamDescriptors[MaxNumImplicitGenericParamDescriptors] = {
#define D GenericParamDescriptor::implicit()
D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D,
D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D, D,D,D,D
#undef D
};
static_assert(MaxNumImplicitGenericParamDescriptors == 64, "length mismatch");
static ClassMetadata *
_swift_relocateClassMetadata(const ClassDescriptor *description,
const ResilientClassMetadataPattern *pattern);
template<>
Metadata *TargetSingletonMetadataInitialization<InProcess>::allocate(
const TypeContextDescriptor *description) const {
// If this class has resilient ancestry, the size of the metadata is not known
// at compile time, so we allocate it dynamically, filling it in from a
// pattern.
if (hasResilientClassPattern(description)) {
auto *pattern = ResilientPattern.get();
// If there is a relocation function, call it.
if (auto *fn = ResilientPattern->RelocationFunction.get())
return fn(description, pattern);
// Otherwise, use the default behavior.
auto *classDescription = cast<ClassDescriptor>(description);
return _swift_relocateClassMetadata(classDescription, pattern);
}
// Otherwise, we have a static template that we can initialize in-place.
auto *metadata = IncompleteMetadata.get();
// If this is a class, we have to initialize the value witness table early
// so that two-phase initialization can proceed as if this metadata is
// complete for layout purposes when it appears as part of an aggregate type.
//
// Note that we can't use (dyn_)cast<ClassMetadata> here because the static
// template may have the "wrong" isSwift bit set in its Data pointer, if the
// binary was built to deploy back to pre-stable-Swift Objective-C runtimes.
// Such a template will fail the `isTypeMetadata` test and we'll think that it
// isn't Swift metadata but a plain old ObjC class instead.
if (metadata->getKind() == MetadataKind::Class) {
auto *fullMetadata = asFullMetadata(metadata);
// Begin by initializing the value witness table; everything else is
// initialized by swift_initClassMetadata().
#if SWIFT_OBJC_INTEROP
auto *classMetadata = static_cast<ClassMetadata*>(metadata);
classMetadata->setAsTypeMetadata();
fullMetadata->ValueWitnesses =
(classMetadata->Flags & ClassFlags::UsesSwiftRefcounting)
? &VALUE_WITNESS_SYM(Bo)
: &VALUE_WITNESS_SYM(BO);
#else
fullMetadata->ValueWitnesses = &VALUE_WITNESS_SYM(Bo);
#endif
}
return metadata;
}
void MetadataCacheKey::installGenericArguments(
uint16_t numKeyArguments,
uint16_t numPacks,
const GenericPackShapeDescriptor *PackShapeDescriptors,
const void **dst, const void * const *src) {
memcpy(dst, src, numKeyArguments * sizeof(void *));
// If we don't have any pack arguments, there is nothing more to do.
if (numPacks == 0)
return;
// Heap-allocate all installed metadata and witness table packs.
for (unsigned i = 0; i < numPacks; ++i) {
auto pack = PackShapeDescriptors[i];
size_t count = reinterpret_cast<size_t>(dst[pack.ShapeClass]);
switch (pack.Kind) {
case GenericPackKind::Metadata:
dst[pack.Index] = swift_allocateMetadataPack(
reinterpret_cast<const Metadata * const *>(dst[pack.Index]),
count);
break;
case GenericPackKind::WitnessTable:
dst[pack.Index] = swift_allocateWitnessTablePack(
reinterpret_cast<const WitnessTable * const *>(dst[pack.Index]),
count);
break;
}
}
}
/// Copy the generic arguments into place in a newly-allocated metadata.
static void installGenericArguments(Metadata *metadata,
const TypeContextDescriptor *description,
const void *arguments) {
const auto &genericContext = *description->getGenericContext();
const auto &header = genericContext.getGenericContextHeader();
auto dst = (reinterpret_cast<const void **>(metadata) +
description->getGenericArgumentOffset());
auto src = reinterpret_cast<const void * const *>(arguments);
auto packShapeHeader = genericContext.getGenericPackShapeHeader();
MetadataCacheKey::installGenericArguments(
header.NumKeyArguments,
packShapeHeader.NumPacks,
genericContext.getGenericPackShapeDescriptors().data(),
dst, src);
}
#if SWIFT_OBJC_INTEROP
static ClassMetadataBounds computeMetadataBoundsForObjCClass(Class cls) {
cls = swift_getInitializedObjCClass(cls);
auto metadata = reinterpret_cast<const ClassMetadata *>(cls);
return metadata->getClassBoundsAsSwiftSuperclass();
}
#endif
static ClassMetadataBounds
computeMetadataBoundsForSuperclass(const void *ref,
TypeReferenceKind refKind) {
switch (refKind) {
case TypeReferenceKind::IndirectTypeDescriptor: {
auto description = *reinterpret_cast<const ClassDescriptor * const __ptrauth_swift_type_descriptor *>(ref);
if (!description) {
swift::fatalError(0, "instantiating class metadata for class with "
"missing weak-linked ancestor");
}
return description->getMetadataBounds();
}
case TypeReferenceKind::DirectTypeDescriptor: {
auto description = reinterpret_cast<const ClassDescriptor *>(ref);
return description->getMetadataBounds();
}
case TypeReferenceKind::DirectObjCClassName: {
#if SWIFT_OBJC_INTEROP
auto cls = objc_lookUpClass(reinterpret_cast<const char *>(ref));
return computeMetadataBoundsForObjCClass(cls);
#else
break;
#endif
}
case TypeReferenceKind::IndirectObjCClass: {
#if SWIFT_OBJC_INTEROP
auto cls = *reinterpret_cast<const Class *>(ref);
return computeMetadataBoundsForObjCClass(cls);
#else
break;
#endif
}
}
swift_unreachable("unsupported superclass reference kind");
}
static ClassMetadataBounds computeMetadataBoundsFromSuperclass(
const ClassDescriptor *description,
StoredClassMetadataBounds &storedBounds) {
ClassMetadataBounds bounds;
// Compute the bounds for the superclass, extending it to the minimum
// bounds of a Swift class.
if (const void *superRef = description->getResilientSuperclass()) {
bounds = computeMetadataBoundsForSuperclass(superRef,
description->getResilientSuperclassReferenceKind());
} else {
bounds = ClassMetadataBounds::forSwiftRootClass();
}
// Add the subclass's immediate members.
bounds.adjustForSubclass(description->areImmediateMembersNegative(),
description->NumImmediateMembers);
// Cache before returning.
storedBounds.initialize(bounds);
return bounds;
}
ClassMetadataBounds
swift::getResilientMetadataBounds(const ClassDescriptor *description) {
assert(description->hasResilientSuperclass());
auto &storedBounds = *description->ResilientMetadataBounds.get();
ClassMetadataBounds bounds;
if (storedBounds.tryGet(bounds)) {
return bounds;
}
return computeMetadataBoundsFromSuperclass(description, storedBounds);
}
int32_t
swift::getResilientImmediateMembersOffset(const ClassDescriptor *description) {
assert(description->hasResilientSuperclass());
auto &storedBounds = *description->ResilientMetadataBounds.get();
ptrdiff_t result;
if (storedBounds.tryGetImmediateMembersOffset(result)) {
return result / sizeof(void*);
}
auto bounds = computeMetadataBoundsFromSuperclass(description, storedBounds);
return bounds.ImmediateMembersOffset / sizeof(void*);
}
namespace {
class GenericMetadataCache :
public MetadataCache<GenericCacheEntry, GenericMetadataCacheTag> {
public:
GenericSignatureLayout<InProcess> SigLayout;
GenericMetadataCache(const TargetGenericContext<InProcess> &genericContext)
: SigLayout(genericContext.getGenericSignature()) {
}
};
using LazyGenericMetadataCache = Lazy<GenericMetadataCache>;
class GlobalMetadataCacheEntry {
public:
const TypeContextDescriptor *Description;
GenericMetadataCache Cache;
GlobalMetadataCacheEntry(const TypeContextDescriptor *description)
: Description(description), Cache(*description->getGenericContext()) {}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Description);
}
bool matchesKey(const TypeContextDescriptor *description) const {
return description == Description;
}
friend llvm::hash_code hash_value(const GlobalMetadataCacheEntry &value) {
return llvm::hash_value(value.Description);
}
static size_t
getExtraAllocationSize(const TypeContextDescriptor *description) {
return 0;
}
size_t getExtraAllocationSize() const { return 0; }
};
static SimpleGlobalCache<GlobalMetadataCacheEntry, GlobalMetadataCacheTag>
GlobalMetadataCache;
} // end anonymous namespace
/// Fetch the metadata cache for a generic metadata structure.
static GenericMetadataCache &getCache(
const TypeContextDescriptor &description) {
auto &generics = description.getFullGenericContextHeader();
// Keep this assert even if you change the representation above.
static_assert(sizeof(LazyGenericMetadataCache) <=
sizeof(GenericMetadataInstantiationCache::PrivateData),
"metadata cache is larger than the allowed space");
auto *cacheStorage = generics.getInstantiationCache();
if (cacheStorage == nullptr) {
return GlobalMetadataCache.getOrInsert(&description).first->Cache;
}
auto lazyCache =
reinterpret_cast<LazyGenericMetadataCache*>(
generics.getInstantiationCache()->PrivateData);
return lazyCache->getWithInit(*description.getGenericContext());
}
#if SWIFT_PTRAUTH && SWIFT_OBJC_INTEROP
// See [NOTE: Dynamic-subclass-KVO]
static void swift_objc_classCopyFixupHandler(Class oldClass, Class newClass) {
auto oldClassMetadata = reinterpret_cast<const ClassMetadata *>(oldClass);
// Bail out if this isn't a Swift.
if (!oldClassMetadata->isTypeMetadata())
return;
// Copy the value witness table and pointer and heap object destroyer for
// pointer authentication.
auto newClassMetadata = reinterpret_cast<ClassMetadata *>(newClass);
newClassMetadata->setValueWitnesses(oldClassMetadata->getValueWitnesses());
newClassMetadata->setHeapObjectDestroyer(oldClassMetadata->getHeapObjectDestroyer());
// Otherwise, re-sign v-table entries using the extra discriminators stored
// in the v-table descriptor.
auto *srcWords = reinterpret_cast<void **>(oldClass);
auto *dstWords = reinterpret_cast<void **>(newClass);
while (oldClassMetadata && oldClassMetadata->isTypeMetadata()) {
const auto *description = oldClassMetadata->getDescription();
// Copy the vtable entries.
if (description && description->hasVTable()) {
auto *vtable = description->getVTableDescriptor();
auto descriptors = description->getMethodDescriptors();
auto src = srcWords + vtable->getVTableOffset(description);
auto dest = dstWords + vtable->getVTableOffset(description);
for (size_t i = 0, e = vtable->VTableSize; i != e; ++i) {
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&dest[i]),
reinterpret_cast<void *const *>(&src[i]),
descriptors[i].Flags.getExtraDiscriminator(),
!descriptors[i].Flags.isData(),
/*allowNull*/ true); // NULL allowed for VFE (methods in the vtable
// might be proven unused and null'ed)
}
}
oldClassMetadata = oldClassMetadata->Superclass;
}
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
static bool fixupHandlerInstaller = [] {
_objc_setClassCopyFixupHandler(&swift_objc_classCopyFixupHandler);
return true;
}();
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
#endif
#if SWIFT_OBJC_INTEROP
extern "C" void *_objc_empty_cache;
#endif
template <> bool Metadata::isStaticallySpecializedGenericMetadata() const {
if (auto *metadata = dyn_cast<StructMetadata>(this))
return metadata->isStaticallySpecializedGenericMetadata();
if (auto *metadata = dyn_cast<EnumMetadata>(this))
return metadata->isStaticallySpecializedGenericMetadata();
if (auto *metadata = dyn_cast<ClassMetadata>(this))
return metadata->isStaticallySpecializedGenericMetadata();
return false;
}
template <> const TypeContextDescriptor *Metadata::getDescription() const {
if (auto *metadata = dyn_cast<StructMetadata>(this))
return metadata->getDescription();
if (auto *metadata = dyn_cast<EnumMetadata>(this))
return metadata->getDescription();
if (auto *metadata = dyn_cast<ClassMetadata>(this))
return metadata->getDescription();
return nullptr;
}
template <>
bool Metadata::isCanonicalStaticallySpecializedGenericMetadata() const {
if (auto *metadata = dyn_cast<StructMetadata>(this))
return metadata->isCanonicalStaticallySpecializedGenericMetadata();
if (auto *metadata = dyn_cast<EnumMetadata>(this))
return metadata->isCanonicalStaticallySpecializedGenericMetadata();
if (auto *metadata = dyn_cast<ClassMetadata>(this))
return metadata->isCanonicalStaticallySpecializedGenericMetadata();
return false;
}
static void copyMetadataPattern(void **section,
const GenericMetadataPartialPattern *pattern) {
memcpy(section + pattern->OffsetInWords,
pattern->Pattern.get(),
size_t(pattern->SizeInWords) * sizeof(void*));
}
static void
initializeClassMetadataFromPattern(ClassMetadata *metadata,
ClassMetadataBounds bounds,
const ClassDescriptor *description,
const GenericClassMetadataPattern *pattern) {
auto fullMetadata = asFullMetadata(metadata);
char *rawMetadata = reinterpret_cast<char*>(metadata);
// Install the extra-data pattern.
void **metadataExtraData =
reinterpret_cast<void**>(rawMetadata) + bounds.PositiveSizeInWords;
if (pattern->hasExtraDataPattern()) {
auto extraDataPattern = pattern->getExtraDataPattern();
// Zero memory up to the offset.
// [pre-5.2-extra-data-zeroing] Before Swift 5.2, the runtime did not
// correctly zero the zero-prefix of the extra-data pattern.
memset(metadataExtraData, 0,
size_t(extraDataPattern->OffsetInWords) * sizeof(void *));
// Copy the pattern into the rest of the extra data.
copyMetadataPattern(metadataExtraData, extraDataPattern);
}
// Install the immediate members pattern:
void **immediateMembers =
reinterpret_cast<void**>(rawMetadata + bounds.ImmediateMembersOffset);
// Zero out the entire immediate-members section.
// TODO: only memset the parts that aren't covered by the pattern.
memset(immediateMembers, 0, description->getImmediateMembersSize());
// Copy in the immediate arguments.
// Copy the immediate-members pattern.
if (pattern->hasImmediateMembersPattern()) {
auto immediateMembersPattern = pattern->getImmediateMembersPattern();
copyMetadataPattern(immediateMembers, immediateMembersPattern);
}
// Initialize the header:
// Heap destructor.
fullMetadata->destroy = pattern->Destroy.get();
// Value witness table.
#if SWIFT_OBJC_INTEROP
fullMetadata->ValueWitnesses =
(pattern->Flags & ClassFlags::UsesSwiftRefcounting)
? &VALUE_WITNESS_SYM(Bo)
: &VALUE_WITNESS_SYM(BO);
#else
fullMetadata->ValueWitnesses = &VALUE_WITNESS_SYM(Bo);
#endif
#if SWIFT_OBJC_INTEROP
// Install the metaclass's RO-data pointer.
auto metaclass = reinterpret_cast<AnyClassMetadata *>(
metadataExtraData + pattern->MetaclassObjectOffset);
auto metaclassRO = metadataExtraData + pattern->MetaclassRODataOffset;
metaclass->Data = reinterpret_cast<uintptr_t>(metaclassRO);
#endif
// MetadataKind / isa.
#if SWIFT_OBJC_INTEROP
metadata->setClassISA(metaclass);
#else
metadata->setKind(MetadataKind::Class);
#endif
// Superclass.
metadata->Superclass = nullptr;
#if SWIFT_OBJC_INTEROP
// Cache data. Install the same initializer that the compiler is
// required to use. We don't need to do this in non-ObjC-interop modes.
metadata->CacheData[0] = &_objc_empty_cache;
metadata->CacheData[1] = nullptr;
#endif
// RO-data pointer.
#if SWIFT_OBJC_INTEROP
auto classRO = metadataExtraData + pattern->ClassRODataOffset;
metadata->Data =
reinterpret_cast<uintptr_t>(classRO) | SWIFT_CLASS_IS_SWIFT_MASK;
#endif
// Class flags.
metadata->Flags = pattern->Flags;
// Instance layout.
metadata->InstanceAddressPoint = 0;
metadata->InstanceSize = 0;
metadata->InstanceAlignMask = 0;
// Reserved.
metadata->Reserved = 0;
// Class metadata layout.
metadata->ClassSize = bounds.getTotalSizeInBytes();
metadata->ClassAddressPoint = bounds.getAddressPointInBytes();
// Class descriptor.
metadata->setDescription(description);
// I-var destroyer.
metadata->IVarDestroyer = pattern->IVarDestroyer;
}
ClassMetadata *
swift::swift_allocateGenericClassMetadata(const ClassDescriptor *description,
const void *arguments,
const GenericClassMetadataPattern *pattern){
description = swift_auth_data_non_address(
description, SpecialPointerAuthDiscriminators::TypeDescriptor);
// Compute the formal bounds of the metadata.
auto bounds = description->getMetadataBounds();
// Augment that with any required extra data from the pattern.
auto allocationBounds = bounds;
if (pattern->hasExtraDataPattern()) {
auto extraDataPattern = pattern->getExtraDataPattern();
allocationBounds.PositiveSizeInWords +=
extraDataPattern->OffsetInWords + extraDataPattern->SizeInWords;
}
auto bytes = (char*)
MetadataAllocator(GenericClassMetadataTag)
.Allocate(allocationBounds.getTotalSizeInBytes(), alignof(void*));
auto addressPoint = bytes + allocationBounds.getAddressPointInBytes();
auto metadata = reinterpret_cast<ClassMetadata *>(addressPoint);
initializeClassMetadataFromPattern(metadata, bounds, description, pattern);
assert(metadata->isTypeMetadata());
// Copy the generic arguments into place.
installGenericArguments(metadata, description, arguments);
return metadata;
}
static ClassMetadata *
swift_cvw_allocateGenericClassMetadataWithLayoutStringImpl(
const ClassDescriptor *description, const void *arguments,
const GenericClassMetadataPattern *pattern) {
return swift::swift_allocateGenericClassMetadata(description,
arguments,
pattern);
}
ClassMetadata *swift::swift_allocateGenericClassMetadataWithLayoutString(
const ClassDescriptor *description, const void *arguments,
const GenericClassMetadataPattern *pattern) {
return swift_cvw_allocateGenericClassMetadataWithLayoutString(
description, arguments, pattern);
}
static void
initializeValueMetadataFromPattern(ValueMetadata *metadata,
const ValueTypeDescriptor *description,
const GenericValueMetadataPattern *pattern) {
auto fullMetadata = asFullMetadata(metadata);
char *rawMetadata = reinterpret_cast<char*>(metadata);
if (pattern->hasExtraDataPattern()) {
void **metadataExtraData =
reinterpret_cast<void**>(rawMetadata + sizeof(ValueMetadata));
auto extraDataPattern = pattern->getExtraDataPattern();
// Zero memory up to the offset.
// [pre-5.3-extra-data-zeroing] Before Swift 5.3, the runtime did not
// correctly zero the zero-prefix of the extra-data pattern.
memset(metadataExtraData, 0,
size_t(extraDataPattern->OffsetInWords) * sizeof(void *));
// Copy the pattern into the rest of the extra data.
copyMetadataPattern(metadataExtraData, extraDataPattern);
}
// Put the VWT pattern in place as if it was the real VWT.
// The various initialization functions will instantiate this as
// necessary.
fullMetadata->setValueWitnesses(pattern->getValueWitnessesPattern());
// Set the metadata kind.
metadata->setKind(pattern->getMetadataKind());
// Set the type descriptor.
metadata->Description = description;
}
ValueMetadata *
swift::swift_allocateGenericValueMetadata(const ValueTypeDescriptor *description,
const void *arguments,
const GenericValueMetadataPattern *pattern,
size_t extraDataSize) {
description = swift_auth_data_non_address(description, SpecialPointerAuthDiscriminators::TypeDescriptor);
static_assert(sizeof(StructMetadata::HeaderType)
== sizeof(ValueMetadata::HeaderType),
"struct metadata header unexpectedly has extra members");
static_assert(sizeof(StructMetadata) == sizeof(ValueMetadata),
"struct metadata unexpectedly has extra members");
static_assert(sizeof(EnumMetadata::HeaderType)
== sizeof(ValueMetadata::HeaderType),
"enum metadata header unexpectedly has extra members");
static_assert(sizeof(EnumMetadata) == sizeof(ValueMetadata),
"enum metadata unexpectedly has extra members");
assert(!pattern->hasExtraDataPattern() ||
(extraDataSize == (pattern->getExtraDataPattern()->OffsetInWords +
pattern->getExtraDataPattern()->SizeInWords) *
sizeof(void *)));
size_t totalSize = sizeof(FullMetadata<ValueMetadata>) + extraDataSize;
auto bytes = (char*) MetadataAllocator(GenericValueMetadataTag)
.Allocate(totalSize, alignof(void*));
auto addressPoint = bytes + sizeof(ValueMetadata::HeaderType);
auto metadata = reinterpret_cast<ValueMetadata *>(addressPoint);
initializeValueMetadataFromPattern(metadata, description, pattern);
// Copy the generic arguments into place.
installGenericArguments(metadata, description, arguments);
return metadata;
}
static ValueMetadata *
swift_cvw_allocateGenericValueMetadataWithLayoutStringImpl(
const ValueTypeDescriptor *description, const void *arguments,
const GenericValueMetadataPattern *pattern, size_t extraDataSize) {
return swift::swift_allocateGenericValueMetadata(description,
arguments,
pattern,
extraDataSize);
}
ValueMetadata *swift::swift_allocateGenericValueMetadataWithLayoutString(
const ValueTypeDescriptor *description, const void *arguments,
const GenericValueMetadataPattern *pattern, size_t extraDataSize) {
return swift_cvw_allocateGenericValueMetadataWithLayoutString(
description, arguments, pattern, extraDataSize);
}
// Look into the canonical prespecialized metadata attached to the type
// descriptor and add them to the metadata cache.
static void
_cacheCanonicalSpecializedMetadata(const TypeContextDescriptor *description) {
auto &cache = getCache(*description);
auto request =
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true);
assert(description->getFullGenericContextHeader().Base.NumKeyArguments ==
cache.SigLayout.sizeInWords());
if (auto *classDescription = dyn_cast<ClassDescriptor>(description)) {
auto canonicalMetadataAccessors = classDescription->getCanonicalMetadataPrespecializationAccessors();
for (auto &canonicalMetadataAccessorPtr : canonicalMetadataAccessors) {
auto *canonicalMetadataAccessor = canonicalMetadataAccessorPtr.get();
auto response = canonicalMetadataAccessor(request);
auto *canonicalMetadata = response.Value;
const void *const *arguments =
reinterpret_cast<const void *const *>(canonicalMetadata->getGenericArgs());
auto key = MetadataCacheKey(cache.SigLayout, arguments);
auto result = cache.getOrInsert(key, MetadataRequest(MetadataState::Complete, /*isNonBlocking*/true), canonicalMetadata);
(void)result;
assert(result.second.Value == canonicalMetadata);
}
} else {
auto canonicalMetadatas = description->getCanonicalMetadataPrespecializations();
for (auto &canonicalMetadataPtr : canonicalMetadatas) {
Metadata *canonicalMetadata = canonicalMetadataPtr.get();
const void *const *arguments =
reinterpret_cast<const void *const *>(canonicalMetadata->getGenericArgs());
auto key = MetadataCacheKey(cache.SigLayout, arguments);
auto result = cache.getOrInsert(key, MetadataRequest(MetadataState::Complete, /*isNonBlocking*/true), canonicalMetadata);
(void)result;
assert(result.second.Value == canonicalMetadata);
}
}
}
static void
cacheCanonicalSpecializedMetadata(const TypeContextDescriptor *description,
swift_once_t *token) {
swift::once(
*token,
[](void *uncastDescription) {
auto *description = (const TypeContextDescriptor *)uncastDescription;
_cacheCanonicalSpecializedMetadata(description);
},
(void *)description);
}
MetadataResponse swift::swift_getCanonicalSpecializedMetadata(
MetadataRequest request, const Metadata *candidate,
const Metadata **cacheMetadataPtr) {
assert(candidate->isStaticallySpecializedGenericMetadata() &&
!candidate->isCanonicalStaticallySpecializedGenericMetadata());
auto *description = candidate->getDescription();
assert(description);
using CachedMetadata = std::atomic<const Metadata *>;
auto cachedMetadataAddr = ((CachedMetadata *)cacheMetadataPtr);
auto *cachedMetadata = cachedMetadataAddr->load(SWIFT_MEMORY_ORDER_CONSUME);
if (SWIFT_LIKELY(cachedMetadata != nullptr)) {
// Cached metadata pointers are always complete.
return MetadataResponse{(const Metadata *)cachedMetadata,
MetadataState::Complete};
}
if (auto *token =
description
->getCanonicalMetadataPrespecializationCachingOnceToken()) {
cacheCanonicalSpecializedMetadata(description, token);
// NOTE: If there is no token, then there are no canonical prespecialized
// metadata records, either.
}
const void *const *arguments =
reinterpret_cast<const void *const *>(candidate->getGenericArgs());
auto &cache = getCache(*description);
auto key = MetadataCacheKey(cache.SigLayout, arguments);
auto result = cache.getOrInsert(key, request, candidate);
cachedMetadataAddr->store(result.second.Value, std::memory_order_release);
return result.second;
}
SWIFT_CC(swift)
static MetadataResponse
_swift_getGenericMetadata(MetadataRequest request, const void *const *arguments,
const TypeContextDescriptor *description) {
auto &cache = getCache(*description);
assert(description->getFullGenericContextHeader().Base.NumKeyArguments ==
cache.SigLayout.sizeInWords());
auto key = MetadataCacheKey(cache.SigLayout, arguments);
auto result = cache.getOrInsert(key, request, description, arguments);
return result.second;
}
/// The primary entrypoint.
MetadataResponse
swift::swift_getGenericMetadata(MetadataRequest request,
const void *const *arguments,
const TypeContextDescriptor *description) {
description = swift_auth_data_non_address(
description, SpecialPointerAuthDiscriminators::TypeDescriptor);
return _swift_getGenericMetadata(request, arguments, description);
}
MetadataResponse swift::swift_getCanonicalPrespecializedGenericMetadata(
MetadataRequest request, const void *const *arguments,
const TypeContextDescriptor *description, swift_once_t *token) {
description = swift_auth_data_non_address(
description, SpecialPointerAuthDiscriminators::TypeDescriptor);
cacheCanonicalSpecializedMetadata(description, token);
return _swift_getGenericMetadata(request, arguments, description);
}
/***************************************************************************/
/*** In-place metadata initialization **************************************/
/***************************************************************************/
namespace {
/// A cache entry for "in-place" metadata initializations.
class SingletonMetadataCacheEntry final
: public MetadataCacheEntryBase<SingletonMetadataCacheEntry, int> {
ValueType Value = nullptr;
friend MetadataCacheEntryBase;
ValueType getValue() {
return Value;
}
void setValue(ValueType value) {
Value = value;
}
public:
// We have to give MetadataCacheEntryBase a non-empty list of trailing
// objects or else it gets annoyed.
static size_t numTrailingObjects(OverloadToken<int>) { return 0; }
static const char *getName() { return "SingletonMetadataCache"; }
SingletonMetadataCacheEntry(MetadataWaitQueue::Worker &worker,
MetadataRequest request,
const TypeContextDescriptor *description)
: MetadataCacheEntryBase(worker) {}
AllocationResult allocate(const TypeContextDescriptor *description) {
auto &initialization = description->getSingletonMetadataInitialization();
// Classes with resilient superclasses might require their metadata to
// be relocated.
auto metadata = initialization.allocate(description);
auto state = inferStateForMetadata(metadata);
return { metadata, state };
}
MetadataStateWithDependency tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *context) {
assert(state != PrivateMetadataState::Complete);
// Finish the completion function.
if (state < PrivateMetadataState::NonTransitiveComplete) {
// Find a pattern. Currently we always use the default pattern.
auto &initialization =
metadata->getTypeContextDescriptor()
->getSingletonMetadataInitialization();
// Complete the metadata's instantiation.
auto dependency =
initialization.CompletionFunction(metadata, &context->Public,
/*pattern*/ nullptr);
// If this failed with a dependency, infer the current metadata state
// and return.
if (dependency) {
return { inferStateForMetadata(metadata), dependency };
}
}
// Check for transitive completeness.
if (auto dependency = checkTransitiveCompleteness(metadata)) {
return { PrivateMetadataState::NonTransitiveComplete, dependency };
}
// We're done.
publishCompleteMetadata(metadata);
return { PrivateMetadataState::Complete, MetadataDependency() };
}
void publishCompleteMetadata(Metadata *metadata) {
auto &init = metadata->getTypeContextDescriptor()
->getSingletonMetadataInitialization();
auto &cache = *init.InitializationCache.get();
cache.Metadata.store(metadata, std::memory_order_release);
}
};
/// An implementation of LockingConcurrentMapStorage that's more
/// appropriate for the in-place metadata cache.
///
/// TODO: delete the cache entry when initialization is complete.
class SingletonMetadataCacheStorage {
ConcurrencyControl Concurrency;
public:
using KeyType = const TypeContextDescriptor *;
using EntryType = SingletonMetadataCacheEntry;
ConcurrencyControl &getConcurrency() { return Concurrency; }
template <class... ArgTys>
std::pair<EntryType*, bool>
getOrInsert(KeyType key, ArgTys &&...args) {
auto &init = key->getSingletonMetadataInitialization();
auto &cache = *init.InitializationCache.get();
// Check for an existing entry.
auto existingEntry = cache.Private.load(std::memory_order_acquire);
// If there isn't one there, optimistically create an entry and
// try to swap it in.
if (!existingEntry) {
auto allocatedEntry = swift_cxx_newObject<SingletonMetadataCacheEntry>(
std::forward<ArgTys>(args)...);
if (cache.Private.compare_exchange_strong(existingEntry,
allocatedEntry,
std::memory_order_acq_rel,
std::memory_order_acquire)) {
// If that succeeded, return the entry we allocated and tell the
// caller we allocated it.
return { allocatedEntry, true };
}
// Otherwise, use the new entry and destroy the one we allocated.
assert(existingEntry && "spurious failure of strong compare-exchange?");
swift_cxx_deleteObject(allocatedEntry);
}
return { static_cast<SingletonMetadataCacheEntry*>(existingEntry), false };
}
EntryType *find(KeyType key) {
auto &init = key->getSingletonMetadataInitialization();
return static_cast<SingletonMetadataCacheEntry*>(
init.InitializationCache->Private.load(std::memory_order_acquire));
}
/// A default implementation for resolveEntry that assumes that the
/// key type is a lookup key for the map.
EntryType *resolveExistingEntry(KeyType key) {
auto entry = find(key);
assert(entry && "entry doesn't already exist!");
return entry;
}
};
class SingletonTypeMetadataCache
: public LockingConcurrentMap<SingletonMetadataCacheEntry,
SingletonMetadataCacheStorage> {
};
} // end anonymous namespace
/// The cache of all in-place metadata initializations.
static Lazy<SingletonTypeMetadataCache> SingletonMetadata;
MetadataResponse
swift::swift_getSingletonMetadata(MetadataRequest request,
const TypeContextDescriptor *description) {
auto result = SingletonMetadata.get().getOrInsert(description, request,
description);
return result.second;
}
/***************************************************************************/
/*** Objective-C class wrappers ********************************************/
/***************************************************************************/
#if SWIFT_OBJC_INTEROP
namespace {
class ObjCClassCacheEntry {
public:
FullMetadata<ObjCClassWrapperMetadata> Data;
ObjCClassCacheEntry(const ClassMetadata *theClass) {
Data.setKind(MetadataKind::ObjCClassWrapper);
Data.ValueWitnesses = &VALUE_WITNESS_SYM(BO);
Data.Class = theClass;
}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.Class);
}
bool matchesKey(const ClassMetadata *theClass) const {
return theClass == Data.Class;
}
friend llvm::hash_code hash_value(const ObjCClassCacheEntry &value) {
return llvm::hash_value(value.Data.Class);
}
static size_t getExtraAllocationSize(const ClassMetadata *key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
}
/// The uniquing structure for ObjC class-wrapper metadata.
static SimpleGlobalCache<ObjCClassCacheEntry, ObjCClassWrappersTag>
ObjCClassWrappers;
const Metadata *
swift::swift_getObjCClassMetadata(const ClassMetadata *theClass) {
// Make calls resilient against receiving a null Objective-C class. This can
// happen when classes are weakly linked and not available.
if (theClass == nullptr)
return nullptr;
// If the class pointer is valid as metadata, no translation is required.
if (theClass->isTypeMetadata()) {
return theClass;
}
return &ObjCClassWrappers.getOrInsert(theClass).first->Data;
}
const ClassMetadata *
swift::swift_getObjCClassFromMetadata(const Metadata *theMetadata) {
// We're not supposed to accept NULL, but older runtimes somehow did as a
// side effect of UB in dyn_cast, so we'll keep that going.
if (!theMetadata)
return nullptr;
// Unwrap ObjC class wrappers.
if (auto wrapper = dyn_cast<ObjCClassWrapperMetadata>(theMetadata)) {
return wrapper->Class;
}
// Otherwise, the input should already be a Swift class object.
auto theClass = cast<ClassMetadata>(theMetadata);
assert(theClass->isTypeMetadata());
return theClass;
}
const ClassMetadata *
swift::swift_getObjCClassFromMetadataConditional(const Metadata *theMetadata) {
// We're not supposed to accept NULL, but older runtimes somehow did as a
// side effect of UB in dyn_cast, so we'll keep that going.
if (!theMetadata)
return nullptr;
// If it's an ordinary class, return it.
if (auto theClass = dyn_cast<ClassMetadata>(theMetadata)) {
return theClass;
}
// Unwrap ObjC class wrappers.
if (auto wrapper = dyn_cast<ObjCClassWrapperMetadata>(theMetadata)) {
return wrapper->Class;
}
// Not an ObjC class after all.
return nil;
}
#endif
/***************************************************************************/
/*** Metadata and witness table packs **************************************/
/***************************************************************************/
namespace {
template<typename PackType>
class PackCacheEntry {
public:
size_t Count;
const PackType * const * getElements() const {
return reinterpret_cast<const PackType * const *>(this + 1);
}
const PackType ** getElements() {
return reinterpret_cast<const PackType **>(this + 1);
}
struct Key {
const PackType *const *Data;
const size_t Count;
size_t getCount() const {
return Count;
}
const PackType *getElement(size_t index) const {
assert(index < Count);
return Data[index];
}
friend llvm::hash_code hash_value(const Key &key) {
llvm::hash_code hash = 0;
for (size_t i = 0; i != key.getCount(); ++i)
hash = llvm::hash_combine(hash, key.getElement(i));
return hash;
}
};
PackCacheEntry(const Key &key);
intptr_t getKeyIntValueForDump() {
return 0; // No single meaningful value here.
}
bool matchesKey(const Key &key) const {
if (key.getCount() != Count)
return false;
for (unsigned i = 0; i != Count; ++i) {
if (key.getElement(i) != getElements()[i])
return false;
}
return true;
}
friend llvm::hash_code hash_value(const PackCacheEntry<PackType> &value) {
llvm::hash_code hash = 0;
for (size_t i = 0; i != value.Count; ++i)
hash = llvm::hash_combine(hash, value.getElements()[i]);
return hash;
}
static size_t getExtraAllocationSize(const Key &key) {
return getExtraAllocationSize(key.Count);
}
size_t getExtraAllocationSize() const {
return getExtraAllocationSize(Count);
}
static size_t getExtraAllocationSize(unsigned count) {
return count * sizeof(const Metadata * const *);
}
};
template<typename PackType>
PackCacheEntry<PackType>::PackCacheEntry(
const typename PackCacheEntry<PackType>::Key &key) {
Count = key.getCount();
for (unsigned i = 0; i < Count; ++i)
getElements()[i] = key.getElement(i);
}
} // end anonymous namespace
/// The uniquing structure for metadata packs.
static SimpleGlobalCache<PackCacheEntry<Metadata>,
MetadataPackTag> MetadataPacks;
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
const Metadata * const *
swift_allocateMetadataPack(const Metadata * const *ptr, size_t count) {
if (MetadataPackPointer(reinterpret_cast<uintptr_t>(ptr)).getLifetime()
== PackLifetime::OnHeap)
return ptr;
PackCacheEntry<Metadata>::Key key{ptr, count};
auto bytes = MetadataPacks.getOrInsert(key).first->getElements();
MetadataPackPointer pack(bytes, PackLifetime::OnHeap);
assert(pack.getNumElements() == count);
return pack.getPointer();
}
/// The uniquing structure for witness table packs.
static SimpleGlobalCache<PackCacheEntry<WitnessTable>,
WitnessTablePackTag> WitnessTablePacks;
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
const WitnessTable * const *
swift_allocateWitnessTablePack(const WitnessTable * const *ptr, size_t count) {
if (WitnessTablePackPointer(reinterpret_cast<uintptr_t>(ptr)).getLifetime()
== PackLifetime::OnHeap)
return ptr;
PackCacheEntry<WitnessTable>::Key key{ptr, count};
auto bytes = WitnessTablePacks.getOrInsert(key).first->getElements();
WitnessTablePackPointer pack(bytes, PackLifetime::OnHeap);
assert(pack.getNumElements() == count);
return pack.getPointer();
}
/***************************************************************************/
/*** Functions *************************************************************/
/***************************************************************************/
namespace {
class FunctionCacheEntry {
public:
FullMetadata<FunctionTypeMetadata> Data;
struct Key {
const FunctionTypeFlags Flags;
const FunctionMetadataDifferentiabilityKind DifferentiabilityKind;
const Metadata *const *Parameters;
const ::ParameterFlags *ParameterFlags;
const Metadata *Result;
const Metadata *GlobalActor;
const ExtendedFunctionTypeFlags ExtFlags;
const Metadata *ThrownError;
FunctionTypeFlags getFlags() const { return Flags; }
ExtendedFunctionTypeFlags getExtFlags() const { return ExtFlags; }
FunctionMetadataDifferentiabilityKind getDifferentiabilityKind() const {
return DifferentiabilityKind;
}
const Metadata *getParameter(unsigned index) const {
assert(index < Flags.getNumParameters());
return Parameters[index];
}
const Metadata *getResult() const { return Result; }
const ::ParameterFlags *getParameterFlags() const {
return ParameterFlags;
}
::ParameterFlags getParameterFlags(unsigned index) const {
assert(index < Flags.getNumParameters());
return Flags.hasParameterFlags() ? ParameterFlags[index] : ::ParameterFlags();
}
const Metadata *getGlobalActor() const { return GlobalActor; }
const Metadata *getThrownError() const { return ThrownError; }
friend llvm::hash_code hash_value(const Key &key) {
auto hash = llvm::hash_combine(
key.Flags.getIntValue(),
key.DifferentiabilityKind.getIntValue(),
key.Result, key.GlobalActor,
key.ExtFlags.getIntValue(), key.ThrownError);
for (unsigned i = 0, e = key.getFlags().getNumParameters(); i != e; ++i) {
hash = llvm::hash_combine(hash, key.getParameter(i));
hash = llvm::hash_combine(hash, key.getParameterFlags(i).getIntValue());
}
return hash;
}
};
FunctionCacheEntry(const Key &key);
intptr_t getKeyIntValueForDump() {
return 0; // No single meaningful value here.
}
bool matchesKey(const Key &key) const {
if (key.getFlags().getIntValue() != Data.Flags.getIntValue())
return false;
if (key.getDifferentiabilityKind().Value !=
Data.getDifferentiabilityKind().Value)
return false;
if (key.getResult() != Data.ResultType)
return false;
if (key.getGlobalActor() != Data.getGlobalActor())
return false;
if (key.getExtFlags().getIntValue() != Data.getExtendedFlags().getIntValue())
return false;
if (key.getThrownError() != Data.getThrownError())
return false;
for (unsigned i = 0, e = key.getFlags().getNumParameters(); i != e; ++i) {
if (key.getParameter(i) != Data.getParameter(i))
return false;
if (key.getParameterFlags(i).getIntValue() !=
Data.getParameterFlags(i).getIntValue())
return false;
}
return true;
}
friend llvm::hash_code hash_value(const FunctionCacheEntry &value) {
Key key = {value.Data.Flags, value.Data.getDifferentiabilityKind(),
value.Data.getParameters(), value.Data.getParameterFlags(),
value.Data.ResultType, value.Data.getGlobalActor(),
value.Data.getExtendedFlags(), value.Data.getThrownError()};
return hash_value(key);
}
static size_t getExtraAllocationSize(const Key &key) {
return getExtraAllocationSize(key.Flags, key.ExtFlags);
}
size_t getExtraAllocationSize() const {
return getExtraAllocationSize(Data.Flags, Data.getExtendedFlags());
}
static size_t getExtraAllocationSize(const FunctionTypeFlags &flags,
const ExtendedFunctionTypeFlags &extFlags) {
const auto numParams = flags.getNumParameters();
return FunctionTypeMetadata::additionalSizeToAlloc<
const Metadata *, ParameterFlags, FunctionMetadataDifferentiabilityKind,
FunctionGlobalActorMetadata, ExtendedFunctionTypeFlags,
FunctionThrownErrorMetadata>(numParams,
flags.hasParameterFlags() ? numParams : 0,
flags.isDifferentiable() ? 1 : 0,
flags.hasGlobalActor() ? 1 : 0,
flags.hasExtendedFlags() ? 1 : 0,
extFlags.isTypedThrows() ? 1 : 0);
}
};
} // end anonymous namespace
/// The uniquing structure for function type metadata.
static SimpleGlobalCache<FunctionCacheEntry, FunctionTypesTag> FunctionTypes;
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadata0(FunctionTypeFlags flags,
const Metadata *result) {
assert(flags.getNumParameters() == 0
&& "wrong number of arguments in function metadata flags?!");
return swift_getFunctionTypeMetadata(flags, nullptr, nullptr, result);
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadata1(FunctionTypeFlags flags,
const Metadata *arg0,
const Metadata *result) {
assert(flags.getNumParameters() == 1
&& "wrong number of arguments in function metadata flags?!");
const Metadata *parameters[] = { arg0 };
return swift_getFunctionTypeMetadata(flags, parameters, nullptr, result);
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadata2(FunctionTypeFlags flags,
const Metadata *arg0,
const Metadata *arg1,
const Metadata *result) {
assert(flags.getNumParameters() == 2
&& "wrong number of arguments in function metadata flags?!");
const Metadata *parameters[] = { arg0, arg1 };
return swift_getFunctionTypeMetadata(flags, parameters, nullptr, result);
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadata3(FunctionTypeFlags flags,
const Metadata *arg0,
const Metadata *arg1,
const Metadata *arg2,
const Metadata *result) {
assert(flags.getNumParameters() == 3
&& "wrong number of arguments in function metadata flags?!");
const Metadata *parameters[] = { arg0, arg1, arg2 };
return swift_getFunctionTypeMetadata(flags, parameters, nullptr, result);
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadata(FunctionTypeFlags flags,
const Metadata *const *parameters,
const uint32_t *parameterFlags,
const Metadata *result) {
assert(!flags.isDifferentiable()
&& "Differentiable function type metadata should be obtained using "
"'swift_getFunctionTypeMetadataDifferentiable'");
assert(!flags.hasGlobalActor()
&& "Global actor function type metadata should be obtained using "
"'swift_getFunctionTypeMetadataGlobalActor'");
assert(!flags.hasExtendedFlags()
&& "Extended flags function type metadata should be obtained using "
"'swift_getExtendedFunctionTypeMetadata'");
FunctionCacheEntry::Key key = {
flags, FunctionMetadataDifferentiabilityKind::NonDifferentiable, parameters,
reinterpret_cast<const ParameterFlags *>(parameterFlags), result, nullptr,
ExtendedFunctionTypeFlags(), nullptr
};
return &FunctionTypes.getOrInsert(key).first->Data;
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadataDifferentiable(
FunctionTypeFlags flags, FunctionMetadataDifferentiabilityKind diffKind,
const Metadata *const *parameters, const uint32_t *parameterFlags,
const Metadata *result) {
assert(!flags.hasGlobalActor()
&& "Global actor function type metadata should be obtained using "
"'swift_getFunctionTypeMetadataGlobalActor'");
assert(!flags.hasExtendedFlags()
&& "Extended flags function type metadata should be obtained using "
"'swift_getExtendedFunctionTypeMetadata'");
assert(flags.isDifferentiable());
assert(diffKind.isDifferentiable());
FunctionCacheEntry::Key key = {
flags, diffKind, parameters,
reinterpret_cast<const ParameterFlags *>(parameterFlags), result, nullptr,
ExtendedFunctionTypeFlags(), nullptr
};
return &FunctionTypes.getOrInsert(key).first->Data;
}
const FunctionTypeMetadata *
swift::swift_getFunctionTypeMetadataGlobalActor(
FunctionTypeFlags flags, FunctionMetadataDifferentiabilityKind diffKind,
const Metadata *const *parameters, const uint32_t *parameterFlags,
const Metadata *result, const Metadata *globalActor) {
assert(!flags.hasExtendedFlags()
&& "Extended flags function type metadata should be obtained using "
"'swift_getExtendedFunctionTypeMetadata'");
FunctionCacheEntry::Key key = {
flags, diffKind, parameters,
reinterpret_cast<const ParameterFlags *>(parameterFlags), result,
globalActor, ExtendedFunctionTypeFlags(), nullptr
};
return &FunctionTypes.getOrInsert(key).first->Data;
}
extern "C" const EnumDescriptor NOMINAL_TYPE_DESCR_SYM(s5NeverO);
extern "C" const ProtocolDescriptor PROTOCOL_DESCR_SYM(s5Error);
namespace {
/// Classification for a given thrown error type.
enum class ThrownErrorClassification {
/// An arbitrary thrown error.
Arbitrary,
/// 'Never', which means a function type is non-throwing.
Never,
/// 'any Error', which means the function type uses untyped throws.
AnyError,
};
/// Classify a thrown error type.
ThrownErrorClassification classifyThrownError(const Metadata *type) {
if (auto enumMetadata = dyn_cast<EnumMetadata>(type)) {
if (enumMetadata->getDescription() == &NOMINAL_TYPE_DESCR_SYM(s5NeverO))
return ThrownErrorClassification::Never;
} else if (auto existential = dyn_cast<ExistentialTypeMetadata>(type)) {
auto protocols = existential->getProtocols();
if (protocols.size() == 1 &&
!protocols[0].isObjC() &&
protocols[0].getSwiftProtocol() == &PROTOCOL_DESCR_SYM(s5Error) &&
!existential->isClassBounded() &&
!existential->isObjC())
return ThrownErrorClassification::AnyError;
}
return ThrownErrorClassification::Arbitrary;
}
}
const FunctionTypeMetadata *
swift::swift_getExtendedFunctionTypeMetadata(
FunctionTypeFlags flags, FunctionMetadataDifferentiabilityKind diffKind,
const Metadata *const *parameters, const uint32_t *parameterFlags,
const Metadata *result, const Metadata *globalActor,
ExtendedFunctionTypeFlags extFlags, const Metadata *thrownError) {
assert(flags.hasExtendedFlags() || extFlags.getIntValue() == 0);
assert(flags.hasExtendedFlags() || thrownError == nullptr);
if (thrownError) {
// Perform adjustments based on the given thrown error.
switch (classifyThrownError(thrownError)){
case ThrownErrorClassification::Arbitrary:
// Nothing to do.
break;
case ThrownErrorClassification::Never:
// The thrown error was 'Never', so make this a non-throwing function
flags = flags.withThrows(false);
// Fall through to clear out the error.
SWIFT_FALLTHROUGH;
case ThrownErrorClassification::AnyError:
// Clear out the thrown error and extended flags.
thrownError = nullptr;
extFlags = extFlags.withTypedThrows(false);
if (extFlags.getIntValue() == 0)
flags = flags.withExtendedFlags(false);
break;
}
}
FunctionCacheEntry::Key key = {
flags, diffKind, parameters,
reinterpret_cast<const ParameterFlags *>(parameterFlags), result,
globalActor, extFlags, thrownError
};
return &FunctionTypes.getOrInsert(key).first->Data;
}
FunctionCacheEntry::FunctionCacheEntry(const Key &key) {
auto flags = key.getFlags();
// Pick a value witness table appropriate to the function convention.
// All function types of a given convention have the same value semantics,
// so they share a value witness table.
switch (flags.getConvention()) {
case FunctionMetadataConvention::Swift:
if (!flags.isEscaping()) {
Data.ValueWitnesses = &VALUE_WITNESS_SYM(NOESCAPE_FUNCTION_MANGLING);
} else {
switch (key.getDifferentiabilityKind().Value) {
case FunctionMetadataDifferentiabilityKind::Reverse:
Data.ValueWitnesses = &VALUE_WITNESS_SYM(DIFF_FUNCTION_MANGLING);
break;
default:
swift_unreachable("unsupported function witness");
case FunctionMetadataDifferentiabilityKind::NonDifferentiable:
Data.ValueWitnesses = &VALUE_WITNESS_SYM(FUNCTION_MANGLING);
break;
}
}
break;
case FunctionMetadataConvention::Thin:
case FunctionMetadataConvention::CFunctionPointer:
Data.ValueWitnesses = &VALUE_WITNESS_SYM(THIN_FUNCTION_MANGLING);
break;
case FunctionMetadataConvention::Block:
#if SWIFT_OBJC_INTEROP
// Blocks are ObjC objects, so can share the AnyObject value
// witnesses (stored as "BO" rather than "yXl" for ABI compat).
Data.ValueWitnesses = &VALUE_WITNESS_SYM(BO);
#else
assert(false && "objc block without objc interop?");
#endif
break;
}
unsigned numParameters = flags.getNumParameters();
Data.setKind(MetadataKind::Function);
Data.Flags = flags;
Data.ResultType = key.getResult();
if (flags.hasGlobalActor())
*Data.getGlobalActorAddr() = key.getGlobalActor();
if (flags.isDifferentiable())
*Data.getDifferentiabilityKindAddress() = key.getDifferentiabilityKind();
if (flags.hasExtendedFlags()) {
auto extFlags = key.getExtFlags();
*Data.getExtendedFlagsAddr() = extFlags;
if (extFlags.isTypedThrows())
*Data.getThrownErrorAddr() = key.getThrownError();
}
for (unsigned i = 0; i < numParameters; ++i) {
Data.getParameters()[i] = key.getParameter(i);
if (flags.hasParameterFlags())
Data.getParameterFlags()[i] = key.getParameterFlags(i);
}
}
/***************************************************************************/
/*** Vectors ****************************************************************/
/***************************************************************************/
namespace {
class FixedArrayCacheEntry
: public MetadataCacheEntryBase<FixedArrayCacheEntry, int>
{
public:
// We have to give MetadataCacheEntryBase a non-empty list of trailing
// objects or else it gets annoyed.
template<typename...Etc>
static size_t numTrailingObjects(OverloadToken<int>, Etc &&...) { return 0; }
AllocationResult allocate() {
swift_unreachable("allocated during construction");
}
ValueWitnessTable Witnesses;
FullMetadata<FixedArrayTypeMetadata> Data;
struct Key {
intptr_t Count;
const Metadata *Element;
static llvm::hash_code hash_value(intptr_t count, const Metadata *elt) {
return llvm::hash_combine(count, elt);
}
friend llvm::hash_code hash_value(const Key &key) {
return hash_value(key.Count, key.Element);
}
};
static const char *getName() { return "FixedArrayCache"; }
ValueType getValue() {
return &Data;
}
void setValue(ValueType value) {
assert(value == &Data);
}
FixedArrayCacheEntry(const Key &key, MetadataWaitQueue::Worker &worker,
MetadataRequest request);
MetadataStateWithDependency tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *context);
MetadataStateWithDependency checkTransitiveCompleteness() {
auto dependency = swift::checkTransitiveCompleteness(&Data);
return { dependency ? PrivateMetadataState::NonTransitiveComplete
: PrivateMetadataState::Complete,
dependency };
}
intptr_t getKeyIntValueForDump() {
return 0; // No single meaningful value
}
friend llvm::hash_code hash_value(const FixedArrayCacheEntry &value) {
return Key::hash_value(value.Data.Count, value.Data.Element);
}
bool matchesKey(const Key &key) {
return Data.Count == key.Count && Data.Element == key.Element;
}
};
class FixedArrayCacheStorage :
public LockingConcurrentMapStorage<FixedArrayCacheEntry, FixedArrayCacheTag> {
public:
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
static FixedArrayCacheEntry *
resolveExistingEntry(const FixedArrayTypeMetadata *metadata) {
// The correctness of this arithmetic is verified by an assertion in
// the TupleCacheEntry constructor.
auto bytes = reinterpret_cast<const char*>(asFullMetadata(metadata));
bytes -= offsetof(FixedArrayCacheEntry, Data);
auto entry = reinterpret_cast<const FixedArrayCacheEntry*>(bytes);
return const_cast<FixedArrayCacheEntry*>(entry);
}
#pragma clang diagnostic pop
};
class FixedArrayCache :
public LockingConcurrentMap<FixedArrayCacheEntry, FixedArrayCacheStorage> {
};
static Lazy<FixedArrayCache> FixedArrayTypes;
} // end anonymous namespace
MetadataResponse
swift::swift_getFixedArrayTypeMetadata(MetadataRequest request,
intptr_t count,
const Metadata *element) {
// An empty array is laid out like an empty tuple.
// Since Builtin.FixedArray is a builtin type, we don't try to guarantee it a
// unique runtime identity.
if (count <= 0) {
return MetadataResponse{&METADATA_SYM(EMPTY_TUPLE_MANGLING),
MetadataState::Complete};
}
// If the element type has no tail padding, then its metadata is good enough
// to hold space for the vector.
if (count == 1
&& element->getValueWitnesses()->size == element->getValueWitnesses()->stride) {
return MetadataResponse{element, MetadataState::Complete};
}
auto &cache = FixedArrayTypes.get();
FixedArrayCacheEntry::Key key{count, element};
return cache.getOrInsert(key, request).second;
}
FixedArrayCacheEntry::FixedArrayCacheEntry(const Key &key,
MetadataWaitQueue::Worker &worker,
MetadataRequest request)
: MetadataCacheEntryBase(worker, PrivateMetadataState::Abstract) {
Data.setKind(MetadataKind::FixedArray);
Data.Count = key.Count;
Data.Element = key.Element;
assert(FixedArrayCacheStorage::resolveExistingEntry(&Data) == this);
}
/// Given a metatype pointer, produce the value-witness table for it.
static const ValueWitnessTable *generic_getValueWitnesses(const Metadata *metatype) {
return asFullMetadata(metatype)->ValueWitnesses;
}
/// Generic value witness for 'projectBuffer'.
template <bool IsInline>
static OpaqueValue *generic_projectBuffer(ValueBuffer *buffer,
const Metadata *metatype) {
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsInline)
return reinterpret_cast<OpaqueValue*>(buffer);
auto wtable = generic_getValueWitnesses(metatype);
unsigned alignMask = wtable->getAlignmentMask();
// Compute the byte offset of the object in the box.
unsigned byteOffset = (sizeof(HeapObject) + alignMask) & ~alignMask;
auto *bytePtr =
reinterpret_cast<char *>(*reinterpret_cast<HeapObject **>(buffer));
return reinterpret_cast<OpaqueValue *>(bytePtr + byteOffset);
}
static void
vector_destroy(OpaqueValue *dest, const Metadata *metatype) {
if (metatype->getValueWitnesses()->isPOD()) {
return;
}
auto vectorType = cast<FixedArrayTypeMetadata>(metatype);
auto destBytes = (char*)dest;
for (unsigned i = 0, end = vectorType->getRealizedCount(),
stride = vectorType->Element->vw_stride();
i < end;
++i, destBytes += stride) {
vectorType->Element->vw_destroy((OpaqueValue*)destBytes);
}
}
namespace {
template<typename ElementFn>
OpaqueValue *
vector_elementwise_transfer(OpaqueValue *dest, OpaqueValue *src,
const Metadata *metatype,
ElementFn &&elementFn) {
if (metatype->getValueWitnesses()->isPOD()) {
memcpy(dest, src, metatype->vw_size());
return dest;
}
auto vectorType = cast<FixedArrayTypeMetadata>(metatype);
auto destBytes = (char*)dest;
auto srcBytes = (char*)src;
for (unsigned i = 0, end = vectorType->getRealizedCount(),
stride = vectorType->Element->vw_stride();
i < end;
++i, destBytes += stride, srcBytes += stride) {
elementFn(
(OpaqueValue*)destBytes,
(OpaqueValue*)srcBytes,
vectorType->Element);
}
return dest;
}
}
static OpaqueValue *
vector_initializeWithCopy(OpaqueValue *dest, OpaqueValue *src,
const Metadata *metatype) {
return vector_elementwise_transfer(dest, src, metatype,
[&](OpaqueValue *destElt, OpaqueValue *srcElt, const Metadata *eltType) {
eltType->vw_initializeWithCopy(destElt, srcElt);
});
}
static OpaqueValue *
vector_assignWithCopy(OpaqueValue *dest, OpaqueValue *src,
const Metadata *metatype) {
return vector_elementwise_transfer(dest, src, metatype,
[&](OpaqueValue *destElt, OpaqueValue *srcElt, const Metadata *eltType) {
eltType->vw_assignWithCopy(destElt, srcElt);
});
}
static OpaqueValue *
vector_initializeWithTake(OpaqueValue *dest, OpaqueValue *src,
const Metadata *metatype) {
return vector_elementwise_transfer(dest, src, metatype,
[&](OpaqueValue *destElt, OpaqueValue *srcElt, const Metadata *eltType) {
eltType->vw_initializeWithTake(destElt, srcElt);
});
}
static OpaqueValue *
vector_assignWithTake(OpaqueValue *dest, OpaqueValue *src,
const Metadata *metatype) {
return vector_elementwise_transfer(dest, src, metatype,
[&](OpaqueValue *destElt, OpaqueValue *srcElt, const Metadata *eltType) {
eltType->vw_assignWithTake(destElt, srcElt);
});
}
static OpaqueValue *vector_initializeBufferWithCopyOfBuffer(ValueBuffer *dest,
ValueBuffer *src,
const Metadata *metatype) {
if (metatype->getValueWitnesses()->isValueInline()) {
return vector_initializeWithCopy(
generic_projectBuffer<true>(dest, metatype),
generic_projectBuffer<true>(src, metatype),
metatype);
}
auto *srcReference = *reinterpret_cast<HeapObject**>(src);
*reinterpret_cast<HeapObject**>(dest) = srcReference;
swift_retain(srcReference);
return generic_projectBuffer<false>(dest, metatype);
}
static unsigned
vector_getEnumTagSinglePayload(const OpaqueValue *theEnum,
unsigned numEmptyCases,
const Metadata *metatype) {
auto vectorType = cast<FixedArrayTypeMetadata>(metatype);
return vectorType->Element->vw_getEnumTagSinglePayload(theEnum,
numEmptyCases);
}
static void
vector_storeEnumTagSinglePayload(OpaqueValue *theEnum,
unsigned whichCase,
unsigned numEmptyCases,
const Metadata *metatype) {
auto vectorType = cast<FixedArrayTypeMetadata>(metatype);
vectorType->Element->vw_storeEnumTagSinglePayload(theEnum,
whichCase,
numEmptyCases);
}
MetadataStateWithDependency
FixedArrayCacheEntry::tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *context) {
// If we've already reached non-transitive completeness, just check that.
if (state == PrivateMetadataState::NonTransitiveComplete) {
return checkTransitiveCompleteness();
}
// Otherwise, we must still be abstract, because vectors don't have an
// intermediate state between that and non-transitive completeness.
assert(state == PrivateMetadataState::Abstract);
// Require the element type to be layout-complete.
const Metadata *element = Data.Element;
auto eltRequest = MetadataRequest(MetadataState::LayoutComplete,
/*nonblocking*/ true);
auto eltResponse = swift_checkMetadataState(eltRequest, element);
// If the element is not layout-complete, we have to suspend.
if (!isAtLeast(eltResponse.State, MetadataState::LayoutComplete)) {
return {PrivateMetadataState::Abstract,
MetadataDependency(element, MetadataState::LayoutComplete)};
}
// We can derive the array's layout from the element's.
intptr_t count = Data.Count;
// We should have checked for empty and uninhabited cases before getting this
// far.
assert(count > 0);
Data.ValueWitnesses = &Witnesses;
auto eltWitnesses = element->getValueWitnesses();
auto arraySize
= Witnesses.size = Witnesses.stride = eltWitnesses->stride * count;
// We take on most of the properties of the element type, except that an array
// of elements might end up larger than an inline buffer.
Witnesses.flags = eltWitnesses->flags
.withInlineStorage(
ValueWitnessTable::isValueInline(eltWitnesses->isBitwiseTakable(),
arraySize,
eltWitnesses->getAlignment()));
// We get extra inhabitants from the first element.
Witnesses.extraInhabitantCount = eltWitnesses->extraInhabitantCount;
// Copy in the value witnesses.
// TODO: Specialize witnesses for POD etc.?
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
Witnesses.LOWER_ID = vector_##LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
// If the element type is complete, so are we.
if (eltResponse.State == MetadataState::Complete) {
return {PrivateMetadataState::Complete, MetadataDependency()};
}
// If it isn't at least non-transitively complete, wait for it to be.
if (!isAtLeast(eltResponse.State, MetadataState::NonTransitiveComplete)) {
return {PrivateMetadataState::NonTransitiveComplete,
MetadataDependency(element,
MetadataState::NonTransitiveComplete) };
}
// Otherwise, do a full completeness check.
return checkTransitiveCompleteness();
}
/***************************************************************************/
/*** Tuples ****************************************************************/
/***************************************************************************/
namespace {
class TupleCacheEntry
: public MetadataCacheEntryBase<TupleCacheEntry,
TupleTypeMetadata::Element> {
public:
static const char *getName() { return "TupleCache"; }
unsigned ExtraInhabitantProvidingElement;
ValueWitnessTable Witnesses;
FullMetadata<TupleTypeMetadata> Data;
struct Key {
size_t NumElements;
const Metadata * const *Elements;
const char *Labels;
template <class Range>
static llvm::hash_code hash_value(Range elements, const char *labels) {
auto hash = llvm::hash_combine_range(elements.begin(), elements.end());
hash = llvm::hash_combine(hash, llvm::StringRef(labels));
return hash;
}
friend llvm::hash_code hash_value(const Key &key) {
auto elements =
llvm::ArrayRef<const Metadata *>(key.Elements, key.NumElements);
return hash_value(elements, key.Labels);
}
};
ValueType getValue() {
return &Data;
}
void setValue(ValueType value) {
assert(value == &Data);
}
TupleCacheEntry(const Key &key, MetadataWaitQueue::Worker &worker,
MetadataRequest request,
const ValueWitnessTable *proposedWitnesses);
AllocationResult allocate(const ValueWitnessTable *proposedWitnesses) {
swift_unreachable("allocated during construction");
}
MetadataStateWithDependency tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *context);
MetadataStateWithDependency checkTransitiveCompleteness() {
auto dependency = swift::checkTransitiveCompleteness(&Data);
return { dependency ? PrivateMetadataState::NonTransitiveComplete
: PrivateMetadataState::Complete,
dependency };
}
size_t getNumElements() const {
return Data.NumElements;
}
intptr_t getKeyIntValueForDump() {
return 0; // No single meaningful value
}
friend llvm::hash_code hash_value(const TupleCacheEntry &value) {
auto elements = llvm::ArrayRef<TupleTypeMetadata::Element>(
value.Data.getElements(), value.Data.NumElements);
auto types =
makeTransformRange(elements, [](TupleTypeMetadata::Element element) {
return element.Type;
});
return Key::hash_value(types, value.Data.Labels);
}
bool matchesKey(const Key &key) {
if (key.NumElements != Data.NumElements)
return false;
for (size_t i = 0, e = key.NumElements; i != e; ++i)
if (key.Elements[i] != Data.getElement(i).Type)
return false;
// It's unlikely that we'll get pointer-equality here unless we're being
// called from the same module or both label strings are null, but
// those are important cases.
if (key.Labels == Data.Labels)
return true;
if (!key.Labels || !Data.Labels)
return false;
return strcmp(key.Labels, Data.Labels) == 0;
}
size_t numTrailingObjects(OverloadToken<TupleTypeMetadata::Element>) const {
return getNumElements();
}
template <class... Args>
static size_t numTrailingObjects(OverloadToken<TupleTypeMetadata::Element>,
const Key &key,
Args &&...extraArgs) {
return key.NumElements;
}
};
class TupleCacheStorage :
public LockingConcurrentMapStorage<TupleCacheEntry, TupleCacheTag> {
public:
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
static TupleCacheEntry *
resolveExistingEntry(const TupleTypeMetadata *metadata) {
// The correctness of this arithmetic is verified by an assertion in
// the TupleCacheEntry constructor.
auto bytes = reinterpret_cast<const char*>(asFullMetadata(metadata));
bytes -= offsetof(TupleCacheEntry, Data);
auto entry = reinterpret_cast<const TupleCacheEntry*>(bytes);
return const_cast<TupleCacheEntry*>(entry);
}
#pragma clang diagnostic pop
};
class TupleCache :
public LockingConcurrentMap<TupleCacheEntry, TupleCacheStorage> {
};
} // end anonymous namespace
/// The uniquing structure for tuple type metadata.
static Lazy<TupleCache> TupleTypes;
/// Generic tuple value witness for 'allocateBuffer'
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_allocateBuffer(ValueBuffer *buffer,
const Metadata *metatype) {
assert(IsPOD == generic_getValueWitnesses(metatype)->isPOD());
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsInline)
return reinterpret_cast<OpaqueValue*>(buffer);
BoxPair refAndValueAddr(swift_allocBox(metatype));
*reinterpret_cast<HeapObject **>(buffer) = refAndValueAddr.object;
return refAndValueAddr.buffer;
}
/// Generic tuple value witness for 'destroy'.
template <bool IsPOD, bool IsInline>
static void tuple_destroy(OpaqueValue *tuple, const Metadata *_metadata) {
auto &metadata = *(const TupleTypeMetadata*) _metadata;
assert(IsPOD == generic_getValueWitnesses(&metadata)->isPOD());
assert(IsInline == generic_getValueWitnesses(&metadata)->isValueInline());
if (IsPOD) return;
for (size_t i = 0, e = metadata.NumElements; i != e; ++i) {
auto &eltInfo = metadata.getElements()[i];
OpaqueValue *elt = eltInfo.findIn(tuple);
auto eltWitnesses = eltInfo.Type->getValueWitnesses();
eltWitnesses->destroy(elt, eltInfo.Type);
}
}
// The operation doesn't have to be initializeWithCopy, but they all
// have basically the same type.
typedef ValueWitnessTypes::initializeWithCopyUnsigned forEachOperation;
/// Perform an operation for each field of two tuples.
static OpaqueValue *tuple_forEachField(OpaqueValue *destTuple,
OpaqueValue *srcTuple,
const Metadata *_metatype,
forEachOperation operation) {
auto &metatype = *(const TupleTypeMetadata*) _metatype;
for (size_t i = 0, e = metatype.NumElements; i != e; ++i) {
auto &eltInfo = metatype.getElement(i);
OpaqueValue *destElt = eltInfo.findIn(destTuple);
OpaqueValue *srcElt = eltInfo.findIn(srcTuple);
operation(destElt, srcElt, eltInfo.Type);
}
return destTuple;
}
/// Perform a naive memcpy of src into dest.
static OpaqueValue *tuple_memcpy(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *metatype) {
assert(metatype->getValueWitnesses()->isPOD());
return (OpaqueValue*)
memcpy(dest, src, metatype->getValueWitnesses()->getSize());
}
/// Generic tuple value witness for 'initializeWithCopy'.
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_initializeWithCopy(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *metatype) {
assert(IsPOD == generic_getValueWitnesses(metatype)->isPOD());
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsPOD) return tuple_memcpy(dest, src, metatype);
return tuple_forEachField(dest, src, metatype,
[](OpaqueValue *dest, OpaqueValue *src, const Metadata *eltType) {
return eltType->vw_initializeWithCopy(dest, src);
});
}
/// Generic tuple value witness for 'initializeWithTake'.
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_initializeWithTake(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *metatype) {
assert(IsPOD == generic_getValueWitnesses(metatype)->isPOD());
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsPOD) return tuple_memcpy(dest, src, metatype);
return tuple_forEachField(dest, src, metatype,
[](OpaqueValue *dest, OpaqueValue *src, const Metadata *eltType) {
return eltType->vw_initializeWithTake(dest, src);
});
}
/// Generic tuple value witness for 'assignWithCopy'.
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_assignWithCopy(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *metatype) {
assert(IsPOD == generic_getValueWitnesses(metatype)->isPOD());
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsPOD) return tuple_memcpy(dest, src, metatype);
return tuple_forEachField(dest, src, metatype,
[](OpaqueValue *dest, OpaqueValue *src, const Metadata *eltType) {
return eltType->vw_assignWithCopy(dest, src);
});
}
/// Generic tuple value witness for 'assignWithTake'.
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_assignWithTake(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *metatype) {
if (IsPOD) return tuple_memcpy(dest, src, metatype);
return tuple_forEachField(dest, src, metatype,
[](OpaqueValue *dest, OpaqueValue *src, const Metadata *eltType) {
return eltType->vw_assignWithTake(dest, src);
});
}
/// Generic tuple value witness for 'initializeBufferWithCopyOfBuffer'.
template <bool IsPOD, bool IsInline>
static OpaqueValue *tuple_initializeBufferWithCopyOfBuffer(ValueBuffer *dest,
ValueBuffer *src,
const Metadata *metatype) {
assert(IsPOD == generic_getValueWitnesses(metatype)->isPOD());
assert(IsInline == generic_getValueWitnesses(metatype)->isValueInline());
if (IsInline) {
return tuple_initializeWithCopy<IsPOD, IsInline>(
generic_projectBuffer<IsInline>(dest, metatype),
generic_projectBuffer<IsInline>(src, metatype), metatype);
}
auto *srcReference = *reinterpret_cast<HeapObject**>(src);
*reinterpret_cast<HeapObject**>(dest) = srcReference;
swift_retain(srcReference);
return generic_projectBuffer<IsInline>(dest, metatype);
}
SWIFT_CC(swift)
static void tuple_storeExtraInhabitantTag(OpaqueValue *tuple,
unsigned tag,
unsigned xiCount,
const Metadata *_metatype) {
auto &metatype = *(const TupleTypeMetadata*) _metatype;
auto cacheEntry = TupleCacheStorage::resolveExistingEntry(&metatype);
auto &eltInfo =
metatype.getElement(cacheEntry->ExtraInhabitantProvidingElement);
assert(xiCount == eltInfo.Type->vw_getNumExtraInhabitants());
auto *elt = (OpaqueValue*)((uintptr_t)tuple + eltInfo.Offset);
assert(tag >= 1);
assert(tag <= xiCount);
eltInfo.Type->vw_storeEnumTagSinglePayload(elt, tag, xiCount);
}
SWIFT_CC(swift)
static unsigned tuple_getExtraInhabitantTag(const OpaqueValue *tuple,
unsigned xiCount,
const Metadata *_metatype) {
auto &metatype = *(const TupleTypeMetadata*) _metatype;
auto cacheEntry = TupleCacheStorage::resolveExistingEntry(&metatype);
auto &eltInfo =
metatype.getElement(cacheEntry->ExtraInhabitantProvidingElement);
assert(xiCount == eltInfo.Type->vw_getNumExtraInhabitants());
auto *elt = (const OpaqueValue*)((uintptr_t)tuple + eltInfo.Offset);
return eltInfo.Type->vw_getEnumTagSinglePayload(elt, xiCount);
}
template <bool IsPOD, bool IsInline>
static unsigned tuple_getEnumTagSinglePayload(const OpaqueValue *enumAddr,
unsigned numEmptyCases,
const Metadata *self) {
auto *witnesses = generic_getValueWitnesses(self);
auto size = witnesses->getSize();
auto numExtraInhabitants = witnesses->getNumExtraInhabitants();
auto getExtraInhabitantTag = tuple_getExtraInhabitantTag;
return getEnumTagSinglePayloadImpl(enumAddr, numEmptyCases, self, size,
numExtraInhabitants,
getExtraInhabitantTag);
}
template <bool IsPOD, bool IsInline>
static void
tuple_storeEnumTagSinglePayload(OpaqueValue *enumAddr, unsigned whichCase,
unsigned numEmptyCases, const Metadata *self) {
auto *witnesses = generic_getValueWitnesses(self);
auto size = witnesses->getSize();
auto numExtraInhabitants = witnesses->getNumExtraInhabitants();
auto storeExtraInhabitantTag = tuple_storeExtraInhabitantTag;
storeEnumTagSinglePayloadImpl(enumAddr, whichCase, numEmptyCases, self, size,
numExtraInhabitants, storeExtraInhabitantTag);
}
/// Various standard witness table for tuples.
static const ValueWitnessTable tuple_witnesses_pod_inline = {
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) &tuple_##LOWER_ID<true, true>,
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
0,
0,
ValueWitnessFlags(),
0
};
static const ValueWitnessTable tuple_witnesses_nonpod_inline = {
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) &tuple_##LOWER_ID<false, true>,
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
0,
0,
ValueWitnessFlags(),
0
};
static const ValueWitnessTable tuple_witnesses_pod_noninline = {
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) &tuple_##LOWER_ID<true, false>,
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
0,
0,
ValueWitnessFlags(),
0
};
static const ValueWitnessTable tuple_witnesses_nonpod_noninline = {
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) &tuple_##LOWER_ID<false, false>,
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
0,
0,
ValueWitnessFlags(),
0
};
static constexpr TypeLayout getInitialLayoutForValueType() {
return {0, 0, ValueWitnessFlags().withAlignment(1).withPOD(true), 0};
}
static constexpr TypeLayout getInitialLayoutForHeapObject() {
return {sizeof(HeapObject),
sizeof(HeapObject),
ValueWitnessFlags().withAlignment(alignof(HeapObject)),
0};
}
/// Perform basic sequential layout given a vector of metadata pointers,
/// calling a functor with the offset of each field, and returning the
/// final layout characteristics of the type.
///
/// GetLayoutFn should have signature:
/// const TypeLayout *(ElementType &type);
///
/// SetOffsetFn should have signature:
/// void (size_t index, ElementType &type, size_t offset)
template<typename ElementType, typename GetLayoutFn, typename SetOffsetFn>
static void performBasicLayout(TypeLayout &layout,
ElementType *elements,
size_t numElements,
GetLayoutFn &&getLayout,
SetOffsetFn &&setOffset) {
size_t size = layout.size;
size_t alignMask = layout.flags.getAlignmentMask();
bool isPOD = layout.flags.isPOD();
bool isBitwiseTakable = layout.flags.isBitwiseTakable();
bool isBitwiseBorrowable = layout.flags.isBitwiseBorrowable();
for (unsigned i = 0; i != numElements; ++i) {
auto &elt = elements[i];
// Lay out this element.
const TypeLayout *eltLayout = getLayout(i, elt);
size = roundUpToAlignMask(size, eltLayout->flags.getAlignmentMask());
// Report this record to the functor.
setOffset(i, elt, size);
// Update the size and alignment of the aggregate..
size += eltLayout->size;
alignMask = std::max(alignMask, eltLayout->flags.getAlignmentMask());
if (!eltLayout->flags.isPOD()) isPOD = false;
if (!eltLayout->flags.isBitwiseTakable()) isBitwiseTakable = false;
if (!eltLayout->flags.isBitwiseBorrowable()) isBitwiseBorrowable = false;
}
bool isInline =
ValueWitnessTable::isValueInline(isBitwiseTakable, size, alignMask + 1);
layout.size = size;
layout.flags = ValueWitnessFlags()
.withAlignmentMask(alignMask)
.withPOD(isPOD)
.withBitwiseTakable(isBitwiseTakable)
.withBitwiseBorrowable(isBitwiseBorrowable)
.withInlineStorage(isInline);
layout.extraInhabitantCount = 0;
layout.stride = std::max(size_t(1), roundUpToAlignMask(size, alignMask));
}
size_t swift::swift_getTupleTypeLayout2(TypeLayout *result,
const TypeLayout *elt0,
const TypeLayout *elt1) {
const TypeLayout *elts[] = { elt0, elt1 };
uint32_t offsets[2];
swift_getTupleTypeLayout(result, offsets,
TupleTypeFlags().withNumElements(2), elts);
assert(offsets[0] == 0);
return offsets[1];
}
OffsetPair swift::swift_getTupleTypeLayout3(TypeLayout *result,
const TypeLayout *elt0,
const TypeLayout *elt1,
const TypeLayout *elt2) {
const TypeLayout *elts[] = { elt0, elt1, elt2 };
uint32_t offsets[3];
swift_getTupleTypeLayout(result, offsets,
TupleTypeFlags().withNumElements(3), elts);
assert(offsets[0] == 0);
return {offsets[1], offsets[2]};
}
void swift::swift_getTupleTypeLayout(TypeLayout *result,
uint32_t *elementOffsets,
TupleTypeFlags flags,
const TypeLayout * const *elements) {
*result = TypeLayout();
unsigned numExtraInhabitants = 0;
performBasicLayout(*result, elements, flags.getNumElements(),
[](size_t i, const TypeLayout *elt) { return elt; },
[elementOffsets, &numExtraInhabitants]
(size_t i, const TypeLayout *elt, size_t offset) {
if (elementOffsets)
elementOffsets[i] = uint32_t(offset);
numExtraInhabitants = std::max(numExtraInhabitants,
elt->getNumExtraInhabitants());
});
if (numExtraInhabitants > 0) {
*result = TypeLayout(result->size,
result->stride,
result->flags,
numExtraInhabitants);
}
}
MetadataResponse
swift::swift_getTupleTypeMetadata(MetadataRequest request,
TupleTypeFlags flags,
const Metadata * const *elements,
const char *labels,
const ValueWitnessTable *proposedWitnesses) {
auto numElements = flags.getNumElements();
// Bypass the cache for the empty tuple. We might reasonably get called
// by generic code, like a demangler that produces type objects.
if (numElements == 0)
return MetadataResponse{ &METADATA_SYM(EMPTY_TUPLE_MANGLING), MetadataState::Complete };
// Search the cache.
TupleCacheEntry::Key key = { numElements, elements, labels };
auto &cache = TupleTypes.get();
// If we have constant labels, directly check the cache.
if (!flags.hasNonConstantLabels())
return cache.getOrInsert(key, request, proposedWitnesses).second;
// If we have non-constant labels, we can't simply record the result.
// Look for an existing result, first.
if (auto response = cache.tryAwaitExisting(key, request))
return *response;
// Allocate a copy of the labels string within the tuple type allocator.
size_t labelsLen = strlen(labels);
size_t labelsAllocSize = roundUpToAlignment(labelsLen + 2, sizeof(void *));
char *newLabels =
(char *) MetadataAllocator(TupleCacheTag).Allocate(labelsAllocSize, alignof(char));
_swift_strlcpy(newLabels, labels, labelsAllocSize);
key.Labels = newLabels;
// Update the metadata cache.
auto result = cache.getOrInsert(key, request, proposedWitnesses).second;
// If we didn't manage to perform the insertion, free the memory associated
// with the copy of the labels: nobody else can reference it.
if (cast<TupleTypeMetadata>(result.Value)->Labels != newLabels) {
MetadataAllocator(TupleCacheTag).Deallocate(newLabels, labelsAllocSize, alignof(char));
}
// Done.
return result;
}
TupleCacheEntry::TupleCacheEntry(const Key &key,
MetadataWaitQueue::Worker &worker,
MetadataRequest request,
const ValueWitnessTable *proposedWitnesses)
: MetadataCacheEntryBase(worker, PrivateMetadataState::Abstract) {
Data.setKind(MetadataKind::Tuple);
Data.NumElements = key.NumElements;
Data.Labels = key.Labels;
// Stash the proposed witnesses in the value-witnesses slot for now.
Data.ValueWitnesses = proposedWitnesses;
for (size_t i = 0, e = key.NumElements; i != e; ++i)
Data.getElement(i).Type = key.Elements[i];
assert(TupleCacheStorage::resolveExistingEntry(&Data) == this);
}
MetadataStateWithDependency
TupleCacheEntry::tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *context) {
// If we've already reached non-transitive completeness, just check that.
if (state == PrivateMetadataState::NonTransitiveComplete)
return checkTransitiveCompleteness();
// Otherwise, we must still be abstract, because tuples don't have an
// intermediate state between that and non-transitive completeness.
assert(state == PrivateMetadataState::Abstract);
bool allElementsTransitivelyComplete = true;
const Metadata *knownIncompleteElement = nullptr;
// Require all of the elements to be layout-complete.
for (size_t i = 0, e = Data.NumElements; i != e; ++i) {
auto request = MetadataRequest(MetadataState::LayoutComplete,
/*non-blocking*/ true);
auto eltType = Data.getElement(i).Type;
MetadataResponse response = swift_checkMetadataState(request, eltType);
// Immediately continue in the most common scenario, which is that
// the element is transitively complete.
if (response.State == MetadataState::Complete)
continue;
// If the metadata is not layout-complete, we have to suspend.
if (!isAtLeast(response.State, MetadataState::LayoutComplete))
return { PrivateMetadataState::Abstract,
MetadataDependency(eltType, MetadataState::LayoutComplete) };
// Remember that there's a non-fully-complete element.
allElementsTransitivelyComplete = false;
// Remember the first element that's not even non-transitively complete.
if (!knownIncompleteElement &&
!isAtLeast(response.State, MetadataState::NonTransitiveComplete))
knownIncompleteElement = eltType;
}
// Okay, we're going to succeed now.
// Reload the proposed witness from where we stashed them.
auto proposedWitnesses = Data.ValueWitnesses;
// Set the real value-witness table.
Data.ValueWitnesses = &Witnesses;
// Perform basic layout on the tuple.
auto layout = getInitialLayoutForValueType();
performBasicLayout(layout, Data.getElements(), Data.NumElements,
[](size_t i, const TupleTypeMetadata::Element &elt) {
return elt.getTypeLayout();
},
[](size_t i, TupleTypeMetadata::Element &elt, size_t offset) {
elt.Offset = offset;
});
Witnesses.size = layout.size;
Witnesses.flags = layout.flags;
Witnesses.stride = layout.stride;
// We have extra inhabitants if any element does.
// Pick the element with the most, favoring the earliest element in a tie.
unsigned extraInhabitantProvidingElement = ~0u;
unsigned numExtraInhabitants = 0;
for (unsigned i = 0, e = Data.NumElements; i < e; ++i) {
unsigned eltEI = Data.getElement(i).Type->getValueWitnesses()
->getNumExtraInhabitants();
if (eltEI > numExtraInhabitants) {
extraInhabitantProvidingElement = i;
numExtraInhabitants = eltEI;
}
}
Witnesses.extraInhabitantCount = numExtraInhabitants;
if (numExtraInhabitants > 0) {
ExtraInhabitantProvidingElement = extraInhabitantProvidingElement;
}
// Copy the function witnesses in, either from the proposed
// witnesses or from the standard table.
if (!proposedWitnesses) {
// Try to pattern-match into something better than the generic witnesses.
if (layout.flags.isInlineStorage() && layout.flags.isPOD()) {
if (numExtraInhabitants == 0
&& layout.size == 8
&& layout.flags.getAlignmentMask() == 7)
proposedWitnesses = &VALUE_WITNESS_SYM(Bi64_);
else if (numExtraInhabitants == 0
&& layout.size == 4
&& layout.flags.getAlignmentMask() == 3)
proposedWitnesses = &VALUE_WITNESS_SYM(Bi32_);
else if (numExtraInhabitants == 0
&& layout.size == 2
&& layout.flags.getAlignmentMask() == 1)
proposedWitnesses = &VALUE_WITNESS_SYM(Bi16_);
else if (numExtraInhabitants == 0 && layout.size == 1)
proposedWitnesses = &VALUE_WITNESS_SYM(Bi8_);
else
proposedWitnesses = &tuple_witnesses_pod_inline;
} else if (layout.flags.isInlineStorage()
&& !layout.flags.isPOD()) {
proposedWitnesses = &tuple_witnesses_nonpod_inline;
} else if (!layout.flags.isInlineStorage()
&& layout.flags.isPOD()) {
proposedWitnesses = &tuple_witnesses_pod_noninline;
} else {
assert(!layout.flags.isInlineStorage()
&& !layout.flags.isPOD());
proposedWitnesses = &tuple_witnesses_nonpod_noninline;
}
}
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
Witnesses.LOWER_ID = proposedWitnesses->LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
// Okay, we're all done with layout and setting up the elements.
// Check transitive completeness.
// We don't need to check the element statuses again in a couple of cases:
// - If all the elements are transitively complete, we are, too.
if (allElementsTransitivelyComplete)
return { PrivateMetadataState::Complete, MetadataDependency() };
// - If there was an incomplete element, wait for it to be become
// at least non-transitively complete.
if (knownIncompleteElement)
return { PrivateMetadataState::NonTransitiveComplete,
MetadataDependency(knownIncompleteElement,
MetadataState::NonTransitiveComplete) };
// Otherwise, we need to do a more expensive check.
return checkTransitiveCompleteness();
}
MetadataResponse
swift::swift_getTupleTypeMetadata2(MetadataRequest request,
const Metadata *elt0, const Metadata *elt1,
const char *labels,
const ValueWitnessTable *proposedWitnesses) {
const Metadata *elts[] = { elt0, elt1 };
return swift_getTupleTypeMetadata(request,
TupleTypeFlags().withNumElements(2),
elts, labels, proposedWitnesses);
}
MetadataResponse
swift::swift_getTupleTypeMetadata3(MetadataRequest request,
const Metadata *elt0, const Metadata *elt1,
const Metadata *elt2,
const char *labels,
const ValueWitnessTable *proposedWitnesses) {
const Metadata *elts[] = { elt0, elt1, elt2 };
return swift_getTupleTypeMetadata(request,
TupleTypeFlags().withNumElements(3),
elts, labels, proposedWitnesses);
}
/***************************************************************************/
/*** Nominal type descriptors **********************************************/
/***************************************************************************/
namespace {
/// A class encapsulating everything interesting about the identity of
/// a type context *except* the identity of the parent context.
class TypeContextIdentity {
StringRef Name;
public:
explicit TypeContextIdentity(const TypeContextDescriptor *type) {
Name = ParsedTypeIdentity::parse(type).FullIdentity;
}
bool operator==(const TypeContextIdentity &other) const {
return Name == other.Name;
}
friend llvm::hash_code hash_value(const TypeContextIdentity &value) {
return llvm::hash_value(value.Name);
}
};
}
bool swift::equalContexts(const ContextDescriptor *a,
const ContextDescriptor *b)
{
// Fast path: pointer equality.
if (a == b) return true;
// If either context is null, we're done.
if (a == nullptr || b == nullptr)
return false;
// If either descriptor is known to be unique, we're done.
if (a->isUnique() || b->isUnique()) return false;
// Do the kinds match?
if (a->getKind() != b->getKind()) return false;
// Do the parents match?
if (!equalContexts(a->Parent.get(), b->Parent.get()))
return false;
// Compare kind-specific details.
switch (auto kind = a->getKind()) {
case ContextDescriptorKind::Module: {
// Modules with the same name are equivalent.
auto moduleA = cast<ModuleContextDescriptor>(a);
auto moduleB = cast<ModuleContextDescriptor>(b);
return strcmp(moduleA->Name.get(), moduleB->Name.get()) == 0;
}
case ContextDescriptorKind::Extension:
case ContextDescriptorKind::Anonymous:
// These context kinds are always unique.
return false;
default:
// Types in the same context with the same name are equivalent.
if (kind >= ContextDescriptorKind::Type_First
&& kind <= ContextDescriptorKind::Type_Last) {
auto typeA = cast<TypeContextDescriptor>(a);
auto typeB = cast<TypeContextDescriptor>(b);
return TypeContextIdentity(typeA) == TypeContextIdentity(typeB);
}
// Otherwise, this runtime doesn't know anything about this context kind.
// Conservatively return false.
return false;
}
}
SWIFT_CC(swift)
bool swift::swift_compareTypeContextDescriptors(
const TypeContextDescriptor *a, const TypeContextDescriptor *b) {
a = swift_auth_data_non_address(
a, SpecialPointerAuthDiscriminators::TypeDescriptor);
b = swift_auth_data_non_address(
b, SpecialPointerAuthDiscriminators::TypeDescriptor);
// The implementation is the same as the implementation of
// swift::equalContexts except that the handling of non-type
// context descriptors and casts to TypeContextDescriptor are removed.
// Fast path: pointer equality.
if (a == b) return true;
// If either context is null, we're done.
if (a == nullptr || b == nullptr)
return false;
// If either descriptor is known to be unique, we're done.
if (a->isUnique() || b->isUnique()) return false;
// Do the kinds match?
if (a->getKind() != b->getKind()) return false;
// Do the parents match?
if (!equalContexts(a->Parent.get(), b->Parent.get()))
return false;
return TypeContextIdentity(a) == TypeContextIdentity(b);
}
/***************************************************************************/
/*** Common value witnesses ************************************************/
/***************************************************************************/
// Value witness methods for an arbitrary trivial type.
// The buffer operations assume that the value is stored indirectly, because
// installCommonValueWitnesses will install the direct equivalents instead.
namespace {
template<typename T>
struct pointer_function_cast_impl;
template<typename OutRet, typename...OutArgs>
struct pointer_function_cast_impl<OutRet * (*)(OutArgs *...)> {
template<typename InRet, typename...InArgs>
static constexpr auto perform(InRet * (*function)(InArgs *...))
-> OutRet * (*)(OutArgs *...)
{
static_assert(sizeof...(InArgs) == sizeof...(OutArgs),
"cast changed number of arguments");
return (OutRet *(*)(OutArgs *...))function;
}
};
template<typename...OutArgs>
struct pointer_function_cast_impl<void (*)(OutArgs *...)> {
template<typename...InArgs>
static constexpr auto perform(void (*function)(InArgs *...))
-> void (*)(OutArgs *...)
{
static_assert(sizeof...(InArgs) == sizeof...(OutArgs),
"cast changed number of arguments");
return (void (*)(OutArgs *...))function;
}
};
} // end anonymous namespace
/// Cast a function that takes all pointer arguments and returns to a
/// function type that takes different pointer arguments and returns.
/// In any reasonable calling convention the input and output function types
/// should be ABI-compatible.
template<typename Out, typename In>
static constexpr Out pointer_function_cast(In *function) {
return pointer_function_cast_impl<Out>::perform(function);
}
SWIFT_RUNTIME_STDLIB_SPI
OpaqueValue *_swift_pod_indirect_initializeBufferWithCopyOfBuffer(
ValueBuffer *dest, ValueBuffer *src, const Metadata *self) {
auto wtable = self->getValueWitnesses();
auto *srcReference = *reinterpret_cast<HeapObject**>(src);
*reinterpret_cast<HeapObject**>(dest) = srcReference;
swift_retain(srcReference);
// Project the address of the value in the buffer.
unsigned alignMask = wtable->getAlignmentMask();
// Compute the byte offset of the object in the box.
unsigned byteOffset = (sizeof(HeapObject) + alignMask) & ~alignMask;
auto *bytePtr = reinterpret_cast<char *>(srcReference);
return reinterpret_cast<OpaqueValue *>(bytePtr + byteOffset);
}
SWIFT_RUNTIME_STDLIB_SPI
void _swift_pod_destroy(OpaqueValue *object, const Metadata *self) {}
SWIFT_RUNTIME_STDLIB_SPI
OpaqueValue *_swift_pod_copy(OpaqueValue *dest, OpaqueValue *src,
const Metadata *self) {
memcpy(dest, src, self->getValueWitnesses()->size);
return dest;
}
SWIFT_RUNTIME_STDLIB_SPI
OpaqueValue *_swift_pod_direct_initializeBufferWithCopyOfBuffer(
ValueBuffer *dest, ValueBuffer *src, const Metadata *self) {
return _swift_pod_copy(reinterpret_cast<OpaqueValue *>(dest),
reinterpret_cast<OpaqueValue *>(src), self);
}
static constexpr uint64_t sizeWithAlignmentMask(uint64_t size,
uint64_t alignmentMask,
uint64_t hasExtraInhabitants) {
return (hasExtraInhabitants << 48) | (size << 16) | alignmentMask;
}
void swift::installCommonValueWitnesses(const TypeLayout &layout,
ValueWitnessTable *vwtable) {
auto flags = layout.flags;
if (flags.isPOD()) {
// Use POD value witnesses.
// If the value has a common size and alignment, use specialized value
// witnesses we already have lying around for the builtin types.
const ValueWitnessTable *commonVWT;
bool hasExtraInhabitants = layout.hasExtraInhabitants();
switch (sizeWithAlignmentMask(layout.size, flags.getAlignmentMask(),
hasExtraInhabitants)) {
default:
// For uncommon layouts, use value witnesses that work with an arbitrary
// size and alignment.
if (flags.isInlineStorage()) {
vwtable->initializeBufferWithCopyOfBuffer =
_swift_pod_direct_initializeBufferWithCopyOfBuffer;
} else {
vwtable->initializeBufferWithCopyOfBuffer =
_swift_pod_indirect_initializeBufferWithCopyOfBuffer;
}
vwtable->destroy = _swift_pod_destroy;
vwtable->initializeWithCopy = _swift_pod_copy;
vwtable->initializeWithTake = _swift_pod_copy;
vwtable->assignWithCopy = _swift_pod_copy;
vwtable->assignWithTake = _swift_pod_copy;
// getEnumTagSinglePayload and storeEnumTagSinglePayload are not
// interestingly optimizable based on POD-ness.
return;
case sizeWithAlignmentMask(1, 0, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi8_);
break;
case sizeWithAlignmentMask(2, 1, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi16_);
break;
case sizeWithAlignmentMask(4, 3, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi32_);
break;
case sizeWithAlignmentMask(8, 7, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi64_);
break;
case sizeWithAlignmentMask(16, 15, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi128_);
break;
case sizeWithAlignmentMask(32, 31, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi256_);
break;
case sizeWithAlignmentMask(64, 63, 0):
commonVWT = &VALUE_WITNESS_SYM(Bi512_);
break;
}
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
vwtable->LOWER_ID = commonVWT->LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
return;
}
if (flags.isBitwiseTakable()) {
// Use POD value witnesses for operations that do an initializeWithTake.
vwtable->initializeWithTake = _swift_pod_copy;
return;
}
}
/***************************************************************************/
/*** Structs ***************************************************************/
/***************************************************************************/
static ValueWitnessTable *getMutableVWTableForInit(StructMetadata *self,
StructLayoutFlags flags) {
auto oldTable = self->getValueWitnesses();
// If we can alter the existing table in-place, do so.
if (isValueWitnessTableMutable(flags))
return const_cast<ValueWitnessTable*>(oldTable);
// Otherwise, allocate permanent memory for it and copy the existing table.
void *memory = allocateMetadata(sizeof(ValueWitnessTable),
alignof(ValueWitnessTable));
auto newTable = ::new (memory) ValueWitnessTable(*oldTable);
// If we ever need to check layout-completeness asynchronously from
// initialization, we'll need this to be a store-release (and rely on
// consume ordering on the asynchronous check path); and we'll need to
// ensure that the current state says that the type is incomplete.
self->setValueWitnesses(newTable);
return newTable;
}
/// Initialize the value witness table and struct field offset vector for a
/// struct.
void swift::swift_initStructMetadata(StructMetadata *structType,
StructLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout *const *fieldTypes,
uint32_t *fieldOffsets) {
auto layout = getInitialLayoutForValueType();
performBasicLayout(
layout, fieldTypes, numFields,
[&](size_t i, const TypeLayout *fieldType) { return fieldType; },
[&](size_t i, const TypeLayout *fieldType, uint32_t offset) {
assignUnlessEqual(fieldOffsets[i], offset);
});
// We have extra inhabitants if any element does. Use the field with the most.
unsigned extraInhabitantCount = 0;
for (unsigned i = 0; i < numFields; ++i) {
unsigned fieldExtraInhabitantCount =
fieldTypes[i]->getNumExtraInhabitants();
if (fieldExtraInhabitantCount > extraInhabitantCount) {
extraInhabitantCount = fieldExtraInhabitantCount;
}
}
auto vwtable = getMutableVWTableForInit(structType, layoutFlags);
layout.extraInhabitantCount = extraInhabitantCount;
// Substitute in better value witnesses if we have them.
installCommonValueWitnesses(layout, vwtable);
vwtable->publishLayout(layout);
}
static void swift_cvw_initStructMetadataWithLayoutStringImpl(
StructMetadata *structType, StructLayoutFlags layoutFlags, size_t numFields,
const uint8_t *const *fieldTypes, const uint8_t *fieldTags,
uint32_t *fieldOffsets) {
assert(structType->hasLayoutString());
auto layout = getInitialLayoutForValueType();
performBasicLayout(
layout, fieldTypes, numFields,
[&](size_t i, const uint8_t *fieldType) {
if (fieldTags[i]) {
return (const TypeLayout*)fieldType;
}
return ((const Metadata*)fieldType)->getTypeLayout();
},
[&](size_t i, const uint8_t *fieldType, uint32_t offset) {
assignUnlessEqual(fieldOffsets[i], offset);
});
// We have extra inhabitants if any element does. Use the field with the most.
unsigned extraInhabitantCount = 0;
// Compute total combined size of the layout string
size_t refCountBytes = 0;
for (unsigned i = 0; i < numFields; ++i) {
auto fieldTag = fieldTags[i];
if (fieldTag) {
if (fieldTag <= 0x4) {
refCountBytes += sizeof(uint64_t);
}
const TypeLayout *fieldType = (const TypeLayout*)fieldTypes[i];
unsigned fieldExtraInhabitantCount = fieldType->getNumExtraInhabitants();
if (fieldExtraInhabitantCount > extraInhabitantCount) {
extraInhabitantCount = fieldExtraInhabitantCount;
}
continue;
}
const Metadata *fieldType = (const Metadata*)fieldTypes[i];
unsigned fieldExtraInhabitantCount =
fieldType->vw_getNumExtraInhabitants();
if (fieldExtraInhabitantCount > extraInhabitantCount) {
extraInhabitantCount = fieldExtraInhabitantCount;
}
refCountBytes += _swift_refCountBytesForMetatype(fieldType);
}
const size_t fixedLayoutStringSize =
layoutStringHeaderSize + sizeof(uint64_t);
uint8_t *layoutStr =
(uint8_t *)MetadataAllocator(LayoutStringTag)
.Allocate(llvm::alignTo(fixedLayoutStringSize + refCountBytes,
sizeof(void *)),
alignof(uint8_t));
LayoutStringWriter writer{layoutStr, sizeof(uint64_t)};
writer.writeBytes(refCountBytes);
size_t fullOffset = 0;
size_t previousFieldOffset = 0;
LayoutStringFlags flags = LayoutStringFlags::Empty;
for (unsigned i = 0; i < numFields; ++i) {
size_t unalignedOffset = fullOffset;
auto fieldTag = fieldTags[i];
if (fieldTag) {
const TypeLayout *fieldType = (const TypeLayout*)fieldTypes[i];
auto alignmentMask = fieldType->flags.getAlignmentMask();
fullOffset = roundUpToAlignMask(fullOffset, alignmentMask);
size_t offset = fullOffset - unalignedOffset + previousFieldOffset;
if (fieldTag <= 0x4) {
auto tag = fieldTag <= 0x2 ? RefCountingKind::UnknownUnowned :
RefCountingKind::UnknownWeak;
auto tagAndOffset = ((uint64_t)tag << 56) | offset;
writer.writeBytes(tagAndOffset);
previousFieldOffset = fieldType->size - sizeof(uintptr_t);
} else {
previousFieldOffset = offset + fieldType->size;
}
fullOffset += fieldType->size;
continue;
}
const Metadata *fieldType = (const Metadata*)fieldTypes[i];
_swift_addRefCountStringForMetatype(writer, flags, fieldType, fullOffset,
previousFieldOffset);
}
writer.writeBytes((uint64_t)previousFieldOffset);
// we mask out HasRelativePointers, because at this point they have all been
// resolved to metadata pointers
writer.offset = 0;
writer.writeBytes(((uint64_t)flags) &
~((uint64_t)LayoutStringFlags::HasRelativePointers));
structType->setLayoutString(layoutStr);
auto *vwtable = getMutableVWTableForInit(structType, layoutFlags);
layout.extraInhabitantCount = extraInhabitantCount;
// Substitute in better value witnesses if we have them.
installCommonValueWitnesses(layout, vwtable);
vwtable->publishLayout(layout);
}
void swift::swift_initStructMetadataWithLayoutString(
StructMetadata *structType, StructLayoutFlags layoutFlags, size_t numFields,
const uint8_t *const *fieldTypes, const uint8_t *fieldTags,
uint32_t *fieldOffsets) {
swift_cvw_initStructMetadataWithLayoutString(
structType, layoutFlags, numFields, fieldTypes, fieldTags, fieldOffsets);
}
size_t swift::_swift_refCountBytesForMetatype(const Metadata *type) {
auto *vwt = type->getValueWitnesses();
if (type->vw_size() == 0 || vwt->isPOD()) {
return 0;
} else if (auto *tuple = dyn_cast<TupleTypeMetadata>(type)) {
size_t res = 0;
for (InProcess::StoredSize i = 0; i < tuple->NumElements; i++) {
res += _swift_refCountBytesForMetatype(tuple->getElement(i).Type);
}
return res;
} else if (vwt == &VALUE_WITNESS_SYM(Bo) ||
vwt == &VALUE_WITNESS_SYM(BO) ||
vwt == &VALUE_WITNESS_SYM(Bb)) {
return sizeof(uint64_t);
} else if (auto *cls = type->getClassObject()) {
if (cls->isTypeMetadata()) {
goto metadata;
}
return sizeof(uint64_t);
} else if (type->hasLayoutString()) {
size_t offset = sizeof(uint64_t);
return LayoutStringReader{type->getLayoutString(), offset}
.readBytes<size_t>();
} else if (type->isAnyExistentialType()) {
return sizeof(uint64_t);
} else {
metadata:
return sizeof(uint64_t) + sizeof(uintptr_t);
}
}
void swift::_swift_addRefCountStringForMetatype(LayoutStringWriter &writer,
LayoutStringFlags &flags,
const Metadata *fieldType,
size_t &fullOffset,
size_t &previousFieldOffset) {
size_t unalignedOffset = fullOffset;
fullOffset = roundUpToAlignMask(fullOffset, fieldType->vw_alignment() - 1);
size_t offset = fullOffset - unalignedOffset + previousFieldOffset;
auto *vwt = fieldType->getValueWitnesses();
if (fieldType->vw_size() == 0) {
return;
} else if (vwt->isPOD()) {
// No need to handle PODs
previousFieldOffset = offset + fieldType->vw_size();
fullOffset += fieldType->vw_size();
} else if (auto *tuple = dyn_cast<TupleTypeMetadata>(fieldType)) {
previousFieldOffset = offset;
for (InProcess::StoredSize i = 0; i < tuple->NumElements; i++) {
_swift_addRefCountStringForMetatype(writer, flags,
tuple->getElement(i).Type, fullOffset,
previousFieldOffset);
}
} else if (vwt == &VALUE_WITNESS_SYM(Bo)) {
auto tag = RefCountingKind::NativeStrong;
writer.writeBytes(((uint64_t)tag << 56) | offset);
previousFieldOffset = 0;
fullOffset += fieldType->vw_size();
} else if (vwt == &VALUE_WITNESS_SYM(BO)) {
#if SWIFT_OBJC_INTEROP
auto tag = RefCountingKind::ObjC;
#else
auto tag = RefCountingKind::Unknown;
#endif
writer.writeBytes(((uint64_t)tag << 56) | offset);
previousFieldOffset = 0;
fullOffset += fieldType->vw_size();
} else if (vwt == &VALUE_WITNESS_SYM(Bb)) {
auto tag = RefCountingKind::Bridge;
writer.writeBytes(((uint64_t)tag << 56) | offset);
previousFieldOffset = 0;
fullOffset += fieldType->vw_size();
} else if (auto *cls = fieldType->getClassObject()) {
RefCountingKind tag;
if (!cls->isTypeMetadata()) {
#if SWIFT_OBJC_INTEROP
tag = RefCountingKind::ObjC;
#else
tag = RefCountingKind::Unknown;
#endif
} else {
goto metadata;
}
writer.writeBytes(((uint64_t)tag << 56) | offset);
previousFieldOffset = 0;
fullOffset += fieldType->vw_size();
} else if (fieldType->hasLayoutString()) {
LayoutStringReader reader{fieldType->getLayoutString(), 0};
const auto fieldFlags = reader.readBytes<LayoutStringFlags>();
const auto fieldRefCountBytes = reader.readBytes<size_t>();
if (fieldRefCountBytes > 0) {
flags |= fieldFlags;
memcpy(writer.layoutStr + writer.offset,
reader.layoutStr + layoutStringHeaderSize, fieldRefCountBytes);
if (fieldFlags & LayoutStringFlags::HasRelativePointers) {
swift_cvw_resolve_resilientAccessors(
writer.layoutStr, writer.offset,
reader.layoutStr + layoutStringHeaderSize, fieldType);
}
if (offset) {
LayoutStringReader tagReader {writer.layoutStr, writer.offset};
auto writerOffsetCopy = writer.offset;
auto firstTagAndOffset = tagReader.readBytes<uint64_t>();
firstTagAndOffset += offset;
writer.writeBytes(firstTagAndOffset);
writer.offset = writerOffsetCopy;
}
reader.offset = layoutStringHeaderSize + fieldRefCountBytes;
previousFieldOffset = reader.readBytes<uint64_t>();
writer.skip(fieldRefCountBytes);
} else {
previousFieldOffset += fieldType->vw_size();
}
fullOffset += fieldType->vw_size();
} else if (fieldType->isAnyExistentialType()) {
auto *existential = dyn_cast<ExistentialTypeMetadata>(fieldType);
assert(existential);
auto tag = existential->isClassBounded() ? RefCountingKind::Unknown
: RefCountingKind::Existential;
writer.writeBytes(((uint64_t)tag << 56) | offset);
previousFieldOffset = fieldType->vw_size() - (existential->isClassBounded() ? sizeof(uintptr_t) : (NumWords_ValueBuffer * sizeof(uintptr_t)));
fullOffset += fieldType->vw_size();
} else {
metadata:
writer.writeBytes(((uint64_t)RefCountingKind::Metatype << 56) | offset);
writer.writeBytes(fieldType);
previousFieldOffset = 0;
fullOffset += fieldType->vw_size();
}
}
/// Initialize the value witness table for a @_rawLayout struct.
SWIFT_RUNTIME_EXPORT
void swift::swift_initRawStructMetadata(StructMetadata *structType,
StructLayoutFlags layoutFlags,
const TypeLayout *likeTypeLayout,
int32_t count) {
auto vwtable = getMutableVWTableForInit(structType, layoutFlags);
// The existing vwt function entries are all fine to preserve, the only thing
// we need to initialize is the actual type layout.
auto size = likeTypeLayout->size;
auto stride = likeTypeLayout->stride;
auto alignMask = likeTypeLayout->flags.getAlignmentMask();
auto extraInhabitantCount = likeTypeLayout->extraInhabitantCount;
// If our count is greater than or equal 0, we're dealing an array like layout.
if (count >= 0) {
stride *= count;
size = stride;
}
vwtable->size = size;
vwtable->stride = stride;
vwtable->flags = ValueWitnessFlags()
.withAlignmentMask(alignMask)
.withCopyable(false)
.withBitwiseTakable(true)
.withBitwiseBorrowable(false);
vwtable->extraInhabitantCount = extraInhabitantCount;
}
/// Initialize the value witness table for a @_rawLayout struct.
SWIFT_RUNTIME_EXPORT
void swift::swift_initRawStructMetadata2(StructMetadata *structType,
StructLayoutFlags structLayoutFlags,
const TypeLayout *likeTypeLayout,
intptr_t count,
RawLayoutFlags rawLayoutFlags) {
auto vwtable = getMutableVWTableForInit(structType, structLayoutFlags);
// The existing vwt function entries are all fine to preserve, the only thing
// we need to initialize is the actual type layout.
auto size = likeTypeLayout->size;
auto stride = likeTypeLayout->stride;
auto alignMask = likeTypeLayout->flags.getAlignmentMask();
auto extraInhabitantCount = likeTypeLayout->extraInhabitantCount;
if (isRawLayoutArray(rawLayoutFlags)) {
// Our count value may be negative, so use 0 if that's the case.
stride *= std::max(count, (intptr_t)0);
size = stride;
}
vwtable->size = size;
vwtable->stride = stride;
vwtable->flags = ValueWitnessFlags()
.withAlignmentMask(alignMask)
.withCopyable(false)
.withBitwiseTakable(true); // All raw layouts are assumed
// to be bitwise takable unless
// movesAsLike is present.
vwtable->extraInhabitantCount = extraInhabitantCount;
if (shouldRawLayoutMoveAsLike(rawLayoutFlags)) {
vwtable->flags = vwtable->flags
.withBitwiseTakable(likeTypeLayout->flags.isBitwiseTakable());
}
vwtable->flags = vwtable->flags
.withBitwiseBorrowable(isRawLayoutBitwiseBorrowable(rawLayoutFlags));
// If the calculated size of this raw layout type is available to be put in
// value buffers, then set the inline storage bit if our like type is also
// able to be put into inline storage.
if (size <= NumWords_ValueBuffer) {
vwtable->flags = vwtable->flags
.withInlineStorage(likeTypeLayout->flags.isInlineStorage());
} else {
// Otherwise, we're too big to fit in inline storage regardless of the like
// type's ability to be put in inline storage.
vwtable->flags = vwtable->flags.withInlineStorage(false);
}
}
/***************************************************************************/
/*** Classes ***************************************************************/
/***************************************************************************/
static MetadataAllocator &getResilientMetadataAllocator() {
// This should be constant-initialized, but this is safe.
static MetadataAllocator allocator(ResilientMetadataAllocatorTag);
return allocator;
}
ClassMetadata *
swift::swift_relocateClassMetadata(const ClassDescriptor *description,
const ResilientClassMetadataPattern *pattern) {
description = swift_auth_data_non_address(
description, SpecialPointerAuthDiscriminators::TypeDescriptor);
return _swift_relocateClassMetadata(description, pattern);
}
static ClassMetadata *
_swift_relocateClassMetadata(const ClassDescriptor *description,
const ResilientClassMetadataPattern *pattern) {
auto bounds = description->getMetadataBounds();
auto metadata = reinterpret_cast<ClassMetadata *>(
(char*) getResilientMetadataAllocator().Allocate(
bounds.getTotalSizeInBytes(), sizeof(void*)) +
bounds.getAddressPointInBytes());
auto fullMetadata = asFullMetadata(metadata);
char *rawMetadata = reinterpret_cast<char*>(metadata);
// Zero out the entire immediate-members section.
void **immediateMembers =
reinterpret_cast<void**>(rawMetadata + bounds.ImmediateMembersOffset);
memset(immediateMembers, 0, description->getImmediateMembersSize());
// Initialize the header:
// Heap destructor.
fullMetadata->destroy = pattern->Destroy.get();
// Value witness table.
#if SWIFT_OBJC_INTEROP
fullMetadata->ValueWitnesses =
(pattern->Flags & ClassFlags::UsesSwiftRefcounting)
? &VALUE_WITNESS_SYM(Bo)
: &VALUE_WITNESS_SYM(BO);
#else
fullMetadata->ValueWitnesses = &VALUE_WITNESS_SYM(Bo);
#endif
// MetadataKind / isa.
#if SWIFT_OBJC_INTEROP
metadata->setClassISA(pattern->Metaclass.get());
#else
metadata->setKind(MetadataKind::Class);
#endif
// Superclass.
metadata->Superclass = nullptr;
#if SWIFT_OBJC_INTEROP
// Cache data. Install the same initializer that the compiler is
// required to use. We don't need to do this in non-ObjC-interop modes.
metadata->CacheData[0] = &_objc_empty_cache;
metadata->CacheData[1] = nullptr;
#endif
// RO-data pointer.
#if SWIFT_OBJC_INTEROP
auto classRO = pattern->Data.get();
metadata->Data =
reinterpret_cast<uintptr_t>(classRO) | SWIFT_CLASS_IS_SWIFT_MASK;
#endif
// Class flags.
metadata->Flags = pattern->Flags;
// Instance layout.
metadata->InstanceAddressPoint = 0;
metadata->InstanceSize = 0;
metadata->InstanceAlignMask = 0;
// Reserved.
metadata->Reserved = 0;
// Class metadata layout.
metadata->ClassSize = bounds.getTotalSizeInBytes();
metadata->ClassAddressPoint = bounds.getAddressPointInBytes();
// Class descriptor.
metadata->setDescription(description);
// I-var destroyer.
metadata->IVarDestroyer = pattern->IVarDestroyer;
return metadata;
}
namespace {
/// The structure of ObjC class ivars as emitted by compilers.
struct ClassIvarEntry {
size_t *Offset;
const char *Name;
const char *Type;
uint32_t Log2Alignment;
uint32_t Size;
};
/// The structure of ObjC class ivar lists as emitted by compilers.
struct ClassIvarList {
uint32_t EntrySize;
uint32_t Count;
ClassIvarEntry *getIvars() {
return reinterpret_cast<ClassIvarEntry*>(this+1);
}
const ClassIvarEntry *getIvars() const {
return reinterpret_cast<const ClassIvarEntry*>(this+1);
}
};
/// The structure of ObjC class rodata as emitted by compilers.
struct ClassROData {
uint32_t Flags;
uint32_t InstanceStart;
uint32_t InstanceSize;
#if __POINTER_WIDTH__ == 64
uint32_t Reserved;
#endif
union {
const uint8_t *IvarLayout;
ClassMetadata *NonMetaClass;
};
const char *Name;
const void *MethodList;
const void *ProtocolList;
ClassIvarList *IvarList;
const uint8_t *WeakIvarLayout;
const void *PropertyList;
};
struct ObjCClass {
ObjCClass *Isa;
ObjCClass *Superclass;
void *CacheData[2];
uintptr_t RODataAndFlags;
};
} // end anonymous namespace
#if SWIFT_OBJC_INTEROP
static uint32_t getLog2AlignmentFromMask(size_t alignMask) {
assert(((alignMask + 1) & alignMask) == 0 &&
"not an alignment mask!");
uint32_t log2 = 0;
while ((1 << log2) != (alignMask + 1))
++log2;
return log2;
}
static inline ClassROData *getROData(ClassMetadata *theClass) {
return (ClassROData*)(theClass->Data & ~uintptr_t(SWIFT_CLASS_IS_SWIFT_MASK));
}
static inline ClassROData *getROData(ObjCClass *theClass) {
return (ClassROData*)(theClass->RODataAndFlags & ~uintptr_t(SWIFT_CLASS_IS_SWIFT_MASK));
}
// This gets called if we fail during copyGenericClassObjcName(). Its job is
// to generate a unique name, even though the name won't be very helpful if
// we end up looking at it in a debugger.
#define EMERGENCY_PREFIX "$SwiftEmergencyPlaceholderClassName"
static char *copyEmergencyName(ClassMetadata *theClass) {
char *nameBuf = nullptr;
asprintf(&nameBuf,
EMERGENCY_PREFIX "%016" PRIxPTR,
(uintptr_t)theClass);
return nameBuf;
}
static char *copyGenericClassObjCName(ClassMetadata *theClass) {
// Use the remangler to generate a mangled name from the type metadata.
Demangle::StackAllocatedDemangler<4096> Dem;
auto demangling = _swift_buildDemanglingForMetadata(theClass, Dem);
if (!demangling) {
return copyEmergencyName(theClass);
}
// Remangle that into a new type mangling string.
auto typeNode = Dem.createNode(Demangle::Node::Kind::TypeMangling);
typeNode->addChild(demangling, Dem);
auto globalNode = Dem.createNode(Demangle::Node::Kind::Global);
globalNode->addChild(typeNode, Dem);
auto mangling = Demangle::mangleNodeOld(globalNode, Dem);
if (!mangling.isSuccess()) {
return copyEmergencyName(theClass);
}
llvm::StringRef string = mangling.result();
// If the class is in the Swift module, add a $ to the end of the ObjC
// name. The old and new Swift libraries must be able to coexist in
// the same process, and this avoids warnings due to the ObjC names
// colliding.
bool addSuffix = string.starts_with("_TtGCs");
size_t allocationSize = string.size() + 1;
if (addSuffix)
allocationSize += 1;
auto fullNameBuf = (char*)swift_slowAlloc(allocationSize, 0);
memcpy(fullNameBuf, string.data(), string.size());
if (addSuffix) {
fullNameBuf[string.size()] = '$';
fullNameBuf[string.size() + 1] = '\0';
} else {
fullNameBuf[string.size()] = '\0';
}
return fullNameBuf;
}
static void initGenericClassObjCName(ClassMetadata *theClass) {
auto theMetaclass = (ClassMetadata *)object_getClass((id)theClass);
char *name = copyGenericClassObjCName(theClass);
getROData(theClass)->Name = name;
getROData(theMetaclass)->Name = name;
}
static bool installLazyClassNameHook() {
static objc_hook_lazyClassNamer oldHook;
auto myHook = [](Class theClass) -> const char * {
ClassMetadata *metadata = (ClassMetadata *)theClass;
if (metadata->isTypeMetadata())
return copyGenericClassObjCName(metadata);
return oldHook(theClass);
};
if (SWIFT_RUNTIME_WEAK_CHECK(objc_setHook_lazyClassNamer)) {
SWIFT_RUNTIME_WEAK_USE(objc_setHook_lazyClassNamer(myHook, &oldHook));
return true;
}
return false;
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
__attribute__((constructor)) SWIFT_RUNTIME_ATTRIBUTE_ALWAYS_INLINE static bool
supportsLazyObjcClassNames() {
return SWIFT_LAZY_CONSTANT(installLazyClassNameHook());
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
static void setUpGenericClassObjCName(ClassMetadata *theClass) {
if (supportsLazyObjcClassNames()) {
getROData(theClass)->Name = nullptr;
auto theMetaclass = (ClassMetadata *)object_getClass((id)theClass);
getROData(theMetaclass)->Name = nullptr;
getROData(theMetaclass)->NonMetaClass = theClass;
} else {
initGenericClassObjCName(theClass);
}
}
#endif
/// Initialize the invariant superclass components of a class metadata,
/// such as the generic type arguments, field offsets, and so on.
static void copySuperclassMetadataToSubclass(ClassMetadata *theClass,
ClassLayoutFlags layoutFlags) {
const ClassMetadata *theSuperclass = theClass->Superclass;
if (theSuperclass == nullptr)
return;
// If any ancestor classes have generic parameters, field offset vectors
// or virtual methods, inherit them.
//
// Note that the caller is responsible for installing overrides of
// superclass methods; here we just copy them verbatim.
auto ancestor = theSuperclass;
auto *classWords = reinterpret_cast<uintptr_t *>(theClass);
auto *superWords = reinterpret_cast<const uintptr_t *>(theSuperclass);
while (ancestor && ancestor->isTypeMetadata()) {
const auto *description = ancestor->getDescription();
// Copy the generic requirements.
if (description->isGeneric()
&& description->getGenericContextHeader().hasArguments()) {
// This should be okay even with variadic packs because we're
// copying from an existing metadata, so we've already uniqued.
auto genericOffset = description->getGenericArgumentOffset();
memcpy(classWords + genericOffset,
superWords + genericOffset,
description->getGenericContextHeader()
.getArgumentLayoutSizeInWords() * sizeof(uintptr_t));
}
// Copy the vtable entries.
if (description->hasVTable() && !hasStaticVTable(layoutFlags)) {
auto *vtable = description->getVTableDescriptor();
auto vtableOffset = vtable->getVTableOffset(description);
auto dest = classWords + vtableOffset;
auto src = superWords + vtableOffset;
#if SWIFT_PTRAUTH
auto descriptors = description->getMethodDescriptors();
for (size_t i = 0, e = vtable->VTableSize; i != e; ++i) {
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&dest[i]),
reinterpret_cast<void *const *>(&src[i]),
descriptors[i].Flags.getExtraDiscriminator(),
!descriptors[i].Flags.isData(),
/*allowNull*/ true); // NULL allowed for VFE (methods in the vtable
// might be proven unused and null'ed)
}
#else
memcpy(dest, src, vtable->VTableSize * sizeof(uintptr_t));
#endif
}
// Copy the field offsets.
if (description->hasFieldOffsetVector()) {
unsigned fieldOffsetVector =
description->getFieldOffsetVectorOffset();
memcpy(classWords + fieldOffsetVector,
superWords + fieldOffsetVector,
description->NumFields * sizeof(uintptr_t));
}
ancestor = ancestor->Superclass;
}
#if SWIFT_OBJC_INTEROP
if (theClass->getDescription()->isGeneric() ||
(theSuperclass->isTypeMetadata() &&
theSuperclass->getDescription()->isGeneric())) {
// Set up the superclass of the metaclass, which is the metaclass of the
// superclass.
auto theMetaclass = (ClassMetadata *)object_getClass((id)theClass);
auto theSuperMetaclass
= (const ClassMetadata *)object_getClass(id_const_cast(theSuperclass));
theMetaclass->Superclass = theSuperMetaclass;
}
#endif
}
template <typename GetImpl>
static void installOverrideInVTable(ContextDescriptor const *baseContext,
MethodDescriptor const *baseMethod,
GetImpl getImpl, void const *table,
void **classWords) {
// Get the base class and method.
auto *baseClass = cast_or_null<ClassDescriptor>(baseContext);
// If the base method is null, it's an unavailable weak-linked
// symbol.
if (baseClass == nullptr || baseMethod == nullptr)
return;
// Calculate the base method's vtable offset from the
// base method descriptor. The offset will be relative
// to the base class's vtable start offset.
auto baseClassMethods = baseClass->getMethodDescriptors();
// If the method descriptor doesn't land within the bounds of the
// method table, abort.
if (baseMethod < baseClassMethods.begin() ||
baseMethod >= baseClassMethods.end()) {
fatalError(0,
"resilient vtable at %p contains out-of-bounds "
"method descriptor %p\n",
table, baseMethod);
}
// Install the method override in our vtable.
auto baseVTable = baseClass->getVTableDescriptor();
auto offset = (baseVTable->getVTableOffset(baseClass) +
(baseMethod - baseClassMethods.data()));
swift_ptrauth_init_code_or_data(&classWords[offset], getImpl(),
baseMethod->Flags.getExtraDiscriminator(),
!baseMethod->Flags.isData());
}
/// Using the information in the class context descriptor, fill in in the
/// immediate vtable entries for the class install overrides of any
/// superclass vtable entries, and install any default overrides if appropriate.
static void initClassVTable(ClassMetadata *self,
llvm::SmallVectorImpl<const ClassDescriptor *>
&superclassesWithDefaultOverrides) {
const auto *description = self->getDescription();
auto *classWords = reinterpret_cast<void **>(self);
if (description->hasVTable()) {
auto *vtable = description->getVTableDescriptor();
auto vtableOffset = vtable->getVTableOffset(description);
auto descriptors = description->getMethodDescriptors();
for (unsigned i = 0, e = vtable->VTableSize; i < e; ++i) {
auto &methodDescription = descriptors[i];
swift_ptrauth_init_code_or_data(
&classWords[vtableOffset + i], methodDescription.getImpl(),
methodDescription.Flags.getExtraDiscriminator(),
!methodDescription.Flags.isData());
}
}
if (!description->hasOverrideTable()) {
// The class didn't override anything, so we're done.
return;
}
auto hasSuperclassWithDefaultOverride =
superclassesWithDefaultOverrides.size() > 0;
std::unordered_set<const MethodDescriptor *> seenDescriptors;
// Install our overrides.
auto *overrideTable = description->getOverrideTable();
auto overrideDescriptors = description->getMethodOverrideDescriptors();
for (auto &descriptor : overrideDescriptors) {
if (hasSuperclassWithDefaultOverride)
seenDescriptors.insert(descriptor.Method);
installOverrideInVTable(
descriptor.Class.get(), descriptor.Method.get(),
[&descriptor]() { return descriptor.getImpl(); }, overrideTable,
classWords);
}
if (!hasSuperclassWithDefaultOverride) {
// No ancestor had default overrides to consider, so we're done.
return;
}
// Install any necessary default overrides.
for (auto *description : superclassesWithDefaultOverrides) {
assert(description->hasDefaultOverrideTable());
auto *header = description->getDefaultOverrideTable();
assert(header->NumEntries > 0 && "default override table with 0 entries");
auto entries = description->getDefaultOverrideDescriptors();
for (auto &entry : entries) {
auto *original = entry.Original.get();
if (!seenDescriptors.count(original))
continue;
auto *replacement = entry.Replacement.get();
if (seenDescriptors.count(replacement))
continue;
installOverrideInVTable(
description, replacement, [&entry]() { return entry.getImpl(); },
header, classWords);
}
}
}
static void initClassFieldOffsetVector(ClassMetadata *self,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
// Start layout by appending to a standard heap object header.
size_t size, alignMask;
#if SWIFT_OBJC_INTEROP
ClassROData *rodata = getROData(self);
#endif
// If we have a superclass, start from its size and alignment instead.
if (classHasSuperclass(self)) {
auto *super = self->Superclass;
// This is straightforward if the superclass is Swift.
#if SWIFT_OBJC_INTEROP
if (super->isTypeMetadata()) {
#endif
size = super->getInstanceSize();
alignMask = super->getInstanceAlignMask();
#if SWIFT_OBJC_INTEROP
// If it's Objective-C, start layout from our static notion of
// where the superclass starts. Objective-C expects us to have
// generated a correct ivar layout, which it will simply slide if
// it needs to.
} else {
size = rodata->InstanceStart;
alignMask = 0xF; // malloc alignment guarantee
}
#endif
// If we don't have a formal superclass, start with the basic heap header.
} else {
auto heapLayout = getInitialLayoutForHeapObject();
size = heapLayout.size;
alignMask = heapLayout.flags.getAlignmentMask();
}
#if SWIFT_OBJC_INTEROP
// Ensure that Objective-C does layout starting from the right
// offset. This needs to exactly match the superclass rodata's
// InstanceSize in cases where the compiler decided that we didn't
// really have a resilient ObjC superclass, because the compiler
// might hardcode offsets in that case, so we can't slide ivars.
// Fortunately, the cases where that happens are exactly the
// situations where our entire superclass hierarchy is defined
// in Swift. (But note that ObjC might think we have a superclass
// even if Swift doesn't, because of SwiftObject.)
//
// The rodata may be in read-only memory if the compiler knows that the size
// it generates is already definitely correct. Don't write to this value
// unless it's necessary. We'll grow the space for the superclass if needed,
// but not shrink it, as the compiler may write an unaligned size that's less
// than our aligned InstanceStart.
if (rodata->InstanceStart < size)
rodata->InstanceStart = size;
else
size = rodata->InstanceStart;
#endif
// Okay, now do layout.
for (unsigned i = 0; i != numFields; ++i) {
auto *eltLayout = fieldTypes[i];
// Skip empty fields.
if (fieldOffsets[i] == 0 && eltLayout->size == 0)
continue;
auto offset = roundUpToAlignMask(size,
eltLayout->flags.getAlignmentMask());
fieldOffsets[i] = offset;
size = offset + eltLayout->size;
alignMask = std::max(alignMask, eltLayout->flags.getAlignmentMask());
}
// Save the final size and alignment into the metadata record.
assert(self->isTypeMetadata());
self->setInstanceSize(size);
self->setInstanceAlignMask(alignMask);
#if SWIFT_OBJC_INTEROP
// Save the size into the Objective-C metadata as well.
if (rodata->InstanceSize != size)
rodata->InstanceSize = size;
#endif
}
#if SWIFT_OBJC_INTEROP
/// Non-generic classes only. Initialize the Objective-C ivar descriptors and
/// field offset globals. Does *not* register the class with the Objective-C
/// runtime; that must be done by the caller.
///
/// This function copies the ivar descriptors and updates each ivar global with
/// the corresponding offset in \p fieldOffsets, before asking the Objective-C
/// runtime to realize the class. The Objective-C runtime will then slide the
/// offsets stored in those globals.
///
/// Note that \p fieldOffsets remains unchanged in this case.
static void initObjCClass(ClassMetadata *self,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
ClassROData *rodata = getROData(self);
ClassIvarList *ivars = rodata->IvarList;
if (!ivars) {
assert(numFields == 0);
return;
}
assert(ivars->Count == numFields);
assert(ivars->EntrySize == sizeof(ClassIvarEntry));
bool copiedIvarList = false;
for (unsigned i = 0; i != numFields; ++i) {
auto *eltLayout = fieldTypes[i];
ClassIvarEntry *ivar = &ivars->getIvars()[i];
// Fill in the field offset global, if this ivar has one.
if (ivar->Offset) {
if (*ivar->Offset != fieldOffsets[i])
*ivar->Offset = fieldOffsets[i];
}
// If the ivar's size doesn't match the field layout we
// computed, overwrite it and give it better type information.
if (ivar->Size != eltLayout->size) {
// If we're going to modify the ivar list, we need to copy it first.
if (!copiedIvarList) {
auto ivarListSize = sizeof(ClassIvarList) +
numFields * sizeof(ClassIvarEntry);
ivars = (ClassIvarList*) getResilientMetadataAllocator()
.Allocate(ivarListSize, alignof(ClassIvarList));
memcpy(ivars, rodata->IvarList, ivarListSize);
rodata->IvarList = ivars;
copiedIvarList = true;
// Update ivar to point to the newly copied list.
ivar = &ivars->getIvars()[i];
}
ivar->Size = eltLayout->size;
ivar->Type = nullptr;
ivar->Log2Alignment =
getLog2AlignmentFromMask(eltLayout->flags.getAlignmentMask());
}
}
}
/// Generic classes only. Initialize the Objective-C ivar descriptors and field
/// offset globals and register the class with the runtime.
///
/// This function copies the ivar descriptors and points each ivar offset at the
/// corresponding entry in \p fieldOffsets, before asking the Objective-C
/// runtime to realize the class. The Objective-C runtime will then slide the
/// offsets in \p fieldOffsets.
static MetadataDependency
initGenericObjCClass(ClassMetadata *self, size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
// If the class is generic, we need to give it a name for Objective-C.
setUpGenericClassObjCName(self);
ClassROData *rodata = getROData(self);
// In ObjC interop mode, we have up to two places we need each correct
// ivar offset to end up:
//
// - the global ivar offset in the RO-data; this should only exist
// if the class layout (up to this ivar) is not actually dependent
//
// - the field offset vector (fieldOffsets)
//
// When we ask the ObjC runtime to lay out this class, we need the
// RO-data to point to the field offset vector, even if the layout
// is not dependent. The RO-data is not shared between
// instantiations, but the global ivar offset is (by definition).
// If the compiler didn't have the correct static size for the
// superclass (i.e. if rodata->InstanceStart is wrong), a previous
// instantiation might have already slid the global offset to the
// correct place; we need the ObjC runtime to see a pre-slid value,
// and it's not safe to briefly unslide it and let the runtime slide
// it back because there might already be concurrent code relying on
// the global ivar offset.
//
// So we need to the remember the addresses of the global ivar offsets.
// We use this lazily-filled array to do so.
const unsigned NumInlineGlobalIvarOffsets = 8;
size_t *_inlineGlobalIvarOffsets[NumInlineGlobalIvarOffsets];
size_t **_globalIvarOffsets = nullptr;
auto getGlobalIvarOffsets = [&]() -> size_t** {
if (!_globalIvarOffsets) {
if (numFields <= NumInlineGlobalIvarOffsets) {
_globalIvarOffsets = _inlineGlobalIvarOffsets;
// Make sure all the entries start out null.
memset(_globalIvarOffsets, 0, numFields * sizeof(size_t *));
} else {
_globalIvarOffsets =
static_cast<size_t **>(calloc(numFields, sizeof(size_t *)));
}
}
return _globalIvarOffsets;
};
// Always clone the ivar descriptors.
if (numFields) {
const ClassIvarList *dependentIvars = rodata->IvarList;
assert(dependentIvars->Count == numFields);
assert(dependentIvars->EntrySize == sizeof(ClassIvarEntry));
auto ivarListSize = sizeof(ClassIvarList) +
numFields * sizeof(ClassIvarEntry);
auto ivars = (ClassIvarList*) getResilientMetadataAllocator()
.Allocate(ivarListSize, alignof(ClassIvarList));
memcpy(ivars, dependentIvars, ivarListSize);
rodata->IvarList = ivars;
for (unsigned i = 0; i != numFields; ++i) {
auto *eltLayout = fieldTypes[i];
ClassIvarEntry &ivar = ivars->getIvars()[i];
// Remember the global ivar offset if present.
if (ivar.Offset) {
getGlobalIvarOffsets()[i] = ivar.Offset;
}
// Change the ivar offset to point to the respective entry of
// the field-offset vector, as discussed above.
ivar.Offset = &fieldOffsets[i];
// If the ivar's size doesn't match the field layout we
// computed, overwrite it and give it better type information.
if (ivar.Size != eltLayout->size) {
ivar.Size = eltLayout->size;
ivar.Type = nullptr;
ivar.Log2Alignment =
getLog2AlignmentFromMask(eltLayout->flags.getAlignmentMask());
}
}
}
// Register this class with the runtime. This will also cause the
// runtime to slide the entries in the field offset vector.
swift_instantiateObjCClass(self);
// If we saved any global ivar offsets, make sure we write back to them.
if (_globalIvarOffsets) {
for (unsigned i = 0; i != numFields; ++i) {
if (!_globalIvarOffsets[i]) continue;
// To avoid dirtying memory, only write to the global ivar
// offset if it's actually wrong.
if (*_globalIvarOffsets[i] != fieldOffsets[i])
*_globalIvarOffsets[i] = fieldOffsets[i];
}
// Free the out-of-line if we allocated one.
if (_globalIvarOffsets != _inlineGlobalIvarOffsets) {
free(_globalIvarOffsets);
}
}
return MetadataDependency();
}
#endif
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_INTERNAL MetadataResponse
getSuperclassMetadata(MetadataRequest request, const ClassMetadata *self) {
// If there is a mangled superclass name, demangle it to the superclass
// type.
if (auto superclassNameBase = self->getDescription()->SuperclassType.get()) {
StringRef superclassName =
Demangle::makeSymbolicMangledNameStringRef(superclassNameBase);
SubstGenericParametersFromMetadata substitutions(self);
auto result = swift_getTypeByMangledName(
request, superclassName, substitutions.getGenericArgs(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (auto *error = result.getError()) {
fatalError(
0, "failed to demangle superclass of %s from mangled name '%s': %s\n",
self->getDescription()->Name.get(), superclassName.str().c_str(),
error->copyErrorString());
}
return result.getType().getResponse();
} else {
return MetadataResponse();
}
}
SWIFT_CC(swift)
static std::pair<MetadataDependency, const ClassMetadata *>
getSuperclassMetadata(const ClassMetadata *self, bool allowDependency) {
MetadataRequest request(allowDependency ? MetadataState::NonTransitiveComplete
: /*FIXME*/ MetadataState::Abstract,
/*non-blocking*/ allowDependency);
auto response = getSuperclassMetadata(request, self);
auto *superclass = response.Value;
if (!superclass)
return {MetadataDependency(), nullptr};
const ClassMetadata *second;
#if SWIFT_OBJC_INTEROP
if (auto objcWrapper = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
second = objcWrapper->Class;
} else {
second = cast<ClassMetadata>(superclass);
}
#else
second = cast<ClassMetadata>(superclass);
#endif
// If the request isn't satisfied, we have a new dependency.
if (!request.isSatisfiedBy(response.State)) {
assert(allowDependency);
return {MetadataDependency(superclass, request.getState()), second};
}
return {MetadataDependency(), second};
}
static SWIFT_CC(swift) MetadataDependency
_swift_initClassMetadataImpl(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets,
bool allowDependency) {
// Try to install the superclass.
auto superDependencyAndSuper = getSuperclassMetadata(self, allowDependency);
if (superDependencyAndSuper.first)
return superDependencyAndSuper.first;
auto super = superDependencyAndSuper.second;
self->Superclass = super;
#if SWIFT_OBJC_INTEROP
// Set the superclass to SwiftObject if this is a root class.
if (!super)
self->Superclass = getRootSuperclass();
// Register our custom implementation of class_getImageName.
static swift::once_t onceToken;
swift::once(
onceToken,
[](void *unused) {
(void)unused;
setUpObjCRuntimeGetImageNameFromClass();
},
nullptr);
#endif
// To populate the vtable, we must check our ancestors for default overloads.
// We may obstructed by dependencies, however, so do it now before doing any
// setup.
llvm::SmallVector<const ClassDescriptor *, 16>
superclassesWithDefaultOverrides;
if (self->getDescription()->hasOverrideTable()) {
const ClassMetadata *super = superDependencyAndSuper.second;
while (super && !super->isPureObjC()) {
const auto *description = super->getDescription();
if (description->hasDefaultOverrideTable()) {
// This superclass has default overrides. Record it for later
// traversal.
superclassesWithDefaultOverrides.push_back(description);
}
auto superDependencyAndSuper =
getSuperclassMetadata(super, allowDependency);
if (superDependencyAndSuper.first)
return superDependencyAndSuper.first;
super = superDependencyAndSuper.second;
}
}
// Copy field offsets, generic arguments and (if necessary) vtable entries
// from our superclass.
copySuperclassMetadataToSubclass(self, layoutFlags);
// Copy the class's immediate methods from the nominal type descriptor
// to the class metadata.
if (!hasStaticVTable(layoutFlags))
initClassVTable(self, superclassesWithDefaultOverrides);
initClassFieldOffsetVector(self, numFields, fieldTypes, fieldOffsets);
#if SWIFT_OBJC_INTEROP
auto *description = self->getDescription();
if (description->isGeneric()) {
assert(!description->hasObjCResilientClassStub());
initGenericObjCClass(self, numFields, fieldTypes, fieldOffsets);
} else {
initObjCClass(self, numFields, fieldTypes, fieldOffsets);
// Register this class with the runtime. This will also cause the
// runtime to slide the field offsets stored in the field offset
// globals. Note that the field offset vector is *not* updated;
// however we should not be using it for anything in a non-generic
// class.
auto *stub = description->getObjCResilientClassStub();
// On a new enough runtime, register the class as a replacement for
// its stub if we have one, which attaches any categories referencing
// the stub.
//
// On older runtimes, just register the class via the usual mechanism.
// The compiler enforces that @objc methods in extensions of classes
// with resilient ancestry have the correct availability, so it should
// be safe to ignore the stub in this case.
if (stub != nullptr && SWIFT_RUNTIME_WEAK_CHECK(_objc_realizeClassFromSwift)) {
SWIFT_RUNTIME_WEAK_USE(_objc_realizeClassFromSwift((Class) self, const_cast<void *>(stub)));
} else {
swift_instantiateObjCClass(self);
}
}
#else
assert(!self->getDescription()->hasObjCResilientClassStub());
#endif
return MetadataDependency();
}
void swift::swift_initClassMetadata(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
(void) _swift_initClassMetadataImpl(self, layoutFlags, numFields,
fieldTypes, fieldOffsets,
/*allowDependency*/ false);
}
MetadataDependency
swift::swift_initClassMetadata2(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
return _swift_initClassMetadataImpl(self, layoutFlags, numFields,
fieldTypes, fieldOffsets,
/*allowDependency*/ true);
}
#if SWIFT_OBJC_INTEROP
static SWIFT_CC(swift) MetadataDependency
_swift_updateClassMetadataImpl(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets,
bool allowDependency) {
bool requiresUpdate = SWIFT_RUNTIME_WEAK_CHECK(_objc_realizeClassFromSwift);
// If we're on a newer runtime, we're going to be initializing the
// field offset vector. Realize the superclass metadata first, even
// though our superclass field references it statically.
auto superDependencyAndSuper = getSuperclassMetadata(self, allowDependency);
if (superDependencyAndSuper.first)
return superDependencyAndSuper.first;
const ClassMetadata *super = superDependencyAndSuper.second;
// Check that it matches what's already in there.
if (!super)
assert(self->Superclass == getRootSuperclass());
else
assert(self->Superclass == super);
(void) super;
// If we're running on a older Objective-C runtime, just realize
// the class.
if (!requiresUpdate) {
// If we don't have a backward deployment layout, we cannot proceed here.
if (self->getInstanceSize() == 0 ||
self->getInstanceAlignMask() == 0) {
fatalError(0, "class %s does not have a fragile layout; "
"the deployment target was newer than this OS\n",
self->getDescription()->Name.get());
}
// Realize the class. This causes the runtime to slide the field offsets
// stored in the field offset globals.
//
// Note that the field offset vector is *not* updated; however in
// Objective-C interop mode, we don't actually use the field offset vector
// of non-generic classes.
//
// In particular, class mirrors always use the Objective-C ivar descriptors,
// which point at field offset globals and not the field offset vector.
swift_getInitializedObjCClass((Class)self);
} else {
// Update the field offset vector using runtime type information; the layout
// of resilient types might be different than the statically-emitted layout.
initClassFieldOffsetVector(self, numFields, fieldTypes, fieldOffsets);
// Copy field offset vector entries to the field offset globals.
initObjCClass(self, numFields, fieldTypes, fieldOffsets);
// See remark above about how this slides field offset globals.
SWIFT_RUNTIME_WEAK_USE(_objc_realizeClassFromSwift((Class)self, (Class)self));
}
return MetadataDependency();
}
void swift::swift_updateClassMetadata(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
(void) _swift_updateClassMetadataImpl(self, layoutFlags, numFields,
fieldTypes, fieldOffsets,
/*allowDependency*/ false);
}
MetadataDependency
swift::swift_updateClassMetadata2(ClassMetadata *self,
ClassLayoutFlags layoutFlags,
size_t numFields,
const TypeLayout * const *fieldTypes,
size_t *fieldOffsets) {
return _swift_updateClassMetadataImpl(self, layoutFlags, numFields,
fieldTypes, fieldOffsets,
/*allowDependency*/ true);
}
Class
swift::swift_updatePureObjCClassMetadata(Class cls,
ClassLayoutFlags flags,
size_t numFields,
const TypeLayout * const *fieldTypes) {
bool hasRealizeClassFromSwift =
SWIFT_RUNTIME_WEAK_CHECK(_objc_realizeClassFromSwift);
assert(hasRealizeClassFromSwift);
(void)hasRealizeClassFromSwift;
SWIFT_DEFER {
// Realize the class. This causes the runtime to slide the field offsets
// stored in the field offset globals.
SWIFT_RUNTIME_WEAK_USE(_objc_realizeClassFromSwift(cls, cls));
};
// Update the field offset globals using runtime type information; the layout
// of resilient types might be different than the statically-emitted layout.
ObjCClass *self = (ObjCClass *)cls;
ClassROData *rodata = getROData(self);
ClassIvarList *ivars = rodata->IvarList;
if (!ivars) {
assert(numFields == 0);
return cls;
}
assert(ivars->Count == numFields);
assert(ivars->EntrySize == sizeof(ClassIvarEntry));
bool copiedIvarList = false;
// Start layout from our static notion of where the superclass starts.
// Objective-C expects us to have generated a correct ivar layout, which it
// will simply slide if it needs to.
assert(self->Superclass && "Swift cannot implement a root class");
size_t size = rodata->InstanceStart;
size_t alignMask = 0xF; // malloc alignment guarantee
// Okay, now do layout.
for (unsigned i = 0; i != numFields; ++i) {
ClassIvarEntry *ivar = &ivars->getIvars()[i];
size_t offset = 0;
if (ivar->Offset) {
offset = *ivar->Offset;
}
auto *eltLayout = fieldTypes[i];
// Skip empty fields.
if (offset != 0 || eltLayout->size != 0) {
offset = roundUpToAlignMask(size, eltLayout->flags.getAlignmentMask());
size = offset + eltLayout->size;
alignMask = std::max(alignMask, eltLayout->flags.getAlignmentMask());
// Fill in the field offset global, if this ivar has one.
if (ivar->Offset) {
if (*ivar->Offset != offset)
*ivar->Offset = offset;
}
}
// If the ivar's size doesn't match the field layout we
// computed, overwrite it and give it better type information.
if (ivar->Size != eltLayout->size) {
// If we're going to modify the ivar list, we need to copy it first.
if (!copiedIvarList) {
auto ivarListSize = sizeof(ClassIvarList) +
numFields * sizeof(ClassIvarEntry);
ivars = (ClassIvarList*) getResilientMetadataAllocator()
.Allocate(ivarListSize, alignof(ClassIvarList));
memcpy(ivars, rodata->IvarList, ivarListSize);
rodata->IvarList = ivars;
copiedIvarList = true;
// Update ivar to point to the newly copied list.
ivar = &ivars->getIvars()[i];
}
ivar->Size = eltLayout->size;
ivar->Type = nullptr;
ivar->Log2Alignment =
getLog2AlignmentFromMask(eltLayout->flags.getAlignmentMask());
}
}
// Save the size into the Objective-C metadata.
if (rodata->InstanceSize != size)
rodata->InstanceSize = size;
return cls;
}
#endif
#ifndef NDEBUG
static bool isAncestorOf(const ClassMetadata *metadata,
const ClassDescriptor *description) {
auto ancestor = metadata;
while (ancestor && ancestor->isTypeMetadata()) {
if (ancestor->getDescription() == description)
return true;
ancestor = ancestor->Superclass;
}
return false;
}
#endif
void *
swift::swift_lookUpClassMethod(const ClassMetadata *metadata,
const MethodDescriptor *method,
const ClassDescriptor *description) {
assert(metadata->isTypeMetadata());
#ifndef NDEBUG
assert(isAncestorOf(metadata, description));
#endif
auto *vtable = description->getVTableDescriptor();
assert(vtable != nullptr);
auto methods = description->getMethodDescriptors();
unsigned index = method - methods.data();
assert(index < methods.size());
auto vtableOffset = vtable->getVTableOffset(description) + index;
auto *words = reinterpret_cast<void * const *>(metadata);
auto *const *methodPtr = (words + vtableOffset);
#if SWIFT_PTRAUTH
// Re-sign the return value without the address.
unsigned extra = method->Flags.getExtraDiscriminator();
if (method->Flags.isData()) {
return ptrauth_auth_and_resign(
*methodPtr, ptrauth_key_process_independent_data,
ptrauth_blend_discriminator(methodPtr, extra),
ptrauth_key_process_independent_data, extra);
} else {
return ptrauth_auth_and_resign(
*methodPtr, ptrauth_key_function_pointer,
ptrauth_blend_discriminator(methodPtr, extra),
ptrauth_key_function_pointer, extra);
}
#else
return *methodPtr;
#endif
}
/***************************************************************************/
/*** Metatypes *************************************************************/
/***************************************************************************/
/// Find the appropriate value witness table for the given type.
static const ValueWitnessTable *
getMetatypeValueWitnesses(const Metadata *instanceType) {
// When metatypes are accessed opaquely, they always have a "thick"
// representation.
return &getUnmanagedPointerPointerValueWitnesses();
}
namespace {
class MetatypeCacheEntry {
public:
FullMetadata<MetatypeMetadata> Data;
MetatypeCacheEntry(const Metadata *instanceType) {
Data.setKind(MetadataKind::Metatype);
Data.ValueWitnesses = getMetatypeValueWitnesses(instanceType);
Data.InstanceType = instanceType;
}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.InstanceType);
}
bool matchesKey(const Metadata *instanceType) const {
return instanceType == Data.InstanceType;
}
friend llvm::hash_code hash_value(const MetatypeCacheEntry &value) {
return llvm::hash_value(value.Data.InstanceType);
}
static size_t getExtraAllocationSize(const Metadata *instanceType) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
/// The uniquing structure for metatype type metadata.
static SimpleGlobalCache<MetatypeCacheEntry, MetatypeTypesTag> MetatypeTypes;
/// Fetch a uniqued metadata for a metatype type.
SWIFT_RUNTIME_EXPORT
const MetatypeMetadata *
swift::swift_getMetatypeMetadata(const Metadata *instanceMetadata) {
return &MetatypeTypes.getOrInsert(instanceMetadata).first->Data;
}
/***************************************************************************/
/*** Existential Metatypes *************************************************/
/***************************************************************************/
namespace {
/// A cache entry for existential metatype witness tables.
class ExistentialMetatypeValueWitnessTableCacheEntry {
public:
ValueWitnessTable Data;
unsigned getNumWitnessTables() const {
return (Data.size - sizeof(ExistentialMetatypeContainer))
/ sizeof(const ValueWitnessTable*);
}
ExistentialMetatypeValueWitnessTableCacheEntry(unsigned numWitnessTables);
intptr_t getKeyIntValueForDump() {
return static_cast<intptr_t>(getNumWitnessTables());
}
bool matchesKey(unsigned key) const { return key == getNumWitnessTables(); }
friend llvm::hash_code
hash_value(const ExistentialMetatypeValueWitnessTableCacheEntry &value) {
return llvm::hash_value(value.getNumWitnessTables());
}
static size_t getExtraAllocationSize(unsigned numTables) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
class ExistentialMetatypeCacheEntry {
public:
FullMetadata<ExistentialMetatypeMetadata> Data;
ExistentialMetatypeCacheEntry(const Metadata *instanceMetadata);
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Data.InstanceType);
}
bool matchesKey(const Metadata *instanceType) const {
return instanceType == Data.InstanceType;
}
friend llvm::hash_code
hash_value(const ExistentialMetatypeCacheEntry &value) {
return llvm::hash_value(value.Data.InstanceType);
}
static size_t getExtraAllocationSize(const Metadata *key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
/// The uniquing structure for existential metatype value witness tables.
static SimpleGlobalCache<ExistentialMetatypeValueWitnessTableCacheEntry,
ExistentialMetatypeValueWitnessTablesTag>
ExistentialMetatypeValueWitnessTables;
/// The uniquing structure for existential metatype type metadata.
static SimpleGlobalCache<ExistentialMetatypeCacheEntry,
ExistentialMetatypesTag> ExistentialMetatypes;
static const ValueWitnessTable
ExistentialMetatypeValueWitnesses_1 =
ValueWitnessTableForBox<ExistentialMetatypeBox<1>>::table;
static const ValueWitnessTable
ExistentialMetatypeValueWitnesses_2 =
ValueWitnessTableForBox<ExistentialMetatypeBox<2>>::table;
/// Instantiate a value witness table for an existential metatype
/// container with the given number of witness table pointers.
static const ValueWitnessTable *
getExistentialMetatypeValueWitnesses(unsigned numWitnessTables) {
if (numWitnessTables == 0)
return &getUnmanagedPointerPointerValueWitnesses();
if (numWitnessTables == 1)
return &ExistentialMetatypeValueWitnesses_1;
if (numWitnessTables == 2)
return &ExistentialMetatypeValueWitnesses_2;
static_assert(3 * sizeof(void*) >= sizeof(ValueBuffer),
"not handling all possible inline-storage class existentials!");
return &ExistentialMetatypeValueWitnessTables.getOrInsert(numWitnessTables)
.first->Data;
}
ExistentialMetatypeValueWitnessTableCacheEntry::
ExistentialMetatypeValueWitnessTableCacheEntry(unsigned numWitnessTables) {
using Box = NonFixedExistentialMetatypeBox;
using Witnesses = NonFixedValueWitnesses<Box, /*known allocated*/ true>;
#define WANT_REQUIRED_VALUE_WITNESSES 1
#define WANT_EXTRA_INHABITANT_VALUE_WITNESSES 1
#define WANT_ENUM_VALUE_WITNESSES 0
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
Data.LOWER_ID = Witnesses::LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
Data.size = Box::Container::getSize(numWitnessTables);
Data.flags = ValueWitnessFlags()
.withAlignment(Box::Container::getAlignment(numWitnessTables))
.withPOD(true)
.withBitwiseTakable(true)
.withInlineStorage(false);
Data.stride = Box::Container::getStride(numWitnessTables);
Data.extraInhabitantCount = Witnesses::numExtraInhabitants;
assert(getNumWitnessTables() == numWitnessTables);
}
/// Fetch a uniqued metadata for a metatype type.
SWIFT_RUNTIME_EXPORT
const ExistentialMetatypeMetadata *
swift::swift_getExistentialMetatypeMetadata(const Metadata *instanceMetadata) {
return &ExistentialMetatypes.getOrInsert(instanceMetadata).first->Data;
}
ExistentialMetatypeCacheEntry::ExistentialMetatypeCacheEntry(
const Metadata *instanceMetadata) {
ExistentialTypeFlags flags;
switch (instanceMetadata->getKind()) {
case MetadataKind::Existential:
flags = static_cast<const ExistentialTypeMetadata*>(instanceMetadata)
->Flags;
break;
case MetadataKind::ExistentialMetatype:
flags = static_cast<const ExistentialMetatypeMetadata*>(instanceMetadata)
->Flags;
break;
default:
assert(false && "expected existential metadata");
}
Data.setKind(MetadataKind::ExistentialMetatype);
Data.ValueWitnesses =
getExistentialMetatypeValueWitnesses(flags.getNumWitnessTables());
Data.InstanceType = instanceMetadata;
Data.Flags = flags;
}
/***************************************************************************/
/*** Existential types *****************************************************/
/***************************************************************************/
namespace {
class ExistentialCacheEntry {
public:
FullMetadata<ExistentialTypeMetadata> Data;
struct Key {
const Metadata *SuperclassConstraint;
ProtocolClassConstraint ClassConstraint : 1;
uint32_t NumProtocols : 31;
const ProtocolDescriptorRef *Protocols;
friend llvm::hash_code hash_value(const Key &key) {
auto hash = llvm::hash_combine(key.SuperclassConstraint,
key.ClassConstraint, key.NumProtocols);
for (size_t i = 0; i != key.NumProtocols; i++)
hash = llvm::hash_combine(hash, key.Protocols[i].getRawData());
return hash;
}
};
ExistentialCacheEntry(Key key);
intptr_t getKeyIntValueForDump() {
return 0;
}
bool matchesKey(Key key) const {
if (key.ClassConstraint != Data.Flags.getClassConstraint())
return false;
if (key.SuperclassConstraint != Data.getSuperclassConstraint())
return false;
if (key.NumProtocols != Data.NumProtocols)
return false;
auto dataProtocols = Data.getProtocols();
for (size_t i = 0; i != key.NumProtocols; ++i) {
if (key.Protocols[i].getRawData() != dataProtocols[i].getRawData())
return false;
}
return true;
}
friend llvm::hash_code hash_value(const ExistentialCacheEntry &value) {
Key key = {value.Data.getSuperclassConstraint(),
value.Data.Flags.getClassConstraint(), value.Data.NumProtocols,
value.Data.getProtocols().data()};
return hash_value(key);
}
static size_t getExtraAllocationSize(Key key) {
return ExistentialTypeMetadata::additionalSizeToAlloc<
const Metadata *, ProtocolDescriptorRef
>(key.SuperclassConstraint != nullptr, key.NumProtocols);
}
size_t getExtraAllocationSize() const {
return ExistentialTypeMetadata::additionalSizeToAlloc<
const Metadata *, ProtocolDescriptorRef
>(Data.Flags.hasSuperclassConstraint(), Data.NumProtocols);
}
};
class OpaqueExistentialValueWitnessTableCacheEntry {
public:
struct Key {
unsigned numWitnessTables : 31;
unsigned copyable : 1;
bool operator==(struct Key k) {
return k.numWitnessTables == numWitnessTables
&& k.copyable == copyable;
}
};
ValueWitnessTable Data;
OpaqueExistentialValueWitnessTableCacheEntry(Key key);
unsigned getNumWitnessTables() const {
return (Data.size - sizeof(OpaqueExistentialContainer))
/ sizeof(const WitnessTable *);
}
bool isCopyable() const {
return Data.flags.isCopyable();
}
intptr_t getKeyIntValueForDump() {
return getNumWitnessTables();
}
bool matchesKey(Key key) const {
return key == Key{getNumWitnessTables(), isCopyable()};
}
friend llvm::hash_code
hash_value(const OpaqueExistentialValueWitnessTableCacheEntry &value) {
return llvm::hash_value(
std::make_pair(value.getNumWitnessTables(), value.isCopyable()));
}
static size_t getExtraAllocationSize(Key key) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
class ClassExistentialValueWitnessTableCacheEntry {
public:
ValueWitnessTable Data;
ClassExistentialValueWitnessTableCacheEntry(unsigned numTables);
unsigned getNumWitnessTables() const {
return (Data.size - sizeof(ClassExistentialContainer))
/ sizeof(const WitnessTable *);
}
intptr_t getKeyIntValueForDump() {
return getNumWitnessTables();
}
bool matchesKey(unsigned key) const { return key == getNumWitnessTables(); }
friend llvm::hash_code
hash_value(const ClassExistentialValueWitnessTableCacheEntry &value) {
return llvm::hash_value(value.getNumWitnessTables());
}
static size_t getExtraAllocationSize(unsigned numTables) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
} // end anonymous namespace
/// The uniquing structure for existential type metadata.
static SimpleGlobalCache<ExistentialCacheEntry, ExistentialTypesTag> ExistentialTypes;
static const ValueWitnessTable
OpaqueExistentialValueWitnesses_0 =
ValueWitnessTableForBox<OpaqueExistentialBox<0>>::table;
static const ValueWitnessTable
OpaqueExistentialValueWitnesses_1 =
ValueWitnessTableForBox<OpaqueExistentialBox<1>>::table;
/// The standard metadata for Any.
const FullMetadata<ExistentialTypeMetadata> swift::
METADATA_SYM(ANY_MANGLING) = {
{ &OpaqueExistentialValueWitnesses_0 }, // ValueWitnesses
ExistentialTypeMetadata(
ExistentialTypeFlags() // Flags
.withNumWitnessTables(0)
.withClassConstraint(ProtocolClassConstraint::Any)
.withHasSuperclass(false)
.withSpecialProtocol(SpecialProtocol::None)),
};
/// The standard metadata for AnyObject.
const FullMetadata<ExistentialTypeMetadata> swift::
METADATA_SYM(ANYOBJECT_MANGLING) = {
{
#if SWIFT_OBJC_INTEROP
&VALUE_WITNESS_SYM(BO)
#else
&VALUE_WITNESS_SYM(Bo)
#endif
},
ExistentialTypeMetadata(
ExistentialTypeFlags() // Flags
.withNumWitnessTables(0)
.withClassConstraint(ProtocolClassConstraint::Class)
.withHasSuperclass(false)
.withSpecialProtocol(SpecialProtocol::None)),
};
/// The uniquing structure for opaque existential value witness tables.
static SimpleGlobalCache<OpaqueExistentialValueWitnessTableCacheEntry,
OpaqueExistentialValueWitnessTablesTag>
OpaqueExistentialValueWitnessTables;
/// Instantiate a value witness table for an opaque existential container with
/// the given number of witness table pointers.
static const ValueWitnessTable *
getOpaqueExistentialValueWitnesses(unsigned numWitnessTables,
bool copyable) {
// We pre-allocate a couple of important cases.
if (copyable) {
if (numWitnessTables == 0)
return &OpaqueExistentialValueWitnesses_0;
if (numWitnessTables == 1)
return &OpaqueExistentialValueWitnesses_1;
}
return &OpaqueExistentialValueWitnessTables
.getOrInsert(OpaqueExistentialValueWitnessTableCacheEntry::Key{
numWitnessTables, copyable})
.first->Data;
}
OpaqueExistentialValueWitnessTableCacheEntry::
OpaqueExistentialValueWitnessTableCacheEntry(Key key) {
using Box = NonFixedOpaqueExistentialBox;
using Witnesses = NonFixedValueWitnesses<Box, /*known allocated*/ true>;
#define WANT_ONLY_REQUIRED_VALUE_WITNESSES
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
Data.LOWER_ID = Witnesses::LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
Data.size = Box::Container::getSize(key.numWitnessTables);
Data.flags = ValueWitnessFlags()
.withAlignment(Box::Container::getAlignment(key.numWitnessTables))
.withPOD(false)
.withBitwiseTakable(true)
.withInlineStorage(false)
.withCopyable(key.copyable)
// Non-bitwise-takable values are always stored out-of-line in existentials,
// so the existential representation itself is always bitwise-takable.
// Noncopyable values however can be bitwise-takable without being
// bitwise-borrowable, so noncopyable existentials are not bitwise-borrowable
// in the general case.
.withBitwiseBorrowable(key.copyable);
Data.extraInhabitantCount = Witnesses::numExtraInhabitants;
Data.stride = Box::Container::getStride(key.numWitnessTables);
assert(getNumWitnessTables() == key.numWitnessTables);
assert(isCopyable() == key.copyable);
}
static const ValueWitnessTable ClassExistentialValueWitnesses_1 =
ValueWitnessTableForBox<ClassExistentialBox<1>>::table;
static const ValueWitnessTable ClassExistentialValueWitnesses_2 =
ValueWitnessTableForBox<ClassExistentialBox<2>>::table;
/// The uniquing structure for class existential value witness tables.
static SimpleGlobalCache<ClassExistentialValueWitnessTableCacheEntry,
ClassExistentialValueWitnessTablesTag>
ClassExistentialValueWitnessTables;
/// Instantiate a value witness table for a class-constrained existential
/// container with the given number of witness table pointers.
static const ValueWitnessTable *
getClassExistentialValueWitnesses(const Metadata *superclass,
unsigned numWitnessTables) {
// FIXME: If the superclass is not @objc, use native reference counting.
if (numWitnessTables == 0) {
#if SWIFT_OBJC_INTEROP
return &VALUE_WITNESS_SYM(BO);
#else
return &VALUE_WITNESS_SYM(Bo);
#endif
}
if (numWitnessTables == 1)
return &ClassExistentialValueWitnesses_1;
if (numWitnessTables == 2)
return &ClassExistentialValueWitnesses_2;
static_assert(3 * sizeof(void*) >= sizeof(ValueBuffer),
"not handling all possible inline-storage class existentials!");
return &ClassExistentialValueWitnessTables.getOrInsert(numWitnessTables)
.first->Data;
}
ClassExistentialValueWitnessTableCacheEntry::
ClassExistentialValueWitnessTableCacheEntry(unsigned numWitnessTables) {
using Box = NonFixedClassExistentialBox;
using Witnesses = NonFixedValueWitnesses<Box, /*known allocated*/ true>;
#define WANT_REQUIRED_VALUE_WITNESSES 1
#define WANT_EXTRA_INHABITANT_VALUE_WITNESSES 1
#define WANT_ENUM_VALUE_WITNESSES 0
#define VALUE_WITNESS(LOWER_ID, UPPER_ID) \
Data.LOWER_ID = Witnesses::LOWER_ID;
#define DATA_VALUE_WITNESS(LOWER_ID, UPPER_ID, TYPE)
#include "swift/ABI/ValueWitness.def"
Data.size = Box::Container::getSize(numWitnessTables);
Data.flags = ValueWitnessFlags()
.withAlignment(Box::Container::getAlignment(numWitnessTables))
.withPOD(false)
.withBitwiseTakable(true)
.withInlineStorage(false);
Data.extraInhabitantCount = Witnesses::numExtraInhabitants;
Data.stride = Box::Container::getStride(numWitnessTables);
assert(getNumWitnessTables() == numWitnessTables);
}
/// Get the value witness table for an existential type, first trying to use a
/// shared specialized table for common cases.
static const ValueWitnessTable *
getExistentialValueWitnesses(ProtocolClassConstraint classConstraint,
const Metadata *superclassConstraint,
unsigned numWitnessTables,
SpecialProtocol special,
bool copyable) {
// Use special representation for special protocols.
switch (special) {
case SpecialProtocol::Error:
#if SWIFT_OBJC_INTEROP
// Error always has a single-ObjC-refcounted representation.
return &VALUE_WITNESS_SYM(BO);
#else
// Without ObjC interop, Error is native-refcounted.
return &VALUE_WITNESS_SYM(Bo);
#endif
// Other existentials use standard representation.
case SpecialProtocol::None:
break;
}
switch (classConstraint) {
case ProtocolClassConstraint::Class:
return getClassExistentialValueWitnesses(superclassConstraint,
numWitnessTables);
case ProtocolClassConstraint::Any:
assert(superclassConstraint == nullptr);
return getOpaqueExistentialValueWitnesses(numWitnessTables, copyable);
}
swift_unreachable("Unhandled ProtocolClassConstraint in switch.");
}
template<> ExistentialTypeRepresentation
ExistentialTypeMetadata::getRepresentation() const {
// Some existentials use special containers.
switch (Flags.getSpecialProtocol()) {
case SpecialProtocol::Error:
return ExistentialTypeRepresentation::Error;
case SpecialProtocol::None:
break;
}
// The layout of standard containers depends on whether the existential is
// class-constrained.
if (isClassBounded())
return ExistentialTypeRepresentation::Class;
return ExistentialTypeRepresentation::Opaque;
}
template<> bool
ExistentialTypeMetadata::mayTakeValue(const OpaqueValue *container) const {
switch (getRepresentation()) {
// Owning a reference to a class existential is equivalent to owning a
// reference to the contained class instance.
case ExistentialTypeRepresentation::Class:
return true;
// Opaque existential containers uniquely own their contained value.
case ExistentialTypeRepresentation::Opaque: {
// We can't take from a shared existential box without checking uniqueness.
auto *opaque =
reinterpret_cast<const OpaqueExistentialContainer *>(container);
return opaque->isValueInline();
}
// References to boxed existential containers may be shared.
case ExistentialTypeRepresentation::Error: {
// We can only take the value if the box is a bridged NSError, in which case
// owning a reference to the box is owning a reference to the NSError.
// TODO: Or if the box is uniquely referenced. We don't have intimate
// enough knowledge of CF refcounting to check for that dynamically yet.
const SwiftError *errorBox
= *reinterpret_cast<const SwiftError * const *>(container);
return errorBox->isPureNSError();
}
}
swift_unreachable(
"Unhandled ExistentialTypeRepresentation in switch.");
}
template<> void
ExistentialTypeMetadata::deinitExistentialContainer(OpaqueValue *container)
const {
switch (getRepresentation()) {
case ExistentialTypeRepresentation::Class:
// Nothing to clean up after taking the class reference.
break;
case ExistentialTypeRepresentation::Opaque: {
auto *opaque = reinterpret_cast<OpaqueExistentialContainer *>(container);
opaque->deinit();
break;
}
case ExistentialTypeRepresentation::Error:
// TODO: If we were able to claim the value from a uniquely-owned
// existential box, we would want to deallocError here.
break;
}
}
template<> const OpaqueValue *
ExistentialTypeMetadata::projectValue(const OpaqueValue *container) const {
switch (getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto classContainer =
reinterpret_cast<const ClassExistentialContainer*>(container);
return reinterpret_cast<const OpaqueValue *>(&classContainer->Value);
}
case ExistentialTypeRepresentation::Opaque: {
auto *opaqueContainer =
reinterpret_cast<const OpaqueExistentialContainer*>(container);
return opaqueContainer->projectValue();
}
case ExistentialTypeRepresentation::Error: {
const SwiftError *errorBox
= *reinterpret_cast<const SwiftError * const *>(container);
// If the error is a bridged NSError, then the "box" is in fact itself
// the value.
if (errorBox->isPureNSError())
return container;
return errorBox->getValue();
}
}
swift_unreachable(
"Unhandled ExistentialTypeRepresentation in switch.");
}
template<> const Metadata *
ExistentialTypeMetadata::getDynamicType(const OpaqueValue *container) const {
switch (getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto classContainer =
reinterpret_cast<const ClassExistentialContainer*>(container);
void *obj = classContainer->Value;
return swift_getObjectType(reinterpret_cast<HeapObject*>(obj));
}
case ExistentialTypeRepresentation::Opaque: {
auto opaqueContainer =
reinterpret_cast<const OpaqueExistentialContainer*>(container);
return opaqueContainer->Type;
}
case ExistentialTypeRepresentation::Error: {
const SwiftError *errorBox
= *reinterpret_cast<const SwiftError * const *>(container);
return errorBox->getType();
}
}
swift_unreachable(
"Unhandled ExistentialTypeRepresentation in switch.");
}
template<> const WitnessTable *
ExistentialTypeMetadata::getWitnessTable(const OpaqueValue *container,
unsigned i) const {
assert(i < Flags.getNumWitnessTables());
// The layout of the container depends on whether it's class-constrained
// or a special protocol.
const WitnessTable * const *witnessTables;
switch (getRepresentation()) {
case ExistentialTypeRepresentation::Class: {
auto classContainer =
reinterpret_cast<const ClassExistentialContainer*>(container);
witnessTables = classContainer->getWitnessTables();
break;
}
case ExistentialTypeRepresentation::Opaque: {
auto opaqueContainer =
reinterpret_cast<const OpaqueExistentialContainer*>(container);
witnessTables = opaqueContainer->getWitnessTables();
break;
}
case ExistentialTypeRepresentation::Error: {
// Only one witness table we should be able to return, which is the
// Error.
assert(i == 0 && "only one witness table in an Error box");
const SwiftError *errorBox
= *reinterpret_cast<const SwiftError * const *>(container);
return errorBox->getErrorConformance();
}
}
// The return type here describes extra structure for the protocol
// witness table for some reason. We should probably have a nominal
// type for these, just for type safety reasons.
return witnessTables[i];
}
#ifndef NDEBUG
/// Determine whether any of the given protocols is class-bound.
static bool anyProtocolIsClassBound(
size_t numProtocols,
const ProtocolDescriptorRef *protocols) {
for (unsigned i = 0; i != numProtocols; ++i) {
if (protocols[i].getClassConstraint() == ProtocolClassConstraint::Class)
return true;
}
return false;
}
#endif
const Metadata *
swift::_getSimpleProtocolTypeMetadata(const ProtocolDescriptor *protocol) {
auto protocolRef = ProtocolDescriptorRef::forSwift(protocol);
auto constraint =
protocol->getProtocolContextDescriptorFlags().getClassConstraint();
return swift_getExistentialTypeMetadata(constraint,
/*superclass bound*/ nullptr,
/*num protocols*/ 1,
&protocolRef);
}
/// Fetch a uniqued metadata for an existential type. The array
/// referenced by \c protocols will be sorted in-place.
const ExistentialTypeMetadata *
swift::swift_getExistentialTypeMetadata(
ProtocolClassConstraint classConstraint,
const Metadata *superclassConstraint,
size_t numProtocols,
const ProtocolDescriptorRef *protocols) {
// The empty compositions Any and AnyObject have fixed metadata.
if (numProtocols == 0 && !superclassConstraint) {
switch (classConstraint) {
case ProtocolClassConstraint::Any:
return &METADATA_SYM(ANY_MANGLING);
case ProtocolClassConstraint::Class:
return &METADATA_SYM(ANYOBJECT_MANGLING);
}
}
// We entrust that the compiler emitting the call to
// swift_getExistentialTypeMetadata always sorts the `protocols` array using
// a globally stable ordering that's consistent across modules.
// Ensure that the "class constraint" bit is set whenever we have a
// superclass or a one of the protocols is class-bound.
#ifndef NDEBUG
assert(classConstraint == ProtocolClassConstraint::Class ||
(!superclassConstraint &&
!anyProtocolIsClassBound(numProtocols, protocols)));
#endif
ExistentialCacheEntry::Key key = {
superclassConstraint, classConstraint, (uint32_t)numProtocols, protocols
};
return &ExistentialTypes.getOrInsert(key).first->Data;
}
ExistentialCacheEntry::ExistentialCacheEntry(Key key) {
// Calculate the class constraint and number of witness tables for the
// protocol set.
unsigned numWitnessTables = 0;
for (auto p : make_range(key.Protocols, key.Protocols + key.NumProtocols)) {
if (p.needsWitnessTable())
++numWitnessTables;
}
// Get the special protocol kind for an uncomposed protocol existential.
// Protocol compositions are currently never special.
auto special = SpecialProtocol::None;
if (key.NumProtocols == 1)
special = key.Protocols[0].getSpecialProtocol();
Data.setKind(MetadataKind::Existential);
Data.ValueWitnesses = getExistentialValueWitnesses(key.ClassConstraint,
key.SuperclassConstraint,
numWitnessTables,
special,
/*copyable*/ true);
Data.Flags = ExistentialTypeFlags()
.withNumWitnessTables(numWitnessTables)
.withClassConstraint(key.ClassConstraint)
.withSpecialProtocol(special);
if (key.SuperclassConstraint != nullptr) {
Data.Flags = Data.Flags.withHasSuperclass(true);
Data.setSuperclassConstraint(key.SuperclassConstraint);
}
Data.NumProtocols = key.NumProtocols;
auto dataProtocols = Data.getMutableProtocols();
for (size_t i = 0; i < key.NumProtocols; ++i) {
dataProtocols[i] = key.Protocols[i];
}
}
/// Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with no
/// witness tables.
OpaqueValue *swift::swift_assignExistentialWithCopy0(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type) {
using Witnesses = ValueWitnesses<OpaqueExistentialBox<0>>;
return Witnesses::assignWithCopy(dest, const_cast<OpaqueValue*>(src), type);
}
/// Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with one
/// witness table.
OpaqueValue *swift::swift_assignExistentialWithCopy1(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type) {
using Witnesses = ValueWitnesses<OpaqueExistentialBox<1>>;
return Witnesses::assignWithCopy(dest, const_cast<OpaqueValue*>(src), type);
}
/// Perform a copy-assignment from one existential container to another.
/// Both containers must be of the same existential type representable with the
/// same number of witness tables.
OpaqueValue *swift::swift_assignExistentialWithCopy(OpaqueValue *dest,
const OpaqueValue *src,
const Metadata *type) {
assert(!type->getValueWitnesses()->isValueInline());
using Witnesses = NonFixedValueWitnesses<NonFixedOpaqueExistentialBox,
/*known allocated*/ true>;
return Witnesses::assignWithCopy(dest, const_cast<OpaqueValue*>(src), type);
}
/***************************************************************************/
/*** Extended existential type descriptors *********************************/
/***************************************************************************/
namespace {
class ExtendedExistentialTypeShapeCacheEntry {
public:
const NonUniqueExtendedExistentialTypeShape *
__ptrauth_swift_nonunique_extended_existential_type_shape Data;
struct Key {
const NonUniqueExtendedExistentialTypeShape *Candidate;
llvm::StringRef TypeString;
Key(const NonUniqueExtendedExistentialTypeShape *candidate)
: Candidate(candidate),
TypeString(candidate->getExistentialTypeStringForUniquing()) {}
friend llvm::hash_code hash_value(const Key &key) {
return hash_value(key.TypeString);
}
};
ExtendedExistentialTypeShapeCacheEntry(Key key)
: Data(key.Candidate) {}
intptr_t getKeyIntValueForDump() {
return 0;
}
bool matchesKey(Key key) const {
auto self = Data;
auto other = key.Candidate;
if (self == other) return true;
return self->getExistentialTypeStringForUniquing() == key.TypeString;
}
friend llvm::hash_code hash_value(
const ExtendedExistentialTypeShapeCacheEntry &value) {
return hash_value(Key(value.Data));
}
static size_t getExtraAllocationSize(Key key) {
return 0;
}
};
}
/// The uniquing structure for extended existential type descriptors.
static SimpleGlobalCache<ExtendedExistentialTypeShapeCacheEntry,
ExtendedExistentialTypeShapesTag>
ExtendedExistentialTypeShapes;
const ExtendedExistentialTypeShape *
swift::swift_getExtendedExistentialTypeShape(
const NonUniqueExtendedExistentialTypeShape *nonUnique) {
#if SWIFT_PTRAUTH
// The description pointer is expected to be signed with an
// address-undiversified schema when passed in.
nonUnique = ptrauth_auth_data(nonUnique,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::NonUniqueExtendedExistentialTypeShape);
#endif
// Check the cache.
auto &cache = *nonUnique->UniqueCache.get();
if (auto ptr = cache.load(std::memory_order_acquire)) {
#if SWIFT_PTRAUTH
// Resign the returned pointer from an address-diversified to an
// undiversified schema.
ptr = ptrauth_auth_and_resign(ptr,
ptrauth_key_process_independent_data,
ptrauth_blend_discriminator(&cache,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape),
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
return ptr;
}
// Find the unique entry.
auto uniqueEntry = ExtendedExistentialTypeShapes.getOrInsert(
ExtendedExistentialTypeShapeCacheEntry::Key(nonUnique));
const ExtendedExistentialTypeShape *unique =
&uniqueEntry.first->Data->LocalCopy;
// Cache the uniqued description, signing it with an
// address-diversified schema.
auto uniqueForCache = unique;
#if SWIFT_PTRAUTH
uniqueForCache = ptrauth_sign_unauthenticated(uniqueForCache,
ptrauth_key_process_independent_data,
ptrauth_blend_discriminator(&cache,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape));
#endif
cache.store(uniqueForCache, std::memory_order_release);
// Return the uniqued description, signing it with an
// address-undiversified schema.
#if SWIFT_PTRAUTH
unique = ptrauth_sign_unauthenticated(unique,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
return unique;
}
/***************************************************************************/
/*** Extended existential types ********************************************/
/***************************************************************************/
namespace {
class ExtendedExistentialTypeCacheEntry {
public:
FullMetadata<ExtendedExistentialTypeMetadata> Data;
struct Key {
MetadataCacheKey Arguments;
const ExtendedExistentialTypeShape *Shape;
Key(const ExtendedExistentialTypeShape *shape,
const void * const *arguments)
: Arguments(shape->getGeneralizationSignature(), arguments),
Shape(shape) {}
friend llvm::hash_code hash_value(const Key &key) {
return llvm::hash_combine(key.Shape, // by address
key.Arguments.hash());
}
bool operator==(const Key &other) const {
return Shape == other.Shape && Arguments == other.Arguments;
}
};
ExtendedExistentialTypeCacheEntry(Key key)
: Data{ TargetTypeMetadataHeader<InProcess>({getOrCreateTypeLayout(key)}, {getOrCreateVWT(key)}), key.Shape} {
key.Arguments.installInto(Data.getTrailingObjects<const void *>());
}
static const ValueWitnessTable *getOrCreateVWT(Key key);
static const uint8_t *getOrCreateTypeLayout(Key key);
intptr_t getKeyIntValueForDump() {
return 0;
}
Key getKey() const {
return Key{Data.Shape, Data.getGeneralizationArguments()};
}
bool matchesKey(Key key) const {
// Bypass the eager hashing done in the Key constructor in the most
// important negative case.
if (Data.Shape != key.Shape)
return false;
return (getKey() == key);
}
friend llvm::hash_code hash_value(const ExtendedExistentialTypeCacheEntry &value) {
return hash_value(value.getKey());
}
static size_t getExtraAllocationSize(Key key) {
return ExtendedExistentialTypeMetadata::additionalSizeToAlloc<
const void *
>(key.Shape->getGenSigArgumentLayoutSizeInWords());
}
size_t getExtraAllocationSize() const {
return ExtendedExistentialTypeMetadata::additionalSizeToAlloc<
const void *
>(Data.Shape->getGenSigArgumentLayoutSizeInWords());
}
};
} // end anonymous namespace
const ValueWitnessTable *
ExtendedExistentialTypeCacheEntry::getOrCreateVWT(Key key) {
auto shape = key.Shape;
bool copyable = shape->isCopyable();
if (auto witnesses = shape->getSuggestedValueWitnesses())
return witnesses;
// The type head must name all the type parameters, so we must not have
// multiple type parameters if we have an opaque type head.
auto sigSizeInWords = shape->ReqSigHeader.getArgumentLayoutSizeInWords();
#ifndef NDEBUG
auto layout =
GenericSignatureLayout<InProcess>(shape->getRequirementSignature());
assert(layout.NumKeyParameters == shape->ReqSigHeader.NumParams &&
"requirement signature for existential includes a "
"redundant parameter?");
assert(layout.NumWitnessTables
== sigSizeInWords - shape->ReqSigHeader.NumParams &&
"requirement signature for existential includes an "
"unexpected key argument?");
#endif
// We're lowering onto existing witnesses for existential types,
// which are parameterized only by the number of witness tables they
// need to copy around.
// TODO: variadic-parameter-packs? Or is a memcpy okay, because we
// can assume existentials store permanent packs, in the unlikely
// case that the requirement signature includes a pack parameter?
unsigned wtableStorageSizeInWords =
sigSizeInWords - shape->ReqSigHeader.NumParams;
using SpecialKind = ExtendedExistentialTypeShape::SpecialKind;
switch (shape->Flags.getSpecialKind()) {
case SpecialKind::None:
assert(shape->isTypeExpressionOpaque() &&
"shape with a non-opaque type expression has no suggested VWT");
// Use the standard opaque-existential representation.
return getExistentialValueWitnesses(ProtocolClassConstraint::Any,
/*superclass*/ nullptr,
wtableStorageSizeInWords,
SpecialProtocol::None,
copyable);
case SpecialKind::ExplicitLayout:
swift_unreachable("shape with explicit layout but no suggested VWT");
case SpecialKind::Class:
// Class-constrained existentials don't store type metadata.
// TODO: pull out a superclass constraint if there is one so that
// we can use native reference counting.
return getExistentialValueWitnesses(ProtocolClassConstraint::Class,
/*superclass*/ nullptr,
wtableStorageSizeInWords,
SpecialProtocol::None,
/*copyable*/ true);
case SpecialKind::Metatype:
// Existential metatypes don't store type metadata.
return getExistentialMetatypeValueWitnesses(wtableStorageSizeInWords);
}
// We can support back-deployment of new special kinds (at least here)
// if we just require them to provide suggested value witnesses.
swift_unreachable("shape with unknown special kind had no suggested VWT");
}
const uint8_t *
ExtendedExistentialTypeCacheEntry::getOrCreateTypeLayout(Key key) {
// TODO: implement
return nullptr;
}
/// The uniquing structure for extended existential type metadata.
static SimpleGlobalCache<ExtendedExistentialTypeCacheEntry,
ExtendedExistentialTypesTag>
ExtendedExistentialTypes;
const ExtendedExistentialTypeMetadata *
swift::swift_getExtendedExistentialTypeMetadata_unique(
const ExtendedExistentialTypeShape *shape,
const void * const *generalizationArguments) {
#if SWIFT_PTRAUTH
shape = ptrauth_auth_data(shape, ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
ExtendedExistentialTypeCacheEntry::Key key(shape, generalizationArguments);
auto entry = ExtendedExistentialTypes.getOrInsert(key);
return &entry.first->Data;
}
/// Fetch a unique existential shape descriptor for an extended
/// existential type.
SWIFT_RUNTIME_EXPORT
const ExtendedExistentialTypeMetadata *
swift_getExtendedExistentialTypeMetadata(
const NonUniqueExtendedExistentialTypeShape *nonUniqueShape,
const void * const *generalizationArguments) {
auto uniqueShape = swift_getExtendedExistentialTypeShape(nonUniqueShape);
return swift_getExtendedExistentialTypeMetadata_unique(uniqueShape,
generalizationArguments);
}
/***************************************************************************/
/*** Foreign types *********************************************************/
/***************************************************************************/
// We use a DenseMap over what are essentially StringRefs instead of a
// StringMap because we don't need to actually copy the string.
namespace {
static const TypeContextDescriptor *
getForeignTypeDescription(Metadata *metadata) {
if (auto foreignClass = dyn_cast<ForeignClassMetadata>(metadata))
return foreignClass->getDescription();
else if (auto foreignClass = dyn_cast<ForeignReferenceTypeMetadata>(metadata))
return foreignClass->getDescription();
return cast<ValueMetadata>(metadata)->getDescription();
}
class ForeignMetadataCacheEntry
: public MetadataCacheEntryBase<ForeignMetadataCacheEntry, /*spurious*/ int> {
Metadata *Value;
friend MetadataCacheEntryBase;
ValueType getValue() {
return Value;
}
void setValue(ValueType value) {
swift_unreachable("should never be called");
}
public:
struct Key {
const TypeContextDescriptor *Description;
friend llvm::hash_code hash_value(const Key &key) {
return hash_value(TypeContextIdentity(key.Description));
}
};
static const char *getName() { return "ForeignMetadataCache"; }
ForeignMetadataCacheEntry(Key key, MetadataWaitQueue::Worker &worker,
MetadataRequest request, Metadata *candidate)
: MetadataCacheEntryBase(worker, configureCandidate(key, candidate)),
Value(candidate) {
}
const TypeContextDescriptor *getDescription() const {
return getForeignTypeDescription(Value);
}
template <class... Args>
static size_t numTrailingObjects(OverloadToken<int>, Args &&...) {
return 0;
}
intptr_t getKeyIntValueForDump() const {
return reinterpret_cast<intptr_t>(getDescription()->Name.get());
}
friend llvm::hash_code hash_value(const ForeignMetadataCacheEntry &value) {
return hash_value(TypeContextIdentity(value.getDescription()));
}
bool matchesKey(Key key) {
// We can just compare unparented type-context identities because
// we assume that foreign types don't have interesting parenting
// structure.
return TypeContextIdentity(key.Description) == TypeContextIdentity(getDescription());
}
AllocationResult allocate(Metadata *candidate) {
swift_unreachable("allocation is short-circuited during construction");
}
MetadataStateWithDependency tryInitialize(Metadata *metadata,
PrivateMetadataState state,
PrivateMetadataCompletionContext *ctxt) {
assert(state != PrivateMetadataState::Complete);
// Finish the completion function.
auto &init = getDescription()->getForeignMetadataInitialization();
if (init.CompletionFunction) {
// Try to complete the metadata's instantiation.
auto dependency =
init.CompletionFunction(metadata, &ctxt->Public, nullptr);
// If this failed with a dependency, infer the current metadata state
// and return.
if (dependency) {
return { inferStateForMetadata(metadata), dependency };
}
}
// Check for transitive completeness.
if (auto dependency = checkTransitiveCompleteness(metadata)) {
return { PrivateMetadataState::NonTransitiveComplete, dependency };
}
// We're done.
return { PrivateMetadataState::Complete, MetadataDependency() };
}
private:
/// Do as much candidate initialization as we reasonably can during
/// construction. Remember, though, that this is just construction;
/// we won't have committed to this candidate as the metadata until
/// this entry is successfully installed in the concurrent map.
static PrivateMetadataState configureCandidate(Key key, Metadata *candidate) {
auto &init = key.Description->getForeignMetadataInitialization();
if (!init.CompletionFunction) {
if (areAllTransitiveMetadataComplete_cheap(candidate)) {
return PrivateMetadataState::Complete;
} else {
return PrivateMetadataState::NonTransitiveComplete;
}
}
if (candidate->getValueWitnesses() == nullptr) {
assert(isa<ForeignClassMetadata>(candidate) &&
"cannot set default value witnesses for non-class foreign types");
// Fill in the default VWT if it was not set in the candidate at build
// time.
#if SWIFT_OBJC_INTEROP
candidate->setValueWitnesses(&VALUE_WITNESS_SYM(BO));
#else
candidate->setValueWitnesses(&VALUE_WITNESS_SYM(Bo));
#endif
}
return inferStateForMetadata(candidate);
}
};
} // end anonymous namespace
static Lazy<MetadataCache<ForeignMetadataCacheEntry, ForeignMetadataCacheTag>> ForeignMetadata;
MetadataResponse
swift::swift_getForeignTypeMetadata(MetadataRequest request,
ForeignTypeMetadata *candidate) {
auto description = getForeignTypeDescription(candidate);
ForeignMetadataCacheEntry::Key key{description};
return ForeignMetadata->getOrInsert(key, request, candidate).second;
}
/// Unique-ing of foreign types' witness tables.
namespace {
class ForeignWitnessTableCacheEntry {
public:
struct Key {
const TypeContextDescriptor *type;
const ProtocolDescriptor *protocol;
friend llvm::hash_code hash_value(const Key &value) {
return llvm::hash_combine(value.protocol,
TypeContextIdentity(value.type));
}
};
const TypeContextDescriptor *type;
const ProtocolDescriptor *protocol;
const WitnessTable *data;
ForeignWitnessTableCacheEntry(const ForeignWitnessTableCacheEntry::Key k,
const WitnessTable *d)
: type(k.type), protocol(k.protocol), data(d) {}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(type);
}
bool matchesKey(const Key other) const {
return other.protocol == protocol &&
TypeContextIdentity(other.type) == TypeContextIdentity(type);
}
friend llvm::hash_code
hash_value(const ForeignWitnessTableCacheEntry &value) {
Key key{value.type, value.protocol};
return hash_value(key);
}
static size_t getExtraAllocationSize(const Key,
const WitnessTable *) {
return 0;
}
size_t getExtraAllocationSize() const {
return 0;
}
};
}
static ConcurrentReadableHashMap<ForeignWitnessTableCacheEntry>
ForeignWitnessTables;
static const WitnessTable *_getForeignWitnessTable(
const WitnessTable *witnessTableCandidate,
const TypeContextDescriptor *contextDescriptor,
const ProtocolDescriptor *protocol) {
const WitnessTable *result = nullptr;
ForeignWitnessTableCacheEntry::Key key{contextDescriptor, protocol};
ForeignWitnessTables.getOrInsert(
key, [&](ForeignWitnessTableCacheEntry *entryPtr, bool created) {
if (created)
::new (entryPtr)
ForeignWitnessTableCacheEntry(key, witnessTableCandidate);
result = entryPtr->data;
return true;
});
return result;
}
/***************************************************************************/
/*** Other metadata routines ***********************************************/
/***************************************************************************/
template <> OpaqueValue *Metadata::allocateBoxForExistentialIn(ValueBuffer *buffer) const {
auto *vwt = getValueWitnesses();
if (vwt->isValueInline())
return reinterpret_cast<OpaqueValue *>(buffer);
// Allocate the box.
BoxPair refAndValueAddr(swift_allocBox(this));
buffer->PrivateData[0] = refAndValueAddr.object;
return refAndValueAddr.buffer;
}
template <> void Metadata::deallocateBoxForExistentialIn(ValueBuffer *buffer) const {
auto *vwt = getValueWitnesses();
if (vwt->isValueInline())
return;
swift_deallocBox(reinterpret_cast<HeapObject *>(buffer->PrivateData[0]));
}
template <> OpaqueValue *Metadata::allocateBufferIn(ValueBuffer *buffer) const {
auto *vwt = getValueWitnesses();
if (vwt->isValueInline())
return reinterpret_cast<OpaqueValue *>(buffer);
// Allocate temporary outline buffer.
auto size = vwt->getSize();
auto alignMask = vwt->getAlignmentMask();
auto *ptr = swift_slowAlloc(size, alignMask);
buffer->PrivateData[0] = ptr;
return reinterpret_cast<OpaqueValue *>(ptr);
}
template <> OpaqueValue *Metadata::projectBufferFrom(ValueBuffer *buffer) const{
auto *vwt = getValueWitnesses();
if (vwt->isValueInline())
return reinterpret_cast<OpaqueValue *>(buffer);
return reinterpret_cast<OpaqueValue *>(buffer->PrivateData[0]);
}
template <> void Metadata::deallocateBufferIn(ValueBuffer *buffer) const {
auto *vwt = getValueWitnesses();
if (vwt->isValueInline())
return;
auto size = vwt->getSize();
auto alignMask = vwt->getAlignmentMask();
swift_slowDealloc(buffer->PrivateData[0], size, alignMask);
}
#ifndef NDEBUG
SWIFT_RUNTIME_EXPORT
void _swift_debug_verifyTypeLayoutAttribute(Metadata *type,
const void *runtimeValue,
const void *staticValue,
size_t size,
const char *description) {
auto presentValue = [&](const void *value) {
if (size <= sizeof(uint64_t)) {
uint64_t intValue = 0;
auto ptr = reinterpret_cast<uint8_t *>(&intValue);
#if defined(__BIG_ENDIAN__)
ptr += sizeof(uint64_t) - size;
#endif
memcpy(ptr, value, size);
fprintf(stderr, "%" PRIu64 " (%#" PRIx64 ")\n", intValue, intValue);
fprintf(stderr, " ");
}
auto bytes = reinterpret_cast<const uint8_t *>(value);
for (unsigned i = 0; i < size; ++i) {
fprintf(stderr, "%02x ", bytes[i]);
}
fprintf(stderr, "\n");
};
if (memcmp(runtimeValue, staticValue, size) != 0) {
auto typeName = nameForMetadata(type);
fprintf(stderr, "*** Type verification of %s %s failed ***\n",
typeName.c_str(), description);
fprintf(stderr, " runtime value: ");
presentValue(runtimeValue);
fprintf(stderr, " compiler value: ");
presentValue(staticValue);
}
}
#endif
StringRef swift::getStringForMetadataKind(MetadataKind kind) {
switch (kind) {
#define METADATAKIND(NAME, VALUE) \
case MetadataKind::NAME: \
return #NAME;
#include "swift/ABI/MetadataKind.def"
default:
return "<unknown>";
}
}
/***************************************************************************/
/*** Debugging dump methods ************************************************/
/***************************************************************************/
#ifndef NDEBUG
template <> SWIFT_USED void Metadata::dump() const {
printf("TargetMetadata.\n");
printf("Kind: %s.\n", getStringForMetadataKind(getKind()).data());
printf("Value Witnesses: %p.\n", getValueWitnesses());
if (auto *contextDescriptor = getTypeContextDescriptor()) {
printf("Name: %s.\n", contextDescriptor->Name.get());
printf("Type Context Description: %p.\n", contextDescriptor);
if (contextDescriptor->isGeneric()) {
auto genericCount = contextDescriptor->getFullGenericContextHeader().Base.getNumArguments();
auto *args = getGenericArgs();
printf("Generic Args: %u: [", genericCount);
for (uint32_t i = 0; i < genericCount; ++i) {
if (i > 0)
printf(", ");
printf("%p", args[i]);
}
printf("]\n");
}
}
if (auto *tuple = dyn_cast<TupleTypeMetadata>(this)) {
printf("Labels: %s.\n", tuple->Labels);
}
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(this)) {
printf("Is class bounded: %s.\n",
existential->isClassBounded() ? "true" : "false");
auto protocols = existential->getProtocols();
bool first = true;
printf("Protocols: ");
for (auto protocol : protocols) {
if (!first)
printf(" & ");
printf("%s", protocol.getName());
first = false;
}
if (auto *superclass = existential->getSuperclassConstraint())
if (auto *contextDescriptor = superclass->getTypeContextDescriptor())
printf("Superclass constraint: %s.\n", contextDescriptor->Name.get());
printf("\n");
}
#if SWIFT_OBJC_INTEROP
if (auto *classObject = getClassObject()) {
printf("ObjC Name: %s.\n", class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata *>(classObject))));
printf("Class Object: %p.\n", classObject);
}
#endif
}
template <> SWIFT_USED void ContextDescriptor::dump() const {
printf("TargetTypeContextDescriptor.\n");
printf("Flags: 0x%x.\n", this->Flags.getIntValue());
printf("Parent: %p.\n", this->Parent.get());
if (auto *typeDescriptor = dyn_cast<TypeContextDescriptor>(this)) {
printf("Name: %s.\n", typeDescriptor->Name.get());
printf("Fields: %p.\n", typeDescriptor->Fields.get());
printf("Access function: %p.\n",
static_cast<void *>(typeDescriptor->getAccessFunction()));
}
}
template <> SWIFT_USED void EnumDescriptor::dump() const {
printf("TargetEnumDescriptor.\n");
printf("Flags: 0x%x.\n", this->Flags.getIntValue());
printf("Parent: %p.\n", this->Parent.get());
printf("Name: %s.\n", Name.get());
printf("Access function: %p.\n", static_cast<void *>(getAccessFunction()));
printf("Fields: %p.\n", Fields.get());
printf("NumPayloadCasesAndPayloadSizeOffset: 0x%08x "
"(payload cases: %u - payload size offset: %zu).\n",
NumPayloadCasesAndPayloadSizeOffset,
getNumPayloadCases(), getPayloadSizeOffset());
printf("NumEmptyCases: %u\n", NumEmptyCases);
}
#endif
/***************************************************************************/
/*** Protocol witness tables ***********************************************/
/***************************************************************************/
namespace {
/// A cache-entry type suitable for use with LockingConcurrentMap.
class WitnessTableCacheEntry :
public SimpleLockingCacheEntryBase<WitnessTableCacheEntry, WitnessTable*> {
/// The type for which this table was instantiated.
const Metadata * const Type;
/// The protocol conformance descriptor. This is only kept around so that we
/// can compute the size of an entry correctly in case of a race to
/// allocate the entry.
const ProtocolConformanceDescriptor * const Conformance;
public:
/// Do the structural initialization necessary for this entry to appear
/// in a concurrent map.
WitnessTableCacheEntry(const Metadata *type,
WaitQueue::Worker &worker,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs)
: SimpleLockingCacheEntryBase(worker),
Type(type), Conformance(conformance) {}
intptr_t getKeyIntValueForDump() const {
return reinterpret_cast<intptr_t>(Type);
}
friend llvm::hash_code hash_value(const WitnessTableCacheEntry &value) {
return llvm::hash_value(value.Type);
}
/// The key value of the entry is just its type pointer.
bool matchesKey(const Metadata *type) {
return Type == type;
}
static size_t getExtraAllocationSize(
const Metadata *type,
WaitQueue::Worker &worker,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs) {
return getWitnessTableSize(conformance);
}
size_t getExtraAllocationSize() const {
return getWitnessTableSize(Conformance);
}
static size_t getWitnessTableSize(
const ProtocolConformanceDescriptor *conformance) {
auto protocol = conformance->getProtocol();
auto genericTable = conformance->getGenericWitnessTable();
size_t numPrivateWords = genericTable->getWitnessTablePrivateSizeInWords();
size_t numRequirementWords =
WitnessTableFirstRequirementOffset + protocol->NumRequirements;
return (numPrivateWords + numRequirementWords) * sizeof(void*);
}
WitnessTable *allocate(const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs);
};
using GenericWitnessTableCache =
MetadataCache<WitnessTableCacheEntry, GenericWitnessTableCacheTag>;
using LazyGenericWitnessTableCache = Lazy<GenericWitnessTableCache>;
class GlobalWitnessTableCacheEntry {
public:
const GenericWitnessTable *Gen;
GenericWitnessTableCache Cache;
GlobalWitnessTableCacheEntry(const GenericWitnessTable *gen)
: Gen(gen), Cache() {}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Gen);
}
bool matchesKey(const GenericWitnessTable *gen) const {
return gen == Gen;
}
friend llvm::hash_code hash_value(const GlobalWitnessTableCacheEntry &value) {
return llvm::hash_value(value.Gen);
}
static size_t
getExtraAllocationSize(const GenericWitnessTable *gen) {
return 0;
}
size_t getExtraAllocationSize() const { return 0; }
};
static SimpleGlobalCache<GlobalWitnessTableCacheEntry, GlobalWitnessTableCacheTag>
GlobalWitnessTableCache;
} // end anonymous namespace
/// Fetch the cache for a generic witness-table structure.
static GenericWitnessTableCache &getCache(const GenericWitnessTable *gen) {
// Keep this assert even if you change the representation above.
static_assert(sizeof(LazyGenericWitnessTableCache) <=
sizeof(GenericWitnessTable::PrivateDataType),
"metadata cache is larger than the allowed space");
if (gen->PrivateData == nullptr) {
return GlobalWitnessTableCache.getOrInsert(gen).first->Cache;
}
auto lazyCache =
reinterpret_cast<LazyGenericWitnessTableCache*>(gen->PrivateData.get());
return lazyCache->get();
}
/// If there's no initializer, no private storage, and all requirements
/// are present, we don't have to instantiate anything; just return the
/// witness table template.
static bool doesNotRequireInstantiation(
const ProtocolConformanceDescriptor *conformance,
const GenericWitnessTable *genericTable) {
// If the table says it requires instantiation, it does.
if (genericTable->requiresInstantiation()) {
return false;
}
// If we have resilient witnesses, we require instantiation.
if (!conformance->getResilientWitnesses().empty()) {
return false;
}
// If we don't have the exact number of witnesses expected, we require
// instantiation.
if (genericTable->WitnessTableSizeInWords !=
(conformance->getProtocol()->NumRequirements +
WitnessTableFirstRequirementOffset)) {
return false;
}
// If we have an instantiation function or private data, we require
// instantiation.
if (!genericTable->Instantiator.isNull() ||
genericTable->getWitnessTablePrivateSizeInWords() > 0) {
return false;
}
return true;
}
#if SWIFT_PTRAUTH
static const unsigned swift_ptrauth_key_associated_type =
ptrauth_key_process_independent_code;
/// Given an unsigned pointer to an associated-type protocol witness,
/// fill in the appropriate slot in the witness table we're building.
static void initAssociatedConformanceWitness(const Metadata **slot,
const Metadata *witness,
const ProtocolRequirement &reqt) {
assert(reqt.Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction);
// FIXME: this should use ptrauth_key_process_independent_data
// now that it no longer stores a function pointer.
swift_ptrauth_init(slot, witness, reqt.Flags.getExtraDiscriminator());
}
static const unsigned swift_ptrauth_key_associated_conformance =
ptrauth_key_process_independent_code;
/// Given an unsigned pointer to an associated-conformance protocol witness,
/// fill in the appropriate slot in the witness table we're building.
static void initAssociatedConformanceProtocolWitness(void **slot, void *witness,
const ProtocolRequirement &reqt) {
assert(reqt.Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction);
// FIXME: this should use ptrauth_key_process_independent_data
// now that it no longer stores a function pointer.
swift_ptrauth_init(slot, witness, reqt.Flags.getExtraDiscriminator());
}
#endif
/// Given an unsigned pointer to an arbitrary protocol witness, fill
/// in a slot in the witness table we're building.
static void initProtocolWitness(void **slot, void *witness,
const ProtocolRequirement &reqt) {
#if SWIFT_PTRAUTH
switch (reqt.Flags.getKind()) {
// Base protocols use no signing at all right now.
case ProtocolRequirementFlags::Kind::BaseProtocol:
*slot = witness;
return;
// Method requirements use address-discriminated signing with the
// function-pointer key.
case ProtocolRequirementFlags::Kind::Method:
case ProtocolRequirementFlags::Kind::Init:
case ProtocolRequirementFlags::Kind::Getter:
case ProtocolRequirementFlags::Kind::Setter:
case ProtocolRequirementFlags::Kind::ReadCoroutine:
case ProtocolRequirementFlags::Kind::ModifyCoroutine:
swift_ptrauth_init_code_or_data(slot, witness,
reqt.Flags.getExtraDiscriminator(),
!reqt.Flags.isData());
return;
case ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction:
initAssociatedConformanceProtocolWitness(slot, witness, reqt);
return;
case ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction:
initAssociatedConformanceWitness(reinterpret_cast<const Metadata **>(
const_cast<const void**>(slot)),
reinterpret_cast<const Metadata *>(
witness),
reqt);
return;
}
swift_unreachable("bad witness kind");
#else
*slot = witness;
#endif
}
/// Copy an arbitrary protocol witness from another table.
static void copyProtocolWitness(void **dest, void * const *src,
const ProtocolRequirement &reqt) {
#if SWIFT_PTRAUTH
switch (reqt.Flags.getKind()) {
// Base protocols use no signing at all right now.
case ProtocolRequirementFlags::Kind::BaseProtocol:
*dest = *src;
return;
// Method requirements use address-discriminated signing with the
// function-pointer key.
case ProtocolRequirementFlags::Kind::Method:
case ProtocolRequirementFlags::Kind::Init:
case ProtocolRequirementFlags::Kind::Getter:
case ProtocolRequirementFlags::Kind::Setter:
case ProtocolRequirementFlags::Kind::ReadCoroutine:
case ProtocolRequirementFlags::Kind::ModifyCoroutine:
swift_ptrauth_copy_code_or_data(
dest, src, reqt.Flags.getExtraDiscriminator(), !reqt.Flags.isData(),
/*allowNull*/ true); // NULL allowed for VFE (methods in the vtable
// might be proven unused and null'ed)
return;
// FIXME: these should both use ptrauth_key_process_independent_data now.
case ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction:
case ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction:
swift_ptrauth_copy(
dest, src, reqt.Flags.getExtraDiscriminator(),
/*allowNull*/ true); // NULL allowed for VFE (methods in the vtable
// might be proven unused and null'ed)
return;
}
swift_unreachable("bad witness kind");
#else
*dest = *src;
#endif
}
/// Initialize witness table entries from order independent resilient
/// witnesses stored in the generic witness table structure itself.
static void initializeResilientWitnessTable(
const ProtocolConformanceDescriptor *conformance,
const Metadata *conformingType,
const GenericWitnessTable *genericTable,
void **table) {
auto protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
auto witnesses = conformance->getResilientWitnesses();
// Loop over the provided witnesses, filling in appropriate entry.
for (const auto &witness : witnesses) {
// Retrieve the requirement descriptor.
auto reqDescriptor = witness.Requirement.get();
// The requirement descriptor may be NULL, in which case this is a
// requirement introduced in a later version of the protocol.
if (!reqDescriptor) continue;
// If the requirement descriptor doesn't land within the bounds of the
// requirements, abort.
if (reqDescriptor < requirements.begin() ||
reqDescriptor >= requirements.end()) {
fatalError(0, "generic witness table at %p contains out-of-bounds "
"requirement descriptor %p\n",
genericTable, reqDescriptor);
}
unsigned witnessIndex = (reqDescriptor - requirements.data()) +
WitnessTableFirstRequirementOffset;
auto &reqt = requirements[reqDescriptor - requirements.begin()];
// This is an unsigned pointer formed from a relative address.
void *impl = witness.getWitness(reqt.Flags);
initProtocolWitness(&table[witnessIndex], impl, reqt);
}
// Loop over the requirements, filling in default implementations where
// needed.
for (size_t i = 0, e = protocol->NumRequirements; i < e; ++i) {
unsigned witnessIndex = WitnessTableFirstRequirementOffset + i;
// If we don't have a witness, fill in the default implementation.
// If we already have a witness, there's nothing to do.
auto &reqt = requirements[i];
if (!table[witnessIndex]) {
// This is an unsigned pointer formed from a relative address.
void *impl = reqt.getDefaultImplementation();
initProtocolWitness(&table[witnessIndex], impl, reqt);
}
// Realize base protocol witnesses.
if (reqt.Flags.getKind() == ProtocolRequirementFlags::Kind::BaseProtocol &&
table[witnessIndex]) {
// Realize the base protocol witness table. We call the slow function
// because the fast function doesn't allow base protocol requirements.
auto baseReq = protocol->getRequirementBaseDescriptor();
(void)swift_getAssociatedConformanceWitnessSlow((WitnessTable *)table,
conformingType,
conformingType,
baseReq, &reqt);
}
}
}
// Instantiate a generic or resilient witness table into a `buffer`
// that has already been allocated of the appropriate size and zeroed out.
static WitnessTable *
instantiateWitnessTable(const Metadata *Type,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs,
void **fullTable) {
auto protocol = conformance->getProtocol();
auto genericTable = conformance->getGenericWitnessTable();
auto *genericArgs = Type->getGenericArgs();
// The number of witnesses provided by the table pattern.
size_t numPatternWitnesses = genericTable->WitnessTableSizeInWords;
// The total number of requirements.
size_t numRequirements =
protocol->NumRequirements + WitnessTableFirstRequirementOffset;
assert(numPatternWitnesses <= numRequirements);
(void)numRequirements;
// Number of bytes for any private storage used by the conformance itself.
size_t privateSizeInWords = genericTable->getWitnessTablePrivateSizeInWords();
// Advance the address point; the private storage area is accessed via
// negative offsets.
auto table = fullTable + privateSizeInWords;
if (auto pattern =
reinterpret_cast<void * const *>(
&*conformance->getWitnessTablePattern())) {
auto requirements = protocol->getRequirements();
// Fill in the provided part of the requirements from the pattern.
for (size_t i = 0, e = numPatternWitnesses; i < e; ++i) {
size_t requirementIndex = i - WitnessTableFirstRequirementOffset;
if (i < WitnessTableFirstRequirementOffset)
table[i] = pattern[i];
else
copyProtocolWitness(&table[i], &pattern[i],
requirements[requirementIndex]);
}
} else {
// Put the conformance descriptor in place. Instantiation will fill in the
// rest.
assert(numPatternWitnesses == 0);
table[0] = (void *)conformance;
}
// Copy any instantiation arguments that correspond to conditional
// requirements into the private area.
{
unsigned currentInstantiationArg = 0;
llvm::ArrayRef<GenericPackShapeDescriptor> packShapeDescriptors =
conformance->getConditionalPackShapeDescriptors();
unsigned packIdx = 0;
for (const auto &conditionalRequirement
: conformance->getConditionalRequirements()) {
if (!conditionalRequirement.Flags.hasKeyArgument())
continue;
assert(currentInstantiationArg < privateSizeInWords);
auto *instantiationArg = instantiationArgs[currentInstantiationArg];
// Heap-allocate witness tables for conditional pack conformance requirements.
if (conditionalRequirement.Flags.isPackRequirement()) {
auto packShapeDescriptor = packShapeDescriptors[packIdx];
assert(packShapeDescriptor.Kind == GenericPackKind::WitnessTable);
assert(packShapeDescriptor.Index == currentInstantiationArg);
size_t count = reinterpret_cast<const size_t>(
genericArgs[packShapeDescriptor.ShapeClass]);
auto *wtable = reinterpret_cast<const WitnessTable * const*>(instantiationArg);
wtable = swift_allocateWitnessTablePack(wtable, count);
instantiationArg = wtable;
++packIdx;
}
table[-1 - (int)currentInstantiationArg] = const_cast<void *>(instantiationArg);
++currentInstantiationArg;
}
}
// Fill in any default requirements.
initializeResilientWitnessTable(conformance, Type, genericTable, table);
auto castTable = reinterpret_cast<WitnessTable*>(table);
// Call the instantiation function if present.
if (!genericTable->Instantiator.isNull()) {
genericTable->Instantiator(castTable, Type, instantiationArgs);
}
return castTable;
}
/// Instantiate a brand new witness table for a resilient or generic
/// protocol conformance.
WitnessTable *
WitnessTableCacheEntry::allocate(
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs) {
// Find the allocation.
void **fullTable = reinterpret_cast<void**>(this + 1);
// Zero out the witness table.
memset(fullTable, 0, getWitnessTableSize(conformance));
// Instantiate the table.
return instantiateWitnessTable(Type, Conformance, instantiationArgs, fullTable);
}
/// Instantiate the witness table for a nondependent conformance that only has
/// one possible instantiation.
static WitnessTable *
getNondependentWitnessTable(const ProtocolConformanceDescriptor *conformance,
const Metadata *type) {
assert(conformance->getGenericWitnessTable()->PrivateData != nullptr);
// Check whether the table has already been instantiated.
auto tablePtr = reinterpret_cast<std::atomic<WitnessTable*> *>(
conformance->getGenericWitnessTable()->PrivateData.get());
auto existingTable = tablePtr->load(SWIFT_MEMORY_ORDER_CONSUME);
if (existingTable) {
return existingTable;
}
// Allocate space for the table.
auto tableSize = WitnessTableCacheEntry::getWitnessTableSize(conformance);
TaggedMetadataAllocator<SingletonGenericWitnessTableCacheTag> allocator;
auto buffer = (void **)allocator.Allocate(tableSize, alignof(void*));
memset(buffer, 0, tableSize);
// Instantiate the table.
auto table = instantiateWitnessTable(type, conformance, nullptr, buffer);
// See whether we can claim to be the one true table.
WitnessTable *orig = nullptr;
if (!tablePtr->compare_exchange_strong(orig, table, std::memory_order_release,
SWIFT_MEMORY_ORDER_CONSUME)) {
// Someone beat us to the punch. Throw away our table and return the
// existing one.
allocator.Deallocate(buffer);
return orig;
}
return table;
}
const WitnessTable *
swift::swift_getWitnessTable(const ProtocolConformanceDescriptor *conformance,
const Metadata *type,
const void * const *instantiationArgs) {
/// Local function to unique a foreign witness table, if needed.
auto uniqueForeignWitnessTableRef =
[conformance](const WitnessTable *candidate) {
if (!candidate || !conformance->isSynthesizedNonUnique())
return candidate;
auto conformingType =
cast<TypeContextDescriptor>(conformance->getTypeDescriptor());
return _getForeignWitnessTable(candidate,
conformingType,
conformance->getProtocol());
};
// When there is no generic table, or it doesn't require instantiation,
// use the pattern directly.
auto genericTable = conformance->getGenericWitnessTable();
if (!genericTable || doesNotRequireInstantiation(conformance, genericTable)) {
return uniqueForeignWitnessTableRef(conformance->getWitnessTablePattern());
}
// If the conformance is not dependent on generic arguments in the conforming
// type, then there is only one instantiation possible, so we can try to
// allocate only the table without the concurrent map structure.
//
// TODO: There is no metadata flag that directly encodes the "nondependent"
// as of the Swift 5.3 ABI. However, we can check whether the conforming
// type is generic; a nongeneric type's conformance can never be dependent (at
// least, not today). However, a generic type conformance may also be
// nondependent if it
auto typeDescription = conformance->getTypeDescriptor();
if (typeDescription && !typeDescription->isGeneric() &&
genericTable->PrivateData != nullptr) {
return getNondependentWitnessTable(conformance, type);
}
auto &cache = getCache(genericTable);
auto result = cache.getOrInsert(type, conformance, instantiationArgs);
// Our returned 'status' is the witness table itself.
return uniqueForeignWitnessTableRef(result.second);
}
namespace {
/// A cache-entry type suitable for use with LockingConcurrentMap.
class RelativeWitnessTableCacheEntry :
public SimpleLockingCacheEntryBase<RelativeWitnessTableCacheEntry,
RelativeWitnessTable*> {
/// The type for which this table was instantiated.
const Metadata * const Type;
/// The protocol conformance descriptor. This is only kept around so that we
/// can compute the size of an entry correctly in case of a race to
/// allocate the entry.
const ProtocolConformanceDescriptor * const Conformance;
public:
/// Do the structural initialization necessary for this entry to appear
/// in a concurrent map.
RelativeWitnessTableCacheEntry(const Metadata *type,
WaitQueue::Worker &worker,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs)
: SimpleLockingCacheEntryBase(worker),
Type(type), Conformance(conformance) {}
intptr_t getKeyIntValueForDump() const {
return reinterpret_cast<intptr_t>(Type);
}
friend llvm::hash_code hash_value(const RelativeWitnessTableCacheEntry &value) {
return llvm::hash_value(value.Type);
}
/// The key value of the entry is just its type pointer.
bool matchesKey(const Metadata *type) {
return Type == type;
}
static size_t getExtraAllocationSize(
const Metadata *type,
WaitQueue::Worker &worker,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs) {
return getWitnessTableSize(conformance);
}
size_t getExtraAllocationSize() const {
return getWitnessTableSize(Conformance);
}
static size_t getNumBaseProtocolRequirements(
const ProtocolConformanceDescriptor *conformance) {
size_t result = 0;
size_t currIdx = 0;
auto protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
for (auto &req : requirements) {
++currIdx;
if (req.Flags.getKind() ==
ProtocolRequirementFlags::Kind::BaseProtocol) {
++result;
// We currently assume that base protocol requirements precede other
// requirements i.e we store the base protocol pointers sequentially in
// instantiateRelativeWitnessTable starting at index 1.
assert(currIdx == result &&
"base protocol requirements come before everything else");
(void)currIdx;
}
}
return result;
}
static size_t getWitnessTableSize(
const ProtocolConformanceDescriptor *conformance) {
auto genericTable = conformance->getGenericWitnessTable();
size_t numPrivateWords = genericTable->getWitnessTablePrivateSizeInWords();
size_t numRequirementWords =
WitnessTableFirstRequirementOffset +
getNumBaseProtocolRequirements(conformance);
return (numPrivateWords + numRequirementWords) * sizeof(void*);
}
RelativeWitnessTable *allocate(const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs);
};
using RelativeGenericWitnessTableCache =
MetadataCache<RelativeWitnessTableCacheEntry, GenericWitnessTableCacheTag>;
using LazyRelativeGenericWitnessTableCache = Lazy<RelativeGenericWitnessTableCache>;
class GlobalRelativeWitnessTableCacheEntry {
public:
const GenericWitnessTable *Gen;
RelativeGenericWitnessTableCache Cache;
GlobalRelativeWitnessTableCacheEntry(const GenericWitnessTable *gen)
: Gen(gen), Cache() {}
intptr_t getKeyIntValueForDump() {
return reinterpret_cast<intptr_t>(Gen);
}
bool matchesKey(const GenericWitnessTable *gen) const {
return gen == Gen;
}
friend llvm::hash_code hash_value(const GlobalRelativeWitnessTableCacheEntry &value) {
return llvm::hash_value(value.Gen);
}
static size_t
getExtraAllocationSize(const GenericWitnessTable *gen) {
return 0;
}
size_t getExtraAllocationSize() const { return 0; }
};
static SimpleGlobalCache<GlobalRelativeWitnessTableCacheEntry,
GlobalWitnessTableCacheTag>
GlobalRelativeWitnessTableCache;
} // end anonymous namespace
using RelativeBaseWitness = RelativeDirectPointer<void, true /*nullable*/>;
// Instantiate a relative witness table into a `buffer`
// that has already been allocated of the appropriate size and zeroed out.
//
// The layout of a dynamically allocated relative witness table is:
// [ conditional conformance n] ... private area
// [ conditional conformance 0] (negatively addressed)
// pointer -> [ pointer to relative witness table (pattern) ]
// [ base protocol witness table pointer 0 ] ... base protocol
// [ base protocol witness table pointer n ] pointers
static RelativeWitnessTable *
instantiateRelativeWitnessTable(const Metadata *Type,
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs,
void **fullTable) {
auto genericTable = conformance->getGenericWitnessTable();
auto pattern = reinterpret_cast<uint32_t const *>(
&*conformance->getWitnessTablePattern());
assert(pattern);
auto numBaseProtocols =
RelativeWitnessTableCacheEntry::getNumBaseProtocolRequirements(conformance);
// The number of witnesses provided by the table pattern.
size_t numPatternWitnesses = genericTable->WitnessTableSizeInWords;
assert(numBaseProtocols <= numPatternWitnesses);
(void)numPatternWitnesses;
// Number of bytes for any private storage used by the conformance itself.
size_t privateSizeInWords = genericTable->getWitnessTablePrivateSizeInWords();
// Advance the address point; the private storage area is accessed via
// negative offsets.
auto table = fullTable + privateSizeInWords;
#if SWIFT_PTRAUTH
table[0] = ptrauth_sign_unauthenticated(
(void*)pattern,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::RelativeProtocolWitnessTable);
#else
table[0] = (void*)pattern;
#endif
assert(1 == WitnessTableFirstRequirementOffset);
// Fill in the base protocols of the requirements from the pattern.
for (size_t i = 0, e = numBaseProtocols; i < e; ++i) {
size_t index = i + WitnessTableFirstRequirementOffset;
#if SWIFT_PTRAUTH
auto rawValue = ((RelativeBaseWitness const *)pattern)[index].get();
table[index] = (rawValue == nullptr) ? rawValue :
ptrauth_sign_unauthenticated(
rawValue,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::RelativeProtocolWitnessTable);
#else
table[index] = ((RelativeBaseWitness const *)pattern)[index].get();
#endif
}
// Copy any instantiation arguments that correspond to conditional
// requirements into the private area.
{
unsigned currentInstantiationArg = 0;
auto copyNextInstantiationArg = [&] {
assert(currentInstantiationArg < privateSizeInWords);
table[-1 - (int)currentInstantiationArg] =
const_cast<void *>(instantiationArgs[currentInstantiationArg]);
++currentInstantiationArg;
};
for (const auto &conditionalRequirement
: conformance->getConditionalRequirements()) {
if (conditionalRequirement.Flags.hasKeyArgument())
copyNextInstantiationArg();
assert(!conditionalRequirement.Flags.isPackRequirement() &&
"Not supported yet");
}
}
// Call the instantiation function if present.
if (!genericTable->Instantiator.isNull()) {
auto castTable = reinterpret_cast<WitnessTable*>(table);
genericTable->Instantiator(castTable, Type, instantiationArgs);
}
return reinterpret_cast<RelativeWitnessTable*>(table);
}
/// Instantiate a brand new relative witness table for a generic protocol conformance.
RelativeWitnessTable *
RelativeWitnessTableCacheEntry::allocate(
const ProtocolConformanceDescriptor *conformance,
const void * const *instantiationArgs) {
// Find the allocation.
void **fullTable = reinterpret_cast<void**>(this + 1);
// Zero out the witness table.
memset(fullTable, 0, getWitnessTableSize(conformance));
// Instantiate the table.
return instantiateRelativeWitnessTable(Type, Conformance, instantiationArgs,
fullTable);
}
/// Fetch the cache for a generic witness-table structure.
static RelativeGenericWitnessTableCache &getCacheForRelativeWitness(
const GenericWitnessTable *gen) {
// Keep this assert even if you change the representation above.
static_assert(sizeof(LazyRelativeGenericWitnessTableCache) <=
sizeof(GenericWitnessTable::PrivateDataType),
"metadata cache is larger than the allowed space");
if (gen->PrivateData == nullptr) {
return GlobalRelativeWitnessTableCache.getOrInsert(gen).first->Cache;
}
auto lazyCache =
reinterpret_cast<LazyRelativeGenericWitnessTableCache*>(gen->PrivateData.get());
return lazyCache->get();
}
const RelativeWitnessTable *
swift::swift_getWitnessTableRelative(const ProtocolConformanceDescriptor *conformance,
const Metadata *type,
const void * const *instantiationArgs) {
/// Local function to unique a foreign witness table, if needed.
auto uniqueForeignWitnessTableRef =
[conformance](const WitnessTable *candidate) {
if (!candidate || !conformance->isSynthesizedNonUnique())
return candidate;
auto conformingType =
cast<TypeContextDescriptor>(conformance->getTypeDescriptor());
return _getForeignWitnessTable(candidate,
conformingType,
conformance->getProtocol());
};
auto genericTable = conformance->getGenericWitnessTable();
// When there is no generic table, or it doesn't require instantiation,
// use the pattern directly.
if (!genericTable || doesNotRequireInstantiation(conformance, genericTable)) {
assert(!conformance->isSynthesizedNonUnique());
auto pattern = conformance->getWitnessTablePattern();
auto table = uniqueForeignWitnessTableRef(pattern);
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES && SWIFT_PTRAUTH
table = ptrauth_sign_unauthenticated(table,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::RelativeProtocolWitnessTable);
#endif
return reinterpret_cast<const RelativeWitnessTable*>(table);
}
assert(genericTable &&
!doesNotRequireInstantiation(conformance, genericTable));
assert(!conformance->isSynthesizedNonUnique());
auto &cache = getCacheForRelativeWitness(genericTable);
auto result = cache.getOrInsert(type, conformance, instantiationArgs);
// Our returned 'status' is the witness table itself.
auto table = uniqueForeignWitnessTableRef(
(const WitnessTable*)result.second);
// Mark this as a dynamic (conditional conformance) protocol witness table.
return reinterpret_cast<RelativeWitnessTable*>(((uintptr_t)table) |
(uintptr_t)0x1);
}
/// Find the name of the associated type with the given descriptor.
static StringRef findAssociatedTypeName(const ProtocolDescriptor *protocol,
const ProtocolRequirement *assocType) {
// If we don't have associated type names, there's nothing to do.
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
if (!associatedTypeNamesPtr) return StringRef();
StringRef associatedTypeNames(associatedTypeNamesPtr);
for (const auto &req : protocol->getRequirements()) {
if (req.Flags.getKind() !=
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
continue;
// If we've found the requirement, we're done.
auto splitIdx = associatedTypeNames.find(' ');
if (&req == assocType) {
return associatedTypeNames.substr(0, splitIdx);
}
// Skip this associated type name.
associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1);
}
return StringRef();
}
using AssociatedTypeWitness = std::atomic<const Metadata *>;
SWIFT_CC(swift)
static MetadataResponse
swift_getAssociatedTypeWitnessSlowImpl(
MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType) {
#ifndef NDEBUG
{
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
assert(assocType >= requirements.begin() &&
assocType < requirements.end());
assert(reqBase == requirements.data() - WitnessTableFirstRequirementOffset);
assert(assocType->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction);
}
#endif
// Retrieve the witness.
unsigned witnessIndex = assocType - reqBase;
auto *witnessAddr = &((AssociatedTypeWitness*)wtable)[witnessIndex];
auto witness = witnessAddr->load(std::memory_order_acquire);
#if SWIFT_PTRAUTH
uint16_t extraDiscriminator = assocType->Flags.getExtraDiscriminator();
witness = ptrauth_auth_data(witness, swift_ptrauth_key_associated_type,
ptrauth_blend_discriminator(witnessAddr,
extraDiscriminator));
#endif
// If the low bit of the witness is clear, it's already a metadata pointer.
if (SWIFT_LIKELY((reinterpret_cast<uintptr_t>(witness) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) ==
0)) {
// Cached metadata pointers are always complete.
return MetadataResponse{(const Metadata *)witness, MetadataState::Complete};
}
// Find the mangled name.
const char *mangledNameBase =
(const char *)(uintptr_t(witness) &
~ProtocolRequirementFlags::AssociatedTypeMangledNameBit);
// Check whether the mangled name has the prefix byte indicating that
// the mangled name is relative to the protocol itself.
bool inProtocolContext = false;
if ((uint8_t)*mangledNameBase ==
ProtocolRequirementFlags::AssociatedTypeInProtocolContextByte) {
inProtocolContext = true;
++mangledNameBase;
}
// Dig out the protocol.
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
// Extract the mangled name itself.
StringRef mangledName =
Demangle::makeSymbolicMangledNameStringRef(mangledNameBase);
// Demangle the associated type.
TypeLookupErrorOr<TypeInfo> result;
if (inProtocolContext) {
// The protocol's Self is the only generic parameter that can occur in the
// type.
result = swift_getTypeByMangledName(
request, mangledName, nullptr,
[conformingType](unsigned depth, unsigned index) -> const Metadata * {
if (depth == 0 && index == 0)
return conformingType;
return nullptr;
},
[&](const Metadata *type, unsigned index) -> const WitnessTable * {
auto requirements = protocol->getRequirements();
auto dependentDescriptor = requirements.data() + index;
if (dependentDescriptor < requirements.begin() ||
dependentDescriptor >= requirements.end())
return nullptr;
return swift_getAssociatedConformanceWitness(wtable, conformingType,
type, reqBase,
dependentDescriptor);
});
} else {
// The generic parameters in the associated type name are those of the
// conforming type.
// For a class, chase the superclass chain up until we hit the
// type that specified the conformance.
auto originalConformingType = findConformingSuperclass(conformingType,
conformance);
SubstGenericParametersFromMetadata substitutions(originalConformingType);
result = swift_getTypeByMangledName(
request, mangledName, substitutions.getGenericArgs(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
}
auto *error = result.getError();
MetadataResponse response = result.getType().getResponse();
auto assocTypeMetadata = response.Value;
if (error || !assocTypeMetadata) {
const char *errStr = error ? error->copyErrorString()
: "NULL metadata but no error was provided";
auto conformingTypeNameInfo = swift_getTypeName(conformingType, true);
StringRef conformingTypeName(conformingTypeNameInfo.data,
conformingTypeNameInfo.length);
StringRef assocTypeName = findAssociatedTypeName(protocol, assocType);
fatalError(0,
"failed to demangle witness for associated type '%s' in "
"conformance '%s: %s' from mangled name '%s' - %s\n",
assocTypeName.str().c_str(), conformingTypeName.str().c_str(),
protocol->Name.get(), mangledName.str().c_str(), errStr);
}
assert((uintptr_t(assocTypeMetadata) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) == 0);
// If the metadata was completed, record it in the witness table.
if (response.State == MetadataState::Complete) {
// We pass type metadata around as unsigned pointers, but we sign them
// in witness tables, which doesn't provide all that much extra security.
auto valueToStore = assocTypeMetadata;
#if SWIFT_PTRAUTH
valueToStore = ptrauth_sign_unauthenticated(valueToStore,
swift_ptrauth_key_associated_type,
ptrauth_blend_discriminator(witnessAddr,
extraDiscriminator));
#endif
witnessAddr->store(valueToStore, std::memory_order_release);
}
return response;
}
MetadataResponse
swift::swift_getAssociatedTypeWitness(MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType) {
assert(assocType->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction);
// If the low bit of the witness is clear, it's already a metadata pointer.
unsigned witnessIndex = assocType - reqBase;
auto *witnessAddr = &((const AssociatedTypeWitness *)wtable)[witnessIndex];
auto witness = witnessAddr->load(std::memory_order_acquire);
#if SWIFT_PTRAUTH
uint16_t extraDiscriminator = assocType->Flags.getExtraDiscriminator();
witness = ptrauth_auth_data(witness, swift_ptrauth_key_associated_type,
ptrauth_blend_discriminator(witnessAddr,
extraDiscriminator));
#endif
if (SWIFT_LIKELY((reinterpret_cast<uintptr_t>(witness) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) ==
0)) {
// Cached metadata pointers are always complete.
return MetadataResponse{(const Metadata *)witness, MetadataState::Complete};
}
return swift_getAssociatedTypeWitnessSlow(request, wtable, conformingType,
reqBase, assocType);
}
RelativeWitnessTable *swift::lookThroughOptionalConditionalWitnessTable(
const RelativeWitnessTable *wtable) {
uintptr_t conditional_wtable = (uintptr_t)wtable;
if (conditional_wtable & 0x1) {
conditional_wtable = conditional_wtable & ~(uintptr_t)(0x1);
conditional_wtable = (uintptr_t)*(void**)conditional_wtable;
}
auto table = (RelativeWitnessTable*)conditional_wtable;
#if SWIFT_PTRAUTH
table = swift_auth_data_non_address(
table,
SpecialPointerAuthDiscriminators::RelativeProtocolWitnessTable);
#endif
return table;
}
SWIFT_CC(swift)
static MetadataResponse
swift_getAssociatedTypeWitnessRelativeSlowImpl(
MetadataRequest request,
RelativeWitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType) {
wtable = lookThroughOptionalConditionalWitnessTable(wtable);
#ifndef NDEBUG
{
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
assert(assocType >= requirements.begin() &&
assocType < requirements.end());
assert(reqBase == requirements.data() - WitnessTableFirstRequirementOffset);
assert(assocType->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction);
}
#endif
// Retrieve the witness.
unsigned witnessIndex = assocType - reqBase;
auto *relativeDistanceAddr = &((int32_t*)wtable)[witnessIndex];
auto relativeDistance = *relativeDistanceAddr;
auto value = swift::detail::applyRelativeOffset(relativeDistanceAddr,
relativeDistance);
assert((value & 0x1) && "Expecting the bit to be set");
value = value & ~((uintptr_t)0x1);
const char *mangledNameBase = (const char*) value;
// Dig out the protocol.
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
// Extract the mangled name itself.
StringRef mangledName =
Demangle::makeSymbolicMangledNameStringRef(mangledNameBase);
// The generic parameters in the associated type name are those of the
// conforming type.
// For a class, chase the superclass chain up until we hit the
// type that specified the conformance.
auto originalConformingType = findConformingSuperclass(conformingType,
conformance);
SubstGenericParametersFromMetadata substitutions(originalConformingType);
auto result = swift_getTypeByMangledName(
request, mangledName, substitutions.getGenericArgs(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
auto *error = result.getError();
MetadataResponse response = result.getType().getResponse();
auto assocTypeMetadata = response.Value;
if (error || !assocTypeMetadata) {
const char *errStr = error ? error->copyErrorString()
: "NULL metadata but no error was provided";
auto conformingTypeNameInfo = swift_getTypeName(conformingType, true);
StringRef conformingTypeName(conformingTypeNameInfo.data,
conformingTypeNameInfo.length);
StringRef assocTypeName = findAssociatedTypeName(protocol, assocType);
fatalError(0,
"failed to demangle witness for associated type '%s' in "
"conformance '%s: %s' from mangled name '%s' - %s\n",
assocTypeName.str().c_str(), conformingTypeName.str().c_str(),
protocol->Name.get(), mangledName.str().c_str(), errStr);
}
assert((uintptr_t(assocTypeMetadata) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) == 0);
return response;
}
MetadataResponse
swift::swift_getAssociatedTypeWitnessRelative(MetadataRequest request,
RelativeWitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType) {
assert(assocType->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction);
return swift_getAssociatedTypeWitnessRelativeSlowImpl(request, wtable,
conformingType, reqBase,
assocType);
}
using AssociatedConformanceWitness = std::atomic<void *>;
SWIFT_CC(swift)
static const WitnessTable *swift_getAssociatedConformanceWitnessSlowImpl(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance) {
#ifndef NDEBUG
{
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
assert(assocConformance >= requirements.begin() &&
assocConformance < requirements.end());
assert(reqBase == requirements.data() - WitnessTableFirstRequirementOffset);
assert(
assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction ||
assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::BaseProtocol);
}
#endif
// Retrieve the witness.
unsigned witnessIndex = assocConformance - reqBase;
auto *witnessAddr = &((AssociatedConformanceWitness*)wtable)[witnessIndex];
auto witness = witnessAddr->load(std::memory_order_acquire);
#if SWIFT_PTRAUTH
// For associated protocols, the witness is signed with address
// discrimination.
// For base protocols, the witness isn't signed at all.
if (assocConformance->Flags.isSignedWithAddress()) {
uint16_t extraDiscriminator =
assocConformance->Flags.getExtraDiscriminator();
witness = ptrauth_auth_data(
witness, swift_ptrauth_key_associated_conformance,
ptrauth_blend_discriminator(witnessAddr, extraDiscriminator));
}
#endif
// Fast path: we've already resolved this to a witness table, so return it.
if (SWIFT_LIKELY((reinterpret_cast<uintptr_t>(witness) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) ==
0)) {
return static_cast<const WitnessTable *>(witness);
}
// Find the mangled name.
const char *mangledNameBase =
(const char *)(uintptr_t(witness) &
~ProtocolRequirementFlags::AssociatedTypeMangledNameBit);
// Extract the mangled name itself.
if (*mangledNameBase == '\xFF')
++mangledNameBase;
StringRef mangledName =
Demangle::makeSymbolicMangledNameStringRef(mangledNameBase);
// Relative reference to an associate conformance witness function.
// FIXME: This is intended to be a temporary mangling, to be replaced
// by a real "protocol conformance" mangling.
if (mangledName.size() == 5 &&
(mangledName[0] == '\x07' || mangledName[0] == '\x08')) {
// Resolve the relative reference to the witness function.
int32_t offset;
memcpy(&offset, mangledName.data() + 1, 4);
void *ptr = TargetCompactFunctionPointer<InProcess, void>::resolve(mangledName.data() + 1, offset);
// Call the witness function.
AssociatedWitnessTableAccessFunction *witnessFn;
#if SWIFT_PTRAUTH
witnessFn =
(AssociatedWitnessTableAccessFunction *)ptrauth_sign_unauthenticated(
(void *)ptr, ptrauth_key_function_pointer, 0);
#else
witnessFn = (AssociatedWitnessTableAccessFunction *)ptr;
#endif
auto assocWitnessTable = witnessFn(assocType, conformingType, wtable);
assert((uintptr_t(assocWitnessTable) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) == 0);
// The access function returns an unsigned pointer for now.
auto valueToStore = assocWitnessTable;
#if SWIFT_PTRAUTH
if (assocConformance->Flags.isSignedWithAddress()) {
uint16_t extraDiscriminator =
assocConformance->Flags.getExtraDiscriminator();
valueToStore = ptrauth_sign_unauthenticated(valueToStore,
swift_ptrauth_key_associated_conformance,
ptrauth_blend_discriminator(witnessAddr,
extraDiscriminator));
}
#endif
witnessAddr->store(valueToStore, std::memory_order_release);
return assocWitnessTable;
}
swift_unreachable("Invalid mangled associate conformance");
}
const WitnessTable *swift::swift_getAssociatedConformanceWitness(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance) {
// We avoid using this function for initializing base protocol conformances
// so that we can have a better fast-path.
assert(assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction);
// Retrieve the witness.
unsigned witnessIndex = assocConformance - reqBase;
auto *witnessAddr = &((AssociatedConformanceWitness*)wtable)[witnessIndex];
auto witness = witnessAddr->load(std::memory_order_acquire);
#if SWIFT_PTRAUTH
uint16_t extraDiscriminator = assocConformance->Flags.getExtraDiscriminator();
witness = ptrauth_auth_data(witness, swift_ptrauth_key_associated_conformance,
ptrauth_blend_discriminator(witnessAddr,
extraDiscriminator));
#endif
// Fast path: we've already resolved this to a witness table, so return it.
if (SWIFT_LIKELY((reinterpret_cast<uintptr_t>(witness) &
ProtocolRequirementFlags::AssociatedTypeMangledNameBit) ==
0)) {
return static_cast<const WitnessTable *>(witness);
}
return swift_getAssociatedConformanceWitnessSlow(wtable, conformingType,
assocType, reqBase,
assocConformance);
}
SWIFT_CC(swift)
static const RelativeWitnessTable *swift_getAssociatedConformanceWitnessRelativeSlowImpl(
RelativeWitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance) {
auto origWTable = wtable;
wtable = lookThroughOptionalConditionalWitnessTable(wtable);
#ifndef NDEBUG
{
const ProtocolConformanceDescriptor *conformance = wtable->getDescription();
const ProtocolDescriptor *protocol = conformance->getProtocol();
auto requirements = protocol->getRequirements();
assert(assocConformance >= requirements.begin() &&
assocConformance < requirements.end());
assert(reqBase == requirements.data() - WitnessTableFirstRequirementOffset);
assert(
assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction ||
assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::BaseProtocol);
}
#endif
// Retrieve the witness.
unsigned witnessIndex = assocConformance - reqBase;
auto *relativeDistanceAddr = &((int32_t*)wtable)[witnessIndex];
auto relativeDistance = *relativeDistanceAddr;
auto value = swift::detail::applyRelativeOffset(relativeDistanceAddr,
relativeDistance);
assert((value & 0x1) && "Expecting the bit to be set");
value = value & ~((uintptr_t)0x1);
const char *mangledNameBase = (const char*) value;
// Extract the mangled name itself.
if (*mangledNameBase == '\xFF')
++mangledNameBase;
StringRef mangledName =
Demangle::makeSymbolicMangledNameStringRef(mangledNameBase);
// Relative reference to an associate conformance witness function.
// FIXME: This is intended to be a temporary mangling, to be replaced
// by a real "protocol conformance" mangling.
if (mangledName.size() == 5 &&
(mangledName[0] == '\x07' || mangledName[0] == '\x08')) {
// Resolve the relative reference to the witness function.
int32_t offset;
memcpy(&offset, mangledName.data() + 1, 4);
void *ptr = TargetCompactFunctionPointer<InProcess, void>::resolve(mangledName.data() + 1, offset);
// Call the witness function.
AssociatedRelativeWitnessTableAccessFunction *witnessFn;
#if SWIFT_PTRAUTH
witnessFn =
(AssociatedRelativeWitnessTableAccessFunction *)ptrauth_sign_unauthenticated(
(void *)ptr, ptrauth_key_function_pointer, 0);
#else
witnessFn = (AssociatedRelativeWitnessTableAccessFunction *)ptr;
#endif
auto assocWitnessTable = witnessFn(assocType, conformingType, origWTable);
// The access function returns an signed pointer.
return assocWitnessTable;
}
swift_unreachable("Invalid mangled associate conformance");
}
const RelativeWitnessTable *swift::swift_getAssociatedConformanceWitnessRelative(
RelativeWitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance) {
// We avoid using this function for initializing base protocol conformances
// so that we can have a better fast-path.
assert(assocConformance->Flags.getKind() ==
ProtocolRequirementFlags::Kind::AssociatedConformanceAccessFunction);
return swift_getAssociatedConformanceWitnessRelativeSlowImpl(wtable, conformingType,
assocType, reqBase,
assocConformance);
}
bool swift::swift_compareWitnessTables(const WitnessTable *lhs,
const WitnessTable *rhs) {
return MetadataCacheKey::areWitnessTablesEqual(lhs, rhs);
}
bool swift::swift_compareProtocolConformanceDescriptors(
const ProtocolConformanceDescriptor *lhs,
const ProtocolConformanceDescriptor *rhs) {
lhs = swift_auth_data_non_address(
lhs, SpecialPointerAuthDiscriminators::ProtocolConformanceDescriptor);
rhs = swift_auth_data_non_address(
rhs, SpecialPointerAuthDiscriminators::ProtocolConformanceDescriptor);
return MetadataCacheKey::areConformanceDescriptorsEqual(lhs, rhs);
}
/***************************************************************************/
/*** Recursive metadata dependencies ***************************************/
/***************************************************************************/
template <class Result, class Callbacks>
static Result performOnMetadataCache(const Metadata *metadata,
Callbacks &&callbacks) {
// TODO: Once more than just structs have canonical statically specialized
// metadata, calling an updated
// isCanonicalStaticallySpecializedGenericMetadata would entail
// dyn_casting to the same type more than once. Avoid that by combining
// that function's implementation with the dyn_casts below.
if (metadata->isCanonicalStaticallySpecializedGenericMetadata())
return std::move(callbacks).forOtherMetadata(metadata);
// Handle different kinds of type that can delay their metadata.
const TypeContextDescriptor *description;
if (auto classMetadata = dyn_cast<ClassMetadata>(metadata)) {
description = classMetadata->getDescription();
} else if (auto valueMetadata = dyn_cast<ValueMetadata>(metadata)) {
description = valueMetadata->getDescription();
} else if (auto tupleMetadata = dyn_cast<TupleTypeMetadata>(metadata)) {
// The empty tuple is special and doesn't belong to a metadata cache.
if (tupleMetadata->NumElements == 0)
return std::move(callbacks).forOtherMetadata(tupleMetadata);
return std::move(callbacks).forTupleMetadata(tupleMetadata);
} else if (auto foreignClass = dyn_cast<ForeignClassMetadata>(metadata)) {
return std::move(callbacks).forForeignMetadata(foreignClass,
foreignClass->getDescription());
} else {
return std::move(callbacks).forOtherMetadata(metadata);
}
if (!description->isGeneric()) {
switch (description->getMetadataInitialization()) {
case TypeContextDescriptorFlags::NoMetadataInitialization:
return std::move(callbacks).forOtherMetadata(metadata);
case TypeContextDescriptorFlags::ForeignMetadataInitialization:
return std::move(callbacks).forForeignMetadata(metadata, description);
case TypeContextDescriptorFlags::SingletonMetadataInitialization:
return std::move(callbacks).forSingletonMetadata(description);
}
swift_unreachable("bad metadata initialization kind");
}
auto genericArgs =
reinterpret_cast<const void * const *>(
description->getGenericArguments(metadata));
auto &cache = getCache(*description);
assert(description->getFullGenericContextHeader().Base.NumKeyArguments == cache.SigLayout.sizeInWords());
auto key = MetadataCacheKey(cache.SigLayout, genericArgs);
return std::move(callbacks).forGenericMetadata(metadata, description,
cache, key);
}
MetadataResponse swift::swift_checkMetadataState(MetadataRequest request,
const Metadata *type) {
struct CheckStateCallbacks {
MetadataRequest Request;
/// Generic types just need to be awaited.
MetadataResponse forGenericMetadata(const Metadata *type,
const TypeContextDescriptor *description,
GenericMetadataCache &cache,
MetadataCacheKey key) && {
return cache.await(key, Request);
}
MetadataResponse forForeignMetadata(const Metadata *metadata,
const TypeContextDescriptor *description) {
ForeignMetadataCacheEntry::Key key{description};
return ForeignMetadata.get().await(key, Request);
}
MetadataResponse forSingletonMetadata(
const TypeContextDescriptor *description) && {
return SingletonMetadata.get().await(description, Request);
}
MetadataResponse forTupleMetadata(const TupleTypeMetadata *metadata) {
return TupleTypes.get().await(metadata, Request);
}
/// All other type metadata are always complete.
MetadataResponse forOtherMetadata(const Metadata *type) && {
return MetadataResponse{type, MetadataState::Complete};
}
} callbacks = { request };
return performOnMetadataCache<MetadataResponse>(type, std::move(callbacks));
}
/// Search all the metadata that the given type has transitive completeness
/// requirements on for something that matches the given predicate.
template <class T>
static bool findAnyTransitiveMetadata(const Metadata *type, T &&predicate) {
const TypeContextDescriptor *description;
// Classes require their superclass to be transitively complete,
// and they can be generic.
if (auto classType = dyn_cast<ClassMetadata>(type)) {
description = classType->getDescription();
if (auto super = classType->Superclass) {
if (super->isTypeMetadata() && predicate(super))
return true;
}
// Value types can be generic.
} else if (auto valueType = dyn_cast<ValueMetadata>(type)) {
description = valueType->getDescription();
// Tuples require their element types to be transitively complete.
} else if (auto tupleType = dyn_cast<TupleTypeMetadata>(type)) {
for (size_t i = 0, e = tupleType->NumElements; i != e; ++i)
if (predicate(tupleType->getElement(i).Type))
return true;
return false;
// Foreign classes require their superclass to be transitively complete.
} else if (auto foreignClassType = dyn_cast<ForeignClassMetadata>(type)) {
if (auto super = foreignClassType->Superclass) {
if (predicate(super))
return true;
}
return false;
// Other types do not have transitive completeness requirements.
} else {
return false;
}
// Generic types require their type arguments to be transitively complete.
if (description->isGeneric()) {
auto *genericContext = description->getGenericContext();
auto keyArguments = description->getGenericArguments(type);
// The generic argument area begins with a pack count for each
// shape class; skip them first.
auto header = genericContext->getGenericPackShapeHeader();
unsigned paramIdx = header.NumShapeClasses;
auto packs = genericContext->getGenericPackShapeDescriptors();
unsigned packIdx = 0;
for (auto &param : genericContext->getGenericParams()) {
// Ignore parameters that don't have a key argument.
if (!param.hasKeyArgument())
continue;
switch (param.getKind()) {
case GenericParamKind::Type:
if (predicate(keyArguments[paramIdx]))
return true;
break;
case GenericParamKind::TypePack: {
assert(packIdx < header.NumPacks);
assert(packs[packIdx].Kind == GenericPackKind::Metadata);
assert(packs[packIdx].Index == paramIdx);
assert(packs[packIdx].ShapeClass < header.NumShapeClasses);
MetadataPackPointer pack(keyArguments[paramIdx]);
assert(pack.getLifetime() == PackLifetime::OnHeap);
uintptr_t count = reinterpret_cast<uintptr_t>(
keyArguments[packs[packIdx].ShapeClass]);
for (uintptr_t j = 0; j < count; ++j) {
if (predicate(pack.getElements()[j]))
return true;
}
++packIdx;
break;
}
case GenericParamKind::Value: {
break;
}
default:
llvm_unreachable("Unsupported generic parameter kind");
}
++paramIdx;
}
}
// Didn't find anything.
return false;
}
namespace swift {
/// Do a quick check to see if all the transitive type metadata are complete.
bool areAllTransitiveMetadataComplete_cheap(const Metadata *type) {
// Look for any transitive metadata that's *incomplete*.
return !findAnyTransitiveMetadata(type, [](const Metadata *type) {
struct IsIncompleteCallbacks {
bool forGenericMetadata(const Metadata *type,
const TypeContextDescriptor *description,
GenericMetadataCache &cache,
MetadataCacheKey key) && {
// Metadata cache lookups aren't really cheap enough for this
// optimization.
return true;
}
bool forForeignMetadata(const Metadata *metadata,
const TypeContextDescriptor *description) {
// If the type doesn't have a completion function, we can assume
// it's transitively complete by construction.
if (!description->getForeignMetadataInitialization().CompletionFunction)
return false;
// TODO: it might be worth doing a quick check against the cache here.
return false;
}
bool forSingletonMetadata(const TypeContextDescriptor *description) && {
// TODO: this could be cheap enough.
return true;
}
bool forTupleMetadata(const TupleTypeMetadata *metadata) {
// TODO: this could be cheap enough.
return true;
}
bool forOtherMetadata(const Metadata *type) && {
return false;
}
} callbacks;
return performOnMetadataCache<bool>(type, std::move(callbacks));
});
}
PrivateMetadataState inferStateForMetadata(Metadata *metadata) {
if (metadata->getValueWitnesses()->isIncomplete())
return PrivateMetadataState::Abstract;
// TODO: internal vs. external layout-complete?
return PrivateMetadataState::LayoutComplete;
}
/// Check for transitive completeness.
///
/// The key observation here is that all we really care about is whether
/// the transitively-observable types are *actually* all complete; we don't
/// need them to *think* they're transitively complete. So if we find
/// something that thinks it's still transitively incomplete, we can just
/// scan its transitive metadata and actually try to find something that's
/// incomplete. If we don't find anything, then we know all the transitive
/// dependencies actually hold, and we can keep going.
MetadataDependency checkTransitiveCompleteness(const Metadata *initialType) {
llvm::SmallVector<const Metadata *, 8> worklist;
// An efficient hash-set implementation in the spirit of llvm's SmallPtrSet:
// The first 8 elements are stored in an inline-allocated array to avoid
// malloc calls in the common case. Lookup is still reasonable fast because
// there are max 8 elements in the array.
const int InlineCapacity = 8;
const Metadata *inlinedPresumedCompleteTypes[InlineCapacity];
int numInlinedTypes = 0;
std::unordered_set<const Metadata *> overflowPresumedCompleteTypes;
MetadataDependency dependency;
auto isIncomplete = [&](const Metadata *type) -> bool {
// Add the type to the presumed-complete-types set. If this doesn't
// succeed, we've already inserted it, which means we must have already
// decided it was complete.
// First, try to find the type in the inline-storage of the set.
const Metadata **end = inlinedPresumedCompleteTypes + numInlinedTypes;
if (std::find(inlinedPresumedCompleteTypes, end, type) != end)
return false;
// We didn't find the type in the inline-storage.
if (numInlinedTypes < InlineCapacity) {
assert(overflowPresumedCompleteTypes.size() == 0);
inlinedPresumedCompleteTypes[numInlinedTypes++] = type;
} else {
// The inline-storage is full. So try to insert the type into the
// overflow set.
if (!overflowPresumedCompleteTypes.insert(type).second)
return false;
}
// Check the metadata's current state with a non-blocking request.
auto request = MetadataRequest(MetadataState::Complete,
/*non-blocking*/ true);
auto state =
MetadataResponse(swift_checkMetadataState(request, type)).State;
// If it's transitively complete, we're done.
// This is the most likely result.
if (state == MetadataState::Complete)
return false;
// Otherwise, if the state is actually incomplete, set a dependency
// and leave. We set the dependency at non-transitive completeness
// because we can potentially resolve ourselves if we find completeness.
if (!isAtLeast(state, MetadataState::NonTransitiveComplete)) {
dependency = MetadataDependency{type,
MetadataState::NonTransitiveComplete};
return true;
}
// Otherwise, we have to add it to the worklist.
worklist.push_back(type);
return false;
};
// Consider the type itself to be presumed-complete. We're looking for
// a greatest fixed point.
assert(numInlinedTypes == 0 && overflowPresumedCompleteTypes.size() == 0);
inlinedPresumedCompleteTypes[0] = initialType;
numInlinedTypes = 1;
if (findAnyTransitiveMetadata(initialType, isIncomplete))
return dependency;
// Drain the worklist. The order we do things in doesn't really matter,
// so optimize for locality and convenience by using a stack.
while (!worklist.empty()) {
auto type = worklist.back();
worklist.pop_back();
// Search for incomplete dependencies. This will set Dependency
// if it finds anything.
if (findAnyTransitiveMetadata(type, isIncomplete))
return dependency;
}
// Otherwise, we're transitively complete.
return MetadataDependency();
}
} // namespace swift
/// Diagnose a metadata dependency cycle.
SWIFT_NORETURN static void
diagnoseMetadataDependencyCycle(llvm::ArrayRef<MetadataDependency> links) {
assert(links.size() >= 2);
assert(links.front().Value == links.back().Value);
auto stringForRequirement = [](MetadataState req) -> const char * {
switch (req) {
case MetadataState::Complete:
return "transitive completion of ";
case MetadataState::NonTransitiveComplete:
return "completion of ";
case MetadataState::LayoutComplete:
return "layout of ";
case MetadataState::Abstract:
return "abstract metadata for ";
}
return "<corrupted requirement> for ";
};
std::string diagnostic =
"runtime error: unresolvable type metadata dependency cycle detected\n"
" Request for ";
diagnostic += stringForRequirement(links.front().Requirement);
diagnostic += nameForMetadata(links.front().Value);
for (auto &link : links.drop_front()) {
// If the diagnostic gets too large, just cut it short.
if (diagnostic.size() >= 128 * 1024) {
diagnostic += "\n (cycle too long, limiting diagnostic text)";
break;
}
diagnostic += "\n depends on ";
diagnostic += stringForRequirement(link.Requirement);
diagnostic += nameForMetadata(link.Value);
}
diagnostic += "\nAborting!\n";
if (_swift_shouldReportFatalErrorsToDebugger()) {
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wc99-extensions"
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "type-metadata-cycle",
.currentStackDescription = "fetching metadata", // TODO?
.framesToSkip = 1, // skip out to the check function
.memoryAddress = links.front().Value,
.numExtraThreads = 0,
.threads = nullptr,
.numFixIts = 0,
.fixIts = nullptr,
.numNotes = 0,
.notes = nullptr,
// TODO: describe the cycle using notes instead of one huge message?
};
#pragma GCC diagnostic pop
_swift_reportToDebugger(RuntimeErrorFlagFatal, diagnostic.c_str(),
&details);
}
fatalError(0, "%s", diagnostic.c_str());
}
/// Check whether the given metadata dependency is satisfied, and if not,
/// return its current dependency, if one exists.
static MetadataStateWithDependency
checkMetadataDependency(MetadataDependency dependency) {
struct CheckDependencyResult {
MetadataState Requirement;
MetadataStateWithDependency
forGenericMetadata(const Metadata *type,
const TypeContextDescriptor *desc,
GenericMetadataCache &cache,
MetadataCacheKey key) && {
return cache.checkDependency(key, Requirement);
}
MetadataStateWithDependency
forForeignMetadata(const Metadata *metadata,
const TypeContextDescriptor *description) {
ForeignMetadataCacheEntry::Key key{description};
return ForeignMetadata.get().checkDependency(key, Requirement);
}
MetadataStateWithDependency
forSingletonMetadata(const TypeContextDescriptor *description) {
return SingletonMetadata.get().checkDependency(description, Requirement);
}
MetadataStateWithDependency
forTupleMetadata(const TupleTypeMetadata *metadata) {
return TupleTypes.get().checkDependency(metadata, Requirement);
}
MetadataStateWithDependency forOtherMetadata(const Metadata *type) {
return { PrivateMetadataState::Complete, MetadataDependency() };
}
} callbacks = { dependency.Requirement };
return performOnMetadataCache<MetadataStateWithDependency>(dependency.Value,
std::move(callbacks));
}
/// Check for an unbreakable metadata-dependency cycle.
void swift::blockOnMetadataDependency(MetadataDependency root,
MetadataDependency firstLink) {
std::vector<MetadataDependency> links;
links.push_back(root);
// Iteratively add each link, checking for a cycle, until we reach
// something without a known dependency.
// Start out with firstLink. The initial NewState value won't be
// used, so just initialize it to an arbitrary value.
MetadataStateWithDependency currentCheckResult{
PrivateMetadataState::Allocating, firstLink};
// If there isn't a known dependency, we can't do any more checking.
while (currentCheckResult.Dependency) {
// Add this dependency to our links.
links.push_back(currentCheckResult.Dependency);
// Try to get a dependency for the metadata in the last link we added.
currentCheckResult = checkMetadataDependency(links.back());
// Check the last link against the rest of the list.
for (auto i = links.begin(), e = links.end() - 1; i != e; ++i) {
if (i->Value == links.back().Value) {
// If there's a cycle but the new link's current state is now satisfied,
// then this is a stale dependency, not a cycle. This can happen when
// threads race to build a type in a fulfillable cycle.
if (!satisfies(currentCheckResult.NewState, links.back().Requirement))
diagnoseMetadataDependencyCycle(
llvm::makeArrayRef(&*i, links.end() - i));
}
}
}
// We didn't find any cycles. Make a blocking request if appropriate.
// In the special case where it's the first link that doesn't have
// a known dependency and its current metadata state now satisfies
// the dependency leading to it, we can skip waiting.
if (links.size() == 2 &&
satisfies(currentCheckResult.NewState, links.back().Requirement))
return;
// Otherwise, just make a blocking request for the first link in
// the chain.
auto request = MetadataRequest(firstLink.Requirement);
swift_checkMetadataState(request, firstLink.Value);
}
/***************************************************************************/
/*** Allocator implementation **********************************************/
/***************************************************************************/
#if !SWIFT_STDLIB_PASSTHROUGH_METADATA_ALLOCATOR
namespace {
struct alignas(sizeof(uintptr_t) * 2) PoolRange {
static constexpr uintptr_t PageSize = 16 * 1024;
static constexpr uintptr_t MaxPoolAllocationSize = PageSize / 2;
/// The start of the allocation.
char *Begin;
/// The number of bytes remaining.
size_t Remaining;
};
/// The trailer placed at the end of each pool allocation, used when
/// SWIFT_DEBUG_ENABLE_METADATA_ALLOCATION_ITERATION is on.
struct PoolTrailer {
void *PrevTrailer;
size_t PoolSize;
};
static constexpr size_t InitialPoolSize = 64 * 1024;
/// The header placed before each allocation, used when
/// SWIFT_DEBUG_ENABLE_METADATA_ALLOCATION_ITERATION is on.
struct alignas(void *) AllocationHeader {
uint16_t Size;
uint16_t Tag;
};
} // end anonymous namespace
// A statically-allocated pool. It's zero-initialized, so this
// doesn't cost us anything in binary size.
alignas(void *) static struct {
char Pool[InitialPoolSize];
} InitialAllocationPool;
static swift::atomic<PoolRange>
AllocationPool{PoolRange{InitialAllocationPool.Pool,
sizeof(InitialAllocationPool.Pool)}};
std::tuple<const void *, size_t> MetadataAllocator::InitialPoolLocation() {
return {InitialAllocationPool.Pool, sizeof(InitialAllocationPool.Pool)};
}
bool swift::_swift_debug_metadataAllocationIterationEnabled = false;
const void * const swift::_swift_debug_allocationPoolPointer = &AllocationPool;
const size_t swift::_swift_debug_allocationPoolSize = InitialPoolSize;
const size_t swift::_swift_debug_metadataAllocatorPageSize = PoolRange::PageSize;
std::atomic<const void *> swift::_swift_debug_metadataAllocationBacktraceList;
static void recordBacktrace(void *allocation) {
withCurrentBacktrace([&](void **addrs, int count) {
MetadataAllocationBacktraceHeader<InProcess> *record =
(MetadataAllocationBacktraceHeader<InProcess> *)malloc(
sizeof(*record) + count * sizeof(void *));
record->Allocation = allocation;
record->Count = count;
memcpy(record + 1, addrs, count * sizeof(void *));
record->Next = _swift_debug_metadataAllocationBacktraceList.load(
std::memory_order_relaxed);
while (!_swift_debug_metadataAllocationBacktraceList.compare_exchange_weak(
record->Next, record, std::memory_order_release,
std::memory_order_relaxed))
; // empty
});
}
static inline bool scribbleEnabled() {
#ifndef NDEBUG
// When DEBUG is defined, always scribble.
return true;
#else
// When DEBUG is not defined, only scribble when the
// SWIFT_DEBUG_ENABLE_MALLOC_SCRIBBLE environment variable is set.
return SWIFT_UNLIKELY(
runtime::environment::SWIFT_DEBUG_ENABLE_MALLOC_SCRIBBLE());
#endif
}
static constexpr char scribbleByte = 0xAA;
template <typename Pointee>
static inline void memsetScribble(Pointee *bytes, size_t totalSize) {
if (scribbleEnabled())
memset(bytes, scribbleByte, totalSize);
}
/// When scribbling is enabled, check the specified region for the scribble
/// values to detect overflows. When scribbling is disabled, this is a no-op.
static inline void checkScribble(char *bytes, size_t totalSize) {
if (scribbleEnabled())
for (size_t i = 0; i < totalSize; i++)
if (bytes[i] != scribbleByte) {
const size_t maxToPrint = 16;
size_t remaining = totalSize - i;
size_t toPrint = std::min(remaining, maxToPrint);
std::string hex = toHex(llvm::StringRef{&bytes[i], toPrint});
swift::fatalError(
0, "corrupt metadata allocation arena detected at %p: %s%s",
&bytes[i], hex.c_str(), toPrint < remaining ? "..." : "");
}
}
static void checkAllocatorDebugEnvironmentVariables(void *context) {
memsetScribble(InitialAllocationPool.Pool, InitialPoolSize);
_swift_debug_metadataAllocationIterationEnabled =
runtime::environment::SWIFT_DEBUG_ENABLE_METADATA_ALLOCATION_ITERATION();
if (!_swift_debug_metadataAllocationIterationEnabled) {
if (runtime::environment::SWIFT_DEBUG_ENABLE_METADATA_BACKTRACE_LOGGING())
swift::warning(RuntimeErrorFlagNone,
"Warning: SWIFT_DEBUG_ENABLE_METADATA_BACKTRACE_LOGGING "
"without SWIFT_DEBUG_ENABLE_METADATA_ALLOCATION_ITERATION "
"has no effect.\n");
return;
}
// Write a PoolTrailer to the end of InitialAllocationPool and shrink
// the pool accordingly.
auto poolCopy = AllocationPool.load(std::memory_order_relaxed);
assert(poolCopy.Begin == InitialAllocationPool.Pool);
size_t newPoolSize = InitialPoolSize - sizeof(PoolTrailer);
PoolTrailer trailer = {nullptr, newPoolSize};
memcpy(InitialAllocationPool.Pool + newPoolSize, &trailer, sizeof(trailer));
poolCopy.Remaining = newPoolSize;
AllocationPool.store(poolCopy, std::memory_order_relaxed);
}
void *MetadataAllocator::Allocate(size_t size, size_t alignment) {
assert(Tag != 0);
assert(alignment <= alignof(void*));
assert(size % alignof(void*) == 0);
static swift::once_t getenvToken;
swift::once(getenvToken, checkAllocatorDebugEnvironmentVariables);
// If the size is larger than the maximum, just do a normal heap allocation.
if (size > PoolRange::MaxPoolAllocationSize) {
void *allocation = swift_slowAlloc(size, alignment - 1);
memsetScribble(allocation, size);
return allocation;
}
// Allocate out of the pool.
auto sizeWithHeader = size;
if (SWIFT_UNLIKELY(_swift_debug_metadataAllocationIterationEnabled))
sizeWithHeader += sizeof(AllocationHeader);
PoolRange curState = AllocationPool.load(std::memory_order_relaxed);
while (true) {
char *allocation;
PoolRange newState;
bool allocatedNewPage;
// Try to allocate out of the current page.
if (sizeWithHeader <= curState.Remaining) {
allocatedNewPage = false;
allocation = curState.Begin;
newState = PoolRange{curState.Begin + sizeWithHeader,
curState.Remaining - sizeWithHeader};
} else {
auto poolSize = PoolRange::PageSize;
if (SWIFT_UNLIKELY(_swift_debug_metadataAllocationIterationEnabled))
poolSize -= sizeof(PoolTrailer);
allocatedNewPage = true;
allocation = reinterpret_cast<char *>(swift_slowAlloc(PoolRange::PageSize,
alignof(char) - 1));
memsetScribble(allocation, PoolRange::PageSize);
if (SWIFT_UNLIKELY(_swift_debug_metadataAllocationIterationEnabled)) {
PoolTrailer *newTrailer = (PoolTrailer *)(allocation + poolSize);
char *prevTrailer = curState.Begin + curState.Remaining;
newTrailer->PrevTrailer = prevTrailer;
newTrailer->PoolSize = poolSize;
}
newState = PoolRange{allocation + sizeWithHeader,
poolSize - sizeWithHeader};
__asan_poison_memory_region(allocation, newState.Remaining);
}
// NULL should be impossible, but check anyway in case of bugs or corruption
if (SWIFT_UNLIKELY(!allocation)) {
PoolRange curStateReRead = AllocationPool.load(std::memory_order_relaxed);
swift::fatalError(
0,
"Metadata allocator corruption: allocation is NULL. "
"curState: {%p, %zu} - curStateReRead: {%p, %zu} - "
"newState: {%p, %zu} - allocatedNewPage: %s - requested size: %zu - "
"sizeWithHeader: %zu - alignment: %zu - Tag: %d\n",
curState.Begin, curState.Remaining, curStateReRead.Begin,
curStateReRead.Remaining, newState.Begin, newState.Remaining,
allocatedNewPage ? "true" : "false", size, sizeWithHeader, alignment,
Tag);
}
// If we allocated a new page, then we need to do a store-release to ensure
// the initialization writes are properly ordered when viewed from other
// threads that read from the new page. If we did not allocate a new page,
// then we need a load-consume to cover the other side of that.
std::memory_order successOrder = allocatedNewPage
? std::memory_order_release
: SWIFT_MEMORY_ORDER_CONSUME;
// Swap in the new state.
if (AllocationPool.compare_exchange_weak(curState, newState,
successOrder,
std::memory_order_relaxed)) {
// If the program is using Thread Sanitizer, it can't see our memory
// ordering, so inform it manually. TSan will track the consume ordering
// in __swift_instantiateConcreteTypeFromMangledName so we register the
// correct ordering with threads that get a metadata pointer from a cache
// variable too.
if (allocatedNewPage)
swift::tsan::release(&AllocationPool);
else
swift::tsan::acquire(&AllocationPool);
// If that succeeded, we've successfully allocated.
__msan_allocated_memory(allocation, sizeWithHeader);
__asan_unpoison_memory_region(allocation, sizeWithHeader);
if (SWIFT_UNLIKELY(_swift_debug_metadataAllocationIterationEnabled)) {
AllocationHeader *header = (AllocationHeader *)allocation;
header->Size = size;
header->Tag = Tag;
auto *returnedAllocation = allocation + sizeof(AllocationHeader);
if (runtime::environment ::
SWIFT_DEBUG_ENABLE_METADATA_BACKTRACE_LOGGING())
recordBacktrace(returnedAllocation);
checkScribble(returnedAllocation, size);
return returnedAllocation;
} else {
checkScribble(allocation, size);
return allocation;
}
}
// If it failed, go back to a neutral state and try again.
if (allocatedNewPage) {
swift_slowDealloc(allocation, PoolRange::PageSize, alignof(char) - 1);
}
}
}
void MetadataAllocator::Deallocate(const void *allocation, size_t size,
size_t Alignment) {
__asan_poison_memory_region(allocation, size);
if (size > PoolRange::MaxPoolAllocationSize) {
swift_slowDealloc(const_cast<void *>(allocation), size, Alignment - 1);
return;
}
// Check whether the allocation pool is still in the state it was in
// immediately after the given allocation.
PoolRange curState = AllocationPool.load(std::memory_order_relaxed);
if (reinterpret_cast<const char*>(allocation) + size != curState.Begin) {
return;
}
// If we're scribbling, re-scribble the allocation so that the next call to
// Allocate sees what it expects.
memsetScribble(const_cast<void *>(allocation), size);
// Try to swap back to the pre-allocation state. If this fails,
// don't bother trying again; we'll just leak the allocation.
PoolRange newState = { reinterpret_cast<char*>(const_cast<void*>(allocation)),
curState.Remaining + size };
AllocationPool.compare_exchange_weak(curState, newState,
std::memory_order_relaxed,
std::memory_order_relaxed);
}
#endif
void *swift::allocateMetadata(size_t size, size_t alignment) {
return MetadataAllocator(MetadataTag).Allocate(size, alignment);
}
template<>
bool Metadata::satisfiesClassConstraint() const {
// existential types marked with @objc satisfy class requirement.
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(this))
return existential->isObjC();
// or it's a class.
return isAnyClass();
}
#if !NDEBUG
static bool referencesAnonymousContext(Demangle::Node *node) {
if (node->getKind() == Demangle::Node::Kind::AnonymousContext)
return true;
for (unsigned i = 0, e = node->getNumChildren(); i < e; ++i)
if (referencesAnonymousContext(node->getChild(i)))
return true;
return false;
}
void swift::verifyMangledNameRoundtrip(const Metadata *metadata) {
// Enable verification when a special environment variable is set. This helps
// us stress test the mangler/demangler and type lookup machinery.
if (!swift::runtime::environment::SWIFT_ENABLE_MANGLED_NAME_VERIFICATION())
return;
Demangle::StackAllocatedDemangler<1024> Dem;
auto node = _swift_buildDemanglingForMetadata(metadata, Dem);
if (!node) {
swift::warning(
RuntimeErrorFlagNone,
"Failed to build demangling to verify roundtrip for metadata %p\n",
metadata);
return;
}
// If the mangled node involves types in an AnonymousContext, then by design,
// it cannot be looked up by name.
if (referencesAnonymousContext(node))
return;
auto mangling = Demangle::mangleNode(node, Mangle::ManglingFlavor::Default);
if (!mangling.isSuccess()) {
swift::warning(RuntimeErrorFlagNone,
"Metadata mangled name failed to roundtrip: %p couldn't be mangled\n",
metadata);
} else {
std::string mangledName = mangling.result();
auto result =
swift_getTypeByMangledName(MetadataState::Abstract,
mangledName,
nullptr,
[](unsigned, unsigned){ return nullptr; },
[](const Metadata *, unsigned) { return nullptr; })
.getType().getMetadata();
if (metadata != result)
swift::warning(RuntimeErrorFlagNone,
"Metadata mangled name failed to roundtrip: %p -> %s -> %p\n",
metadata, mangledName.c_str(), (const Metadata *)result);
}
}
#endif
const TypeContextDescriptor *swift::swift_getTypeContextDescriptor(const Metadata *type) {
return type->getTypeContextDescriptor();
}
// Emit compatibility override shims for keypath runtime functionality. The
// implementation of these functions is in the standard library in
// KeyPath.swift.
SWIFT_RUNTIME_STDLIB_SPI
const HeapObject *swift_getKeyPathImpl(const void *pattern,
const void *arguments);
#define OVERRIDE_KEYPATH COMPATIBILITY_OVERRIDE
#define OVERRIDE_WITNESSTABLE COMPATIBILITY_OVERRIDE
#define OVERRIDE_CVW_METADATA COMPATIBILITY_OVERRIDE
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"
// Autolink with libc++, for cases where libswiftCore is linked statically.
#if defined(__MACH__)
asm(".linker_option \"-lc++\"\n");
#endif // defined(__MACH__)