Files
swift-mirror/stdlib/public/runtime/MetadataLookup.cpp
Konrad 'ktoso' Malawski 284c060d0a [Distributed] thread-safety also for parameter type metadata
We had fixed this bug in https://github.com/swiftlang/swift/pull/79381
but missed to realize the same problem existed for parameters as well.

This corrects the swift_func_getParameterTypeInfo impl, and also removes
the entire "unsafe" method, we no longer use it anywhere.

Resolves rdar://146679254
2025-04-26 21:30:13 +09:00

3933 lines
140 KiB
C++

//===--- MetadataLookup.cpp - Swift Language Type Name Lookup -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Implementations of runtime functions for looking up a type by name.
//
//===----------------------------------------------------------------------===//
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/Range.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeDecoder.h"
#include "swift/RemoteInspection/Records.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/LibPrespecialized.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Strings.h"
#include "swift/Threading/Mutex.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringExtras.h"
#include <cctype>
#include <cstring>
#include <functional>
#include <list>
#include <new>
#include <optional>
#include <vector>
using namespace swift;
using namespace Demangle;
using namespace reflection;
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#include <dlfcn.h>
#endif
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#endif
/// A Demangler suitable for resolving runtime type metadata strings.
template <class Base = Demangler>
class DemanglerForRuntimeTypeResolution : public Base {
public:
using Base::demangleSymbol;
using Base::demangleType;
// Force callers to explicitly pass `nullptr` to demangleSymbol or
// demangleType if they don't want to demangle symbolic references.
NodePointer demangleSymbol(StringRef symbolName) = delete;
NodePointer demangleType(StringRef typeName) = delete;
NodePointer demangleTypeRef(StringRef symbolName) {
// Resolve symbolic references to type contexts into the absolute address of
// the type context descriptor, so that if we see a symbolic reference in
// the mangled name we can immediately find the associated metadata.
return Base::demangleType(symbolName,
ResolveAsSymbolicReference(*this));
}
};
/// Resolve the relative reference in a mangled symbolic reference.
static uintptr_t resolveSymbolicReferenceOffset(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
uintptr_t ptr;
// Function references may be resolved differently than other data references.
switch (kind) {
case SymbolicReferenceKind::AccessorFunctionReference:
ptr = (uintptr_t)TargetCompactFunctionPointer<InProcess, void>::resolve(base, offset);
break;
default:
ptr = detail::applyRelativeOffset(base, offset);
break;
}
// Indirect references may be authenticated in a way appropriate for the
// referent.
if (isIndirect == Directness::Indirect) {
switch (kind) {
case SymbolicReferenceKind::Context: {
ContextDescriptor *contextPtr =
*(const TargetSignedContextPointer<InProcess> *)ptr;
return (uintptr_t)contextPtr;
}
case SymbolicReferenceKind::ObjectiveCProtocol:
case SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
case SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
case SymbolicReferenceKind::AccessorFunctionReference: {
swift_unreachable("should not be indirectly referenced");
}
}
swift_unreachable("unknown symbolic reference kind");
} else {
return ptr;
}
}
NodePointer
ResolveAsSymbolicReference::operator()(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
// Resolve the absolute pointer to the entity being referenced.
auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base);
if (SWIFT_UNLIKELY(!ptr)) {
auto symInfo = SymbolInfo::lookup(base);
const char *fileName = "<unknown>";
const char *symbolName = "<unknown>";
if (symInfo) {
if (symInfo->getFilename())
fileName = symInfo->getFilename();
if (symInfo->getSymbolName())
symbolName = symInfo->getSymbolName();
}
uintptr_t ptrLocation = detail::applyRelativeOffset(base, offset);
swift::fatalError(
0,
"Failed to look up symbolic reference at %p - offset %" PRId32
" - symbol %s in %s - pointer at %#" PRIxPTR
" is likely a reference to a missing weak symbol\n",
base, offset, symbolName, fileName, ptrLocation);
}
// Figure out this symbolic reference's grammatical role.
Node::Kind nodeKind;
bool isType;
switch (kind) {
case Demangle::SymbolicReferenceKind::Context: {
auto descriptor = (const ContextDescriptor *)ptr;
switch (descriptor->getKind()) {
case ContextDescriptorKind::Protocol:
nodeKind = Node::Kind::ProtocolSymbolicReference;
isType = false;
break;
case ContextDescriptorKind::OpaqueType:
nodeKind = Node::Kind::OpaqueTypeDescriptorSymbolicReference;
isType = false;
break;
default:
if (isa<TypeContextDescriptor>(descriptor)) {
nodeKind = Node::Kind::TypeSymbolicReference;
isType = true;
break;
}
// References to other kinds of context aren't yet implemented.
return nullptr;
}
break;
}
case Demangle::SymbolicReferenceKind::AccessorFunctionReference: {
// Save the pointer to the accessor function. We can't demangle it any
// further as AST, but the consumer of the demangle tree may be able to
// invoke the function to resolve the thing they're trying to access.
nodeKind = Node::Kind::AccessorFunctionReference;
isType = false;
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_function_pointer, 0);
#endif
break;
}
case Demangle::SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
nodeKind = Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference;
isType = false;
#if SWIFT_PTRAUTH
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
break;
case Demangle::SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
nodeKind = Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference;
isType = false;
#if SWIFT_PTRAUTH
ptr = (uintptr_t)ptrauth_sign_unauthenticated((void*)ptr,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::NonUniqueExtendedExistentialTypeShape);
#endif
break;
case Demangle::SymbolicReferenceKind::ObjectiveCProtocol:
nodeKind = Node::Kind::ObjectiveCProtocolSymbolicReference;
isType = false;
break;
}
auto node = Dem.createNode(nodeKind, ptr);
if (isType) {
auto typeNode = Dem.createNode(Node::Kind::Type);
typeNode->addChild(node, Dem);
node = typeNode;
}
return node;
}
static NodePointer
_buildDemanglingForSymbolicReference(SymbolicReferenceKind kind,
const void *resolvedReference,
Demangler &Dem) {
switch (kind) {
case SymbolicReferenceKind::Context:
return _buildDemanglingForContext(
(const ContextDescriptor *)resolvedReference, {}, Dem);
case SymbolicReferenceKind::AccessorFunctionReference:
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_function_pointer, 0);
#endif
return Dem.createNode(Node::Kind::AccessorFunctionReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::UniqueExtendedExistentialTypeShape:
#if SWIFT_PTRAUTH
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
#endif
return Dem.createNode(Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::NonUniqueExtendedExistentialTypeShape:
#if SWIFT_PTRAUTH
// The pointer refers to an accessor function, which we need to sign.
resolvedReference = ptrauth_sign_unauthenticated(resolvedReference,
ptrauth_key_process_independent_data,
SpecialPointerAuthDiscriminators::NonUniqueExtendedExistentialTypeShape);
#endif
return Dem.createNode(Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference,
(uintptr_t)resolvedReference);
case SymbolicReferenceKind::ObjectiveCProtocol:
return Dem.createNode(Node::Kind::ObjectiveCProtocolSymbolicReference,
(uintptr_t)resolvedReference);
}
swift_unreachable("invalid symbolic reference kind");
}
NodePointer
ResolveToDemanglingForContext::operator()(SymbolicReferenceKind kind,
Directness isIndirect,
int32_t offset,
const void *base) {
auto ptr = resolveSymbolicReferenceOffset(kind, isIndirect, offset, base);
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
}
NodePointer
ExpandResolvedSymbolicReferences::operator()(SymbolicReferenceKind kind,
const void *ptr) {
return _buildDemanglingForSymbolicReference(kind, (const void *)ptr, Dem);
}
#pragma mark Nominal type descriptor cache
// Type Metadata Cache.
namespace {
struct TypeMetadataSection {
const TypeMetadataRecord *Begin, *End;
const TypeMetadataRecord *begin() const {
return Begin;
}
const TypeMetadataRecord *end() const {
return End;
}
};
struct NominalTypeDescriptorCacheEntry {
private:
const char *Name;
size_t NameLength;
const ContextDescriptor *Description;
public:
NominalTypeDescriptorCacheEntry(const llvm::StringRef name,
const ContextDescriptor *description)
: Description(description) {
char *nameCopy = reinterpret_cast<char *>(malloc(name.size()));
memcpy(nameCopy, name.data(), name.size());
Name = nameCopy;
NameLength = name.size();
}
const ContextDescriptor *getDescription() const { return Description; }
bool matchesKey(llvm::StringRef aName) {
return aName == llvm::StringRef{Name, NameLength};
}
friend llvm::hash_code
hash_value(const NominalTypeDescriptorCacheEntry &value) {
return hash_value(llvm::StringRef{value.Name, value.NameLength});
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
} // end anonymous namespace
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
struct SharedCacheInfoState {
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
SharedCacheInfoState() {
size_t length;
dyldSharedCacheStart = (uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
}
};
static Lazy<SharedCacheInfoState> SharedCacheInfo;
#endif
struct TypeMetadataPrivateState {
ConcurrentReadableHashMap<NominalTypeDescriptorCacheEntry> NominalCache;
ConcurrentReadableArray<TypeMetadataSection> SectionsToScan;
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
ConcurrentReadableArray<TypeMetadataSection> SharedCacheSectionsToScan;
#endif
TypeMetadataPrivateState() {
initializeTypeMetadataRecordLookup();
}
};
static Lazy<TypeMetadataPrivateState> TypeMetadataRecords;
static void
_registerTypeMetadataRecords(TypeMetadataPrivateState &T,
const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
if (SharedCacheInfo.get().inSharedCache(begin)) {
T.SharedCacheSectionsToScan.push_back(TypeMetadataSection{begin, end});
return;
}
#endif
T.SectionsToScan.push_back(TypeMetadataSection{begin, end});
}
void swift::addImageTypeMetadataRecordBlockCallbackUnsafe(
const void *baseAddress,
const void *records, uintptr_t recordsSize) {
assert(recordsSize % sizeof(TypeMetadataRecord) == 0
&& "weird-sized type metadata section?!");
libPrespecializedImageLoaded();
// If we have a section, enqueue the type metadata for lookup.
auto recordBytes = reinterpret_cast<const char *>(records);
auto recordsBegin
= reinterpret_cast<const TypeMetadataRecord*>(records);
auto recordsEnd
= reinterpret_cast<const TypeMetadataRecord*>(recordBytes + recordsSize);
// Type metadata cache should always be sufficiently initialized by this
// point. Attempting to go through get() may also lead to an infinite loop,
// since we register records during the initialization of
// TypeMetadataRecords.
_registerTypeMetadataRecords(TypeMetadataRecords.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::addImageTypeMetadataRecordBlockCallback(const void *baseAddress,
const void *records,
uintptr_t recordsSize) {
TypeMetadataRecords.get();
addImageTypeMetadataRecordBlockCallbackUnsafe(baseAddress,
records, recordsSize);
}
void
swift::swift_registerTypeMetadataRecords(const TypeMetadataRecord *begin,
const TypeMetadataRecord *end) {
auto &T = TypeMetadataRecords.get();
_registerTypeMetadataRecords(T, begin, end);
}
static const ContextDescriptor *
_findContextDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem);
/// Find the context descriptor for the type extended by the given extension.
///
/// If \p maybeExtension isn't actually an extension context, returns nullptr.
static const ContextDescriptor *
_findExtendedTypeContextDescriptor(const ContextDescriptor *maybeExtension,
Demangler &demangler,
Demangle::NodePointer *demangledNode
= nullptr) {
auto extension = dyn_cast<ExtensionContextDescriptor>(maybeExtension);
if (!extension)
return nullptr;
Demangle::NodePointer localNode;
Demangle::NodePointer &node = demangledNode ? *demangledNode : localNode;
auto mangledName = extension->getMangledExtendedContext();
// A extension of the form `extension Protocol where Self == ConcreteType`
// is formally a protocol extension, so the formal generic parameter list
// is `<Self>`, but because of the same type constraint, the extended context
// looks like a reference to that nominal type. We want to match the
// extension's formal generic environment rather than the nominal type's
// in this case, so we should skip out on this case.
//
// We can detect this by looking at whether the generic context of the
// extension has a first generic parameter, which would be the Self parameter,
// with a same type constraint matching the extended type.
for (auto &reqt : extension->getGenericRequirements()) {
if (reqt.getKind() != GenericRequirementKind::SameType) {
continue;
}
// 'x' is the mangling of the first generic parameter
if (!reqt.getParam().equals("x")) {
continue;
}
// Is the generic parameter same-type-constrained to the same type
// we're extending? Then this is a `Self == ExtendedType` constraint.
// This is impossible for normal generic nominal type extensions because
// that would mean that you had:
// struct Foo<T> {...}
// extension Foo where T == Foo<T> {...}
// which would mean that the extended type is the infinite expansion
// Foo<Foo<Foo<Foo<...>>>>, which we don't allow.
if (reqt.getMangledTypeName().data() == mangledName.data()) {
return nullptr;
}
}
node = demangler.demangleType(mangledName,
ResolveAsSymbolicReference(demangler));
if (!node)
return nullptr;
if (node->getKind() == Node::Kind::Type) {
if (node->getNumChildren() < 1)
return nullptr;
node = node->getChild(0);
}
if (Demangle::isSpecialized(node)) {
auto unspec = Demangle::getUnspecialized(node, demangler);
if (!unspec.isSuccess())
return nullptr;
node = unspec.result();
}
return _findContextDescriptor(node, demangler);
}
/// Recognize imported tag types, which have a special mangling rule.
///
/// This should be kept in sync with the AST mangler and with
/// buildContextDescriptorMangling in MetadataReader.
bool swift::_isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity) {
// Tag types are always imported as structs or enums.
if (type->getKind() != ContextDescriptorKind::Enum &&
type->getKind() != ContextDescriptorKind::Struct)
return false;
// Not a typedef imported as a nominal type.
if (identity.isCTypedef())
return false;
// Not a related entity.
if (identity.isAnyRelatedEntity())
return false;
// Imported from C.
return type->Parent->isCImportedContext();
}
ParsedTypeIdentity
ParsedTypeIdentity::parse(const TypeContextDescriptor *type) {
ParsedTypeIdentity result;
// The first component is the user-facing name and (unless overridden)
// the ABI name.
StringRef component = type->Name.get();
result.UserFacingName = component;
// If we don't have import info, we're done.
if (!type->getTypeContextDescriptorFlags().hasImportInfo()) {
result.FullIdentity = result.UserFacingName;
return result;
}
// Otherwise, start parsing the import information.
result.ImportInfo.emplace();
// The identity starts with the user-facing name.
const char *startOfIdentity = component.begin();
const char *endOfIdentity = component.end();
#ifndef NDEBUG
enum {
AfterName,
AfterABIName,
AfterSymbolNamespace,
AfterRelatedEntityName,
AfterIdentity,
} stage = AfterName;
#endif
while (true) {
// Parse the next component. If it's empty, we're done.
component = StringRef(component.end() + 1);
if (component.empty()) break;
// Update the identity bounds and assert that the identity
// components are in the right order.
auto kind = TypeImportComponent(component[0]);
if (kind == TypeImportComponent::ABIName) {
#ifndef NDEBUG
assert(stage < AfterABIName);
stage = AfterABIName;
assert(result.UserFacingName != component.drop_front(1) &&
"user-facing name was same as the ABI name");
#endif
startOfIdentity = component.begin() + 1;
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::SymbolNamespace) {
#ifndef NDEBUG
assert(stage < AfterSymbolNamespace);
stage = AfterSymbolNamespace;
#endif
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::RelatedEntityName) {
#ifndef NDEBUG
assert(stage < AfterRelatedEntityName);
stage = AfterRelatedEntityName;
#endif
endOfIdentity = component.end();
} else {
#ifndef NDEBUG
// Anything else is assumed to not be part of the identity.
stage = AfterIdentity;
#endif
}
// Collect the component, whatever it is.
result.ImportInfo->collect</*asserting*/true>(component);
}
#ifndef NDEBUG
assert(stage != AfterName && "no components?");
#endif
// Record the full identity.
result.FullIdentity =
StringRef(startOfIdentity, endOfIdentity - startOfIdentity);
return result;
}
#if SWIFT_OBJC_INTEROP
/// Determine whether the two demangle trees both refer to the same
/// Objective-C class or protocol referenced by name.
static bool sameObjCTypeManglings(Demangle::NodePointer node1,
Demangle::NodePointer node2) {
// Entities need to be of the same kind.
if (node1->getKind() != node2->getKind())
return false;
auto name1 = Demangle::getObjCClassOrProtocolName(node1);
if (!name1) return false;
auto name2 = Demangle::getObjCClassOrProtocolName(node2);
if (!name2) return false;
return *name1 == *name2;
}
#endif
/// Optimization for the case where we need to compare a StringRef and a null terminated C string
/// Not converting s2 to a StringRef avoids the need to call both strlen and memcmp when non-matching
/// but equal length
static bool stringRefEqualsCString(StringRef s1, const char *s2) {
size_t length = s1.size();
// It may be possible for s1 to contain embedded NULL characters
// so additionally validate that the lengths match
return strncmp(s1.data(), s2, length) == 0 && strlen(s2) == length;
}
bool
swift::_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node) {
while (context) {
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
// We can directly match symbolic references to the current context.
if (node) {
if (node->getKind() == Demangle::Node::Kind::TypeSymbolicReference
|| node->getKind() == Demangle::Node::Kind::ProtocolSymbolicReference){
if (equalContexts(context,
reinterpret_cast<const ContextDescriptor *>(node->getIndex()))) {
return true;
}
}
}
switch (context->getKind()) {
case ContextDescriptorKind::Module: {
auto module = cast<ModuleContextDescriptor>(context);
// Match to a mangled module name.
if (node->getKind() != Demangle::Node::Kind::Module)
return false;
if (!stringRefEqualsCString(node->getText(), module->Name.get()))
return false;
node = nullptr;
break;
}
case ContextDescriptorKind::Extension: {
auto extension = cast<ExtensionContextDescriptor>(context);
// Check whether the extension context matches the mangled context.
if (node->getKind() != Demangle::Node::Kind::Extension)
return false;
if (node->getNumChildren() < 2)
return false;
// Check that the context being extended matches as well.
auto extendedContextNode = node->getChild(1);
DemanglerForRuntimeTypeResolution<> demangler;
auto extendedDescriptorFromNode =
_findContextDescriptor(extendedContextNode, demangler);
Demangle::NodePointer extendedContextDemangled;
auto extendedDescriptorFromDemangled =
_findExtendedTypeContextDescriptor(extension, demangler,
&extendedContextDemangled);
// Determine whether the contexts match.
bool contextsMatch =
extendedDescriptorFromNode && extendedDescriptorFromDemangled &&
equalContexts(extendedDescriptorFromNode,
extendedDescriptorFromDemangled);
#if SWIFT_OBJC_INTEROP
// If we have manglings of the same Objective-C type, the contexts match.
if (!contextsMatch &&
(!extendedDescriptorFromNode || !extendedDescriptorFromDemangled) &&
sameObjCTypeManglings(extendedContextNode,
extendedContextDemangled)) {
contextsMatch = true;
}
#endif
if (!contextsMatch)
return false;
// Check whether the generic signature of the extension matches the
// mangled constraints, if any.
if (node->getNumChildren() >= 3) {
// NB: If we ever support extensions with independent generic arguments
// like `extension <T> Array where Element == Optional<T>`, we'd need
// to look at the mangled context name to match up generic arguments.
// That would probably need a new extension mangling form, though.
// TODO
}
// The parent context of the extension should match in the mangling and
// context descriptor.
node = node->getChild(0);
break;
}
case ContextDescriptorKind::Protocol:
// Match a protocol context.
if (node->getKind() == Demangle::Node::Kind::Protocol) {
auto proto = llvm::cast<ProtocolDescriptor>(context);
auto nameNode = node->getChild(1);
if (nameNode->getKind() != Demangle::Node::Kind::Identifier)
return false;
if (stringRefEqualsCString(nameNode->getText(), proto->Name.get())) {
node = node->getChild(0);
break;
}
}
return false;
default:
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(context)) {
std::optional<ParsedTypeIdentity> _identity;
auto getIdentity = [&]() -> const ParsedTypeIdentity & {
if (_identity) return *_identity;
_identity = ParsedTypeIdentity::parse(type);
return *_identity;
};
switch (node->getKind()) {
// If the mangled name doesn't indicate a type kind, accept anything.
// Otherwise, try to match them up.
case Demangle::Node::Kind::OtherNominalType:
break;
case Demangle::Node::Kind::Structure:
// We allow non-structs to match Kind::Structure if they are
// imported C tag types. This is necessary because we artificially
// make imported C tag types Kind::Structure.
if (type->getKind() != ContextDescriptorKind::Struct &&
!_isCImportedTagType(type, getIdentity()))
return false;
break;
case Demangle::Node::Kind::Class:
if (type->getKind() != ContextDescriptorKind::Class)
return false;
break;
case Demangle::Node::Kind::Enum:
if (type->getKind() != ContextDescriptorKind::Enum)
return false;
break;
case Demangle::Node::Kind::TypeAlias:
if (!getIdentity().isCTypedef())
return false;
break;
default:
return false;
}
auto nameNode = node->getChild(1);
// Declarations synthesized by the Clang importer get a small tag
// string in addition to their name.
if (nameNode->getKind() == Demangle::Node::Kind::RelatedEntityDeclName){
if (!getIdentity().isRelatedEntity(
nameNode->getFirstChild()->getText()))
return false;
nameNode = nameNode->getChild(1);
} else if (getIdentity().isAnyRelatedEntity()) {
return false;
}
// We should only match public or internal declarations with stable
// names. The runtime metadata for private declarations would be
// anonymized.
if (nameNode->getKind() == Demangle::Node::Kind::Identifier) {
if (nameNode->getText() != getIdentity().getABIName())
return false;
node = node->getChild(0);
break;
}
return false;
}
// We don't know about this kind of context, or it doesn't have a stable
// name we can match to.
return false;
}
context = context->Parent;
}
// We should have reached the top of the node tree at the same time we reached
// the top of the context tree.
if (node)
return false;
return true;
}
// Helper functions to allow _searchTypeMetadataRecordsInSections to work with
// both type and protocol records.
static const ContextDescriptor *
getContextDescriptor(const TypeMetadataRecord &record) {
return record.getContextDescriptor();
}
static const ContextDescriptor *
getContextDescriptor(const ProtocolRecord &record) {
return record.Protocol.getPointer();
}
// Perform a linear scan of the given records section, searching for a
// descriptor that matches the mangling passed in `node`. `sectionsToScan` is a
// ConcurrentReadableHashMap containing sections of type/protocol records.
template <typename SectionsContainer>
static const ContextDescriptor *
_searchTypeMetadataRecordsInSections(SectionsContainer &sectionsToScan,
Demangle::NodePointer node) {
for (auto &section : sectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto context = getContextDescriptor(record)) {
if (_contextDescriptorMatchesMangling(context, node)) {
return context;
}
}
}
}
return nullptr;
}
// Search for a context descriptor matching the mangling passed in `node`.
// `state` is `TypeMetadataPrivateState` or `ProtocolMetadataPrivateState` and
// the search will use the sections in those structures. `traceBegin` is a
// function returning a trace state which is called around the linear scans of
// type/protocol records. When available, the search will consult the
// LibPrespecialized table, and perform validation on the result when validation
// is enabled.
template <typename State, typename TraceBegin>
static const ContextDescriptor *
_searchForContextDescriptor(State &state, NodePointer node,
TraceBegin traceBegin) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
// Try LibPrespecialized first.
auto result = getLibPrespecializedTypeDescriptor(node);
// Validate the result if requested.
if (SWIFT_UNLIKELY(
runtime::environment::
SWIFT_DEBUG_VALIDATE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP())) {
// Only validate a definitive result.
if (result.first == LibPrespecializedLookupResult::Found ||
result.first == LibPrespecializedLookupResult::DefinitiveNotFound) {
// Perform a scan of the shared cache sections and see if the result
// matches.
auto scanResult = _searchTypeMetadataRecordsInSections(
state.SharedCacheSectionsToScan, node);
// Ignore a result that's outside the shared cache. This can happen for
// indirect descriptor records that get fixed up to point to a root.
if (SharedCacheInfo.get().inSharedCache(scanResult)) {
// We may find a different but equivalent context if they're not unique,
// as iteration order may be different between the two. Use
// equalContexts to compare distinct but equal non-unique contexts
// properly.
if (!equalContexts(result.second, scanResult)) {
auto tree = getNodeTreeAsString(node);
swift::fatalError(
0,
"Searching for type descriptor, prespecialized descriptor map "
"returned %p, but scan returned %p. Node tree:\n%s",
result.second, scanResult, tree.c_str());
}
}
}
}
// If we found something, we're done, return it.
if (result.first == LibPrespecializedLookupResult::Found) {
assert(result.second);
return result.second;
}
// If a negative result was not definitive, then we must search the shared
// cache sections.
if (result.first == LibPrespecializedLookupResult::NonDefinitiveNotFound) {
auto traceState = traceBegin(node);
auto descriptor = _searchTypeMetadataRecordsInSections(
state.SharedCacheSectionsToScan, node);
traceState.end(descriptor);
if (descriptor)
return descriptor;
}
// If we didn't find anything in the shared cache, then search the rest.
#endif
auto traceState = traceBegin(node);
auto foundDescriptor =
_searchTypeMetadataRecordsInSections(state.SectionsToScan, node);
traceState.end(foundDescriptor);
return foundDescriptor;
}
// returns the nominal type descriptor for the type named by typeName
static const ContextDescriptor *
_searchTypeMetadataRecords(TypeMetadataPrivateState &T,
Demangle::NodePointer node) {
#if SWIFT_OBJC_INTEROP
// Classes in the __C module are ObjC classes. They never have a
// nominal type descriptor, so don't bother to search for one.
if (node && node->getKind() == Node::Kind::Class)
if (auto child = node->getFirstChild())
if (child->getKind() == Node::Kind::Module && child->hasText())
if (child->getText() == MANGLING_MODULE_OBJC)
return nullptr;
#endif
return _searchForContextDescriptor(T, node,
runtime::trace::metadata_scan_begin);
}
#define DESCRIPTOR_MANGLING_SUFFIX_Structure Mn
#define DESCRIPTOR_MANGLING_SUFFIX_Enum Mn
#define DESCRIPTOR_MANGLING_SUFFIX_Protocol Mp
#define DESCRIPTOR_MANGLING_SUFFIX_(X) X
#define DESCRIPTOR_MANGLING_SUFFIX(KIND) \
DESCRIPTOR_MANGLING_SUFFIX_(DESCRIPTOR_MANGLING_SUFFIX_ ## KIND)
#define DESCRIPTOR_MANGLING_(CHAR, SUFFIX) \
$sS ## CHAR ## SUFFIX
#define DESCRIPTOR_MANGLING(CHAR, SUFFIX) DESCRIPTOR_MANGLING_(CHAR, SUFFIX)
#define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \
extern "C" const ContextDescriptor DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND));
// FIXME: When the _Concurrency library gets merged into the Standard Library,
// we will be able to reference those symbols directly as well.
#define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME)
#if !SWIFT_OBJC_INTEROP
# define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME)
#endif
#include "swift/Demangling/StandardTypesMangling.def"
static const ConcurrencyStandardTypeDescriptors *concurrencyDescriptors;
/// Perform a fast-path lookup for standard library type references with short
/// manglings. Returns the appropriate descriptor, or NULL if the descriptor
/// couldn't be resolved, or if the node does not refer to one of those types.
static const ContextDescriptor *
descriptorFromStandardMangling(Demangle::NodePointer symbolicNode) {
#if SWIFT_STDLIB_SHORT_MANGLING_LOOKUPS
// Fast-path lookup for standard library type references with short manglings.
if (symbolicNode->getNumChildren() >= 2
&& symbolicNode->getChild(0)->getKind() == Node::Kind::Module
&& stringRefEqualsCString(symbolicNode->getChild(0)->getText(), "Swift")
&& symbolicNode->getChild(1)->getKind() == Node::Kind::Identifier) {
auto name = symbolicNode->getChild(1)->getText();
#define STANDARD_TYPE(KIND, MANGLING, TYPENAME) \
if (stringRefEqualsCString(name, #TYPENAME)) { \
return &DESCRIPTOR_MANGLING(MANGLING, DESCRIPTOR_MANGLING_SUFFIX(KIND)); \
}
// FIXME: When the _Concurrency library gets merged into the Standard Library,
// we will be able to reference those symbols directly as well.
#define STANDARD_TYPE_CONCURRENCY(KIND, MANGLING, TYPENAME) \
if (concurrencyDescriptors && stringRefEqualsCString(name, #TYPENAME)) { \
return concurrencyDescriptors->TYPENAME; \
}
#if !SWIFT_OBJC_INTEROP
# define OBJC_INTEROP_STANDARD_TYPE(KIND, MANGLING, TYPENAME)
#endif
#include "swift/Demangling/StandardTypesMangling.def"
}
#endif
return nullptr;
}
static const ContextDescriptor *
_findContextDescriptor(Demangle::NodePointer node,
Demangle::Demangler &Dem) {
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
// If we have a symbolic reference to a context, resolve it immediately.
if (symbolicNode->getKind() == Node::Kind::TypeSymbolicReference) {
return cast<TypeContextDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
}
if (auto *standardDescriptor = descriptorFromStandardMangling(symbolicNode))
return standardDescriptor;
const ContextDescriptor *foundContext = nullptr;
auto &T = TypeMetadataRecords.get();
// Nothing to resolve if have a generic parameter.
if (symbolicNode->getKind() == Node::Kind::DependentGenericParamType)
return nullptr;
auto mangling =
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem, Mangle::ManglingFlavor::Default);
if (!mangling.isSuccess())
return nullptr;
StringRef mangledName = mangling.result();
// Look for an existing entry.
// Find the bucket for the metadata entry.
{
auto snapshot = T.NominalCache.snapshot();
if (auto Value = snapshot.find(mangledName))
return Value->getDescription();
}
// Check type metadata records
// Scan any newly loaded images for context descriptors, then try the context
foundContext = _searchTypeMetadataRecords(T, node);
// Check protocol conformances table. Note that this has no support for
// resolving generic types yet.
if (!foundContext)
foundContext = _searchConformancesByMangledTypeName(node);
if (foundContext)
T.NominalCache.getOrInsert(mangledName, [&](NominalTypeDescriptorCacheEntry
*entry,
bool created) {
if (created)
::new (entry) NominalTypeDescriptorCacheEntry{mangledName, foundContext};
return true;
});
return foundContext;
}
/// Function to check whether we're currently running on the given global
/// actor.
bool (* __ptrauth_swift_is_global_actor_function SWIFT_CC(swift)
swift::_swift_task_isCurrentGlobalActorHook)(
const Metadata *, const WitnessTable *);
void swift::_swift_registerConcurrencyRuntime(
const ConcurrencyStandardTypeDescriptors *descriptors,
IsCurrentGlobalActor isCurrentGlobalActor) {
concurrencyDescriptors = descriptors;
_swift_task_isCurrentGlobalActorHook = isCurrentGlobalActor;
}
#pragma mark Protocol descriptor cache
namespace {
struct ProtocolSection {
const ProtocolRecord *Begin, *End;
const ProtocolRecord *begin() const {
return Begin;
}
const ProtocolRecord *end() const {
return End;
}
};
struct ProtocolDescriptorCacheEntry {
private:
const char *Name;
size_t NameLength;
const ProtocolDescriptor *Description;
public:
ProtocolDescriptorCacheEntry(const llvm::StringRef name,
const ProtocolDescriptor *description)
: Description(description) {
char *nameCopy = reinterpret_cast<char *>(malloc(name.size()));
memcpy(nameCopy, name.data(), name.size());
Name = nameCopy;
NameLength = name.size();
}
const ProtocolDescriptor *getDescription() const { return Description; }
bool matchesKey(llvm::StringRef aName) {
return aName == llvm::StringRef{Name, NameLength};
}
friend llvm::hash_code
hash_value(const ProtocolDescriptorCacheEntry &value) {
return hash_value(llvm::StringRef{value.Name, value.NameLength});
}
template <class... T>
static size_t getExtraAllocationSize(T &&... ignored) {
return 0;
}
};
struct ProtocolMetadataPrivateState {
ConcurrentReadableHashMap<ProtocolDescriptorCacheEntry> ProtocolCache;
ConcurrentReadableArray<ProtocolSection> SectionsToScan;
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
ConcurrentReadableArray<ProtocolSection> SharedCacheSectionsToScan;
#endif
ProtocolMetadataPrivateState() {
initializeProtocolLookup();
}
};
static Lazy<ProtocolMetadataPrivateState> Protocols;
}
static void
_registerProtocols(ProtocolMetadataPrivateState &C,
const ProtocolRecord *begin,
const ProtocolRecord *end) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
if (SharedCacheInfo.get().inSharedCache(begin)) {
C.SharedCacheSectionsToScan.push_back(ProtocolSection{begin, end});
return;
}
#endif
C.SectionsToScan.push_back(ProtocolSection{begin, end});
}
void swift::addImageProtocolsBlockCallbackUnsafe(const void *baseAddress,
const void *protocols,
uintptr_t protocolsSize) {
assert(protocolsSize % sizeof(ProtocolRecord) == 0 &&
"protocols section not a multiple of ProtocolRecord");
// If we have a section, enqueue the protocols for lookup.
auto protocolsBytes = reinterpret_cast<const char *>(protocols);
auto recordsBegin
= reinterpret_cast<const ProtocolRecord *>(protocols);
auto recordsEnd
= reinterpret_cast<const ProtocolRecord *>(protocolsBytes + protocolsSize);
// Conformance cache should always be sufficiently initialized by this point.
_registerProtocols(Protocols.unsafeGetAlreadyInitialized(),
recordsBegin, recordsEnd);
}
void swift::addImageProtocolsBlockCallback(const void *baseAddress,
const void *protocols,
uintptr_t protocolsSize) {
Protocols.get();
addImageProtocolsBlockCallbackUnsafe(baseAddress, protocols, protocolsSize);
}
void swift::swift_registerProtocols(const ProtocolRecord *begin,
const ProtocolRecord *end) {
auto &C = Protocols.get();
_registerProtocols(C, begin, end);
}
static const ProtocolDescriptor *
_searchProtocolRecords(ProtocolMetadataPrivateState &C,
NodePointer node) {
auto descriptor =
_searchForContextDescriptor(C, node, runtime::trace::protocol_scan_begin);
assert(!descriptor ||
isa<ProtocolDescriptor>(descriptor) &&
"Protocol record search found non-protocol descriptor.");
return reinterpret_cast<const ProtocolDescriptor *>(descriptor);
}
static const ProtocolDescriptor *
_findProtocolDescriptor(NodePointer node,
Demangle::Demangler &Dem) {
const ProtocolDescriptor *foundProtocol = nullptr;
auto &T = Protocols.get();
// If we have a symbolic reference to a context, resolve it immediately.
NodePointer symbolicNode = node;
if (symbolicNode->getKind() == Node::Kind::Type)
symbolicNode = symbolicNode->getChild(0);
if (symbolicNode->getKind() == Node::Kind::ProtocolSymbolicReference)
return cast<ProtocolDescriptor>(
(const ContextDescriptor *)symbolicNode->getIndex());
if (auto *standardDescriptor = descriptorFromStandardMangling(symbolicNode)) {
assert(standardDescriptor->getKind() == ContextDescriptorKind::Protocol);
return static_cast<const ProtocolDescriptor *>(standardDescriptor);
}
auto mangling =
Demangle::mangleNode(node, ExpandResolvedSymbolicReferences(Dem), Dem, Mangle::ManglingFlavor::Default);
if (!mangling.isSuccess())
return nullptr;
auto mangledName = mangling.result().str();
// Look for an existing entry.
// Find the bucket for the metadata entry.
{
auto snapshot = T.ProtocolCache.snapshot();
if (auto Value = snapshot.find(mangledName))
return Value->getDescription();
}
// Check type metadata records
foundProtocol = _searchProtocolRecords(T, node);
if (foundProtocol) {
T.ProtocolCache.getOrInsert(mangledName, [&](ProtocolDescriptorCacheEntry
*entry,
bool created) {
if (created)
::new (entry) ProtocolDescriptorCacheEntry{mangledName, foundProtocol};
return true;
});
}
return foundProtocol;
}
#pragma mark Type field descriptor cache
namespace {
struct FieldDescriptorCacheEntry {
private:
const Metadata *Type;
const FieldDescriptor *Description;
public:
FieldDescriptorCacheEntry(const Metadata *type,
const FieldDescriptor *description)
: Type(type), Description(description) {}
const FieldDescriptor *getDescription() { return Description; }
int compareWithKey(const Metadata *other) const {
auto a = (uintptr_t)Type;
auto b = (uintptr_t)other;
return a == b ? 0 : (a < b ? -1 : 1);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
};
} // namespace
#pragma mark Metadata lookup via mangled name
std::optional<unsigned>
swift::_depthIndexToFlatIndex(unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts) {
// Out-of-bounds depth.
if (depth >= paramCounts.size())
return std::nullopt;
// Compute the flat index.
unsigned flatIndex = index + (depth == 0 ? 0 : paramCounts[depth - 1]);
// Out-of-bounds index.
if (flatIndex >= paramCounts[depth])
return std::nullopt;
return flatIndex;
}
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool swift::_gatherGenericParameterCounts(
const ContextDescriptor *descriptor,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
Demangler &BorrowFrom) {
DemanglerForRuntimeTypeResolution<> demangler;
demangler.providePreallocatedMemory(BorrowFrom);
if (auto extension = _findExtendedTypeContextDescriptor(descriptor,
demangler)) {
// If we have a nominal type extension descriptor, extract the extended type
// and use that. If the extension is not nominal, then we can use the
// extension's own signature.
descriptor = extension;
}
// Once we hit a non-generic descriptor, we're done.
if (!descriptor->isGeneric()) return false;
// Recurse to record the parent context's generic parameters.
auto parent = descriptor->Parent.get();
(void)_gatherGenericParameterCounts(parent, genericParamCounts, demangler);
// Record a new level of generic parameters if the count exceeds the
// previous count.
unsigned parentCount = parent->getNumGenericParams();
unsigned myCount = descriptor->getNumGenericParams();
if (myCount > parentCount) {
genericParamCounts.push_back(myCount);
return true;
}
return false;
}
/// Retrieve the generic parameters introduced in this context.
static llvm::ArrayRef<GenericParamDescriptor>
getLocalGenericParams(const ContextDescriptor *context) {
if (!context->isGeneric())
return { };
// Determine where to start looking at generic parameters.
unsigned startParamIndex;
if (auto parent = context->Parent.get())
startParamIndex = parent->getNumGenericParams();
else
startParamIndex = 0;
auto genericContext = context->getGenericContext();
return genericContext->getGenericParams().slice(startParamIndex);
}
namespace {
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the complete set of generic
/// arguments "as written".
///
/// Use with \c _getTypeByMangledName to decode potentially-generic types.
class SubstGenericParametersFromWrittenArgs {
/// The complete set of generic arguments.
const llvm::SmallVectorImpl<MetadataPackOrValue> &allGenericArgs;
/// The counts of generic parameters at each level.
const llvm::SmallVectorImpl<unsigned> &genericParamCounts;
public:
/// Initialize a new function object to handle substitutions. Both
/// parameters are references to vectors that must live longer than
/// this function object.
///
/// \param allGenericArgs The complete set of generic arguments, as written.
/// This could come directly from "source" (where all generic arguments are
/// encoded) or from metadata via gatherWrittenGenericArgs().
///
/// \param genericParamCounts The count of generic parameters at each
/// generic level, typically gathered by _gatherGenericParameterCounts.
explicit SubstGenericParametersFromWrittenArgs(
const llvm::SmallVectorImpl<MetadataPackOrValue> &allGenericArgs,
const llvm::SmallVectorImpl<unsigned> &genericParamCounts)
: allGenericArgs(allGenericArgs),
genericParamCounts(genericParamCounts) {}
MetadataPackOrValue getMetadata(unsigned depth, unsigned index) const;
MetadataPackOrValue getMetadataFullOrdinal(unsigned ordinal) const;
const WitnessTable *getWitnessTable(const Metadata *type,
unsigned index) const;
};
} // end anonymous namespace
static std::optional<TypeLookupError>
_gatherGenericParameters(const ContextDescriptor *context,
llvm::ArrayRef<MetadataPackOrValue> genericArgs,
const Metadata *parent,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
llvm::SmallVectorImpl<const void *> &allGenericArgsVec,
Demangler &demangler) {
auto makeCommonErrorStringGetter = [&] {
auto metadataVector = genericArgs.vec();
return [=] {
std::string str;
str += "_gatherGenericParameters: context: ";
if (auto contextInfo = SymbolInfo::lookup(context)) {
str += contextInfo->getSymbolName();
str += " ";
}
char *contextStr;
swift_asprintf(&contextStr, "%p", context);
str += contextStr;
free(contextStr);
str += " <";
bool first = true;
for (MetadataPackOrValue metadata : genericArgs) {
if (!first)
str += ", ";
first = false;
char *metadataStr;
swift_asprintf(&metadataStr, "%p", metadata.Ptr);
str += metadataStr;
}
str += "> ";
str += "parent: ";
if (parent)
str += nameForMetadata(parent);
else
str += "<null>";
str += " - ";
return str;
};
};
// Figure out the various levels of generic parameters we have in
// this type.
(void)_gatherGenericParameterCounts(context,
genericParamCounts, demangler);
unsigned numTotalGenericParams =
genericParamCounts.empty() ? context->getNumGenericParams()
: genericParamCounts.back();
// Check whether we have the right number of generic arguments.
if (genericArgs.size() == getLocalGenericParams(context).size()) {
// Okay: genericArgs is the innermost set of generic arguments.
} else if (genericArgs.size() == numTotalGenericParams && !parent) {
// Okay: genericArgs is the complete set of generic arguments.
} else {
auto commonString = makeCommonErrorStringGetter();
auto genericArgsSize = genericArgs.size();
return TypeLookupError([=] {
return commonString() + "incorrect number of generic args (" +
std::to_string(genericArgsSize) + "), " +
std::to_string(getLocalGenericParams(context).size()) +
" local params, " + std::to_string(numTotalGenericParams) +
" total params";
});
}
// If there are generic parameters at any level, check the generic
// requirements and fill in the generic arguments vector.
if (!genericParamCounts.empty()) {
// Compute the set of generic arguments "as written".
llvm::SmallVector<MetadataPackOrValue, 8> allGenericArgs;
auto generics = context->getGenericContext();
assert(generics);
// If we have a parent, gather its generic arguments "as written". If our
// parent is not generic, there are no generic arguments to add.
if (parent && parent->getTypeContextDescriptor() &&
parent->getTypeContextDescriptor()->getGenericContext()) {
auto parentDescriptor = parent->getTypeContextDescriptor();
auto parentGenerics = parentDescriptor->getGenericContext();
auto packHeader = parentGenerics->getGenericPackShapeHeader();
// _gatherWrittenGenericParameters expects to immediately read key generic
// arguments, so skip past the shape classes if we have any.
auto nonShapeClassGenericArgs = parent->getGenericArgs() + packHeader.NumShapeClasses;
auto numKeyArgs = 0;
for (auto param : parentGenerics->getGenericParams()) {
if (param.hasKeyArgument()) {
numKeyArgs += 1;
}
}
llvm::ArrayRef<const void *> genericArgsRef(
reinterpret_cast<const void * const *>(nonShapeClassGenericArgs),
numKeyArgs);
if (!_gatherWrittenGenericParameters(parentDescriptor,
genericArgsRef,
allGenericArgs, demangler)) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "failed to get parent context's written" +
" generic arguments";
});
}
}
// Add the generic arguments we were given.
allGenericArgs.insert(allGenericArgs.end(),
genericArgs.begin(), genericArgs.end());
// Copy the generic arguments needed for metadata from the generic
// arguments "as written".
{
// Add a placeholder length for each shape class.
auto packShapeHeader = generics->getGenericPackShapeHeader();
if (packShapeHeader.NumShapeClasses > 0) {
assert(allGenericArgsVec.empty());
allGenericArgsVec.resize(packShapeHeader.NumShapeClasses);
}
// If we have the wrong number of generic arguments, fail.
auto genericParams = generics->getGenericParams();
unsigned n = genericParams.size();
if (allGenericArgs.size() != n) {
auto commonString = makeCommonErrorStringGetter();
auto argsVecSize = allGenericArgsVec.size();
return TypeLookupError([=] {
return commonString() + "have " + std::to_string(argsVecSize) +
"generic args, expected " + std::to_string(n);
});
}
// Add metadata for each canonical generic parameter.
auto packShapeDescriptors = generics->getGenericPackShapeDescriptors();
unsigned packIdx = 0;
for (unsigned i = 0; i != n; ++i) {
const auto &param = genericParams[i];
auto arg = allGenericArgs[i];
switch (param.getKind()) {
case GenericParamKind::Type: {
if (!arg.isMetadata()) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" expected metadata but got a metadata pack";
});
}
if (param.hasKeyArgument()) {
allGenericArgsVec.push_back(arg.getMetadata());
}
break;
}
case GenericParamKind::TypePack: {
if (!arg.isMetadataPack()) {
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" expected a metadata pack but got metadata";
});
}
if (param.hasKeyArgument()) {
auto packShapeDescriptor = packShapeDescriptors[packIdx];
assert(packShapeDescriptor.Kind == GenericPackKind::Metadata);
assert(packShapeDescriptor.Index == allGenericArgsVec.size());
assert(packShapeDescriptor.ShapeClass < packShapeHeader.NumShapeClasses);
auto argPack = arg.getMetadataPack();
assert(argPack.getLifetime() == PackLifetime::OnHeap);
// Fill in the length for each shape class.
allGenericArgsVec[packShapeDescriptor.ShapeClass] =
reinterpret_cast<const void *>(argPack.getNumElements());
allGenericArgsVec.push_back(argPack.getPointer());
++packIdx;
}
break;
}
case GenericParamKind::Value: {
if (param.hasKeyArgument()) {
allGenericArgsVec.push_back(arg.Ptr);
}
break;
}
default:
auto commonString = makeCommonErrorStringGetter();
return TypeLookupError([=] {
return commonString() + "param " + std::to_string(i) +
" has unexpected kind " +
std::to_string(static_cast<uint8_t>(param.getKind()));
});
}
}
}
// Check whether the generic requirements are satisfied, collecting
// any extra arguments we need for the instantiation function.
SubstGenericParametersFromWrittenArgs substitutions(allGenericArgs,
genericParamCounts);
auto error = _checkGenericRequirements(
generics->getGenericParams(),
generics->getGenericRequirements(), allGenericArgsVec,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](unsigned fullOrdinal, unsigned keyOrdinal) {
return substitutions.getMetadataFullOrdinal(fullOrdinal).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
},
nullptr);
if (error)
return *error;
// If we still have the wrong number of generic arguments, this is
// some kind of metadata mismatch.
if (generics->getGenericContextHeader().getNumArguments() !=
allGenericArgsVec.size()) {
auto commonString = makeCommonErrorStringGetter();
auto argsVecSize = allGenericArgsVec.size();
return TypeLookupError([=] {
return commonString() + "generic argument count mismatch, expected " +
std::to_string(
generics->getGenericContextHeader().getNumArguments()) +
", have " + std::to_string(argsVecSize);
});
}
}
return std::nullopt;
}
namespace {
/// Find the offset of the protocol requirement for an associated type with
/// the given name in the given protocol descriptor.
std::optional<const ProtocolRequirement *>
findAssociatedTypeByName(const ProtocolDescriptor *protocol, StringRef name) {
// If we don't have associated type names, there's nothing to do.
const char *associatedTypeNamesPtr = protocol->AssociatedTypeNames.get();
if (!associatedTypeNamesPtr)
return std::nullopt;
// Look through the list of associated type names.
StringRef associatedTypeNames(associatedTypeNamesPtr);
unsigned matchingAssocTypeIdx = 0;
bool found = false;
while (!associatedTypeNames.empty()) {
// Avoid using StringRef::split because its definition is not
// provided in the header so that it requires linking with libSupport.a.
auto splitIdx = associatedTypeNames.find(' ');
if (associatedTypeNames.substr(0, splitIdx) == name) {
found = true;
break;
}
++matchingAssocTypeIdx;
associatedTypeNames = associatedTypeNames.substr(splitIdx).substr(1);
}
if (!found)
return std::nullopt;
// We have a match on the Nth associated type; go find the Nth associated
// type requirement.
unsigned currentAssocTypeIdx = 0;
unsigned numRequirements = protocol->NumRequirements;
auto requirements = protocol->getRequirements();
for (unsigned reqIdx = 0; reqIdx != numRequirements; ++reqIdx) {
if (requirements[reqIdx].Flags.getKind() !=
ProtocolRequirementFlags::Kind::AssociatedTypeAccessFunction)
continue;
if (currentAssocTypeIdx == matchingAssocTypeIdx)
return requirements.begin() + reqIdx;
++currentAssocTypeIdx;
}
swift_unreachable("associated type names don't line up");
}
} // end unnamed namespace
static Lazy<Mutex> DynamicReplacementLock;
namespace {
struct OpaqueTypeMappings {
llvm::DenseMap<const OpaqueTypeDescriptor *, const OpaqueTypeDescriptor *>
descriptorMapping;
const OpaqueTypeDescriptor* find(const OpaqueTypeDescriptor *orig) {
const OpaqueTypeDescriptor *replacement = nullptr;
DynamicReplacementLock.get().withLock([&] {
auto entry = descriptorMapping.find(orig);
if (entry != descriptorMapping.end())
replacement = entry->second;
});
return replacement;
}
// We take a mutex argument to make sure someone is holding the lock.
void insert(const OpaqueTypeDescriptor *orig,
const OpaqueTypeDescriptor *replacement, const Mutex &) {
descriptorMapping[orig] = replacement;
}
};
} // end unnamed namespace
static Lazy<OpaqueTypeMappings> opaqueTypeMappings;
static const OpaqueTypeDescriptor *
_findOpaqueTypeDescriptor(NodePointer demangleNode,
Demangler &dem) {
// Directly resolve a symbolic reference.
if (demangleNode->getKind()
== Node::Kind::OpaqueTypeDescriptorSymbolicReference) {
auto context = (const ContextDescriptor *)demangleNode->getIndex();
auto *orig = cast<OpaqueTypeDescriptor>(context);
if (auto *entry = opaqueTypeMappings.get().find(orig)) {
return entry;
}
return orig;
}
// TODO: Find non-symbolic-referenced opaque decls.
return nullptr;
}
#if SWIFT_OBJC_INTEROP
static Protocol *_asObjectiveCProtocol(NodePointer demangleNode) {
if (demangleNode->getKind() ==
Node::Kind::ObjectiveCProtocolSymbolicReference) {
auto protocolPtr =
((RelativeDirectPointer<Protocol *, false> *)demangleNode->getIndex())
->get();
Protocol *protocol = *protocolPtr;
return protocol;
}
return nullptr;
}
#endif
namespace {
/// Constructs metadata by decoding a mangled type name, for use with
/// \c TypeDecoder.
class DecodedMetadataBuilder {
private:
/// The demangler we'll use when building new nodes.
Demangler &demangler;
/// Substitute generic parameters.
SubstGenericParameterFn substGenericParameter;
/// Substitute dependent witness tables.
SubstDependentWitnessTableFn substWitnessTable;
/// Ownership information related to the metadata we are trying to lookup.
TypeReferenceOwnership ReferenceOwnership;
/// Stack of shape pack/current index pairs.
std::vector<std::pair<MetadataPackPointer, size_t>> ActivePackExpansions;
public:
using BuiltType = MetadataPackOrValue;
struct BuiltLayoutConstraint {
bool operator==(BuiltLayoutConstraint rhs) const { return true; }
operator bool() const { return true; }
};
using BuiltLayoutConstraint = BuiltLayoutConstraint;
using BuiltTypeDecl = const ContextDescriptor *;
using BuiltProtocolDecl = ProtocolDescriptorRef;
using BuiltGenericSignature = const Metadata *;
using BuiltSubstitution = std::pair<BuiltType, BuiltType>;
using BuiltSubstitutionMap = llvm::ArrayRef<BuiltSubstitution>;
using BuiltGenericTypeParam = const Metadata *;
struct BuiltRequirement {
RequirementKind Kind;
BuiltType FirstType;
union {
BuiltType SecondType;
BuiltLayoutConstraint SecondLayout;
};
BuiltRequirement(RequirementKind kind, BuiltType first,
BuiltType second)
: Kind(kind), FirstType(first), SecondType(second) {
assert(first);
assert(second);
assert(kind != RequirementKind::Layout);
}
BuiltRequirement(RequirementKind kind, BuiltType first,
BuiltLayoutConstraint second)
: Kind(kind), FirstType(first), SecondLayout(second) {
assert(first);
assert(second);
assert(kind == RequirementKind::Layout);
}
/// Determine the kind of requirement.
RequirementKind getKind() const {
return Kind;
}
/// Retrieve the first type.
BuiltType getFirstType() const {
return FirstType;
}
/// Retrieve the second type.
BuiltType getSecondType() const {
assert(getKind() != RequirementKind::Layout);
return SecondType;
}
/// Retrieve the layout constraint.
BuiltLayoutConstraint getLayoutConstraint() const {
assert(getKind() == RequirementKind::Layout);
return SecondLayout;
}
};
struct BuiltInverseRequirement {
BuiltType SubjectType;
InvertibleProtocolKind Kind;
};
DecodedMetadataBuilder(Demangler &demangler,
SubstGenericParameterFn substGenericParameter,
SubstDependentWitnessTableFn substWitnessTable)
: demangler(demangler),
substGenericParameter(substGenericParameter),
substWitnessTable(substWitnessTable) { }
BuiltType decodeMangledType(NodePointer node,
bool forRequirement = true) {
return Demangle::decodeMangledType(*this, node, forRequirement)
.getType();
}
Mangle::ManglingFlavor getManglingFlavor() {
return Mangle::ManglingFlavor::Default;
}
Demangle::NodeFactory &getNodeFactory() { return demangler; }
TypeLookupErrorOr<BuiltType>
resolveOpaqueType(NodePointer opaqueDecl,
llvm::ArrayRef<llvm::ArrayRef<BuiltType>> genericArgs,
unsigned ordinal) {
auto descriptor = _findOpaqueTypeDescriptor(opaqueDecl, demangler);
if (!descriptor)
return BuiltType();
auto outerContext = descriptor->Parent.get();
llvm::SmallVector<MetadataPackOrValue, 8> allGenericArgs;
for (auto argSet : genericArgs)
allGenericArgs.append(argSet.begin(), argSet.end());
// Gather the generic parameters we need to parameterize the opaque decl.
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgsVec;
if (auto error = _gatherGenericParameters(
outerContext, allGenericArgs, nullptr, /* no parent */
genericParamCounts, allGenericArgsVec, demangler))
return *error;
auto mangledName = descriptor->getUnderlyingTypeArgument(ordinal);
SubstGenericParametersFromMetadata substitutions(descriptor,
allGenericArgsVec.data());
return BuiltType(
swift_getTypeByMangledName(MetadataState::Complete,
mangledName, allGenericArgsVec.data(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getMetadata());
}
BuiltTypeDecl createTypeDecl(NodePointer node,
bool &typeAlias) const {
// Look for a nominal type descriptor based on its mangled name.
return _findContextDescriptor(node, demangler);
}
BuiltProtocolDecl createProtocolDecl(NodePointer node) const {
#if SWIFT_OBJC_INTEROP
// Check for an objective c protocol symbolic reference.
if (auto protocol = _asObjectiveCProtocol(node)) {
return ProtocolDescriptorRef::forObjC(protocol);
}
#endif
// Look for a protocol descriptor based on its mangled name.
if (auto protocol = _findProtocolDescriptor(node, demangler))
return ProtocolDescriptorRef::forSwift(protocol);;
#if SWIFT_OBJC_INTEROP
// Look for a Swift-defined @objc protocol with the Swift 3 mangling that
// is used for Objective-C entities.
auto mangling = mangleNodeAsObjcCString(node, demangler);
if (mangling.isSuccess()) {
const char *objcMangledName = mangling.result();
if (auto protocol = objc_getProtocol(objcMangledName))
return ProtocolDescriptorRef::forObjC(protocol);
}
#endif
return ProtocolDescriptorRef();
}
BuiltProtocolDecl createObjCProtocolDecl(
const std::string &mangledName) const {
#if SWIFT_OBJC_INTEROP
return ProtocolDescriptorRef::forObjC(
objc_getProtocol(mangledName.c_str()));
#else
return ProtocolDescriptorRef();
#endif
}
TypeLookupErrorOr<BuiltType>
createObjCClassType(const std::string &mangledName) const {
#if SWIFT_OBJC_INTEROP
auto objcClass = objc_getClass(mangledName.c_str());
return BuiltType(
swift_getObjCClassMetadata((const ClassMetadata *)objcClass));
#else
return BuiltType();
#endif
}
TypeLookupErrorOr<BuiltType>
createBoundGenericObjCClassType(const std::string &mangledName,
llvm::ArrayRef<BuiltType> args) const {
// Generic arguments of lightweight Objective-C generic classes are not
// reified in the metadata.
return createObjCClassType(mangledName);
}
TypeLookupErrorOr<BuiltType>
createNominalType(BuiltTypeDecl metadataOrTypeDecl, BuiltType parent) const {
// Treat nominal type creation the same way as generic type creation,
// but with no generic arguments at this level.
return createBoundGenericType(metadataOrTypeDecl, { }, parent);
}
TypeLookupErrorOr<BuiltType> createTypeAliasType(BuiltTypeDecl typeAliasDecl,
BuiltType parent) const {
// We can't support sugared types here since we have no way to
// resolve the underlying type of the type alias. However, some
// CF types are mangled as type aliases.
return createNominalType(typeAliasDecl, parent);
}
TypeLookupErrorOr<BuiltType>
createBoundGenericType(BuiltTypeDecl anyTypeDecl,
llvm::ArrayRef<BuiltType> genericArgs,
BuiltType parent) const {
auto typeDecl = dyn_cast<TypeContextDescriptor>(anyTypeDecl);
if (!typeDecl) {
if (auto protocol = dyn_cast<ProtocolDescriptor>(anyTypeDecl))
return BuiltType(_getSimpleProtocolTypeMetadata(protocol));
return BuiltType();
}
if (!parent.isMetadataOrNull()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a bound generic type where "
"the parent type is a pack");
}
// Figure out the various levels of generic parameters we have in
// this type.
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgsVec;
if (auto error = _gatherGenericParameters(typeDecl, genericArgs,
parent.getMetadataOrNull(),
genericParamCounts,
allGenericArgsVec, demangler))
return *error;
// Call the access function.
auto accessFunction = typeDecl->getAccessFunction();
if (!accessFunction) return BuiltType();
return BuiltType(accessFunction(MetadataState::Abstract,
allGenericArgsVec));
}
TypeLookupErrorOr<BuiltType>
createSymbolicExtendedExistentialType(NodePointer shapeNode,
llvm::ArrayRef<BuiltType> genArgs) const {
const ExtendedExistentialTypeShape *shape;
if (shapeNode->getKind() ==
Node::Kind::UniqueExtendedExistentialTypeShapeSymbolicReference) {
shape = reinterpret_cast<const ExtendedExistentialTypeShape *>(
shapeNode->getIndex());
} else if (shapeNode->getKind() ==
Node::Kind::NonUniqueExtendedExistentialTypeShapeSymbolicReference) {
auto nonUniqueShape =
reinterpret_cast<const NonUniqueExtendedExistentialTypeShape *>(
shapeNode->getIndex());
shape = swift_getExtendedExistentialTypeShape(nonUniqueShape);
} else {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an extended existential "
"metatype from an unexpected shape node");
}
auto rawShape =
swift_auth_data_non_address(shape,
SpecialPointerAuthDiscriminators::ExtendedExistentialTypeShape);
auto genSig = rawShape->getGeneralizationSignature();
// Collect the type arguments; they should all be key arguments.
if (genArgs.size() != genSig.getParams().size())
return TYPE_LOOKUP_ERROR_FMT("Length mismatch building an extended "
"existential metatype");
llvm::SmallVector<const void *, 8> allArgsVec;
// FIXME: variadic-generics
for (auto arg : genArgs)
allArgsVec.push_back(arg.getMetadata());
// Collect any other generic arguments.
auto error = _checkGenericRequirements(
genSig.getParams(), genSig.getRequirements(), allArgsVec,
[genArgs](unsigned depth, unsigned index) -> const Metadata * {
if (depth != 0 || index >= genArgs.size())
return (const Metadata*)nullptr;
// FIXME: variadic generics
return genArgs[index].getMetadata();
},
[genArgs](unsigned fullOrdinal, unsigned keyOrdinal) {
if (fullOrdinal >= genArgs.size())
return (const Metadata*)nullptr;
// FIXME: variadic generics
return genArgs[fullOrdinal].getMetadata();
},
[](const Metadata *type, unsigned index) -> const WitnessTable * {
swift_unreachable("never called");
},
nullptr);
if (error)
return *error;
return BuiltType(
swift_getExtendedExistentialTypeMetadata_unique(shape,
allArgsVec.data()));
}
TypeLookupErrorOr<BuiltType> createBuiltinType(StringRef builtinName,
StringRef mangledName) const {
#define BUILTIN_TYPE(Symbol, _) \
if (stringRefEqualsCString(mangledName, #Symbol)) \
return BuiltType(&METADATA_SYM(Symbol).base);
#if !SWIFT_STDLIB_ENABLE_VECTOR_TYPES
#define BUILTIN_VECTOR_TYPE(ElementSymbol, ElementName, Width)
#endif
#include "swift/Runtime/BuiltinTypes.def"
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createMetatypeType(BuiltType instance,
std::optional<Demangle::ImplMetatypeRepresentation> repr =
std::nullopt) const {
if (!instance.isMetadata())
return TYPE_LOOKUP_ERROR_FMT("Tried to build a metatype from a pack");
return BuiltType(swift_getMetatypeMetadata(instance.getMetadata()));
}
TypeLookupErrorOr<BuiltType> createExistentialMetatypeType(
BuiltType instance,
std::optional<Demangle::ImplMetatypeRepresentation> repr =
std::nullopt) const {
if (!instance.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an existential metatype "
"from a pack");
}
auto *instanceMetadata = instance.getMetadata();
if (instanceMetadata->getKind() != MetadataKind::Existential
&& instanceMetadata->getKind() != MetadataKind::ExistentialMetatype) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build an existential metatype from "
"a type that was neither an existential nor "
"an existential metatype");
}
return BuiltType(swift_getExistentialMetatypeMetadata(instanceMetadata));
}
TypeLookupErrorOr<BuiltType>
createProtocolCompositionType(llvm::ArrayRef<BuiltProtocolDecl> protocols,
BuiltType superclass, bool isClassBound,
bool forRequirement = true) const {
// Determine whether we have a class bound.
ProtocolClassConstraint classConstraint = ProtocolClassConstraint::Any;
if (isClassBound || superclass) {
classConstraint = ProtocolClassConstraint::Class;
} else {
for (auto protocol : protocols) {
if (protocol.getClassConstraint() == ProtocolClassConstraint::Class) {
classConstraint = ProtocolClassConstraint::Class;
break;
}
}
}
if (!superclass.isMetadataOrNull()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a protocol composition where "
"the superclass type is a pack");
}
return BuiltType(
swift_getExistentialTypeMetadata(classConstraint,
superclass.getMetadataOrNull(),
protocols.size(), protocols.data()));
}
TypeLookupErrorOr<BuiltType>
createConstrainedExistentialType(
BuiltType base,
llvm::ArrayRef<BuiltRequirement> rs,
llvm::ArrayRef<BuiltInverseRequirement> InverseRequirements) const {
// FIXME: Runtime plumbing.
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createDynamicSelfType(BuiltType selfType) const {
// Free-standing mangled type strings should not contain DynamicSelfType.
return BuiltType();
}
void pushGenericParams(llvm::ArrayRef<std::pair<unsigned, unsigned>> parameterPacks) {}
void popGenericParams() {}
BuiltType
createGenericTypeParameterType(unsigned depth, unsigned index) const {
// Use the callback, when provided.
if (substGenericParameter) {
BuiltType substType(substGenericParameter(depth, index));
// If we're in the middle of a pack expansion, return the correct element
// from the substituted pack type.
if (!ActivePackExpansions.empty()) {
size_t index = ActivePackExpansions.back().second;
if (substType.isMetadataPack()) {
auto substPack = substType.getMetadataPack();
if (index >= substPack.getNumElements()) {
swift::fatalError(0, "Pack index %zu exceeds pack length %zu\n",
index, substPack.getNumElements());
}
return BuiltType(substPack.getElements()[index]);
}
}
return substType;
}
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createFunctionType(
llvm::ArrayRef<Demangle::FunctionParam<BuiltType>> params,
BuiltType result, FunctionTypeFlags flags,
ExtendedFunctionTypeFlags extFlags,
FunctionMetadataDifferentiabilityKind diffKind,
BuiltType globalActorType, BuiltType thrownError) const {
assert(
(flags.isDifferentiable() && diffKind.isDifferentiable()) ||
(!flags.isDifferentiable() && !diffKind.isDifferentiable()));
if (!result.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"the result type is a pack");
}
llvm::SmallVector<const Metadata *, 8> paramTypes;
llvm::SmallVector<uint32_t, 8> paramFlags;
// Fill in the parameters.
paramTypes.reserve(params.size());
if (flags.hasParameterFlags())
paramFlags.reserve(params.size());
for (const auto &param : params) {
if (!param.getType().isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"a parameter type is a pack");
}
paramTypes.push_back(param.getType().getMetadata());
if (flags.hasParameterFlags())
paramFlags.push_back(param.getFlags().getIntValue());
}
if (globalActorType) {
if (!globalActorType.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a function type where "
"the global actor type is a pack");
}
flags = flags.withGlobalActor(true);
}
return BuiltType(
swift_getExtendedFunctionTypeMetadata(
flags, diffKind, paramTypes.data(),
flags.hasParameterFlags() ? paramFlags.data() : nullptr,
result.getMetadata(), globalActorType.getMetadataOrNull(), extFlags,
thrownError.getMetadataOrNull()));
}
TypeLookupErrorOr<BuiltType> createImplFunctionType(
Demangle::ImplParameterConvention calleeConvention,
Demangle::ImplCoroutineKind coroutineKind,
llvm::ArrayRef<Demangle::ImplFunctionParam<BuiltType>> params,
llvm::ArrayRef<Demangle::ImplFunctionYield<BuiltType>> yields,
llvm::ArrayRef<Demangle::ImplFunctionResult<BuiltType>> results,
std::optional<Demangle::ImplFunctionResult<BuiltType>> errorResult,
ImplFunctionTypeFlags flags) {
// We can't realize the metadata for a SILFunctionType.
return BuiltType();
}
TypeLookupErrorOr<BuiltType>
createTupleType(llvm::ArrayRef<BuiltType> elements,
llvm::ArrayRef<StringRef> labels) const {
// Unwrap unlabeled one-element tuples.
//
// FIXME: The behavior of one-element labeled tuples is inconsistent
// throughout the different re-implementations of type substitution
// and pack expansion.
if (elements.size() == 1 && labels[0].empty())
return elements[0];
for (auto element : elements) {
if (!element.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Tried to build a tuple type where "
"an element type is a pack");
}
}
std::string labelStr;
for (unsigned i : indices(labels)) {
auto label = labels[i];
if (label.empty()) {
if (!labelStr.empty())
labelStr += ' ';
continue;
}
// Add spaces to terminate all the previous labels if this
// is the first we've seen.
if (labelStr.empty()) labelStr.append(i, ' ');
// Add the label and its terminator.
labelStr += label;
labelStr += ' ';
}
auto flags = TupleTypeFlags().withNumElements(elements.size());
if (!labelStr.empty())
flags = flags.withNonConstantLabels(true);
return BuiltType(
swift_getTupleTypeMetadata(
MetadataState::Abstract, flags,
reinterpret_cast<const Metadata * const *>(elements.data()),
labelStr.empty() ? nullptr : labelStr.c_str(),
/*proposedWitnesses=*/nullptr));
}
TypeLookupErrorOr<BuiltType>
createPackType(llvm::ArrayRef<BuiltType> elements) const {
for (auto element : elements) {
if (!element.isMetadata()) {
return TYPE_LOOKUP_ERROR_FMT("Can't have nested metadata packs");
}
}
MetadataPackPointer pack(swift_allocateMetadataPack(
reinterpret_cast<const Metadata * const *>(elements.data()),
elements.size()));
return BuiltType(pack);
}
TypeLookupErrorOr<BuiltType>
createSILPackType(llvm::ArrayRef<BuiltType> elements, bool isElementAddress) const {
return TYPE_LOOKUP_ERROR_FMT("Lowered SILPackType cannot be demangled");
}
size_t beginPackExpansion(BuiltType countType) {
if (!countType.isMetadataPack()) {
swift::fatalError(0, "Pack expansion count type should be a pack\n");
}
auto pack = countType.getMetadataPack();
ActivePackExpansions.emplace_back(pack, /*index=*/0);
return pack.getNumElements();
}
void advancePackExpansion(size_t index) {
if (ActivePackExpansions.empty()) {
swift::fatalError(0, "advancePackExpansion() without beginPackExpansion()\n");
}
ActivePackExpansions.back().second = index;
}
BuiltType createExpandedPackElement(BuiltType patternType) {
return patternType;
}
void endPackExpansion() {
if (ActivePackExpansions.empty()) {
swift::fatalError(0, "endPackExpansion() without beginPackExpansion()\n");
}
ActivePackExpansions.pop_back();
}
TypeLookupErrorOr<BuiltType> createDependentMemberType(StringRef name,
BuiltType base) const {
return TYPE_LOOKUP_ERROR_FMT("Unbound dependent member type cannot be demangled");
}
TypeLookupErrorOr<BuiltType>
createDependentMemberType(StringRef name, BuiltType base,
BuiltProtocolDecl protocol) const {
#if SWIFT_OBJC_INTEROP
if (protocol.isObjC())
return BuiltType();
#endif
auto swiftProtocol = protocol.getSwiftProtocol();
// Look for the named associated type within the protocol.
auto assocType = findAssociatedTypeByName(swiftProtocol, name);
if (!assocType) return BuiltType();
auto projectDependentMemberType = [&](const Metadata *baseMetadata) -> const Metadata * {
auto witnessTable = swift_conformsToProtocolCommon(baseMetadata, swiftProtocol);
if (!witnessTable)
return nullptr;
// Call the associated type access function.
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
auto tbl = reinterpret_cast<RelativeWitnessTable *>(
const_cast<WitnessTable *>(witnessTable));
return swift_getAssociatedTypeWitnessRelative(
MetadataState::Abstract,
tbl,
baseMetadata,
swiftProtocol->getRequirementBaseDescriptor(),
*assocType).Value;
#else
return swift_getAssociatedTypeWitness(
MetadataState::Abstract,
const_cast<WitnessTable *>(witnessTable),
baseMetadata,
swiftProtocol->getRequirementBaseDescriptor(),
*assocType).Value;
#endif
};
if (base.isMetadata()) {
return BuiltType(projectDependentMemberType(base.getMetadata()));
} else {
MetadataPackPointer basePack = base.getMetadataPack();
llvm::SmallVector<const Metadata *, 4> packElts;
for (size_t i = 0, e = basePack.getNumElements(); i < e; ++i) {
auto *projectedElt = projectDependentMemberType(basePack.getElements()[i]);
packElts.push_back(projectedElt);
}
return BuiltType(swift_allocateMetadataPack(packElts.data(), packElts.size()));
}
}
#define REF_STORAGE(Name, ...) \
TypeLookupErrorOr<BuiltType> create##Name##StorageType(BuiltType base) { \
ReferenceOwnership.set##Name(); \
return base; \
}
#include "swift/AST/ReferenceStorage.def"
TypeLookupErrorOr<BuiltType> createSILBoxType(BuiltType base) const {
// FIXME: Implement.
return BuiltType();
}
struct BuiltSILBoxField {
BuiltType Type;
bool Mutable;
BuiltSILBoxField(BuiltType type, bool isMutable)
: Type(type), Mutable(isMutable) {}
};
BuiltLayoutConstraint getLayoutConstraint(LayoutConstraintKind kind) {
return {};
}
BuiltLayoutConstraint
getLayoutConstraintWithSizeAlign(LayoutConstraintKind kind, unsigned size,
unsigned alignment) {
return {};
}
BuiltInverseRequirement createInverseRequirement(
BuiltType subjectType, InvertibleProtocolKind kind) {
return BuiltInverseRequirement{subjectType, kind};
}
TypeLookupErrorOr<BuiltType> createSILBoxTypeWithLayout(
llvm::ArrayRef<BuiltSILBoxField> Fields,
llvm::ArrayRef<BuiltSubstitution> Substitutions,
llvm::ArrayRef<BuiltRequirement> Requirements,
llvm::ArrayRef<BuiltInverseRequirement> InverseRequirements) const {
// FIXME: Implement.
return BuiltType();
}
bool isExistential(BuiltType) {
// FIXME: Implement.
return true;
}
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
TypeLookupErrorOr<BuiltType> createOptionalType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createArrayType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createInlineArrayType(BuiltType count,
BuiltType element) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createDictionaryType(BuiltType key,
BuiltType value) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createParenType(BuiltType base) {
// Mangled types for building metadata don't contain sugared types
return BuiltType();
}
TypeLookupErrorOr<BuiltType> createIntegerType(intptr_t value) {
// Note: We explicitly ignore the value check here because when the
// integer happens to be '0', we'll compare a MetadataPackOrValue against
// 'nullptr' which this is. We know this is still a good value for
// integers.
return TypeLookupErrorOr<BuiltType>(BuiltType(value),
/*ignoreValueCheck*/ true);
}
TypeLookupErrorOr<BuiltType> createNegativeIntegerType(intptr_t value) {
return BuiltType(value);
}
TypeLookupErrorOr<BuiltType> createBuiltinFixedArrayType(BuiltType size,
BuiltType element) {
return BuiltType(swift_getFixedArrayTypeMetadata(MetadataState::Abstract,
size.getValue(),
element.getMetadata()));
}
};
}
SWIFT_CC(swift)
static TypeLookupErrorOr<TypeInfo>
swift_getTypeByMangledNodeImpl(MetadataRequest request, Demangler &demangler,
Demangle::NodePointer node,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
// Simply call an accessor function if that's all we got.
if (node->getKind() == Node::Kind::AccessorFunctionReference) {
// The accessor function is passed the pointer to the original argument
// buffer. It's assumed to match the generic context.
auto accessorFn =
(const Metadata *(*)(const void * const *))node->getIndex();
auto type = accessorFn(origArgumentVector);
// We don't call checkMetadataState here since the result may not really
// *be* type metadata. If the accessor returns a type, it is responsible
// for completing the metadata.
return TypeInfo{MetadataResponse{type, MetadataState::Complete},
TypeReferenceOwnership()};
}
// TODO: propagate the request down to the builder instead of calling
// swift_checkMetadataState after the fact.
DecodedMetadataBuilder builder(demangler, substGenericParam,
substWitnessTable);
auto type = Demangle::decodeMangledType(builder, node);
if (type.isError()) {
return *type.getError();
}
if (!type.getType()) {
return TypeLookupError("NULL type but no error provided");
}
if (!type.getType().isMetadata()) {
return TypeLookupError("Cannot demangle a free-standing pack");
}
return TypeInfo{swift_checkMetadataState(request,
type.getType().getMetadata()),
builder.getReferenceOwnership()};
}
SWIFT_CC(swift)
static TypeLookupErrorOr<TypeInfo>
swift_getTypeByMangledNameImpl(MetadataRequest request, StringRef typeName,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
NodePointer node;
// Check whether this is the convenience syntax "ModuleName.ClassName".
auto getDotPosForConvenienceSyntax = [&]() -> size_t {
size_t dotPos = llvm::StringRef::npos;
for (unsigned i = 0; i < typeName.size(); ++i) {
// Should only contain one dot.
if (typeName[i] == '.') {
if (dotPos == llvm::StringRef::npos) {
dotPos = i;
continue;
} else {
return llvm::StringRef::npos;
}
}
// Should not contain symbolic references.
if ((unsigned char)typeName[i] <= '\x1F') {
return llvm::StringRef::npos;
}
}
return dotPos;
};
auto dotPos = getDotPosForConvenienceSyntax();
if (dotPos != llvm::StringRef::npos) {
// Form a demangle tree for this class.
NodePointer classNode = demangler.createNode(Node::Kind::Class);
NodePointer moduleNode = demangler.createNode(Node::Kind::Module,
typeName.substr(0, dotPos));
NodePointer nameNode = demangler.createNode(Node::Kind::Identifier,
typeName.substr(dotPos + 1));
classNode->addChild(moduleNode, demangler);
classNode->addChild(nameNode, demangler);
node = classNode;
} else {
// Demangle the type name.
node = demangler.demangleTypeRef(typeName);
if (!node) {
return TypeInfo();
}
}
return swift_getTypeByMangledNode(request, demangler, node,
origArgumentVector,
substGenericParam, substWitnessTable);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInEnvironment(
const char *typeNameStart,
size_t typeNameLength,
const TargetGenericEnvironment<InProcess> *environment,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(environment, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
MetadataState::Complete, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInEnvironmentInMetadataState(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetGenericEnvironment<InProcess> *environment,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(environment, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
(MetadataState)metadataState, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
static
const Metadata * _Nullable
swift_getTypeByMangledNameInContextImpl(
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(context, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
MetadataState::Complete, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContext2(
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
return swift_getTypeByMangledNameInContextImpl(typeNameStart, typeNameLength,
context, genericArgs);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContext(
const char *typeNameStart,
size_t typeNameLength,
const void *context,
const void * const *genericArgs) {
// This call takes `context` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getTypeByMangledNameInContextImpl.
return swift_getTypeByMangledNameInContextImpl(
typeNameStart, typeNameLength,
static_cast<const TargetContextDescriptor<InProcess> *>(context),
genericArgs);
}
static
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataStateImpl(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
SubstGenericParametersFromMetadata substitutions(context, genericArgs);
TypeLookupErrorOr<TypeInfo> result = swift_getTypeByMangledName(
(MetadataState)metadataState, typeName,
genericArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (result.isError()
&& runtime::environment::SWIFT_DEBUG_FAILED_TYPE_LOOKUP()) {
TypeLookupError *error = result.getError();
char *errorString = error->copyErrorString();
swift::warning(0, "failed type lookup for %.*s: %s\n",
(int)typeNameLength, typeNameStart,
errorString);
error->freeErrorString(errorString);
return nullptr;
}
return result.getType().getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataState2(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const TargetContextDescriptor<InProcess> *context,
const void * const *genericArgs) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
return swift_getTypeByMangledNameInContextInMetadataStateImpl(
metadataState, typeNameStart, typeNameLength, context, genericArgs);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const Metadata * _Nullable
swift_getTypeByMangledNameInContextInMetadataState(
size_t metadataState,
const char *typeNameStart,
size_t typeNameLength,
const void *context,
const void * const *genericArgs) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getTypeByMangledNameInContextInMetadataState2.
return swift_getTypeByMangledNameInContextInMetadataStateImpl(
metadataState, typeNameStart, typeNameLength,
static_cast<const TargetContextDescriptor<InProcess> *>(context),
genericArgs);
}
/// Demangle a mangled name, but don't allow symbolic references.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const Metadata *_Nullable
swift_stdlib_getTypeByMangledNameUntrusted(const char *typeNameStart,
size_t typeNameLength) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
for (char c : typeName) {
if (c >= '\x01' && c <= '\x1F')
return nullptr;
}
return swift_getTypeByMangledName(MetadataState::Complete, typeName, nullptr,
{}, {}).getType().getMetadata();
}
TypeLookupErrorOr<MetadataPackPointer>
swift::getTypePackByMangledName(StringRef typeName,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
NodePointer node = demangler.demangleTypeRef(typeName);
if (!node)
return TypeLookupError("Demangling failed");
DecodedMetadataBuilder builder(demangler, substGenericParam,
substWitnessTable);
auto type = Demangle::decodeMangledType(builder, node);
if (type.isError()) {
return *type.getError();
}
if (!type.getType()) {
return TypeLookupError("NULL type but no error provided");
}
if (!type.getType().isMetadataPack()) {
return TypeLookupError("This entry point is only for packs");
}
return type.getType().getMetadataPack();
}
TypeLookupErrorOr<intptr_t>
swift::getTypeValueByMangledName(StringRef typeName,
const void *const *origArgumentVector,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
NodePointer node = demangler.demangleTypeRef(typeName);
if (!node)
return TypeLookupError("Demangling failed");
DecodedMetadataBuilder builder(demangler, substGenericParam,
substWitnessTable);
auto type = Demangle::decodeMangledType(builder, node);
if (type.isError())
return *type.getError();
// Note: We explicitly ignore the value check here because when the
// integer happens to be '0', we'll do '!value' which in this case converts
// the integer to a boolean, but '0' is a valid value.
return TypeLookupErrorOr<intptr_t>(type.getType().getValue(),
/*ignoreValueCheck*/ true);
}
// ==== Function metadata functions ----------------------------------------------
static std::optional<llvm::StringRef> cstrToStringRef(const char *typeNameStart,
size_t typeNameLength) {
llvm::StringRef typeName(typeNameStart, typeNameLength);
for (char c : typeName) {
if (c >= '\x01' && c <= '\x1F')
return std::nullopt;
}
return typeName;
}
/// Given mangling for a method, extract its function type in demangled
/// representation.
static NodePointer extractFunctionTypeFromMethod(Demangler &demangler,
const char *typeNameStart,
size_t typeNameLength) {
std::optional<llvm::StringRef> typeName =
cstrToStringRef(typeNameStart, typeNameLength);
if (!typeName)
return nullptr;
auto node = demangler.demangleSymbol(*typeName);
if (!node)
return nullptr;
node = node->findByKind(Node::Kind::Function, /*maxDepth=*/2);
if (!node)
return nullptr;
node = node->findByKind(Node::Kind::Type, /*maxDepth=*/2);
if (!node)
return nullptr;
// If this is a generic function, it requires special handling.
if (auto genericType =
node->findByKind(Node::Kind::DependentGenericType, /*maxDepth=*/1)) {
node = genericType->findByKind(Node::Kind::Type, /*maxDepth=*/1);
return node->findByKind(Node::Kind::FunctionType, /*maxDepth=*/1);
}
auto funcType = node->getFirstChild();
assert(funcType->getKind() == Node::Kind::FunctionType);
return funcType;
}
/// For a single unlabeled parameter this function returns whole
/// `ArgumentTuple`, for everything else a `Tuple` element inside it.
static NodePointer getParameterList(NodePointer funcType) {
assert(funcType->getKind() == Node::Kind::FunctionType);
auto parameterContainer =
funcType->findByKind(Node::Kind::ArgumentTuple, /*maxDepth=*/1);
assert(parameterContainer->getNumChildren() > 0);
// This is a type that covers entire parameter list.
auto parameterList = parameterContainer->getFirstChild();
assert(parameterList->getKind() == Node::Kind::Type);
auto parameters = parameterList->getFirstChild();
if (parameters->getKind() == Node::Kind::Tuple)
return parameters;
return parameterContainer;
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
unsigned swift_func_getParameterCount(const char *typeNameStart,
size_t typeNameLength) {
StackAllocatedDemangler<1024> demangler;
auto funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return -1;
auto parameterList = getParameterList(funcType);
return parameterList->getNumChildren();
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
const Metadata *_Nullable
swift_func_getReturnTypeInfo(const char *typeNameStart, size_t typeNameLength,
GenericEnvironmentDescriptor *genericEnv,
const void * const *genericArguments) {
StackAllocatedDemangler<1024> demangler;
auto *funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return nullptr;
auto resultType = funcType->getLastChild();
if (!resultType)
return nullptr;
assert(resultType->getKind() == Node::Kind::ReturnType);
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
auto request = MetadataRequest(MetadataState::Complete);
NodePointer nodePointer = resultType->getFirstChild();
auto typeInfoOrErr = swift_getTypeByMangledNode(
request, demangler, nodePointer,
/*arguments=*/genericArguments,
/*substGenericParam=*/
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
/*SubstDependentWitnessTableFn=*/
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
if (typeInfoOrErr.isError()) {
return nullptr;
}
auto typeInfo = typeInfoOrErr.getType();
return typeInfo.getMetadata();
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
unsigned
swift_func_getParameterTypeInfo(
const char *typeNameStart, size_t typeNameLength,
GenericEnvironmentDescriptor *genericEnv,
const void * const *genericArguments,
Metadata const **types, unsigned typesLength) {
if (typesLength < 0) return -1;
StackAllocatedDemangler<1024> demangler;
auto *funcType =
extractFunctionTypeFromMethod(demangler, typeNameStart, typeNameLength);
if (!funcType)
return -1;
auto parameterList = getParameterList(funcType);
// Only successfully return if the expected parameter count is the same
// as space prepared for it in the buffer.
if (!(parameterList && parameterList->getNumChildren() == typesLength))
return -2;
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
// for each parameter (TupleElement), store it into the provided buffer
for (unsigned index = 0; index != typesLength; ++index) {
auto nodePointer = parameterList->getChild(index);
if (nodePointer->getKind() == Node::Kind::TupleElement) {
assert(nodePointer->getNumChildren() == 1);
nodePointer = nodePointer->getFirstChild();
}
assert(nodePointer->getKind() == Node::Kind::Type);
auto request = MetadataRequest(MetadataState::Complete);
auto typeInfoOrErr = swift_getTypeByMangledNode(
request, demangler, nodePointer,
/*arguments=*/genericArguments,
/*substGenericParam=*/
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
/*SubstDependentWitnessTableFn=*/
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
});
if (typeInfoOrErr.isError()) {
return -3; // Failed to decode a type.
}
auto typeInfo = typeInfoOrErr.getType();
types[index] = typeInfo.getMetadata();
} // end foreach parameter
return typesLength;
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
BufferAndSize
swift_distributed_getWitnessTables(GenericEnvironmentDescriptor *genericEnv,
const void *const *genericArguments) {
assert(genericEnv);
assert(genericArguments);
llvm::SmallVector<const void *, 4> witnessTables;
SubstGenericParametersFromMetadata substFn(genericEnv, genericArguments);
auto error = _checkGenericRequirements(
genericEnv->getGenericParameters(),
genericEnv->getGenericRequirements(), witnessTables,
[&substFn](unsigned depth, unsigned index) {
return substFn.getMetadata(depth, index).Ptr;
},
[&substFn](unsigned fullOrdinal, unsigned keyOrdinal) {
return substFn.getMetadataKeyArgOrdinal(keyOrdinal).Ptr;
},
[&substFn](const Metadata *type, unsigned index) {
return substFn.getWitnessTable(type, index);
},
nullptr);
if (error) {
return {/*ptr=*/nullptr, -1};
}
if (witnessTables.empty())
return {/*ptr=*/nullptr, 0};
void **tables = (void **)malloc(witnessTables.size() * sizeof(void *));
for (unsigned i = 0, n = witnessTables.size(); i != n; ++i)
tables[i] = const_cast<void *>(witnessTables[i]);
return {tables, static_cast<intptr_t>(witnessTables.size())};
}
// ==== End of Function metadata functions ---------------------------------------
static
MetadataResponse
swift_getOpaqueTypeMetadataImpl(MetadataRequest request,
const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
auto mangledName = descriptor->getUnderlyingTypeArgument(index);
SubstGenericParametersFromMetadata substitutions(descriptor, arguments);
return swift_getTypeByMangledName(request.getState(),
mangledName, arguments,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getResponse();
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
MetadataResponse
swift_getOpaqueTypeMetadata2(MetadataRequest request,
const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
descriptor = swift_auth_data_non_address(
descriptor, SpecialPointerAuthDiscriminators::OpaqueTypeDescriptor);
return swift_getOpaqueTypeMetadataImpl(request, arguments, descriptor, index);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
MetadataResponse
swift_getOpaqueTypeMetadata(MetadataRequest request,
const void * const *arguments,
const void *descriptor,
unsigned index) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getOpaqueTypeMetadataImpl.
return swift_getOpaqueTypeMetadataImpl(
request, arguments, static_cast<const OpaqueTypeDescriptor *>(descriptor),
index);
}
static const WitnessTable *
swift_getOpaqueTypeConformanceImpl(const void *const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
auto response = swift_getOpaqueTypeMetadataImpl(
MetadataRequest(MetadataState::Complete), arguments, descriptor, index);
return (const WitnessTable *)response.Value;
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const WitnessTable *
swift_getOpaqueTypeConformance2(const void * const *arguments,
const OpaqueTypeDescriptor *descriptor,
unsigned index) {
descriptor = swift_auth_data_non_address(
descriptor, SpecialPointerAuthDiscriminators::OpaqueTypeDescriptor);
return swift_getOpaqueTypeConformanceImpl(arguments, descriptor, index);
}
SWIFT_CC(swift) SWIFT_RUNTIME_EXPORT
const WitnessTable *
swift_getOpaqueTypeConformance(const void * const *arguments,
const void *descriptor,
unsigned index) {
// This call takes `descriptor` without a ptrauth signature. We
// declare it as `void *` to avoid the implicit ptrauth we get from
// the ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_getOpaqueTypeConformanceImpl.
return swift_getOpaqueTypeConformanceImpl(
arguments, static_cast<const OpaqueTypeDescriptor *>(descriptor), index);
}
SWIFT_RUNTIME_STDLIB_SPI
SWIFT_CC(swift)
const Metadata *swift::_swift_instantiateCheckedGenericMetadata(
const TypeContextDescriptor *context,
const void * const *genericArgs,
size_t genericArgsSize) {
context = swift_auth_data_non_address(
context, SpecialPointerAuthDiscriminators::ContextDescriptor);
if (!context->isGeneric()) {
return nullptr;
}
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
// _instantiateCheckedGenericMetadata expects generic args to NOT begin with
// shape classes.
llvm::ArrayRef<const void *> genericArgsRef(genericArgs, genericArgsSize);
llvm::SmallVector<MetadataPackOrValue, 8> writtenGenericArgs;
// If we fail to fill in all of the generic parameters, just fail.
if (!_gatherWrittenGenericParameters(context, genericArgsRef,
writtenGenericArgs, demangler)) {
return nullptr;
}
llvm::SmallVector<unsigned, 8> genericParamCounts;
llvm::SmallVector<const void *, 8> allGenericArgs;
auto result = _gatherGenericParameters(context, writtenGenericArgs,
/* parent */ nullptr,
genericParamCounts, allGenericArgs,
demangler);
// _gatherGenericParameters returns std::nullopt on success.
if (result.has_value()) {
return nullptr;
}
auto accessFunction = context->getAccessFunction();
return accessFunction(MetadataState::Complete, allGenericArgs).Value;
}
#if SWIFT_OBJC_INTEROP
// Return the ObjC class for the given type name.
// This gets installed as a callback from libobjc.
static bool validateObjCMangledName(const char *_Nonnull typeName) {
// Accept names with a mangling prefix.
if (getManglingPrefixLength(typeName))
return true;
// Accept names that start with a digit (unprefixed mangled names).
if (isdigit(typeName[0]))
return true;
// Accept names that contain a dot.
if (strchr(typeName, '.'))
return true;
// Reject anything else.
return false;
}
// FIXME: delete this #if and dlsym once we don't
// need to build with older libobjc headers
#if !OBJC_GETCLASSHOOK_DEFINED
using objc_hook_getClass = BOOL(*)(const char * _Nonnull name,
Class _Nullable * _Nonnull outClass);
#endif
static objc_hook_getClass OldGetClassHook;
static BOOL
getObjCClassByMangledName(const char * _Nonnull typeName,
Class _Nullable * _Nonnull outClass) {
// Demangle old-style class and protocol names, which are still used in the
// ObjC metadata.
StringRef typeStr(typeName);
const Metadata *metadata = nullptr;
if (typeStr.starts_with("_Tt")) {
Demangler demangler;
auto node = demangler.demangleSymbol(typeName);
if (!node)
return NO;
// If we successfully demangled but there is a suffix, then we did NOT use
// the entire name, and this is NOT a match. Reject it.
if (node->hasChildren() &&
node->getLastChild()->getKind() == Node::Kind::Suffix)
return NO;
metadata = swift_getTypeByMangledNode(
MetadataState::Complete, demangler, node,
nullptr,
/* no substitutions */
[&](unsigned depth, unsigned index) { return nullptr; },
[&](const Metadata *type, unsigned index) { return nullptr; }
).getType().getMetadata();
} else {
if (validateObjCMangledName(typeName))
metadata = swift_stdlib_getTypeByMangledNameUntrusted(typeStr.data(),
typeStr.size());
}
if (metadata) {
auto objcClass =
reinterpret_cast<Class>(
const_cast<ClassMetadata *>(
swift_getObjCClassFromMetadataConditional(metadata)));
if (objcClass) {
*outClass = objcClass;
return YES;
}
}
return OldGetClassHook(typeName, outClass);
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
__attribute__((constructor))
static void installGetClassHook() {
if (SWIFT_RUNTIME_WEAK_CHECK(objc_setHook_getClass)) {
SWIFT_RUNTIME_WEAK_USE(objc_setHook_getClass(getObjCClassByMangledName, &OldGetClassHook));
}
}
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
#endif
unsigned SubstGenericParametersFromMetadata::
buildDescriptorPath(const ContextDescriptor *context,
Demangler &borrowFrom) const {
assert(sourceKind == SourceKind::Metadata);
// Terminating condition: we don't have a context.
if (!context)
return 0;
DemanglerForRuntimeTypeResolution<> demangler;
demangler.providePreallocatedMemory(borrowFrom);
if (auto extension = _findExtendedTypeContextDescriptor(context, demangler)) {
// If we have a nominal type extension descriptor, extract the extended type
// and use that. If the extension is not nominal, then we can use the
// extension's own signature.
context = extension;
}
// Add the parent's contribution to the descriptor path.
const ContextDescriptor *parent = context->Parent.get();
unsigned numKeyGenericParamsInParent = buildDescriptorPath(parent, demangler);
// If this context is non-generic, we're done.
if (!context->isGeneric())
return numKeyGenericParamsInParent;
// Count the number of key generic params at this level.
auto allGenericParams = baseContext->getGenericContext()->getGenericParams();
unsigned parentCount = parent->getNumGenericParams();
unsigned localCount = context->getNumGenericParams();
auto localGenericParams = allGenericParams.slice(parentCount,
localCount - parentCount);
unsigned numKeyGenericParamsHere = 0;
bool hasNonKeyGenericParams = false;
for (const auto &genericParam : localGenericParams) {
if (genericParam.hasKeyArgument())
++numKeyGenericParamsHere;
else
hasNonKeyGenericParams = true;
}
// Form the path element if there are any new generic parameters.
if (localCount > parentCount)
descriptorPath.push_back(PathElement{localGenericParams,
context->getNumGenericParams(),
numKeyGenericParamsInParent,
numKeyGenericParamsHere,
hasNonKeyGenericParams});
return numKeyGenericParamsInParent + numKeyGenericParamsHere;
}
/// Builds a path from the generic environment.
unsigned SubstGenericParametersFromMetadata::
buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const {
unsigned totalParamCount = 0;
unsigned totalKeyParamCount = 0;
auto genericParams = environment->getGenericParameters();
for (unsigned numLocalParams : environment->getGenericParameterCounts()) {
// Adjust totalParamCount so we have the # of local parameters.
numLocalParams -= totalParamCount;
// Get the local generic parameters.
auto localGenericParams = genericParams.slice(0, numLocalParams);
genericParams = genericParams.slice(numLocalParams);
// Count the parameters.
unsigned numKeyGenericParamsInParent = totalKeyParamCount;
unsigned numKeyGenericParamsHere = 0;
bool hasNonKeyGenericParams = false;
for (const auto &genericParam : localGenericParams) {
if (genericParam.hasKeyArgument())
++numKeyGenericParamsHere;
else
hasNonKeyGenericParams = true;
}
// Update totals.
totalParamCount += numLocalParams;
totalKeyParamCount += numKeyGenericParamsHere;
// Add to the descriptor path.
descriptorPath.push_back(PathElement{localGenericParams,
totalParamCount,
numKeyGenericParamsInParent,
numKeyGenericParamsHere,
hasNonKeyGenericParams});
}
return totalKeyParamCount;
}
unsigned SubstGenericParametersFromMetadata::buildShapePath(
const TargetExtendedExistentialTypeShape<InProcess> *shape) const {
unsigned totalParamCount = 0;
auto genSig = shape->getGeneralizationSignature();
if (!genSig.getParams().empty()) {
totalParamCount += genSig.getParams().size();
descriptorPath.push_back(PathElement{genSig.getParams(),
totalParamCount,
/*numKeyGenericParamsInParent*/ 0,
(unsigned)genSig.getParams().size(),
/*hasNonKeyGenericParams*/ false});
}
const unsigned genSigParamCount = genSig.getParams().size();
auto reqSig = shape->getRequirementSignature();
assert(reqSig.getParams().size() > genSig.getParams().size());
{
auto remainingParams = reqSig.getParams().drop_front(genSig.getParams().size());
totalParamCount += remainingParams.size();
descriptorPath.push_back(PathElement{remainingParams,
totalParamCount,
genSigParamCount,
(unsigned)remainingParams.size(),
/*hasNonKeyGenericParams*/ false});
}
// All parameters in this signature are key parameters.
return totalParamCount;
}
void SubstGenericParametersFromMetadata::setup() const {
if (!descriptorPath.empty())
return;
switch (sourceKind) {
case SourceKind::Metadata: {
assert(baseContext);
DemanglerForRuntimeTypeResolution<StackAllocatedDemangler<2048>> demangler;
numKeyGenericParameters = buildDescriptorPath(baseContext, demangler);
if (auto *genericCtx = baseContext->getGenericContext())
numShapeClasses = genericCtx->getGenericPackShapeHeader().NumShapeClasses;
return;
}
case SourceKind::Environment: {
assert(environment);
numKeyGenericParameters = buildEnvironmentPath(environment);
// FIXME: Variadic generics
return;
}
case SourceKind::Shape: {
assert(shape);
numKeyGenericParameters = buildShapePath(shape);
// FIXME: Variadic generics
return;
}
}
}
MetadataPackOrValue
SubstGenericParametersFromMetadata::getMetadata(
unsigned depth, unsigned index) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return MetadataPackOrValue();
// On first access, compute the descriptor path.
setup();
// If the depth is too great, there is nothing to do.
if (depth >= descriptorPath.size())
return MetadataPackOrValue();
/// Retrieve the descriptor path element at this depth.
auto &pathElement = descriptorPath[depth];
// Check whether the index is clearly out of bounds.
if (index >= pathElement.numTotalGenericParams)
return MetadataPackOrValue();
// Compute the flat index.
unsigned flatIndex = pathElement.numKeyGenericParamsInParent + numShapeClasses;
if (pathElement.hasNonKeyGenericParams > 0) {
// We have non-key generic parameters at this level, so the index needs to
// be checked more carefully.
auto genericParams = pathElement.localGenericParams;
// Make sure that the requested parameter itself has a key argument.
if (!genericParams[index].hasKeyArgument())
return MetadataPackOrValue();
// Increase the flat index for each parameter with a key argument, up to
// the given index.
for (const auto &genericParam : genericParams.slice(0, index)) {
if (genericParam.hasKeyArgument())
++flatIndex;
}
} else {
flatIndex += index;
}
return MetadataPackOrValue(genericArgs[flatIndex]);
}
MetadataPackOrValue SubstGenericParametersFromMetadata::getMetadataKeyArgOrdinal(
unsigned ordinal) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return MetadataPackOrValue();
// On first access, compute the descriptor path.
setup();
return MetadataPackOrValue(genericArgs[numShapeClasses + ordinal]);
}
const WitnessTable *
SubstGenericParametersFromMetadata::getWitnessTable(const Metadata *type,
unsigned index) const {
// Don't attempt anything if we have no generic parameters.
if (genericArgs == nullptr)
return nullptr;
// On first access, compute the descriptor path.
setup();
return (const WitnessTable *)genericArgs[
index + numKeyGenericParameters + numShapeClasses];
}
MetadataPackOrValue SubstGenericParametersFromWrittenArgs::getMetadata(
unsigned depth, unsigned index) const {
if (auto flatIndex =
_depthIndexToFlatIndex(depth, index, genericParamCounts)) {
if (*flatIndex < allGenericArgs.size()) {
return MetadataPackOrValue(allGenericArgs[*flatIndex]);
}
}
return MetadataPackOrValue();
}
MetadataPackOrValue SubstGenericParametersFromWrittenArgs::getMetadataFullOrdinal(
unsigned ordinal) const {
if (ordinal < allGenericArgs.size()) {
return MetadataPackOrValue(allGenericArgs[ordinal]);
}
return MetadataPackOrValue();
}
const WitnessTable *
SubstGenericParametersFromWrittenArgs::getWitnessTable(const Metadata *type,
unsigned index) const {
return nullptr;
}
/// Demangle the given type name to a generic parameter reference, which
/// will be returned as (depth, index).
static std::optional<std::pair<unsigned, unsigned>>
demangleToGenericParamRef(StringRef typeName) {
StackAllocatedDemangler<1024> demangler;
NodePointer node = demangler.demangleType(typeName);
if (!node)
return std::nullopt;
// Find the flat index that the right-hand side refers to.
if (node->getKind() == Demangle::Node::Kind::Type)
node = node->getChild(0);
if (node->getKind() != Demangle::Node::Kind::DependentGenericParamType)
return std::nullopt;
return std::pair<unsigned, unsigned>(node->getChild(0)->getIndex(),
node->getChild(1)->getIndex());
}
bool swift::_gatherWrittenGenericParameters(
const TypeContextDescriptor *descriptor,
llvm::ArrayRef<const void *> keyArgs,
llvm::SmallVectorImpl<MetadataPackOrValue> &genericArgs,
Demangle::Demangler &Dem) {
if (!descriptor) {
return false;
}
auto genericContext = descriptor->getGenericContext();
// If the type itself is not generic, then we're done.
if (!genericContext) {
return true;
}
unsigned argIndex = 0;
bool missingWrittenArguments = false;
for (auto param : genericContext->getGenericParams()) {
// The type should have a key argument unless it's been same-typed to
// another type.
if (param.hasKeyArgument()) {
genericArgs.push_back(MetadataPackOrValue(keyArgs[argIndex]));
argIndex += 1;
} else {
// Leave a gap for us to fill in by looking at same-type requirements.
genericArgs.push_back(MetadataPackOrValue());
missingWrittenArguments = true;
}
assert((param.getKind() == GenericParamKind::Type ||
param.getKind() == GenericParamKind::TypePack ||
param.getKind() == GenericParamKind::Value) &&
"Unknown generic parameter kind");
}
// If there is no follow-up work to do, we're done.
if (!missingWrittenArguments)
return true;
// We have generic arguments that would be written, but have been
// canonicalized away. Use same-type requirements to reconstitute them.
// Retrieve the mapping information needed for depth/index -> flat index.
llvm::SmallVector<unsigned, 8> genericParamCounts;
(void)_gatherGenericParameterCounts(descriptor, genericParamCounts, Dem);
SubstGenericParametersFromWrittenArgs substitutions(genericArgs,
genericParamCounts);
// Walk through the generic requirements to evaluate same-type
// constraints that are needed to fill in missing generic arguments.
for (const auto &req : genericContext->getGenericRequirements()) {
// We only care about same-type constraints.
if (req.Flags.getKind() != GenericRequirementKind::SameType)
continue;
auto lhsParam = demangleToGenericParamRef(req.getParam());
if (!lhsParam)
continue;
assert(!req.Flags.isPackRequirement() &&
"Pack requirements not supported here yet");
// If we don't yet have an argument for this parameter, it's a
// same-type-to-concrete constraint.
auto lhsFlatIndex =
_depthIndexToFlatIndex(lhsParam->first, lhsParam->second,
genericParamCounts);
if (!lhsFlatIndex || *lhsFlatIndex >= genericArgs.size())
return false;
if (!genericArgs[*lhsFlatIndex]) {
MetadataPackOrValue genericArg;
if (req.Flags.isValueRequirement()) {
auto genericArgValue =
swift::getTypeValueByMangledName(
req.getMangledTypeName(),
keyArgs.data(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType();
genericArg = MetadataPackOrValue(genericArgValue);
} else {
auto *genericArgMetadata =
swift_getTypeByMangledName(MetadataState::Abstract,
req.getMangledTypeName(),
keyArgs.data(),
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
}).getType().getMetadata();
if (!genericArgMetadata)
return false;
genericArg = MetadataPackOrValue(genericArgMetadata);
}
// Substitute into the right-hand side.
genericArgs[*lhsFlatIndex] = genericArg;
continue;
}
// If we do have an argument for this parameter, it might be that
// the right-hand side is itself a generic parameter, which means
// we have a same-type constraint A == B where A is already filled in.
auto rhsParam = demangleToGenericParamRef(req.getMangledTypeName());
// If the rhs parameter is not a generic parameter itself with
// (depth, index), it could potentially be some associated type. If that's
// the case, then we don't need to do anything else for this rhs because it
// won't appear in the key arguments list.
if (!rhsParam) {
continue;
}
auto rhsFlatIndex =
_depthIndexToFlatIndex(rhsParam->first, rhsParam->second,
genericParamCounts);
if (!rhsFlatIndex || *rhsFlatIndex >= genericArgs.size())
return false;
if (genericArgs[*rhsFlatIndex] || !genericArgs[*lhsFlatIndex])
return false;
genericArgs[*rhsFlatIndex] = genericArgs[*lhsFlatIndex];
}
return true;
}
struct InitializeDynamicReplacementLookup {
InitializeDynamicReplacementLookup() {
initializeDynamicReplacementLookup();
}
};
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_BEGIN
static InitializeDynamicReplacementLookup initDynamicReplacements;
SWIFT_ALLOWED_RUNTIME_GLOBAL_CTOR_END
void DynamicReplacementDescriptor::enableReplacement() const {
// Weakly linked symbols can be zero.
if (replacedFunctionKey.get() == nullptr)
return;
auto *chainRoot = const_cast<DynamicReplacementChainEntry *>(
replacedFunctionKey->root.get());
// Make sure this entry is not already enabled.
// This does not work until we make sure that when a dynamic library is
// unloaded all descriptors are removed.
#if 0
for (auto *curr = chainRoot; curr != nullptr; curr = curr->next) {
if (curr == chainEntry.get()) {
swift::swift_abortDynamicReplacementEnabling();
}
}
#endif
// Unlink the previous entry if we are not chaining.
if (!shouldChain() && chainRoot->next) {
auto *previous = chainRoot->next;
chainRoot->next = previous->next;
//chainRoot->implementationFunction = previous->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&chainRoot->implementationFunction),
reinterpret_cast<void *const *>(&previous->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isData(), /*allowNull*/ false);
}
// First populate the current replacement's chain entry.
auto *currentEntry =
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
// currentEntry->implementationFunction = chainRoot->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&currentEntry->implementationFunction),
reinterpret_cast<void *const *>(&chainRoot->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isData(), /*allowNull*/ false);
currentEntry->next = chainRoot->next;
// Link the replacement entry.
chainRoot->next = chainEntry.get();
// chainRoot->implementationFunction = getReplacementFunction();
swift_ptrauth_init_code_or_data(
reinterpret_cast<void **>(&chainRoot->implementationFunction),
reinterpret_cast<void *>(getReplacementFunction()),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isData());
}
void DynamicReplacementDescriptor::disableReplacement() const {
const auto *chainRoot = replacedFunctionKey->root.get();
auto *thisEntry =
const_cast<DynamicReplacementChainEntry *>(chainEntry.get());
// Find the entry previous to this one.
auto *prev = chainRoot;
while (prev && prev->next != thisEntry)
prev = prev->next;
if (!prev) {
swift::swift_abortDynamicReplacementDisabling();
return;
}
// Unlink this entry.
auto *previous = const_cast<DynamicReplacementChainEntry *>(prev);
previous->next = thisEntry->next;
// previous->implementationFunction = thisEntry->implementationFunction;
swift_ptrauth_copy_code_or_data(
reinterpret_cast<void **>(&previous->implementationFunction),
reinterpret_cast<void *const *>(&thisEntry->implementationFunction),
replacedFunctionKey->getExtraDiscriminator(),
!replacedFunctionKey->isData(), /*allowNull*/ false);
}
/// An automatic dynamic replacement entry.
namespace {
class AutomaticDynamicReplacementEntry {
RelativeDirectPointer<DynamicReplacementScope, false> replacementScope;
uint32_t flags;
public:
void enable() const { replacementScope->enable(); }
uint32_t getFlags() { return flags; }
};
/// A list of automatic dynamic replacement scopes.
class AutomaticDynamicReplacements
: private swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
AutomaticDynamicReplacementEntry> {
uint32_t flags;
uint32_t numScopes;
using TrailingObjects =
swift::ABI::TrailingObjects<AutomaticDynamicReplacements,
AutomaticDynamicReplacementEntry>;
friend TrailingObjects;
llvm::ArrayRef<AutomaticDynamicReplacementEntry>
getReplacementEntries() const {
return {
this->template getTrailingObjects<AutomaticDynamicReplacementEntry>(),
numScopes};
}
public:
void enableReplacements() const {
for (auto &replacementEntry : getReplacementEntries())
replacementEntry.enable();
}
uint32_t getNumScopes() const { return numScopes; }
};
/// A map from original to replaced opaque type descriptor of a some type.
class DynamicReplacementSomeDescriptor {
RelativeIndirectablePointer<
const OpaqueTypeDescriptor, false, int32_t,
TargetSignedPointer<InProcess, OpaqueTypeDescriptor *
__ptrauth_swift_type_descriptor>>
originalOpaqueTypeDesc;
RelativeDirectPointer<const OpaqueTypeDescriptor, false>
replacementOpaqueTypeDesc;
public:
void enable(const Mutex &lock) const {
opaqueTypeMappings.get().insert(originalOpaqueTypeDesc.get(),
replacementOpaqueTypeDesc.get(), lock);
}
};
/// A list of dynamic replacements of some types.
class AutomaticDynamicReplacementsSome
: private swift::ABI::TrailingObjects<AutomaticDynamicReplacementsSome,
DynamicReplacementSomeDescriptor> {
uint32_t flags;
uint32_t numEntries;
using TrailingObjects =
swift::ABI::TrailingObjects<AutomaticDynamicReplacementsSome,
DynamicReplacementSomeDescriptor>;
friend TrailingObjects;
llvm::ArrayRef<DynamicReplacementSomeDescriptor>
getReplacementEntries() const {
return {
this->template getTrailingObjects<DynamicReplacementSomeDescriptor>(),
numEntries};
}
public:
void enableReplacements(const Mutex &lock) const {
for (auto &replacementEntry : getReplacementEntries())
replacementEntry.enable(lock);
}
uint32_t getNumEntries() const { return numEntries; }
};
} // anonymous namespace
void swift::addImageDynamicReplacementBlockCallback(
const void *baseAddress,
const void *replacements, uintptr_t replacementsSize,
const void *replacementsSome, uintptr_t replacementsSomeSize) {
auto *automaticReplacements =
reinterpret_cast<const AutomaticDynamicReplacements *>(replacements);
const AutomaticDynamicReplacementsSome *someReplacements = nullptr;
if (replacementsSomeSize) {
someReplacements =
reinterpret_cast<const AutomaticDynamicReplacementsSome *>(
replacementsSome);
}
auto sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) +
(automaticReplacements->getNumScopes() *
sizeof(AutomaticDynamicReplacementEntry));
auto sizeOfCurrentSomeEntry =
replacementsSomeSize == 0
? 0
: sizeof(AutomaticDynamicReplacementsSome) +
(someReplacements->getNumEntries() *
sizeof(DynamicReplacementSomeDescriptor));
auto &lock = DynamicReplacementLock.get();
lock.withLock([&] {
auto endOfAutomaticReplacements =
((const char *)automaticReplacements) + replacementsSize;
while (((const char *)automaticReplacements) < endOfAutomaticReplacements) {
automaticReplacements->enableReplacements();
automaticReplacements =
reinterpret_cast<const AutomaticDynamicReplacements *>(
((const char *)automaticReplacements) + sizeOfCurrentEntry);
if ((const char*)automaticReplacements < endOfAutomaticReplacements)
sizeOfCurrentEntry = sizeof(AutomaticDynamicReplacements) +
(automaticReplacements->getNumScopes() *
sizeof(AutomaticDynamicReplacementEntry));
}
if (!replacementsSomeSize)
return;
auto endOfSomeReplacements =
((const char *)someReplacements) + replacementsSomeSize;
while (((const char *)someReplacements) < endOfSomeReplacements) {
someReplacements->enableReplacements(lock);
someReplacements =
reinterpret_cast<const AutomaticDynamicReplacementsSome *>(
((const char *)someReplacements) + sizeOfCurrentSomeEntry);
if ((const char*) someReplacements < endOfSomeReplacements)
sizeOfCurrentSomeEntry = sizeof(AutomaticDynamicReplacementsSome) +
(someReplacements->getNumEntries() *
sizeof(DynamicReplacementSomeDescriptor));
}
});
}
void swift::swift_enableDynamicReplacementScope(
const DynamicReplacementScope *scope) {
scope = swift_auth_data_non_address(
scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope);
DynamicReplacementLock.get().withLock([=] { scope->enable(); });
}
void swift::swift_disableDynamicReplacementScope(
const DynamicReplacementScope *scope) {
scope = swift_auth_data_non_address(
scope, SpecialPointerAuthDiscriminators::DynamicReplacementScope);
DynamicReplacementLock.get().withLock([=] { scope->disable(); });
}
#define OVERRIDE_METADATALOOKUP COMPATIBILITY_OVERRIDE
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"