Files
swift-mirror/stdlib/public/runtime/SwiftObject.mm
Mike Ash 93fae78e04 [IRGen][Runtime] Add emit-into-client retain/release calls for Darwin ARM64.
This is currently disabled by default. Building the client library can be enabled with the CMake option SWIFT_BUILD_CLIENT_RETAIN_RELEASE, and using the library can be enabled with the flags -Xfrontend -enable-client-retain-release.

To improve retain/release performance, we build a static library containing optimized implementations of the fast paths of swift_retain, swift_release, and the corresponding bridgeObject functions. This avoids going through a stub to make a cross-library call.

IRGen gains awareness of these new functions and emits calls to them when the functionality is enabled and the target supports them. Two options are added to force use of them on or off: -enable-client-retain-release and -disable-client-retain-release. When enabled, the compiler auto-links the static library containing the implementations.

The new calls also use LLVM's preserve_most calling convention. Since retain/release doesn't need a large number of scratch registers, this is mostly harmless for the implementation, while allowing callers to improve code size and performance by spilling fewer registers around refcounting calls. (Experiments with an even more aggressive calling convention preserving x2 and up showed an insignificant savings in code size, so preserve_most seems to be a good middle ground.)

Since the implementations are embedded into client binaries, any change in the runtime's refcounting implementation needs to stay compatible with this new fast path implementation. This is ensured by having the implementation use a runtime-provided mask to check whether it can proceed into its fast path. The mask is provided as the address of the absolute symbol _swift_retainRelease_slowpath_mask_v1. If that mask ANDed with the object's current refcount field is non-zero, then we take the slow path. A future runtime that changes the refcounting implementation can adjust this mask to match, or set the mask to all 1s to disable the old embedded fast path entirely (as long as the new representation never uses 0 as a valid refcount field value).

As part of this work, the overall approach for bridgeObjectRetain is changed slightly. Previously, it would mask off the spare bits from the native pointer and then call through to swift_retain. This either lost the spare bits in the return value (when tail calling swift_retain) which is problematic since it's supposed to return its parameter, or it required pushing a stack frame which is inefficient. Now, swift_retain takes on the responsibility of masking off spare bits from the parameter and preserving them in the return value. This is a trivial addition to the fast path (just a quick mask and an extra register for saving the original value) and makes bridgeObjectRetain quite a bit more efficient when implemented correctly to return the exact value it was passed.

The runtime's implementations of swift_retain/release are now also marked as preserve_most so that they can be tail called from the client library. preserve_most is compatible with callers expecting the standard calling convention so this doesn't break any existing clients. Some ugly tricks were needed to prevent the compiler from creating unnecessary stack frames with the new calling convention. Avert your eyes.

To allow back deployment, the runtime now has aliases for these functions called swift_retain_preservemost and swift_release_preservemost. The client library brings weak definitions of these functions that save the extra registers and call through to swift_retain/release. This allows them to work correctly on older runtimes, with a small performance penalty, while still running at full speed on runtimes that have the new preservemost symbols.

Although this is only supported on Darwin at the moment, it shouldn't be too much work to adapt it to other ARM64 targets. We need to ensure the assembly plays nice with the other platforms' assemblers, and make sure the implementation is correct for the non-ObjC-interop case.

rdar://122595871
2025-10-27 12:00:28 -04:00

1806 lines
59 KiB
Plaintext

//===--- SwiftObject.mm - Native Swift Object root class ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This implements the Objective-C root class that provides basic `id`-
// compatibility and `NSObject` protocol conformance for pure Swift classes.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Config.h"
#if SWIFT_OBJC_INTEROP
#include <objc/NSObject.h>
#include <objc/runtime.h>
#include <objc/message.h>
#include <objc/objc.h>
#if __has_include(<objc/objc-internal.h>)
#include <objc/objc-internal.h>
#endif
#endif
#include "llvm/ADT/StringRef.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/CustomRRABI.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/ObjCBridge.h"
#include "swift/Runtime/Portability.h"
#include "swift/Strings.h"
#include "swift/Threading/Mutex.h"
#include "swift/shims/RuntimeShims.h"
#include "swift/shims/AssertionReporting.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ErrorObject.h"
#include "Private.h"
#include "SwiftEquatableSupport.h"
#include "SwiftObject.h"
#include "SwiftValue.h"
#include "WeakReference.h"
#if SWIFT_OBJC_INTEROP
#include <dlfcn.h>
#endif
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <unordered_map>
#include <unordered_set>
#if SWIFT_OBJC_INTEROP
# import <CoreFoundation/CFBase.h> // for CFTypeID
# import <Foundation/Foundation.h>
# include <malloc/malloc.h>
# include <dispatch/dispatch.h>
#endif
using namespace swift;
using namespace hashable_support;
#if SWIFT_HAS_ISA_MASKING
OBJC_EXPORT __attribute__((__weak_import__))
const uintptr_t objc_debug_isa_class_mask;
uintptr_t swift::swift_isaMask = SWIFT_ISA_MASK;
#endif
const ClassMetadata *swift::_swift_getClass(const void *object) {
#if SWIFT_OBJC_INTEROP
if (!isObjCTaggedPointer(object))
return _swift_getClassOfAllocated(object);
return reinterpret_cast<const ClassMetadata*>(
object_getClass(id_const_cast(object)));
#else
return _swift_getClassOfAllocated(object);
#endif
}
#if SWIFT_OBJC_INTEROP
/// Replacement for ObjC object_isClass(), which is unavailable on
/// deployment targets macOS 10.9 and iOS 7.
static bool objcObjectIsClass(id object) {
// same as object_isClass(object)
return class_isMetaClass(object_getClass(object));
}
/// Same as _swift_getClassOfAllocated() but returns type Class.
static Class _swift_getObjCClassOfAllocated(const void *object) {
return class_const_cast(_swift_getClassOfAllocated(object));
}
/// Fetch the ObjC class object associated with the formal dynamic
/// type of the given (possibly Objective-C) object. The formal
/// dynamic type ignores dynamic subclasses such as those introduced
/// by KVO.
///
/// The object pointer may be a tagged pointer, but cannot be null.
const ClassMetadata *swift::swift_getObjCClassFromObject(HeapObject *object) {
auto classAsMetadata = _swift_getClass(object);
// Walk up the superclass chain skipping over artificial Swift classes.
// If we find a non-Swift class use the result of [object class] instead.
while (classAsMetadata && classAsMetadata->isTypeMetadata()) {
if (!classAsMetadata->isArtificialSubclass())
return classAsMetadata;
classAsMetadata = classAsMetadata->Superclass;
}
id objcObject = reinterpret_cast<id>(object);
Class objcClass = [objcObject class];
if (objcObjectIsClass(objcObject)) {
// Original object is a class. We want a
// metaclass but +class doesn't give that to us.
objcClass = object_getClass(objcClass);
}
classAsMetadata = reinterpret_cast<const ClassMetadata *>(objcClass);
return classAsMetadata;
}
#endif
/// Fetch the type metadata associated with the formal dynamic
/// type of the given (possibly Objective-C) object. The formal
/// dynamic type ignores dynamic subclasses such as those introduced
/// by KVO.
///
/// The object pointer may be a tagged pointer, but cannot be null.
const Metadata *swift::swift_getObjectType(HeapObject *object) {
auto classAsMetadata = _swift_getClass(object);
#if SWIFT_OBJC_INTEROP
// Walk up the superclass chain skipping over artificial Swift classes.
// If we find a non-Swift class use the result of [object class] instead.
while (classAsMetadata && classAsMetadata->isTypeMetadata()) {
if (!classAsMetadata->isArtificialSubclass())
return classAsMetadata;
classAsMetadata = classAsMetadata->Superclass;
}
id objcObject = reinterpret_cast<id>(object);
Class objcClass = [objcObject class];
if (objcObjectIsClass(objcObject)) {
// Original object is a class. We want a
// metaclass but +class doesn't give that to us.
objcClass = object_getClass(objcClass);
}
classAsMetadata = reinterpret_cast<const ClassMetadata *>(objcClass);
return swift_getObjCClassMetadata(classAsMetadata);
#else
assert(classAsMetadata &&
classAsMetadata->isTypeMetadata() &&
!classAsMetadata->isArtificialSubclass());
return classAsMetadata;
#endif
}
#if SWIFT_OBJC_INTEROP
static SwiftObject *_allocHelper(Class cls) {
// XXX FIXME
// When we have layout information, do precise alignment rounding
// For now, assume someone is using hardware vector types
#if defined(__x86_64__) || defined(__i386__)
const size_t mask = 32 - 1;
#else
const size_t mask = 16 - 1;
#endif
return reinterpret_cast<SwiftObject *>(swift::swift_allocObject(
reinterpret_cast<HeapMetadata const *>(cls),
class_getInstanceSize(cls), mask));
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_API
Class _swift_classOfObjCHeapObject(OpaqueValue *value) {
return _swift_getObjCClassOfAllocated(value);
}
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_API
id swift_stdlib_getDescription(OpaqueValue *value,
const Metadata *type);
id swift::getDescription(OpaqueValue *value, const Metadata *type) {
id result = swift_stdlib_getDescription(value, type);
type->vw_destroy(value);
return [result autorelease];
}
static id _getObjectDescription(SwiftObject *obj) {
swift_retain((HeapObject*)obj);
return getDescription((OpaqueValue*)&obj,
_swift_getClassOfAllocated(obj));
}
static id _getClassDescription(Class cls) {
const char *name = class_getName(cls);
int len = strlen(name);
return [swift_stdlib_NSStringFromUTF8(name, len) autorelease];
}
@implementation SwiftObject
+ (void)initialize {
#if SWIFT_HAS_ISA_MASKING && !TARGET_OS_SIMULATOR && !NDEBUG
uintptr_t libObjCMask = (uintptr_t)&objc_absolute_packed_isa_class_mask;
assert(libObjCMask);
# if __arm64__ && !__has_feature(ptrauth_calls)
// When we're built ARM64 but running on ARM64e hardware, we will get an
// ARM64e libobjc with an ARM64e ISA mask. This mismatch is harmless and we
// shouldn't assert.
assert(libObjCMask == SWIFT_ISA_MASK || libObjCMask == SWIFT_ISA_MASK_PTRAUTH);
# else
assert(libObjCMask == SWIFT_ISA_MASK);
# endif
#endif
}
+ (instancetype)allocWithZone:(struct _NSZone *)zone {
assert(zone == nullptr);
return _allocHelper(self);
}
+ (instancetype)alloc {
// we do not support "placement new" or zones,
// so there is no need to call allocWithZone
return _allocHelper(self);
}
+ (Class)class {
return self;
}
- (Class)class {
return _swift_getObjCClassOfAllocated(self);
}
+ (Class)superclass {
return (Class)((const ClassMetadata*) self)->Superclass;
}
- (Class)superclass {
return (Class)_swift_getClassOfAllocated(self)->Superclass;
}
+ (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (BOOL)isMemberOfClass:(Class)cls {
return cls == _swift_getObjCClassOfAllocated(self);
}
- (instancetype)self {
return self;
}
- (BOOL)isProxy {
return NO;
}
- (struct _NSZone *)zone {
auto zone = malloc_zone_from_ptr(self);
return (struct _NSZone *)(zone ? zone : malloc_default_zone());
}
- (void)doesNotRecognizeSelector: (SEL) sel {
Class cls = _swift_getObjCClassOfAllocated(self);
fatalError(/* flags = */ 0,
"Unrecognized selector %c[%s %s]\n",
class_isMetaClass(cls) ? '+' : '-',
class_getName(cls), sel_getName(sel));
}
STANDARD_OBJC_METHOD_IMPLS_FOR_SWIFT_OBJECTS
// Retaining the class object itself is a no-op.
+ (id)retain {
return self;
}
+ (void)release {
/* empty */
}
+ (id)autorelease {
return self;
}
+ (NSUInteger)retainCount {
return ULONG_MAX;
}
+ (BOOL)_isDeallocating {
return NO;
}
+ (BOOL)_tryRetain {
return YES;
}
+ (BOOL)allowsWeakReference {
return YES;
}
+ (BOOL)retainWeakReference {
return YES;
}
- (BOOL)isKindOfClass:(Class)someClass {
for (auto cls = _swift_getClassOfAllocated(self); cls != nullptr;
cls = cls->Superclass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)isSubclassOfClass:(Class)someClass {
for (auto cls = (const ClassMetadata*) self; cls != nullptr;
cls = cls->Superclass)
if (cls == (const ClassMetadata*) someClass)
return YES;
return NO;
}
+ (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
- (BOOL)respondsToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(_swift_getObjCClassOfAllocated(self), sel);
}
+ (BOOL)instancesRespondToSelector:(SEL)sel {
if (!sel) return NO;
return class_respondsToSelector(self, sel);
}
+ (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass((id)self), sel);
}
- (IMP)methodForSelector:(SEL)sel {
return class_getMethodImplementation(object_getClass(self), sel);
}
+ (IMP)instanceMethodForSelector:(SEL)sel {
return class_getMethodImplementation(self, sel);
}
- (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
auto selfClass = _swift_getObjCClassOfAllocated(self);
// Walk the superclass chain.
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
+ (BOOL)conformsToProtocol:(Protocol*)proto {
if (!proto) return NO;
// Walk the superclass chain.
Class selfClass = self;
while (selfClass) {
if (class_conformsToProtocol(selfClass, proto))
return YES;
selfClass = class_getSuperclass(selfClass);
}
return NO;
}
- (NSUInteger)hash {
if (runtime::bincompat::useLegacySwiftObjCHashing()) {
// Legacy behavior: Don't proxy to Swift Hashable
return (NSUInteger)self;
}
auto selfMetadata = _swift_getClassOfAllocated(self);
// If it's Hashable, use that
auto hashableConformance =
reinterpret_cast<const hashable_support::HashableWitnessTable *>(
swift_conformsToProtocolCommon(
selfMetadata, &hashable_support::HashableProtocolDescriptor));
if (hashableConformance != NULL) {
return _swift_stdlib_Hashable_hashValue_indirect(
&self, selfMetadata, hashableConformance);
}
// If a type is Equatable (but not Hashable), we
// have to return something here that is compatible
// with the `isEqual:` below.
auto equatableConformance =
reinterpret_cast<const equatable_support::EquatableWitnessTable *>(
swift_conformsToProtocolCommon(
selfMetadata, &equatable_support::EquatableProtocolDescriptor));
if (equatableConformance != nullptr) {
// Warn once per class about this
auto selfClass = [self class];
static Lazy<std::unordered_set<Class>> warned;
static LazyMutex warnedLock;
LazyMutex::ScopedLock guard(warnedLock);
auto result = warned.get().insert(selfClass);
auto inserted = std::get<1>(result);
if (inserted) {
const char *clsName = class_getName([self class]);
warning(0,
"Obj-C `-hash` method was invoked on a Swift object of type `%s` "
"that is Equatable but not Hashable; "
"this can lead to severe performance problems.\n",
clsName);
}
// Constant value (yuck!) is the only choice here
return (NSUInteger)1;
}
// Legacy default for types that are neither Hashable nor Equatable.
return (NSUInteger)self;
}
- (BOOL)isEqual:(id)other {
if (self == other) {
return YES;
}
if (other == nil) {
return NO;
}
if (runtime::bincompat::useLegacySwiftObjCHashing()) {
// Legacy behavior: Don't proxy to Swift Hashable or Equatable
return NO; // We know the ids are different
}
if (isObjCTaggedPointer(other)) {
// Swift class types cannot be tagged, and a Swift Equatable conformance
// cannot validly be called for an object of a different type, so this can
// only be incorrect if someone has an Equatable that's invalid in an
// extremely specific way (unsafeBitCasting `other` to an unrelated type)
return NO;
}
// Get Swift type for self and other
auto selfMetadata = _swift_getClassOfAllocated(self);
// We use Equatable conformance, which will also work for types that implement
// Hashable. If the type implements Equatable but not Hashable, there is a
// risk that `-hash` and `-isEqual:` might be incompatible. See notes above
// for `-hash`
auto equatableConformance =
swift_conformsToProtocolCommon(
selfMetadata, &equatable_support::EquatableProtocolDescriptor);
if (equatableConformance == NULL) {
return NO;
}
// Is the other object a subclass of the parent that
// actually defined this conformance?
auto conformingParent =
findConformingSuperclass(selfMetadata, equatableConformance->getDescription());
auto otherMetadata = _swift_getClassOfAllocated(other);
if (_swift_class_isSubclass(otherMetadata, conformingParent)) {
// We now have an equatable conformance of a common parent
// of both object types:
return _swift_stdlib_Equatable_isEqual_indirect(
&self,
&other,
conformingParent,
reinterpret_cast<const equatable_support::EquatableWitnessTable *>(
equatableConformance)
);
}
return NO;
}
- (id)performSelector:(SEL)aSelector {
return ((id(*)(id, SEL))objc_msgSend)(self, aSelector);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object {
return ((id(*)(id, SEL, id))objc_msgSend)(self, aSelector, object);
}
- (id)performSelector:(SEL)aSelector withObject:(id)object1
withObject:(id)object2 {
return ((id(*)(id, SEL, id, id))objc_msgSend)(self, aSelector, object1,
object2);
}
- (id /* NSString */)description {
return _getObjectDescription(self);
}
- (id /* NSString */)debugDescription {
return _getObjectDescription(self);
}
+ (id /* NSString */)description {
return _getClassDescription(self);
}
+ (id /* NSString */)debugDescription {
return _getClassDescription(self);
}
- (id /* NSString */)_copyDescription {
// The NSObject version of this pushes an autoreleasepool in case -description
// autoreleases, but we're OK with leaking things if we're at the top level
// of the main thread with no autorelease pool.
return [[self description] retain];
}
- (CFTypeID)_cfTypeID {
return (CFTypeID)1; //NSObject's CFTypeID is constant
}
// Foundation collections expect these to be implemented.
- (BOOL)isNSArray__ { return NO; }
- (BOOL)isNSCFConstantString__ { return NO; }
- (BOOL)isNSData__ { return NO; }
- (BOOL)isNSDate__ { return NO; }
- (BOOL)isNSDictionary__ { return NO; }
- (BOOL)isNSObject__ { return NO; }
- (BOOL)isNSOrderedSet__ { return NO; }
- (BOOL)isNSNumber__ { return NO; }
- (BOOL)isNSSet__ { return NO; }
- (BOOL)isNSString__ { return NO; }
- (BOOL)isNSTimeZone__ { return NO; }
- (BOOL)isNSValue__ { return NO; }
@end
#endif
/// Decide dynamically whether the given class uses native Swift
/// reference-counting.
bool swift::usesNativeSwiftReferenceCounting(const ClassMetadata *theClass) {
#if SWIFT_OBJC_INTEROP
if (!theClass->isTypeMetadata()) return false;
return (theClass->getFlags() & ClassFlags::UsesSwiftRefcounting);
#else
return true;
#endif
}
/// Decide dynamically whether the given type metadata uses native Swift
/// reference-counting. The metadata is known to correspond to a class
/// type, but note that does not imply being known to be a ClassMetadata
/// due to the existence of ObjCClassWrapper.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
bool
_swift_objcClassUsesNativeSwiftReferenceCounting(const Metadata *theClass) {
#if SWIFT_OBJC_INTEROP
// If this is ObjC wrapper metadata, the class is definitely not using
// Swift ref-counting.
if (isa<ObjCClassWrapperMetadata>(theClass)) return false;
// Otherwise, it's class metadata.
return usesNativeSwiftReferenceCounting(cast<ClassMetadata>(theClass));
#else
return true;
#endif
}
// The non-pointer bits, excluding the tag bits.
static auto const unTaggedNonNativeBridgeObjectBits
= heap_object_abi::SwiftSpareBitsMask
& ~heap_object_abi::ObjCReservedBitsMask
& ~heap_object_abi::BridgeObjectTagBitsMask;
#if SWIFT_OBJC_INTEROP
#if defined(__x86_64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#elif defined(__LP64__)
static uintptr_t const objectPointerIsObjCBit = 0x4000000000000000ULL;
#else
static uintptr_t const objectPointerIsObjCBit = 0x00000002U;
#endif
void *swift::swift_unknownObjectRetain_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_unknownObjectRelease_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_unknownObjectRetain(void *object) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_unknownObjectRelease(void *object) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownObjectRetain_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain_n(static_cast<HeapObject *>(object), n);
}
for (int i = 0; i < n; ++i)
objc_retain(static_cast<id>(object));
return object;
}
void swift::swift_nonatomic_unknownObjectRelease_n(void *object, int n) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(object), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(object));
}
void *swift::swift_nonatomic_unknownObjectRetain(void *object) {
if (isObjCTaggedPointerOrNull(object)) return object;
if (objectUsesNativeSwiftReferenceCounting(object)) {
return swift_nonatomic_retain(static_cast<HeapObject *>(object));
}
return objc_retain(static_cast<id>(object));
}
void swift::swift_nonatomic_unknownObjectRelease(void *object) {
if (isObjCTaggedPointerOrNull(object)) return;
if (objectUsesNativeSwiftReferenceCounting(object))
return swift_release(static_cast<HeapObject *>(object));
return objc_release(static_cast<id>(object));
}
/// Return true iff the given BridgeObject is not known to use native
/// reference-counting.
///
/// Precondition: object does not encode a tagged pointer
static bool isNonNative_unTagged_bridgeObject(void *object) {
static_assert((heap_object_abi::SwiftSpareBitsMask & objectPointerIsObjCBit) ==
objectPointerIsObjCBit,
"isObjC bit not within spare bits");
return (uintptr_t(object) & objectPointerIsObjCBit) != 0
&& (uintptr_t(object) & heap_object_abi::BridgeObjectTagBitsMask) == 0;
}
/// Return true iff the given BridgeObject is a tagged value.
static bool isBridgeObjectTaggedPointer(void *object) {
return (uintptr_t(object) & heap_object_abi::BridgeObjectTagBitsMask) != 0;
}
#endif
// Mask out the spare bits in a bridgeObject, returning the object it
// encodes.
///
/// Precondition: object does not encode a tagged pointer
static void* toPlainObject_unTagged_bridgeObject(void *object) {
return (void*)(uintptr_t(object) & ~unTaggedNonNativeBridgeObjectBits);
}
#if SWIFT_OBJC_INTEROP
#if __arm64__
// Marking this as noinline allows swift_bridgeObjectRetain to avoid emitting
// a stack frame for the swift_retain path on ARM64. It makes for worse codegen
// on x86-64, though, so limit it to ARM64.
SWIFT_NOINLINE
#endif
static void *objcRetainAndReturn(void *object) {
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
objc_retain(static_cast<id>(objectRef));
return object;
}
#endif
void *swift::swift_bridgeObjectRetain(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
if (!isNonNative_unTagged_bridgeObject(object)) {
return swift_retain(static_cast<HeapObject *>(object));
}
// Put the call to objc_retain in a separate function, tail-called here. This
// allows the fast path of swift_bridgeObjectRetain to avoid creating a stack
// frame on ARM64. We can't directly tail-call objc_retain, because
// swift_bridgeObjectRetain returns the pointer with objectPointerIsObjCBit
// set, so we have to make a non-tail call and then return the value with the
// bit set.
SWIFT_MUSTTAIL return objcRetainAndReturn(object);
#else
// swift_retain will mask off any extra bits in object, and return the
// original value, so we can tail call it here.
return swift_retain(static_cast<HeapObject *>(object));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_bridgeObjectRetain)
SWIFT_RUNTIME_EXPORT
void *swift::swift_nonatomic_bridgeObjectRetain(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return object;
}
objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_nonatomic_retain(static_cast<HeapObject *>(objectRef));
return object;
#endif
}
SWIFT_RUNTIME_EXPORT
void swift::swift_bridgeObjectRelease(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_release(static_cast<HeapObject *>(objectRef));
#endif
}
CUSTOM_RR_ENTRYPOINTS_DEFINE_ENTRYPOINTS(swift_bridgeObjectRelease)
void swift::swift_nonatomic_bridgeObjectRelease(void *object) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
return objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release(static_cast<HeapObject *>(objectRef));
#endif
}
void *swift::swift_bridgeObjectRetain_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
}
for (int i = 0;i < n; ++i)
objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
#endif
}
void swift::swift_bridgeObjectRelease_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
void *swift::swift_nonatomic_bridgeObjectRetain_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return object;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object)) {
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
}
for (int i = 0;i < n; ++i)
objc_retain(static_cast<id>(objectRef));
return object;
#else
swift_nonatomic_retain_n(static_cast<HeapObject *>(objectRef), n);
return object;
#endif
}
void swift::swift_nonatomic_bridgeObjectRelease_n(void *object, int n) {
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object) || isBridgeObjectTaggedPointer(object))
return;
#endif
auto const objectRef = toPlainObject_unTagged_bridgeObject(object);
#if SWIFT_OBJC_INTEROP
if (!isNonNative_unTagged_bridgeObject(object))
return swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
for (int i = 0; i < n; ++i)
objc_release(static_cast<id>(objectRef));
#else
swift_nonatomic_release_n(static_cast<HeapObject *>(objectRef), n);
#endif
}
#if SWIFT_OBJC_INTEROP
/*****************************************************************************/
/************************ UNKNOWN UNOWNED REFERENCES *************************/
/*****************************************************************************/
// Swift's native unowned references are implemented purely with
// reference-counting: as long as an unowned reference is held to an object,
// it can be destroyed but never deallocated, being that it remains fully safe
// to pass around a pointer and perform further reference-counting operations.
//
// For imported class types (meaning ObjC, for now, but in principle any
// type which supports ObjC-style weak references but not directly Swift-style
// unowned references), we have to implement this on top of the weak-reference
// support, at least for now. But we'd like to be able to statically take
// advantage of Swift's representational advantages when we know that all the
// objects involved are Swift-native. That means that whatever scheme we use
// for unowned references needs to interoperate with code just doing naive
// loads and stores, at least when the ObjC case isn't triggered.
//
// We have to be sensitive about making unreasonable assumptions about the
// implementation of ObjC weak references, and we definitely cannot modify
// memory owned by the ObjC runtime. In the long run, direct support from
// the ObjC runtime can allow an efficient implementation that doesn't violate
// those requirements, both by allowing us to directly check whether a weak
// reference was cleared by deallocation vs. just initialized to nil and by
// guaranteeing a bit pattern that distinguishes Swift references. In the
// meantime, out-of-band allocation is inefficient but not ridiculously so.
//
// Note that unowned references need not provide guaranteed behavior in
// the presence of read/write or write/write races on the reference itself.
// Furthermore, and unlike weak references, they also do not need to be
// safe against races with the deallocation of the object. It is the user's
// responsibility to ensure that the reference remains valid at the time
// that the unowned reference is read.
namespace {
/// An Objective-C unowned reference. Given an unknown unowned reference
/// in memory, it is an ObjC unowned reference if the IsObjCFlag bit
/// is set; if so, the pointer stored in the reference actually points
/// to out-of-line storage containing an ObjC weak reference.
///
/// It is an invariant that this out-of-line storage is only ever
/// allocated and constructed for non-null object references, so if the
/// weak load yields null, it can only be because the object was deallocated.
struct ObjCUnownedReference : UnownedReference {
// Pretending that there's a subclass relationship here means that
// accesses to objects formally constructed as UnownedReferences will
// technically be aliasing violations. However, the language runtime
// will generally not see any such objects.
enum : uintptr_t { IsObjCMask = 0x1, IsObjCFlag = 0x1 };
/// The out-of-line storage of an ObjC unowned reference.
struct Storage {
/// A weak reference registered with the ObjC runtime.
mutable id WeakRef;
Storage(id ref) {
assert(ref && "creating storage for null reference?");
objc_initWeak(&WeakRef, ref);
}
Storage(const Storage &other) {
objc_copyWeak(&WeakRef, &other.WeakRef);
}
Storage &operator=(const Storage &other) = delete;
Storage &operator=(id ref) {
objc_storeWeak(&WeakRef, ref);
return *this;
}
~Storage() {
objc_destroyWeak(&WeakRef);
}
// Don't use the C++ allocator.
void *operator new(size_t size) { return malloc(size); }
void operator delete(void *ptr) { free(ptr); }
};
Storage *storage() {
assert(isa<ObjCUnownedReference>(this));
return reinterpret_cast<Storage*>(
reinterpret_cast<uintptr_t>(Value) & ~IsObjCMask);
}
static void initialize(UnownedReference *dest, id value) {
initializeWithStorage(dest, new Storage(value));
}
static void initializeWithCopy(UnownedReference *dest, Storage *src) {
initializeWithStorage(dest, new Storage(*src));
}
static void initializeWithStorage(UnownedReference *dest,
Storage *storage) {
dest->Value = (HeapObject*) (uintptr_t(storage) | IsObjCFlag);
}
static bool classof(const UnownedReference *ref) {
return (uintptr_t(ref->Value) & IsObjCMask) == IsObjCFlag;
}
};
}
static bool isObjCForUnownedReference(void *value) {
return (isObjCTaggedPointer(value) ||
!objectUsesNativeSwiftReferenceCounting(value));
}
UnownedReference *swift::swift_unknownObjectUnownedInit(UnownedReference *dest,
void *value) {
// Note that LLDB also needs to know about the memory layout of unowned
// references. The implementation here needs to be kept in sync with
// lldb_private::SwiftLanguageRuntime.
if (!value) {
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
ObjCUnownedReference::initialize(dest, (id) value);
} else {
swift_unownedInit(dest, (HeapObject*) value);
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedAssign(UnownedReference *dest, void *value) {
if (!value) {
swift_unknownObjectUnownedDestroy(dest);
dest->Value = nullptr;
} else if (isObjCForUnownedReference(value)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
objc_storeWeak(&objcDest->storage()->WeakRef, (id) value);
} else {
swift_unownedDestroy(dest);
ObjCUnownedReference::initialize(dest, (id) value);
}
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedInit(dest, (HeapObject*) value);
} else {
swift_unownedAssign(dest, (HeapObject*) value);
}
}
return dest;
}
void *swift::swift_unknownObjectUnownedLoadStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
return result;
} else {
return swift_unownedLoadStrong(ref);
}
}
void *swift::swift_unknownObjectUnownedTakeStrong(UnownedReference *ref) {
if (!ref->Value) {
return nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
auto storage = objcRef->storage();
auto result = (void*) objc_loadWeakRetained(&objcRef->storage()->WeakRef);
if (result == nullptr) {
swift::swift_abortRetainUnowned(nullptr);
}
delete storage;
return result;
} else {
return swift_unownedTakeStrong(ref);
}
}
void swift::swift_unknownObjectUnownedDestroy(UnownedReference *ref) {
if (!ref->Value) {
// Nothing to do.
return;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
delete objcRef->storage();
} else {
swift_unownedDestroy(ref);
}
}
UnownedReference *
swift::swift_unknownObjectUnownedCopyInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
if (!src->Value) {
dest->Value = nullptr;
} else if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
swift_unownedCopyInit(dest, src);
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedTakeInit(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
dest->Value = src->Value;
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedCopyAssign(UnownedReference *dest,
UnownedReference *src) {
if (dest == src) return dest;
if (auto objcSrc = dyn_cast<ObjCUnownedReference>(src)) {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
// ObjC unfortunately doesn't expose a copy-assign operation.
objc_destroyWeak(&objcDest->storage()->WeakRef);
objc_copyWeak(&objcDest->storage()->WeakRef,
&objcSrc->storage()->WeakRef);
return dest;
}
swift_unownedDestroy(dest);
ObjCUnownedReference::initializeWithCopy(dest, objcSrc->storage());
} else {
if (auto objcDest = dyn_cast<ObjCUnownedReference>(dest)) {
delete objcDest->storage();
swift_unownedCopyInit(dest, src);
} else {
swift_unownedCopyAssign(dest, src);
}
}
return dest;
}
UnownedReference *
swift::swift_unknownObjectUnownedTakeAssign(UnownedReference *dest,
UnownedReference *src) {
assert(dest != src);
// There's not really anything more efficient to do here than this.
swift_unknownObjectUnownedDestroy(dest);
dest->Value = src->Value;
return dest;
}
bool swift::swift_unknownObjectUnownedIsEqual(UnownedReference *ref,
void *value) {
if (!ref->Value) {
return value == nullptr;
} else if (auto objcRef = dyn_cast<ObjCUnownedReference>(ref)) {
id refValue = objc_loadWeakRetained(&objcRef->storage()->WeakRef);
bool isEqual = (void*)refValue == value;
// This ObjC case has no deliberate unowned check here,
// unlike the Swift case.
[refValue release];
return isEqual;
} else {
return swift_unownedIsEqual(ref, (HeapObject *)value);
}
}
/*****************************************************************************/
/************************** UNKNOWN WEAK REFERENCES **************************/
/*****************************************************************************/
WeakReference *swift::swift_unknownObjectWeakInit(WeakReference *ref,
void *value) {
ref->unknownInit(value);
return ref;
}
WeakReference *swift::swift_unknownObjectWeakAssign(WeakReference *ref,
void *value) {
ref->unknownAssign(value);
return ref;
}
void *swift::swift_unknownObjectWeakLoadStrong(WeakReference *ref) {
return ref->unknownLoadStrong();
}
void *swift::swift_unknownObjectWeakTakeStrong(WeakReference *ref) {
return ref->unknownTakeStrong();
}
void swift::swift_unknownObjectWeakDestroy(WeakReference *ref) {
ref->unknownDestroy();
}
WeakReference *swift::swift_unknownObjectWeakCopyInit(WeakReference *dest,
WeakReference *src) {
dest->unknownCopyInit(src);
return dest;
}
WeakReference *swift::swift_unknownObjectWeakTakeInit(WeakReference *dest,
WeakReference *src) {
dest->unknownTakeInit(src);
return dest;
}
WeakReference *swift::swift_unknownObjectWeakCopyAssign(WeakReference *dest,
WeakReference *src) {
dest->unknownCopyAssign(src);
return dest;
}
WeakReference *swift::swift_unknownObjectWeakTakeAssign(WeakReference *dest,
WeakReference *src) {
dest->unknownTakeAssign(src);
return dest;
}
// SWIFT_OBJC_INTEROP
#endif
/*****************************************************************************/
/******************************* DYNAMIC CASTS *******************************/
/*****************************************************************************/
#if SWIFT_OBJC_INTEROP
static const void *
swift_dynamicCastObjCClassImpl(const void *object,
const ClassMetadata *targetType) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([id_const_cast(object) isKindOfClass:class_const_cast(targetType)]) {
return object;
}
// For casts to NSError or NSObject, we might need to bridge via the Error
// protocol. Try it now.
if (targetType == reinterpret_cast<const ClassMetadata*>(getNSErrorClass()) ||
targetType == reinterpret_cast<const ClassMetadata*>([NSObject class])) {
auto srcType = swift_getObjCClassMetadata(
reinterpret_cast<const ClassMetadata*>(
object_getClass(id_const_cast(object))));
if (auto srcErrorWitness = findErrorWitness(srcType)) {
return dynamicCastValueToNSError((OpaqueValue*)&object, srcType,
srcErrorWitness,
DynamicCastFlags::TakeOnSuccess);
}
}
return nullptr;
}
static const void *
swift_dynamicCastObjCClassUnconditionalImpl(const void *object,
const ClassMetadata *targetType,
const char *filename,
unsigned line, unsigned column) {
// FIXME: We need to decide if this is really how we want to treat 'nil'.
if (object == nullptr)
return nullptr;
if ([id_const_cast(object) isKindOfClass:class_const_cast(targetType)]) {
return object;
}
// For casts to NSError or NSObject, we might need to bridge via the Error
// protocol. Try it now.
if (targetType == reinterpret_cast<const ClassMetadata*>(getNSErrorClass()) ||
targetType == reinterpret_cast<const ClassMetadata*>([NSObject class])) {
auto srcType = swift_getObjCClassMetadata(
reinterpret_cast<const ClassMetadata*>(
object_getClass(id_const_cast(object))));
if (auto srcErrorWitness = findErrorWitness(srcType)) {
return dynamicCastValueToNSError((OpaqueValue*)&object, srcType,
srcErrorWitness,
DynamicCastFlags::TakeOnSuccess);
}
}
Class sourceType = object_getClass(id_const_cast(object));
swift_dynamicCastFailure(reinterpret_cast<const Metadata *>(sourceType),
targetType);
}
static const void *
swift_dynamicCastForeignClassImpl(const void *object,
const ForeignClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in the metadata.
return object;
}
static const void *
swift_dynamicCastForeignClassUnconditionalImpl(
const void *object,
const ForeignClassMetadata *targetType,
const char *filename,
unsigned line, unsigned column) {
// FIXME: Actual compare CFTypeIDs, once they are available in the metadata.
return object;
}
bool swift::objectConformsToObjCProtocol(const void *theObject,
ProtocolDescriptorRef protocol) {
return [id_const_cast(theObject)
conformsToProtocol: protocol.getObjCProtocol()];
}
bool swift::classConformsToObjCProtocol(const void *theClass,
ProtocolDescriptorRef protocol) {
return [class_const_cast(theClass)
conformsToProtocol: protocol.getObjCProtocol()];
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolUnconditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols,
const char *filename,
unsigned line, unsigned column) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
// Native class metadata is also the class object.
// ObjC class wrappers get unwrapped.
classObject = type->getObjCClassObject();
break;
// Other kinds of type can never conform to ObjC protocols.
default:
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[0], protocol_getName(protocols[0]));
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
swift_dynamicCastFailure(type, nameForMetadata(type).c_str(),
protocols[i], protocol_getName(protocols[i]));
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
const Metadata *swift_dynamicCastTypeToObjCProtocolConditional(
const Metadata *type,
size_t numProtocols,
Protocol * const *protocols) {
Class classObject;
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::ObjCClassWrapper:
// Native class metadata is also the class object.
// ObjC class wrappers get unwrapped.
classObject = type->getObjCClassObject();
break;
// Other kinds of type can never conform to ObjC protocols.
default:
return nullptr;
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
assert(false && "not type metadata");
break;
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![classObject conformsToProtocol:protocols[i]]) {
return nullptr;
}
}
return type;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolUnconditional(id object,
size_t numProtocols,
Protocol * const *protocols,
const char *filename,
unsigned line, unsigned column) {
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
Class sourceType = object_getClass(object);
swift_dynamicCastFailure(sourceType, class_getName(sourceType),
protocols[i], protocol_getName(protocols[i]));
}
}
return object;
}
SWIFT_RUNTIME_EXPORT
id swift_dynamicCastObjCProtocolConditional(id object,
size_t numProtocols,
Protocol * const *protocols) {
if (!runtime::bincompat::useLegacySwiftValueUnboxingInCasting()) {
if (getAsSwiftValue(object) != nil) {
// SwiftValue wrapper never holds a class object
return nil;
}
}
for (size_t i = 0; i < numProtocols; ++i) {
if (![object conformsToProtocol:protocols[i]]) {
return nil;
}
}
return object;
}
#if OBJC_SUPPORTSLAZYREALIZATION_DEFINED
static bool checkObjCSupportsLazyRealization() {
if (!SWIFT_RUNTIME_WEAK_CHECK(_objc_supportsLazyRealization))
return false;
return SWIFT_RUNTIME_WEAK_USE(_objc_supportsLazyRealization());
}
#endif
// Check whether the current ObjC runtime supports lazy realization. If it does,
// then we can avoid forcing realization of classes before we use them.
static bool objcSupportsLazyRealization() {
#if OBJC_SUPPORTSLAZYREALIZATION_DEFINED
return SWIFT_LAZY_CONSTANT(checkObjCSupportsLazyRealization());
#else
return false;
#endif
}
void swift::swift_instantiateObjCClass(const ClassMetadata *_c) {
static const objc_image_info ImageInfo = {0, 0};
Class c = class_const_cast(_c);
if (!objcSupportsLazyRealization()) {
// Ensure the superclass is realized.
[class_getSuperclass(c) class];
}
// Register the class.
Class registered = objc_readClassPair(c, &ImageInfo);
assert(registered == c
&& "objc_readClassPair failed to instantiate the class in-place");
(void)registered;
}
Class swift::swift_getInitializedObjCClass(Class c) {
if (!objcSupportsLazyRealization()) {
// Used when we have class metadata and we want to ensure a class has been
// initialized by the Objective-C runtime. We need to do this because the
// class "c" might be valid metadata, but it hasn't been initialized yet.
// Send a message that's likely not to be overridden to minimize potential
// side effects. Ignore the return value in case it is overridden to
// return something different. See
// https://github.com/apple/swift/issues/52863 for an example.
[c self];
}
return c;
}
static const ClassMetadata *
swift_dynamicCastObjCClassMetatypeImpl(const ClassMetadata *source,
const ClassMetadata *dest) {
if ([class_const_cast(source) isSubclassOfClass:class_const_cast(dest)])
return source;
return nil;
}
static const ClassMetadata *
swift_dynamicCastObjCClassMetatypeUnconditionalImpl(const ClassMetadata *source,
const ClassMetadata *dest,
const char *filename,
unsigned line, unsigned column) {
if ([class_const_cast(source) isSubclassOfClass:class_const_cast(dest)])
return source;
swift_dynamicCastFailure(source, dest);
}
#endif
static const ClassMetadata *
swift_dynamicCastForeignClassMetatypeImpl(const ClassMetadata *sourceType,
const ClassMetadata *targetType) {
// FIXME: Actually compare CFTypeIDs, once they are available in
// the metadata.
return sourceType;
}
static const ClassMetadata *
swift_dynamicCastForeignClassMetatypeUnconditionalImpl(
const ClassMetadata *sourceType,
const ClassMetadata *targetType,
const char *filename,
unsigned line, unsigned column)
{
// FIXME: Actually compare CFTypeIDs, once they arae available in
// the metadata.
return sourceType;
}
#if SWIFT_OBJC_INTEROP
// Given a non-nil object reference, return true iff the object uses
// native swift reference counting.
static bool usesNativeSwiftReferenceCounting_nonNull(
const void* object
) {
assert(object != nullptr);
return !isObjCTaggedPointer(object) &&
objectUsesNativeSwiftReferenceCounting(object);
}
#endif
bool swift::swift_isUniquelyReferenced_nonNull_native(const HeapObject *object){
assert(object != nullptr);
assert(!object->refCounts.isDeiniting());
return object->refCounts.isUniquelyReferenced();
}
bool swift::swift_isUniquelyReferenced_native(const HeapObject* object) {
return object != nullptr
&& swift::swift_isUniquelyReferenced_nonNull_native(object);
}
bool swift::swift_isUniquelyReferencedNonObjC_nonNull(const void* object) {
assert(object != nullptr);
return
#if SWIFT_OBJC_INTEROP
usesNativeSwiftReferenceCounting_nonNull(object) &&
#endif
swift_isUniquelyReferenced_nonNull_native((const HeapObject*)object);
}
#if SWIFT_OBJC_INTEROP
static bool isUniquelyReferenced(id object) {
#if OBJC_ISUNIQUELYREFERENCED_DEFINED
if (!SWIFT_RUNTIME_WEAK_CHECK(objc_isUniquelyReferenced))
return false;
return SWIFT_RUNTIME_WEAK_USE(objc_isUniquelyReferenced(object));
#else
auto objcIsUniquelyRefd = SWIFT_LAZY_CONSTANT(reinterpret_cast<bool (*)(id)>(
dlsym(RTLD_NEXT, "objc_isUniquelyReferenced")));
return objcIsUniquelyRefd && objcIsUniquelyRefd(object);
#endif /* OBJC_ISUNIQUELYREFERENCED_DEFINED */
}
#endif
bool swift::swift_isUniquelyReferenced_nonNull(const void *object) {
assert(object != nullptr);
#if SWIFT_OBJC_INTEROP
if (isObjCTaggedPointer(object))
return false;
if (!usesNativeSwiftReferenceCounting_nonNull(object)) {
return isUniquelyReferenced(id_const_cast(object));
}
#endif
return swift_isUniquelyReferenced_nonNull_native(
static_cast<const HeapObject *>(object));
}
// Given an object reference, return true iff it is non-nil and refers
// to a native swift object with strong reference count of 1.
bool swift::swift_isUniquelyReferencedNonObjC(
const void* object
) {
return object != nullptr
&& swift_isUniquelyReferencedNonObjC_nonNull(object);
}
// Given an object reference, return true if it is non-nil and refers
// to an ObjC or native swift object with a strong reference count of 1.
bool swift::swift_isUniquelyReferenced(const void *object) {
return object != nullptr && swift_isUniquelyReferenced_nonNull(object);
}
/// Return true if the given bits of a Builtin.BridgeObject refer to a
/// native swift object whose strong reference count is 1.
bool swift::swift_isUniquelyReferencedNonObjC_nonNull_bridgeObject(
uintptr_t bits
) {
auto bridgeObject = (void*)bits;
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
// Note: we could just return false if all spare bits are set,
// but in that case the cost of a deeper check for a unique native
// object is going to be a negligible cost for a possible big win.
#if SWIFT_OBJC_INTEROP
return !isNonNative_unTagged_bridgeObject(bridgeObject)
? swift_isUniquelyReferenced_nonNull_native(
(const HeapObject *)object)
: swift_isUniquelyReferencedNonObjC_nonNull(object);
#else
return swift_isUniquelyReferenced_nonNull_native((const HeapObject *)object);
#endif
}
/// Return true if the given bits of a Builtin.BridgeObject refer to
/// an object whose strong reference count is 1.
bool swift::swift_isUniquelyReferenced_nonNull_bridgeObject(uintptr_t bits) {
auto bridgeObject = reinterpret_cast<void *>(bits);
if (isObjCTaggedPointer(bridgeObject))
return false;
const auto object = toPlainObject_unTagged_bridgeObject(bridgeObject);
#if SWIFT_OBJC_INTEROP
return !isNonNative_unTagged_bridgeObject(bridgeObject)
? swift_isUniquelyReferenced_nonNull_native(
(const HeapObject *)object)
: swift_isUniquelyReferenced_nonNull(object);
#else
return swift_isUniquelyReferenced_nonNull_native((const HeapObject *)object);
#endif
}
// Given a non-@objc object reference, return true iff the
// object is non-nil and has a strong reference count greater than 1
bool swift::swift_isEscapingClosureAtFileLocation(const HeapObject *object,
const unsigned char *filename,
int32_t filenameLength,
int32_t line, int32_t column,
unsigned verificationType) {
assert((verificationType == 0 || verificationType == 1) &&
"Unknown verification type");
bool isEscaping =
object != nullptr && !object->refCounts.isUniquelyReferenced();
// Print a message if the closure escaped.
if (isEscaping) {
auto *message = (verificationType == 0)
? "closure argument was escaped in "
"withoutActuallyEscaping block"
: "closure argument passed as @noescape "
"to Objective-C has escaped";
auto messageLength = strlen(message);
char *log;
swift_asprintf(
&log, "%.*s: file %.*s, line %" PRIu32 ", column %" PRIu32 " \n",
(int)messageLength, message, filenameLength, filename, line, column);
printCurrentBacktrace(2/*framesToSkip*/);
if (_swift_shouldReportFatalErrorsToDebugger()) {
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "escaping-closure-violation",
.currentStackDescription = "Closure has escaped",
.framesToSkip = 1,
.memoryAddress = nullptr,
.numExtraThreads = 0,
.threads = nullptr,
.numFixIts = 0,
.fixIts = nullptr,
.numNotes = 0,
.notes = nullptr,
};
_swift_reportToDebugger(RuntimeErrorFlagFatal, log, &details);
}
swift_reportError(RuntimeErrorFlagFatal, log);
free(log);
}
return isEscaping;
}
struct ClassExtents {
size_t negative;
size_t positive;
};
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
ClassExtents
_swift_getSwiftClassInstanceExtents(const Metadata *c) {
assert(c && c->isClassObject());
auto metaData = c->getClassObject();
return ClassExtents{
metaData->getInstanceAddressPoint(),
metaData->getInstanceSize() - metaData->getInstanceAddressPoint()
};
}
#if SWIFT_OBJC_INTEROP
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_SPI
ClassExtents
_swift_getObjCClassInstanceExtents(const ClassMetadata* c) {
// Pure ObjC classes never have negative extents.
if (c->isPureObjC())
return ClassExtents{0, class_getInstanceSize(class_const_cast(c))};
return _swift_getSwiftClassInstanceExtents(c);
}
SWIFT_CC(swift)
SWIFT_RUNTIME_EXPORT
void swift_objc_swift3ImplicitObjCEntrypoint(id self, SEL selector,
const char *filename,
size_t filenameLength,
size_t line, size_t column,
std::atomic<bool> *didLog) {
// Only log once. We should have been given a unique zero-initialized
// atomic flag for each entry point.
if (didLog->exchange(true))
return;
// Figure out how much reporting we want by querying the environment
// variable SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT. We have four meaningful
// levels:
//
// 0: Don't report anything
// 1: Complain about uses of implicit @objc entrypoints.
// 2: Complain about uses of implicit @objc entrypoints, with backtraces
// if possible.
// 3: Complain about uses of implicit @objc entrypoints, then abort().
//
// The default, if SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT is not set, is 2.
uint8_t reportLevel =
runtime::environment::SWIFT_DEBUG_IMPLICIT_OBJC_ENTRYPOINT();
if (reportLevel < 1) return;
// Report the error.
uint32_t flags = 0;
if (reportLevel >= 2)
flags |= 1 << 0; // Backtrace
bool isInstanceMethod = !class_isMetaClass(object_getClass(self));
void (*reporter)(uint32_t, const char *, ...) =
reportLevel > 2 ? swift::fatalError : swift::warning;
if (filenameLength > INT_MAX)
filenameLength = INT_MAX;
char *message, *nullTerminatedFilename;
swift_asprintf(&message,
"implicit Objective-C entrypoint %c[%s %s] is deprecated and will "
"be removed in Swift 4",
isInstanceMethod ? '-' : '+',
class_getName([self class]),
sel_getName(selector));
swift_asprintf(&nullTerminatedFilename, "%*s", (int)filenameLength, filename);
RuntimeErrorDetails::FixIt fixit = {
.filename = nullTerminatedFilename,
.startLine = line,
.startColumn = column,
.endLine = line,
.endColumn = column,
.replacementText = "@objc "
};
RuntimeErrorDetails::Note note = {
.description = "add '@objc' to expose this Swift declaration to Objective-C",
.numFixIts = 1,
.fixIts = &fixit
};
RuntimeErrorDetails details = {
.version = RuntimeErrorDetails::currentVersion,
.errorType = "implicit-objc-entrypoint",
.currentStackDescription = nullptr,
.framesToSkip = 1,
.memoryAddress = nullptr,
.numExtraThreads = 0,
.threads = nullptr,
.numFixIts = 0,
.fixIts = nullptr,
.numNotes = 1,
.notes = &note
};
uintptr_t runtime_error_flags = RuntimeErrorFlagNone;
if (reporter == swift::fatalError)
runtime_error_flags = RuntimeErrorFlagFatal;
_swift_reportToDebugger(runtime_error_flags, message, &details);
reporter(flags,
"*** %s:%zu:%zu: %s; add explicit '@objc' to the declaration to "
"emit the Objective-C entrypoint in Swift 4 and suppress this "
"message\n",
nullTerminatedFilename, line, column, message);
free(message);
free(nullTerminatedFilename);
}
const Metadata *swift::getNSObjectMetadata() {
return SWIFT_LAZY_CONSTANT(
swift_getObjCClassMetadata((const ClassMetadata *)[NSObject class]));
}
const Metadata *swift::getNSStringMetadata() {
return SWIFT_LAZY_CONSTANT(swift_getObjCClassMetadata(
(const ClassMetadata *)objc_lookUpClass("NSString")
));
}
const HashableWitnessTable *
swift::hashable_support::getNSStringHashableConformance() {
return SWIFT_LAZY_CONSTANT(
reinterpret_cast<const HashableWitnessTable *>(
swift_conformsToProtocolCommon(
getNSStringMetadata(),
&HashableProtocolDescriptor
)
)
);
}
#endif
const ClassMetadata *swift::getRootSuperclass() {
#if SWIFT_OBJC_INTEROP
static Lazy<const ClassMetadata *> SwiftObjectClass;
return SwiftObjectClass.get([](void *ptr) {
*((const ClassMetadata **) ptr) =
(const ClassMetadata *)[SwiftObject class];
});
#else
return nullptr;
#endif
}
#define OVERRIDE_OBJC COMPATIBILITY_OVERRIDE
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"
#define OVERRIDE_FOREIGN COMPATIBILITY_OVERRIDE
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"