Files
swift-mirror/include/swift/Syntax/Syntax.h
Alex Hoppen 294977534c [libSyntax] Remove incremental JSON transfer option
We were only keeping track of `RawSyntax` node IDs to incrementally transfer a syntax tree via JSON. However, AFAICT the incremental JSON transfer option has been superceeded by `SyntaxParseActions`, which are more efficient.

So, let’s clean up and remove the `RawSyntax` node ID and JSON incremental transfer option.

In places that still need a notion of `RawSyntax` identity (like determining the reused syntax regions), use the `RawSyntax`’s pointer instead of the manually created ID.

In `incr_transfer_round_trip.py` always use the code path that uses the `SyntaxParseActions` and remove the transitional code that was still using the incremental JSON transfer but was never called.
2021-04-07 10:01:34 +02:00

517 lines
17 KiB
C++

//===--- Syntax.h - Swift Syntax Interface ----------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the Syntax type, the main public-facing classes and
// subclasses for dealing with Swift Syntax. It essentially wraps
// SyntaxData(Ref) and provides convenience APIs (like retrieving children)
// based on the syntax kind.
//
// There are two versions of the Syntax type.
// SyntaxRef:
// SyntaxRef is designed around efficiency. It *does not* retain the
// SyntaxDataRef that stores its data - the user must gurantee that the
// SyntaxDataRef outlives the SyntaxRef that references it. Instead,
// SyntaxDataRef provides a *view* into the SyntaxDataRef and the view provides
// all convinience APIs. The advantage of this is that the underlying SyntaxData
// can be stack-allocated and does not need to be copied when the the SyntaxRef
// is being passsed around or when the SyntaxRef is being casted.
//
// Syntax:
// The syntax nodes are designed for memory safety. Syntax nodes always retain
// (and ref-count) heap-allocated SyntaxData nodes. While this provides maximum
// memory safety, the heap allocations and the ref-counting has a significant
// performance overhead.
//
// Note that the two access modes can also be mixed. When a syntax tree is
// accessed by Syntax (memory-safe) nodes, they can be demoted to SyntaxRef
// nodes to perform perfomance-critical tasks.
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SYNTAX_SYNTAX_H
#define SWIFT_SYNTAX_SYNTAX_H
#include "swift/Basic/Debug.h"
#include "swift/Syntax/SyntaxData.h"
#include "swift/Syntax/References.h"
#include "swift/Syntax/RawSyntax.h"
#include "swift/Syntax/Trivia.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/raw_ostream.h"
namespace swift {
namespace syntax {
struct SyntaxVisitor;
class SourceFileSyntax;
template <typename SyntaxNode>
SyntaxNode makeRoot(const RawSyntax *Raw) {
auto Data = SyntaxData::makeRoot(AbsoluteRawSyntax::forRoot(Raw));
return SyntaxNode(Data);
}
const auto NoParent = llvm::None;
/// Marker type to construct \c SyntaxRef nodes without validation. This is used
/// to create \c SyntaxRef inside \c OwnedSyntaxRef and \c
/// OptionalOwnedSyntaxRef that point to a \c SyntaxDataRef which is yet to be
/// initialised.
/// Validation will occur in these types once the \c SyntaxRef is accessed.
struct no_validation_t {};
// MARK: - OwnedSyntaxRef
/// Holds a \c SyntaxDataRef and provides a \c SyntaxRef (or one of its
/// subclasses) as an accessor to the \c SyntaxDataRef.
/// The user of this type needs to make sure that the \c OwnedSyntaxRef always
/// outlives the \c SyntaxRef provided by it, because otherwise the \c SyntaxRef
/// points to invalid memory.
/// It allows transparent access to the \c SyntaxRef through the \c -> operator.
///
/// All methods that return a \c OwnedSyntaxRef should be inlined to avoid
/// copying the \c SyntaxDataRef, which is rather expensive because the struct
/// is rather large.
///
/// A typical initialisation of a OwnedSyntaxRef looks as follows:
/// \code
/// OwnedSyntaxRef<MySyntaxRef> Result;
/// someSyntaxDataRef.getChildRef(Index, Result.getDataPtr());
/// \endcode
/// The first line creates an empty \c OwnedSyntaxRef with uninitialised memory.
/// The second line invokes a method that fills \c Data of \c OwnedSyntaxRef.
/// This way, we directly write the \c SyntaxDataRef to the correct memory
/// location and avoid copying it around.
template <typename SyntaxRefType>
class OwnedSyntaxRef {
SyntaxDataRef Data;
SyntaxRefType Ref;
public:
/// Create an *uninintialized* \c OwnedSyntaxRef. Its storage needs to be
/// initialised by writing a \c SyntaxDataRef to the pointer returned by
/// \c getDataPtr()
/// Implementation Note: We need to initialise \c Ref without validation,
/// because \c Data is still uninitialised. \c Ref will be validated when
/// accessed using \c getRef or \c -> .
OwnedSyntaxRef() : Data(), Ref(getDataPtr(), no_validation_t()) {}
OwnedSyntaxRef(const OwnedSyntaxRef &Other)
: Data(Other.Data), Ref(getDataPtr(), no_validation_t()) {}
OwnedSyntaxRef(OwnedSyntaxRef &&Other)
: Data(std::move(Other.Data)), Ref(getDataPtr(), no_validation_t()) {}
/// The pointer to the location at which \c this stores the \c Data.
/// Can be used to retroactively populate the \c Data after \c OwnedSyntaxRef
/// has been constructed with uninitialised memory.
SyntaxDataRef *getDataPtr() { return &Data; }
const SyntaxRefType &getRef() {
assert(Ref.getDataRef() == getDataPtr() &&
"Ref no longer pointing to Data?");
#ifndef NDEBUG
// This might be the first access to Ref after Data has been modified.
// Validate the node.
Ref.validate();
#endif
return Ref;
}
const SyntaxRefType *operator->() {
assert(Ref.getDataRef() == getDataPtr() &&
"Ref no longer pointing to Data?");
#ifndef NDEBUG
// This might be the first access to Ref after Data has been modified.
// Validate the node.
Ref.validate();
#endif
return &Ref;
}
};
/// Same as \c OwnedSyntaxRef but can be null. We don't use \c
/// Optional<OwnedSyntaxRef<SyntaxRefType>>>, because then we couldn't access
/// the underlying \c SytnaxRefType via the \c -> operator (the use of \c ->
/// would access the \c OwnedSyntaxRef<SyntaxRefType> wrapped by \c Optional and
/// not the \c SyntaxRefType wrapped by \c OwnedSyntaxRef.
template <typename SyntaxRefType>
class OptionalOwnedSyntaxRef {
Optional<SyntaxDataRef> Data;
SyntaxRefType Ref;
public:
OptionalOwnedSyntaxRef() : Data(), Ref(getDataPtr(), no_validation_t()) {}
OptionalOwnedSyntaxRef(const OptionalOwnedSyntaxRef &Other)
: Data(Other.Data), Ref(getDataPtr(), no_validation_t()) {}
OptionalOwnedSyntaxRef(OptionalOwnedSyntaxRef &&Other)
: Data(std::move(Other.Data)), Ref(getDataPtr(), no_validation_t()) {}
SyntaxDataRef *getDataPtr() { return Data.getPointer(); }
bool hasValue() const { return Data.hasValue(); }
explicit operator bool() const { return hasValue(); }
const SyntaxRefType &getRef() {
assert(Ref.getDataRef() == getDataPtr() &&
"Ref no longer pointing to Data?");
assert(hasValue() && "Accessing a OptionalOwnedSyntaxRef without a value");
#ifndef NDEBUG
// This might be the first access to Ref after Data has been populated.
// Validate the node.
Ref.validate();
#endif
return Ref;
}
SyntaxRefType *operator->() {
assert(Ref.getDataRef() == getDataPtr() &&
"Ref no longer pointing to Data?");
assert(hasValue() && "OptionalOwnedSyntaxRef doesn't have a value");
return &Ref;
}
};
// MARK: - Syntax
/// See comment on top of file.
class Syntax {
protected:
const RC<const SyntaxData> Data;
public:
explicit Syntax(const RC<const SyntaxData> &Data) : Data(Data) {
assert(Data != nullptr && "Syntax must be backed by non-null Data");
}
/// Get the kind of syntax.
SyntaxKind getKind() const;
/// Get the shared raw syntax.
const RawSyntax *getRaw() const;
/// Get the number of child nodes in this piece of syntax, not including
/// tokens.
size_t getNumChildren() const;
/// Get the Nth child of this piece of syntax.
llvm::Optional<Syntax> getChild(const size_t N) const;
/// Returns true if the syntax node is of the given type.
template <typename T>
bool is() const {
return T::classof(this);
}
/// Get the Data for this Syntax node.
const RC<const SyntaxData> &getData() const { return Data; }
/// Cast this Syntax node to a more specific type, asserting it's of the
/// right kind.
template <typename T>
T castTo() const {
assert(is<T>() && "castTo<T>() node of incompatible type!");
return T(Data);
}
/// If this Syntax node is of the right kind, cast and return it,
/// otherwise return None.
template <typename T>
llvm::Optional<T> getAs() const {
if (is<T>()) {
return castTo<T>();
}
return llvm::None;
}
/// Return the parent of this node, if it has one.
llvm::Optional<Syntax> getParent() const;
/// Returns the child index of this node in its parent,
/// if it has one, otherwise 0.
CursorIndex getIndexInParent() const { return getData()->getIndexInParent(); }
/// Return the number of bytes this node takes when spelled out in the source
size_t getTextLength() const { return getRaw()->getTextLength(); }
/// Returns true if this syntax node represents a token.
bool isToken() const;
/// Returns true if this syntax node represents a statement.
bool isStmt() const;
/// Returns true if this syntax node represents a declaration.
bool isDecl() const;
/// Returns true if this syntax node represents an expression.
bool isExpr() const;
/// Returns true if this syntax node represents a pattern.
bool isPattern() const;
/// Returns true if this syntax node represents a type.
bool isType() const;
/// Returns true if this syntax is of some "unknown" kind.
bool isUnknown() const;
/// Returns true if the node is "missing" in the source (i.e. it was
/// expected (or optional) but not written.
bool isMissing() const;
/// Returns true if the node is "present" in the source.
bool isPresent() const;
/// Print the syntax node with full fidelity to the given output stream.
void print(llvm::raw_ostream &OS, SyntaxPrintOptions Opts = SyntaxPrintOptions()) const;
/// Print a debug representation of the syntax node to the given output stream
/// and indentation level.
void dump(llvm::raw_ostream &OS, unsigned Indent = 0) const;
/// Print a debug representation of the syntax node to standard error.
SWIFT_DEBUG_DUMP;
bool hasSameIdentityAs(const Syntax &Other) const {
return Data->getAbsoluteRaw().getNodeId() ==
Other.Data->getAbsoluteRaw().getNodeId();
}
static bool kindof(SyntaxKind Kind) {
return true;
}
static bool classof(const Syntax *S) {
// Trivially true.
return true;
}
/// Recursively visit this node.
void accept(SyntaxVisitor &Visitor);
/// Same as \c getAbsolutePositionAfterLeadingTrivia.
AbsoluteOffsetPosition getAbsolutePosition() const {
return getAbsolutePositionAfterLeadingTrivia();
}
/// Get the offset at which the leading trivia of this node starts.
AbsoluteOffsetPosition getAbsolutePositionBeforeLeadingTrivia() const {
return Data->getAbsolutePositionBeforeLeadingTrivia();
}
/// Get the offset at which the actual content (i.e. non-triva) of this node
/// starts.
AbsoluteOffsetPosition getAbsolutePositionAfterLeadingTrivia() const {
return Data->getAbsolutePositionAfterLeadingTrivia();
}
/// Get the offset at which the trailing trivia of this node starts.
AbsoluteOffsetPosition getAbsoluteEndPositionBeforeTrailingTrivia() const {
return Data->getAbsoluteEndPositionBeforeTrailingTrivia();
}
/// Get the offset at which the trailing trivia of this node starts.
AbsoluteOffsetPosition getAbsoluteEndPositionAfterTrailingTrivia() const {
return Data->getAbsoluteEndPositionAfterTrailingTrivia();
}
};
// MARK: - SyntaxRef
/// See comment on top of file.
class SyntaxRef {
const SyntaxDataRef * const Data;
public:
/// Create a \c SyntaxRef and validate that the \p Data can actually represent
/// a \c SyntaxRef. Validation in particular performs checks for derived
/// types.
explicit SyntaxRef(const SyntaxDataRef *Data) : Data(Data) {
assert(Data != nullptr && "SyntaxRef must reference Data");
this->validate();
}
SyntaxRef(const SyntaxDataRef *Data, no_validation_t) : Data(Data) {
assert(Data != nullptr && "SyntaxRef must reference Data");
}
/// Demote a \c Syntax to a \c SyntaxRef
SyntaxRef(const Syntax &Node) : SyntaxRef(Node.getData().get()) {}
void validate() {}
// MARK: - Get underlying data
/// Get the \c SyntaxDataRef that stores the data of this \c SyntaxRef node.
const SyntaxDataRef *getDataRef() const {
return Data;
}
const AbsoluteRawSyntax &getAbsoluteRaw() const {
return getDataRef()->getAbsoluteRaw();
}
/// Get the shared raw syntax.
const RawSyntax *getRaw() const { return getDataRef()->getRaw(); }
/// Get the kind of syntax.
SyntaxKind getKind() const { return getRaw()->getKind(); }
/// Return the number of bytes this node takes when spelled out in the source,
/// including trivia.
size_t getTextLength() const { return getRaw()->getTextLength(); }
// MARK: Parents/children
/// Return the parent of this node, if it has one, otherwise return \c None.
llvm::Optional<SyntaxRef> getParentRef() const {
if (auto ParentDataRef = getDataRef()->getParentRef()) {
return SyntaxRef(ParentDataRef);
} else {
return None;
}
}
/// Get the number of child nodes in this piece of syntax.
size_t getNumChildren() const { return getDataRef()->getNumChildren(); }
/// Returns the child index of this node in its parent, if it has one,
/// otherwise 0.
CursorIndex getIndexInParent() const {
return getDataRef()->getIndexInParent();
}
/// Get the \p N -th child of this piece of syntax.
OptionalOwnedSyntaxRef<SyntaxRef> getChildRef(const size_t N) const {
OptionalOwnedSyntaxRef<SyntaxRef> Result;
getDataRef()->getChildRef(N, Result.getDataPtr());
return Result;
}
// MARK: Position
/// Get the offset at which the leading trivia of this node starts.
AbsoluteOffsetPosition getAbsolutePositionBeforeLeadingTrivia() const {
return getDataRef()->getAbsolutePositionBeforeLeadingTrivia();
}
/// Get the offset at which the actual content (i.e. non-triva) of this node
/// starts.
AbsoluteOffsetPosition getAbsolutePositionAfterLeadingTrivia() const {
return getDataRef()->getAbsolutePositionAfterLeadingTrivia();
}
/// Get the offset at which the trailing trivia of this node starts.
AbsoluteOffsetPosition getAbsoluteEndPositionBeforeTrailingTrivia() const {
return getDataRef()->getAbsoluteEndPositionBeforeTrailingTrivia();
}
/// Get the offset at which the trailing trivia of this node ends.
AbsoluteOffsetPosition getAbsoluteEndPositionAfterTrailingTrivia() const {
return getDataRef()->getAbsoluteEndPositionAfterTrailingTrivia();
}
// MARK: - Get node kind
/// Returns true if this syntax node represents a token.
bool isToken() const { return getRaw()->isToken(); }
/// Returns true if this syntax node represents a statement.
bool isStmt() const { return getRaw()->isStmt(); }
/// Returns true if this syntax node represents a declaration.
bool isDecl() const { return getRaw()->isDecl(); }
/// Returns true if this syntax node represents an expression.
bool isExpr() const { return getRaw()->isExpr(); }
/// Returns true if this syntax node represents a pattern.
bool isPattern() const { return getRaw()->isPattern(); }
/// Returns true if this syntax node represents a type.
bool isType() const { return getRaw()->isType(); }
/// Returns true if this syntax is of some "unknown" kind.
bool isUnknown() const { return getRaw()->isUnknown(); }
/// Returns true if the node is "missing" in the source (i.e. it was
/// expected (or optional) but not written.
bool isMissing() const { return getRaw()->isMissing(); }
/// Returns true if the node is "present" in the source.
bool isPresent() const { return getRaw()->isPresent(); }
// MARK: Casting
/// Returns true if the syntax node is of the given type \p T.
template <typename T>
bool is() const {
return T::classof(this);
}
/// Cast this Syntax node to a more specific type, asserting it's of the
/// right kind \p T.
template <typename T>
T castTo() const {
assert(is<T>() && "castTo<T>() node of incompatible type!");
return T(getDataRef());
}
/// If this Syntax node is of the right kind \p T, cast and return it,
/// otherwise return None.
template <typename T>
llvm::Optional<T> getAs() const {
if (is<T>()) {
return castTo<T>();
} else {
return None;
}
}
static bool kindof(SyntaxKind Kind) { return true; }
static bool classof(const SyntaxRef *S) {
// Trivially true.
return true;
}
// MARK: - Miscellaneous
/// Print the syntax node with full fidelity to the given output stream.
void print(llvm::raw_ostream &OS,
SyntaxPrintOptions Opts = SyntaxPrintOptions()) const {
if (auto Raw = getRaw()) {
Raw->print(OS, Opts);
}
}
/// Print a debug representation of the syntax node to the given output stream
/// and indentation level.
void dump(llvm::raw_ostream &OS, unsigned Indent = 0) const {
getRaw()->dump(OS, Indent);
}
/// Print a debug representation of the syntax node to standard error.
SWIFT_DEBUG_DUMP { getRaw()->dump(); }
bool hasSameIdentityAs(const SyntaxRef &Other) const {
return getDataRef()->getAbsoluteRaw().getNodeId() ==
Other.getDataRef()->getAbsoluteRaw().getNodeId();
}
};
} // end namespace syntax
} // end namespace swift
#endif // SWIFT_SYNTAX_SYNTAX_H