Files
swift-mirror/tools/libSwiftSyntaxParser/libSwiftSyntaxParser.cpp
Meghana Gupta f458d9b490 Fix unnecessary one-time recompile of stdlib with -enable-ossa-flag (#39516)
* Fix unnecessary one-time recompile of stdlib with -enable-ossa-flag

This includes a bit in the module format to represent if the module was
compiled with -enable-ossa-modules flag. When compiling a client module
with -enable-ossa-modules flag, all dependent modules are checked for this bit,
if not on, recompilation is triggered with -enable-ossa-modules.

* Updated tests
2021-10-04 18:46:40 -07:00

586 lines
21 KiB
C++

//===--- libSwiftSyntaxParser.cpp - C API for Swift Syntax Parsing --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This C API is primarily intended to serve as the Swift parsing component
// of SwiftSyntax (https://github.com/apple/swift-syntax).
//
//===----------------------------------------------------------------------===//
#include "swift-c/SyntaxParser/SwiftSyntaxParser.h"
#include "swift/AST/Module.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Parse/Parser.h"
#include "swift/Parse/SyntaxParseActions.h"
#include "swift/Syntax/Serialization/SyntaxSerialization.h"
#include "swift/Syntax/SyntaxNodes.h"
#include "swift/Subsystems.h"
#include <Block.h>
using namespace swift;
using namespace swift::syntax;
typedef swiftparse_range_t CRange;
typedef swiftparse_client_node_t CClientNode;
typedef swiftparse_syntax_node_t CRawSyntaxNode;
typedef swiftparse_trivia_piece_t CTriviaPiece;
typedef swiftparse_syntax_kind_t CSyntaxKind;
namespace {
static unsigned getByteOffset(SourceLoc Loc, SourceManager &SM,
unsigned BufferID) {
return Loc.isValid() ? SM.getLocOffsetInBuffer(Loc, BufferID) : 0;
}
static void initCRange(CRange &c_range, CharSourceRange range, SourceManager &SM,
unsigned BufferID) {
if (range.isValid()) {
c_range.offset = getByteOffset(range.getStart(), SM, BufferID);
c_range.length = range.getByteLength();
} else {
c_range.offset = 0;
c_range.length = 0;
}
}
class SynParser {
swiftparse_node_handler_t NodeHandler = nullptr;
swiftparse_node_lookup_t NodeLookup = nullptr;
swiftparse_diagnostic_handler_t DiagHandler = nullptr;
public:
swiftparse_node_handler_t getNodeHandler() const {
return NodeHandler;
}
swiftparse_node_lookup_t getNodeLookup() const {
return NodeLookup;
}
swiftparse_diagnostic_handler_t getDiagnosticHandler() const {
return DiagHandler;
}
void setNodeHandler(swiftparse_node_handler_t hdl) {
auto prevBlk = NodeHandler;
NodeHandler = Block_copy(hdl);
Block_release(prevBlk);
}
void setNodeLookup(swiftparse_node_lookup_t lookupBlk) {
auto prevBlk = NodeLookup;
NodeLookup = Block_copy(lookupBlk);
Block_release(prevBlk);
}
void setDiagnosticHandler(swiftparse_diagnostic_handler_t hdl) {
auto prevBlk = DiagHandler;
DiagHandler = Block_copy(hdl);
Block_release(prevBlk);
}
~SynParser() {
setNodeHandler(nullptr);
setNodeLookup(nullptr);
setDiagnosticHandler(nullptr);
}
swiftparse_client_node_t parse(const char *source, size_t len);
};
struct DeferredTokenNode {
bool IsMissing;
tok TokenKind;
StringRef LeadingTrivia;
StringRef TrailingTrivia;
/// The range of the token including trivia.
CharSourceRange Range;
DeferredTokenNode(bool IsMissing, tok TokenKind, StringRef LeadingTrivia,
StringRef TrailingTrivia, CharSourceRange Range)
: IsMissing(IsMissing), TokenKind(TokenKind),
LeadingTrivia(LeadingTrivia), TrailingTrivia(TrailingTrivia),
Range(Range) {}
/// Returns the length of this token or \c 0 if the token is missing.
size_t getLength() const {
if (IsMissing) {
return 0;
} else {
assert(Range.isValid());
return Range.getByteLength();
}
}
};
struct DeferredLayoutNode {
syntax::SyntaxKind Kind;
ArrayRef<RecordedOrDeferredNode> Children;
unsigned Length;
DeferredLayoutNode(syntax::SyntaxKind Kind,
ArrayRef<RecordedOrDeferredNode> Children, unsigned Length)
: Kind(Kind), Children(Children), Length(Length) {}
};
class CLibParseActions final : public SyntaxParseActions {
SynParser &SynParse;
SourceManager &SM;
unsigned BufferID;
llvm::BumpPtrAllocator DeferredNodeAllocator;
public:
CLibParseActions(SynParser &synParse, SourceManager &sm, unsigned bufID)
: SynParse(synParse), SM(sm), BufferID(bufID) {}
private:
swiftparse_node_handler_t getNodeHandler() const {
return SynParse.getNodeHandler();
}
swiftparse_node_lookup_t getNodeLookup() const {
return SynParse.getNodeLookup();
}
static void makeCTrivia(SmallVectorImpl<CTriviaPiece> &c_trivia,
ArrayRef<ParsedTriviaPiece> trivia) {
for (const auto &piece : trivia) {
CTriviaPiece c_piece;
auto numValue =
serialization::getNumericValue(piece.getKind());
c_piece.kind = numValue;
assert(c_piece.kind == numValue && "trivia kind value is too large");
c_piece.length = piece.getLength();
c_trivia.push_back(c_piece);
}
}
void makeCRange(CRange &c_range, CharSourceRange range) {
return initCRange(c_range, range, SM, BufferID);
}
void makeCRawToken(CRawSyntaxNode &node,
tok kind,
ArrayRef<CTriviaPiece> leadingTrivia,
ArrayRef<CTriviaPiece> trailingTrivia,
CharSourceRange range) {
node.kind = serialization::getNumericValue(SyntaxKind::Token);
auto numValue = serialization::getNumericValue(kind);
node.token_data.kind = numValue;
assert(node.token_data.kind == numValue && "token kind value is too large");
node.token_data.leading_trivia = leadingTrivia.data();
node.token_data.leading_trivia_count = leadingTrivia.size();
assert(node.token_data.leading_trivia_count == leadingTrivia.size() &&
"leading trivia count value is too large");
node.token_data.trailing_trivia = trailingTrivia.data();
node.token_data.trailing_trivia_count = trailingTrivia.size();
assert(node.token_data.trailing_trivia_count == trailingTrivia.size() &&
"trailing trivia count value is too large");
makeCRange(node.token_data.range, range);
node.present = true;
}
OpaqueSyntaxNode recordToken(tok tokenKind, StringRef leadingTrivia,
StringRef trailingTrivia,
CharSourceRange range) override {
auto leadingTriviaPieces = TriviaLexer::lexTrivia(leadingTrivia).Pieces;
auto trailingTriviaPieces = TriviaLexer::lexTrivia(trailingTrivia).Pieces;
SmallVector<CTriviaPiece, 8> c_leadingTrivia, c_trailingTrivia;
makeCTrivia(c_leadingTrivia, leadingTriviaPieces);
makeCTrivia(c_trailingTrivia, trailingTriviaPieces);
CRawSyntaxNode node;
makeCRawToken(node, tokenKind, c_leadingTrivia, c_trailingTrivia,
range);
return getNodeHandler()(&node);
}
OpaqueSyntaxNode recordMissingToken(tok tokenKind, SourceLoc loc) override {
CRawSyntaxNode node;
makeCRawToken(node, tokenKind, {}, {}, CharSourceRange{loc, 0});
node.present = false;
return getNodeHandler()(&node);
}
OpaqueSyntaxNode
recordRawSyntax(SyntaxKind kind,
ArrayRef<OpaqueSyntaxNode> elements) override {
CRawSyntaxNode node;
auto numValue = serialization::getNumericValue(kind);
node.kind = numValue;
assert(node.kind == numValue && "syntax kind value is too large");
node.layout_data.nodes =
const_cast<const swiftparse_client_node_t *>(elements.data());
node.layout_data.nodes_count = elements.size();
node.present = true;
return getNodeHandler()(&node);
}
Optional<SourceFileSyntax> realizeSyntaxRoot(OpaqueSyntaxNode root,
const SourceFile &SF) override {
// We don't support realizing syntax nodes from the C layout.
return None;
}
std::pair<size_t, OpaqueSyntaxNode>
lookupNode(size_t lexerOffset, SyntaxKind kind) override {
auto NodeLookup = getNodeLookup();
if (!NodeLookup) {
return {0, nullptr};
}
auto numValue = serialization::getNumericValue(kind);
CSyntaxKind ckind = numValue;
assert(ckind == numValue && "syntax kind value is too large");
auto result = NodeLookup(lexerOffset, ckind);
return {result.length, result.node};
}
OpaqueSyntaxNode makeDeferredToken(tok tokenKind, StringRef leadingTrivia,
StringRef trailingTrivia,
CharSourceRange range,
bool isMissing) override {
return new (DeferredNodeAllocator) DeferredTokenNode(
isMissing, tokenKind, leadingTrivia, trailingTrivia, range);
}
OpaqueSyntaxNode makeDeferredLayout(
syntax::SyntaxKind k, bool isMissing,
const MutableArrayRef<ParsedRawSyntaxNode> &parsedChildren) override {
assert(!isMissing && "Missing layout nodes not implemented yet");
auto childrenMem = DeferredNodeAllocator.Allocate<RecordedOrDeferredNode>(
parsedChildren.size());
auto children =
llvm::makeMutableArrayRef(childrenMem, parsedChildren.size());
// Compute the length of this node.
unsigned length = 0;
size_t index = 0;
for (auto &parsedChild : parsedChildren) {
auto child = parsedChild.takeRecordedOrDeferredNode();
children[index++] = child;
switch (child.getKind()) {
case RecordedOrDeferredNode::Kind::Null:
break;
case RecordedOrDeferredNode::Kind::Recorded:
llvm_unreachable("Children of deferred nodes must also be deferred");
break;
case RecordedOrDeferredNode::Kind::DeferredLayout:
length +=
static_cast<const DeferredLayoutNode *>(child.getOpaque())->Length;
break;
case RecordedOrDeferredNode::Kind::DeferredToken:
length += static_cast<const DeferredTokenNode *>(child.getOpaque())
->getLength();
break;
}
}
return new (DeferredNodeAllocator) DeferredLayoutNode(k, children, length);
}
OpaqueSyntaxNode recordDeferredToken(OpaqueSyntaxNode deferred) override {
auto Data = static_cast<const DeferredTokenNode *>(deferred);
if (Data->IsMissing) {
return recordMissingToken(Data->TokenKind, Data->Range.getStart());
} else {
return recordToken(Data->TokenKind, Data->LeadingTrivia,
Data->TrailingTrivia, Data->Range);
}
}
OpaqueSyntaxNode recordDeferredLayout(OpaqueSyntaxNode deferred) override {
auto Data = static_cast<const DeferredLayoutNode *>(deferred);
auto childrenStore =
DeferredNodeAllocator.Allocate<OpaqueSyntaxNode>(Data->Children.size());
MutableArrayRef<OpaqueSyntaxNode> children =
llvm::makeMutableArrayRef(childrenStore, Data->Children.size());
for (size_t i = 0; i < Data->Children.size(); ++i) {
auto Child = Data->Children[i];
switch (Child.getKind()) {
case RecordedOrDeferredNode::Kind::Null:
children[i] = Child.getOpaque();
break;
case RecordedOrDeferredNode::Kind::Recorded:
llvm_unreachable("Children of deferred nodes must also be deferred");
break;
case RecordedOrDeferredNode::Kind::DeferredLayout:
children[i] = recordDeferredLayout(Child.getOpaque());
break;
case RecordedOrDeferredNode::Kind::DeferredToken:
children[i] = recordDeferredToken(Child.getOpaque());
break;
}
}
return recordRawSyntax(Data->Kind, children);
}
DeferredNodeInfo getDeferredChild(OpaqueSyntaxNode node,
size_t ChildIndex) const override {
auto Data = static_cast<const DeferredLayoutNode *>(node);
auto Child = Data->Children[ChildIndex];
switch (Child.getKind()) {
case RecordedOrDeferredNode::Kind::Null:
return DeferredNodeInfo(
RecordedOrDeferredNode(nullptr, RecordedOrDeferredNode::Kind::Null),
syntax::SyntaxKind::Unknown, tok::NUM_TOKENS,
/*IsMissing=*/false);
case RecordedOrDeferredNode::Kind::Recorded:
llvm_unreachable("Children of deferred nodes must also be deferred");
break;
case RecordedOrDeferredNode::Kind::DeferredLayout: {
auto ChildData =
static_cast<const DeferredLayoutNode *>(Child.getOpaque());
return DeferredNodeInfo(
RecordedOrDeferredNode(ChildData,
RecordedOrDeferredNode::Kind::DeferredLayout),
ChildData->Kind, tok::NUM_TOKENS,
/*IsMissing=*/false);
}
case RecordedOrDeferredNode::Kind::DeferredToken: {
auto ChildData =
static_cast<const DeferredTokenNode *>(Child.getOpaque());
return DeferredNodeInfo(
RecordedOrDeferredNode(ChildData,
RecordedOrDeferredNode::Kind::DeferredToken),
syntax::SyntaxKind::Token, ChildData->TokenKind,
ChildData->IsMissing);
}
}
}
CharSourceRange getDeferredChildRange(OpaqueSyntaxNode node,
size_t ChildIndex,
SourceLoc StartLoc) const override {
auto Data = static_cast<const DeferredLayoutNode *>(node);
// Compute the start offset of the child node by advancing StartLoc by the
// length of all previous child nodes.
for (unsigned i = 0; i < ChildIndex; ++i) {
auto Child = Data->Children[i];
switch (Child.getKind()) {
case RecordedOrDeferredNode::Kind::Null:
break;
case RecordedOrDeferredNode::Kind::Recorded:
llvm_unreachable("Children of deferred nodes must also be deferred");
case RecordedOrDeferredNode::Kind::DeferredLayout:
StartLoc = StartLoc.getAdvancedLoc(
static_cast<const DeferredLayoutNode *>(Child.getOpaque())->Length);
break;
case RecordedOrDeferredNode::Kind::DeferredToken:
StartLoc = StartLoc.getAdvancedLoc(
static_cast<const DeferredTokenNode *>(Child.getOpaque())
->getLength());
break;
}
}
auto Child = Data->Children[ChildIndex];
switch (Child.getKind()) {
case RecordedOrDeferredNode::Kind::Null:
return CharSourceRange(StartLoc, /*Length=*/0);
case RecordedOrDeferredNode::Kind::Recorded:
llvm_unreachable("Children of deferred nodes must also be deferred");
break;
case RecordedOrDeferredNode::Kind::DeferredLayout: {
auto ChildData = static_cast<const DeferredLayoutNode *>(Child.getOpaque());
return CharSourceRange(StartLoc, ChildData->Length);
}
case RecordedOrDeferredNode::Kind::DeferredToken: {
auto ChildData = static_cast<const DeferredTokenNode *>(Child.getOpaque());
assert(ChildData->Range.getStart() == StartLoc &&
"Something broken in our StartLoc computation?");
return ChildData->Range;
}
}
}
size_t getDeferredNumChildren(OpaqueSyntaxNode node) override {
auto Data = static_cast<const DeferredLayoutNode *>(node);
return Data->Children.size();
}
};
static swiftparser_diagnostic_severity_t getSeverity(DiagnosticKind Kind) {
switch (Kind) {
case swift::DiagnosticKind::Error:
return SWIFTPARSER_DIAGNOSTIC_SEVERITY_ERROR;
case swift::DiagnosticKind::Warning:
return SWIFTPARSER_DIAGNOSTIC_SEVERITY_WARNING;
case swift::DiagnosticKind::Note:
return SWIFTPARSER_DIAGNOSTIC_SEVERITY_NOTE;
default:
llvm_unreachable("unrecognized diagnostic kind.");
}
}
struct DiagnosticDetail {
const char* Message;
unsigned Offset;
std::vector<CRange> CRanges;
swiftparser_diagnostic_severity_t Severity;
std::vector<swiftparse_diagnostic_fixit_t> AllFixits;
};
struct SynParserDiagConsumer: public DiagnosticConsumer {
SynParser &Parser;
const unsigned BufferID;
SynParserDiagConsumer(SynParser &Parser, unsigned BufferID):
Parser(Parser), BufferID(BufferID) {}
void handleDiagnostic(SourceManager &SM,
const DiagnosticInfo &Info) override {
assert(Info.Kind != DiagnosticKind::Remark &&
"Shouldn't see this in parser.");
// The buffer where all char* will point into.
llvm::SmallString<256> Buffer;
auto getCurrentText = [&]() -> const char* {
return Buffer.data() + Buffer.size();
};
DiagnosticDetail Result;
Result.Severity = getSeverity(Info.Kind);
Result.Offset = getByteOffset(Info.Loc, SM, BufferID);
// Terminate each printed text with 0 so the client-side can use char* directly.
char NullTerm = '\0';
{
// Print the error message to buffer and record it.
llvm::raw_svector_ostream OS(Buffer);
Result.Message = getCurrentText();
DiagnosticEngine::formatDiagnosticText(OS, Info.FormatString,
Info.FormatArgs);
OS << NullTerm;
}
for (auto R: Info.Ranges) {
Result.CRanges.emplace_back();
initCRange(Result.CRanges.back(), R, SM, BufferID);
}
for (auto Fixit: Info.FixIts) {
Result.AllFixits.push_back({CRange(), getCurrentText()});
initCRange(Result.AllFixits.back().range, Fixit.getRange(), SM, BufferID);
llvm::raw_svector_ostream OS(Buffer);
OS << Fixit.getText() << NullTerm;
}
Parser.getDiagnosticHandler()(static_cast<void*>(&Result));
}
};
swiftparse_client_node_t SynParser::parse(const char *source, size_t len) {
SourceManager SM;
unsigned bufID = SM.addNewSourceBuffer(llvm::MemoryBuffer::getMemBuffer(
StringRef(source, len), "syntax_parse_source"));
LangOptions langOpts;
langOpts.BuildSyntaxTree = true;
langOpts.ParseForSyntaxTreeOnly = true;
langOpts.CollectParsedToken = false;
// Disable name lookups during parsing.
// Not ready yet:
// langOpts.EnableASTScopeLookup = true;
auto parseActions =
std::make_shared<CLibParseActions>(*this, SM, bufID);
// We have to use SourceFileKind::Main to avoid diagnostics like
// illegal_top_level_expr
ParserUnit PU(SM, SourceFileKind::Main, bufID, langOpts, TypeCheckerOptions(),
SILOptions(), "syntax_parse_module", std::move(parseActions),
/*SyntaxCache=*/nullptr);
std::unique_ptr<SynParserDiagConsumer> pConsumer;
if (DiagHandler) {
pConsumer = std::make_unique<SynParserDiagConsumer>(*this, bufID);
PU.getDiagnosticEngine().addConsumer(*pConsumer);
}
return const_cast<swiftparse_client_node_t>(PU.parse());
}
}
//===--- C API ------------------------------------------------------------===//
swiftparse_parser_t
swiftparse_parser_create(void) {
return new SynParser();
}
void
swiftparse_parser_dispose(swiftparse_parser_t c_parser) {
SynParser *parser = static_cast<SynParser*>(c_parser);
delete parser;
}
void
swiftparse_parser_set_node_handler(swiftparse_parser_t c_parser,
swiftparse_node_handler_t hdl) {
SynParser *parser = static_cast<SynParser*>(c_parser);
parser->setNodeHandler(hdl);
}
void
swiftparse_parser_set_node_lookup(swiftparse_parser_t c_parser,
swiftparse_node_lookup_t lookup) {
SynParser *parser = static_cast<SynParser*>(c_parser);
parser->setNodeLookup(lookup);
}
swiftparse_client_node_t swiftparse_parse_string(swiftparse_parser_t c_parser,
const char *source,
size_t len) {
SynParser *parser = static_cast<SynParser*>(c_parser);
return parser->parse(source, len);
}
const char* swiftparse_syntax_structure_versioning_identifier(void) {
return getSyntaxStructureVersioningIdentifier();
}
//===--------------------- C API for diagnostics -------------------------====//
void
swiftparse_parser_set_diagnostic_handler(swiftparse_parser_t c_parser,
swiftparse_diagnostic_handler_t hdl) {
SynParser *parser = static_cast<SynParser*>(c_parser);
parser->setDiagnosticHandler(hdl);
}
const char* swiftparse_diagnostic_get_message(swiftparser_diagnostic_t diag) {
return static_cast<const DiagnosticDetail*>(diag)->Message;
}
unsigned swiftparse_diagnostic_get_fixit_count(swiftparser_diagnostic_t diag) {
return static_cast<const DiagnosticDetail*>(diag)->AllFixits.size();
}
swiftparse_diagnostic_fixit_t
swiftparse_diagnostic_get_fixit(swiftparser_diagnostic_t diag, unsigned idx) {
auto allFixits = static_cast<const DiagnosticDetail*>(diag)->AllFixits;
assert(idx < allFixits.size());
return allFixits[idx];
}
unsigned swiftparse_diagnostic_get_range_count(swiftparser_diagnostic_t diag) {
return static_cast<const DiagnosticDetail*>(diag)->CRanges.size();
}
swiftparse_range_t
swiftparse_diagnostic_get_range(swiftparser_diagnostic_t diag, unsigned idx) {
return static_cast<const DiagnosticDetail*>(diag)->CRanges[idx];
}
swiftparser_diagnostic_severity_t
swiftparse_diagnostic_get_severity(swiftparser_diagnostic_t diag) {
return static_cast<const DiagnosticDetail*>(diag)->Severity;
}
unsigned swiftparse_diagnostic_get_source_loc(swiftparser_diagnostic_t diag) {
return static_cast<const DiagnosticDetail*>(diag)->Offset;
}