Files
swift-mirror/lib/Parse/ParseIfConfig.cpp
Robert Widmann 18b79ffcfd Resolve a Layering Violation in libBasic
Basic should not be allowed to link Parse, yet it was doing so
to allow Version to provide a constructor that would conveniently
parse a StringRef. This entrypoint also emitted diagnostics, so it
pulled in libAST.

Sink the version parser entrypoint down into Parse where it belongs
and point all the clients to the right place.
2022-09-09 00:21:30 -07:00

1018 lines
35 KiB
C++

//===--- ParseIfConfig.cpp - Swift Language Parser for #if directives -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Conditional Compilation Block Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/Version.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/ParseVersion.h"
#include "swift/Parse/SyntaxParsingContext.h"
#include "swift/Syntax/SyntaxFactory.h"
#include "swift/Syntax/TokenSyntax.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
using namespace swift::syntax;
namespace {
/// Get PlatformConditionKind from platform condition name.
static
Optional<PlatformConditionKind> getPlatformConditionKind(StringRef Name) {
return llvm::StringSwitch<Optional<PlatformConditionKind>>(Name)
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
.Case(IDENTIFIER, PlatformConditionKind::LABEL)
#include "swift/AST/PlatformConditionKinds.def"
.Default(None);
}
/// Get platform condition name from PlatformConditionKind.
static StringRef getPlatformConditionName(PlatformConditionKind Kind) {
switch (Kind) {
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
case PlatformConditionKind::LABEL: return IDENTIFIER;
#include "swift/AST/PlatformConditionKinds.def"
}
llvm_unreachable("Unhandled PlatformConditionKind in switch");
}
/// Extract source text of the expression.
static StringRef extractExprSource(SourceManager &SM, Expr *E) {
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(SM, E->getSourceRange());
return SM.extractText(Range);
}
static bool isValidPrefixUnaryOperator(Optional<StringRef> UnaryOperator) {
return UnaryOperator != None &&
(UnaryOperator.getValue() == ">=" || UnaryOperator.getValue() == "<");
}
static bool isValidVersion(const version::Version &Version,
const version::Version &ExpectedVersion,
StringRef UnaryOperator) {
if (UnaryOperator == ">=")
return Version >= ExpectedVersion;
if (UnaryOperator == "<")
return Version < ExpectedVersion;
llvm_unreachable("unsupported unary operator");
}
static llvm::VersionTuple getCanImportVersion(ArgumentList *args,
SourceManager &SM,
DiagnosticEngine *D,
bool &underlyingVersion) {
llvm::VersionTuple result;
if (args->size() != 2) {
if (D) {
D->diagnose(args->getLoc(), diag::canimport_two_parameters);
}
return result;
}
auto label = args->getLabel(1);
auto subE = args->getExpr(1);
if (label.str() == "_version") {
underlyingVersion = false;
} else if (label.str() == "_underlyingVersion") {
underlyingVersion = true;
} else {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_label);
}
return result;
}
StringRef verText;
if (auto *sle = dyn_cast<StringLiteralExpr>(subE)) {
verText = sle->getValue();
} else {
// Use the raw text for every non-string-literal expression. Versions with
// just two components are parsed as number literals, but versions with more
// components are parsed as unresolved dot expressions.
verText = extractExprSource(SM, subE);
}
if (verText.empty()) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_empty_version, label.str());
}
return result;
}
// VersionTuple supports a maximum of 4 components.
ssize_t excessComponents = verText.count('.') - 3;
if (excessComponents > 0) {
do {
verText = verText.rsplit('.').first;
} while (--excessComponents > 0);
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_version_too_many_components,
verText);
}
}
if (result.tryParse(verText)) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_invalid_version, verText);
}
}
return result;
}
static Expr *getSingleSubExp(ArgumentList *args, StringRef kindName,
DiagnosticEngine *D) {
if (args->empty())
return nullptr;
if (auto *unary = args->getUnlabeledUnaryExpr())
return unary;
// canImport() has an optional second parameter.
if (kindName == "canImport") {
return args->getExpr(0);
}
return nullptr;
}
/// Returns \c true if the condition is a version check.
static bool isVersionIfConfigCondition(Expr *Condition);
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context);
/// The condition validator.
class ValidateIfConfigCondition :
public ExprVisitor<ValidateIfConfigCondition, Expr*> {
ASTContext &Ctx;
DiagnosticEngine &D;
bool HasError;
/// Get the identifier string of the UnresolvedDeclRefExpr.
Optional<StringRef> getDeclRefStr(Expr *E, DeclRefKind Kind) {
auto UDRE = dyn_cast<UnresolvedDeclRefExpr>(E);
if (!UDRE ||
!UDRE->hasName() ||
UDRE->getRefKind() != Kind ||
UDRE->getName().isCompoundName())
return None;
return UDRE->getName().getBaseIdentifier().str();
}
/// True for expressions representing either top level modules
/// or nested submodules.
bool isModulePath(Expr *E) {
auto UDE = dyn_cast<UnresolvedDotExpr>(E);
if (!UDE)
return getDeclRefStr(E, DeclRefKind::Ordinary).hasValue();
return UDE->getFunctionRefKind() == FunctionRefKind::Unapplied &&
isModulePath(UDE->getBase());
}
Expr *diagnoseUnsupportedExpr(Expr *E) {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_expression_type);
return nullptr;
}
// Support '||' and '&&' operator. The precedence of '&&' is higher than '||'.
// Invalid operator and the next operand are diagnosed and removed from AST.
Expr *foldSequence(Expr *LHS, ArrayRef<Expr*> &S, bool isRecurse = false) {
assert(!S.empty() && ((S.size() & 1) == 0));
auto getNextOperator = [&]() -> Optional<StringRef> {
assert((S.size() & 1) == 0);
while (!S.empty()) {
auto Name = getDeclRefStr(S[0], DeclRefKind::BinaryOperator);
if (Name.hasValue() && (*Name == "||" || *Name == "&&"))
return Name;
auto DiagID = isa<UnresolvedDeclRefExpr>(S[0])
? diag::unsupported_conditional_compilation_binary_expression
: diag::unsupported_conditional_compilation_expression_type;
D.diagnose(S[0]->getLoc(), DiagID);
HasError |= true;
// Consume invalid operator and the immediate RHS.
S = S.slice(2);
}
return None;
};
// Extract out the first operator name.
auto OpName = getNextOperator();
if (!OpName.hasValue())
// If failed, it's not a sequence anymore.
return LHS;
Expr *Op = S[0];
// We will definitely be consuming at least one operator.
// Pull out the prospective RHS and slice off the first two elements.
Expr *RHS = S[1];
S = S.slice(2);
while (true) {
// Pull out the next binary operator.
auto NextOpName = getNextOperator();
bool IsEnd = !NextOpName.hasValue();
if (!IsEnd && *OpName == "||" && *NextOpName == "&&") {
RHS = foldSequence(RHS, S, /*isRecurse*/true);
continue;
}
// Apply the operator with left-associativity by folding the first two
// operands.
LHS = BinaryExpr::create(Ctx, LHS, Op, RHS, /*implicit*/ false);
// If we don't have the next operator, we're done.
if (IsEnd)
break;
if (isRecurse && *OpName == "&&" && *NextOpName == "||")
break;
OpName = NextOpName;
Op = S[0];
RHS = S[1];
S = S.slice(2);
}
return LHS;
}
public:
ValidateIfConfigCondition(ASTContext &Ctx, DiagnosticEngine &D)
: Ctx(Ctx), D(D), HasError(false) {}
// Explicit configuration flag.
Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
if (!getDeclRefStr(E, DeclRefKind::Ordinary).hasValue())
return diagnoseUnsupportedExpr(E);
return E;
}
// 'true' or 'false' constant.
Expr *visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E;
}
// '0' and '1' are warned, but we accept it.
Expr *visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
if (E->isNegative() ||
(E->getDigitsText() != "0" && E->getDigitsText() != "1")) {
return diagnoseUnsupportedExpr(E);
}
// "#if 0" isn't valid, but it is common, so recognize it and handle it
// with a fixit.
StringRef replacement = E->getDigitsText() == "0" ? "false" :"true";
D.diagnose(E->getLoc(), diag::unsupported_conditional_compilation_integer,
E->getDigitsText(), replacement)
.fixItReplace(E->getLoc(), replacement);
return E;
}
// Platform conditions.
Expr *visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn(), DeclRefKind::Ordinary);
if (!KindName.hasValue()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
Expr *Arg = getSingleSubExp(E->getArgs(), *KindName, &D);
if (!Arg) {
if (E->getArgs()->empty()) {
D.diagnose(E->getLoc(), diag::platform_condition_expected_argument);
} else {
D.diagnose(E->getLoc(), diag::platform_condition_expected_one_argument);
}
return nullptr;
}
// '_compiler_version' '(' string-literal ')'
if (*KindName == "_compiler_version") {
if (auto SLE = dyn_cast<StringLiteralExpr>(Arg)) {
auto ValStr = SLE->getValue();
if (ValStr.empty()) {
D.diagnose(SLE->getLoc(), diag::empty_version_string);
return nullptr;
}
auto Val = VersionParser::parseCompilerVersionString(SLE->getValue(),
SLE->getLoc(), &D);
if (!Val.hasValue())
return nullptr;
return E;
}
}
// 'swift' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// 'compiler' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// '_compiler_version' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
if (*KindName == "swift" || *KindName == "compiler" ||
*KindName == "_compiler_version") {
auto PUE = dyn_cast<PrefixUnaryExpr>(Arg);
Optional<StringRef> PrefixName =
PUE ? getDeclRefStr(PUE->getFn(), DeclRefKind::PrefixOperator) : None;
if (!isValidPrefixUnaryOperator(PrefixName)) {
D.diagnose(
Arg->getLoc(), diag::unsupported_platform_condition_argument,
"a unary comparison '>=' or '<'; for example, '>=2.2' or '<2.2'");
return nullptr;
}
auto versionString = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(
versionString, PUE->getOperand()->getStartLoc(), &D);
if (!Val.hasValue())
return nullptr;
return E;
}
if (*KindName == "canImport") {
if (!E->getArgs()->isUnary()) {
bool underlyingVersion;
// Diagnose canImport(_:_version:) syntax.
(void)getCanImportVersion(E->getArgs(), Ctx.SourceMgr, &D,
underlyingVersion);
}
if (!isModulePath(Arg)) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_argument,
"module name");
return nullptr;
}
return E;
}
if (*KindName == "hasFeature") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_argument,
"feature name");
return nullptr;
}
return E;
}
if (*KindName == "hasAttribute") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_argument,
"attribute name");
return nullptr;
}
return E;
}
// ( 'os' | 'arch' | '_endian' | '_runtime' ) '(' identifier ')''
auto Kind = getPlatformConditionKind(*KindName);
if (!Kind.hasValue()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
auto ArgStr = getDeclRefStr(Arg, DeclRefKind::Ordinary);
if (!ArgStr.hasValue()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_argument,
"identifier");
return nullptr;
}
PlatformConditionKind suggestedKind = *Kind;
std::vector<StringRef> suggestedValues;
if (!LangOptions::checkPlatformConditionSupported(*Kind, *ArgStr,
suggestedKind, suggestedValues)) {
if (Kind == PlatformConditionKind::Runtime) {
// Error for _runtime()
D.diagnose(Arg->getLoc(),
diag::unsupported_platform_runtime_condition_argument);
return nullptr;
}
// Just a warning for other unsupported arguments.
StringRef DiagName;
switch (*Kind) {
case PlatformConditionKind::OS:
DiagName = "operating system"; break;
case PlatformConditionKind::Arch:
DiagName = "architecture"; break;
case PlatformConditionKind::Endianness:
DiagName = "endianness"; break;
case PlatformConditionKind::CanImport:
DiagName = "import conditional"; break;
case PlatformConditionKind::TargetEnvironment:
DiagName = "target environment"; break;
case PlatformConditionKind::PtrAuth:
DiagName = "pointer authentication scheme"; break;
case PlatformConditionKind::Runtime:
llvm_unreachable("handled above");
}
auto Loc = Arg->getLoc();
D.diagnose(Loc, diag::unknown_platform_condition_argument,
DiagName, *KindName);
if (suggestedKind != *Kind) {
auto suggestedKindName = getPlatformConditionName(suggestedKind);
D.diagnose(Loc, diag::note_typo_candidate, suggestedKindName)
.fixItReplace(E->getFn()->getSourceRange(), suggestedKindName);
}
for (auto suggestion : suggestedValues)
D.diagnose(Loc, diag::note_typo_candidate, suggestion)
.fixItReplace(Arg->getSourceRange(), suggestion);
}
else if (!suggestedValues.empty()) {
// The value the user gave has been replaced by something newer.
assert(suggestedValues.size() == 1 && "only support one replacement");
auto replacement = suggestedValues.front();
auto Loc = Arg->getLoc();
D.diagnose(Loc, diag::renamed_platform_condition_argument,
*ArgStr, replacement)
.fixItReplace(Arg->getSourceRange(), replacement);
}
return E;
}
// Grouped condition. e.g. '(FLAG)'
Expr *visitParenExpr(ParenExpr *E) {
E->setSubExpr(validate(E->getSubExpr()));
return E;
}
// Prefix '!'. Other prefix operators are rejected.
Expr *visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::PrefixOperator);
if (!OpName.hasValue() || *OpName != "!") {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_unary_expression);
return nullptr;
}
E->setOperand(validate(E->getOperand()));
return E;
}
Expr *visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::BinaryOperator);
if (auto lhs = validate(E->getLHS())) {
// If the left-hand side is a versioned condition, skip evaluation of
// the right-hand side if it won't ever affect the result.
if (OpName && isVersionIfConfigCondition(lhs)) {
assert(*OpName == "&&" || *OpName == "||");
bool isLHSTrue = evaluateIfConfigCondition(lhs, Ctx);
if (isLHSTrue && *OpName == "||")
return lhs;
if (!isLHSTrue && *OpName == "&&")
return lhs;
}
E->getArgs()->setExpr(0, lhs);
}
if (auto rhs = validate(E->getRHS()))
E->getArgs()->setExpr(1, rhs);
return E;
}
// Fold sequence expression for non-Swift3 mode.
Expr *visitSequenceExpr(SequenceExpr *E) {
ArrayRef<Expr*> Elts = E->getElements();
Expr *foldedExpr = Elts[0];
Elts = Elts.slice(1);
foldedExpr = foldSequence(foldedExpr, Elts);
assert(Elts.empty());
return validate(foldedExpr);
}
// Other expression types are unsupported.
Expr *visitExpr(Expr *E) {
return diagnoseUnsupportedExpr(E);
}
Expr *validate(Expr *E) {
if (auto E2 = visit(E))
return E2;
HasError |= true;
return E;
}
bool hasError() const {
return HasError;
}
};
/// Validate and modify the condition expression.
/// Returns \c true if the condition contains any error.
static bool validateIfConfigCondition(Expr *&condition,
ASTContext &Context,
DiagnosticEngine &D) {
ValidateIfConfigCondition Validator(Context, D);
condition = Validator.validate(condition);
return Validator.hasError();
}
/// The condition evaluator.
/// The condition must be validated with validateIfConfigCondition().
class EvaluateIfConfigCondition :
public ExprVisitor<EvaluateIfConfigCondition, bool> {
ASTContext &Ctx;
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
EvaluateIfConfigCondition(ASTContext &Ctx) : Ctx(Ctx) {}
bool visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E->getValue();
}
bool visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
return E->getDigitsText() != "0";
}
bool visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
auto Name = getDeclRefStr(E);
// Check whether this is any one of the known compiler features.
const auto &langOpts = Ctx.LangOpts;
bool isKnownFeature = llvm::StringSwitch<bool>(Name)
#define LANGUAGE_FEATURE(FeatureName, SENumber, Description, Option) \
.Case("$" #FeatureName, Option)
#define UPCOMING_FEATURE(FeatureName, SENumber, Version)
#include "swift/Basic/Features.def"
.Default(false);
if (isKnownFeature)
return true;
return langOpts.isCustomConditionalCompilationFlagSet(Name);
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
auto *Arg = getSingleSubExp(E->getArgs(), KindName, nullptr);
if (KindName == "_compiler_version" && isa<StringLiteralExpr>(Arg)) {
auto Str = cast<StringLiteralExpr>(Arg)->getValue();
auto Val =
VersionParser::parseCompilerVersionString(Str, SourceLoc(), nullptr)
.getValue();
auto thisVersion = version::getCurrentCompilerVersion();
return thisVersion >= Val;
} else if ((KindName == "swift") || (KindName == "compiler") ||
(KindName == "_compiler_version")) {
auto PUE = cast<PrefixUnaryExpr>(Arg);
auto PrefixName = getDeclRefStr(PUE->getFn());
auto Str = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(Str, SourceLoc(), nullptr)
.getValue();
version::Version thisVersion;
if (KindName == "swift") {
thisVersion = Ctx.LangOpts.EffectiveLanguageVersion;
} else if (KindName == "compiler") {
thisVersion = version::Version::getCurrentLanguageVersion();
} else if (KindName == "_compiler_version") {
thisVersion = version::getCurrentCompilerVersion();
} else {
llvm_unreachable("unsupported version conditional");
}
return isValidVersion(thisVersion, Val, PrefixName);
} else if (KindName == "canImport") {
auto Str = extractExprSource(Ctx.SourceMgr, Arg);
bool underlyingModule = false;
llvm::VersionTuple version;
if (!E->getArgs()->isUnlabeledUnary()) {
version = getCanImportVersion(E->getArgs(), Ctx.SourceMgr, nullptr,
underlyingModule);
}
ImportPath::Module::Builder builder(Ctx, Str, /*separator=*/'.',
Arg->getStartLoc());
return Ctx.canImportModule(builder.get(), version, underlyingModule);
} else if (KindName == "hasFeature") {
auto featureName = getDeclRefStr(Arg);
return Ctx.LangOpts.hasFeature(featureName);
} else if (KindName == "hasAttribute") {
auto attributeName = getDeclRefStr(Arg);
return hasAttribute(Ctx.LangOpts, attributeName);
}
auto Val = getDeclRefStr(Arg);
auto Kind = getPlatformConditionKind(KindName).getValue();
return Ctx.LangOpts.checkPlatformCondition(Kind, Val);
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return !visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) {
return visit(E->getSubExpr());
}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) || visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) && visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitExpr(Expr *E) { llvm_unreachable("Unvalidated condition?"); }
};
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context) {
return EvaluateIfConfigCondition(Context).visit(Condition);
}
/// Version condition checker.
class IsVersionIfConfigCondition :
public ExprVisitor<IsVersionIfConfigCondition, bool> {
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
IsVersionIfConfigCondition() {}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) && visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) || visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
return KindName == "_compiler_version" || KindName == "swift" ||
KindName == "compiler";
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) { return visit(E->getSubExpr()); }
bool visitExpr(Expr *E) { return false; }
};
static bool isVersionIfConfigCondition(Expr *Condition) {
return IsVersionIfConfigCondition().visit(Condition);
}
/// Get the identifier string from an \c Expr if it's an
/// \c UnresolvedDeclRefExpr, otherwise the empty string.
static StringRef getDeclRefStr(Expr *E) {
if (auto *UDRE = dyn_cast<UnresolvedDeclRefExpr>(E)) {
return UDRE->getName().getBaseIdentifier().str();
}
return "";
}
static bool isPlatformConditionDisjunction(Expr *E, PlatformConditionKind Kind,
ArrayRef<StringRef> Vals) {
if (auto *Or = dyn_cast<BinaryExpr>(E)) {
if (getDeclRefStr(Or->getFn()) == "||") {
return (isPlatformConditionDisjunction(Or->getLHS(), Kind, Vals) &&
isPlatformConditionDisjunction(Or->getRHS(), Kind, Vals));
}
} else if (auto *P = dyn_cast<ParenExpr>(E)) {
return isPlatformConditionDisjunction(P->getSubExpr(), Kind, Vals);
} else if (auto *C = dyn_cast<CallExpr>(E)) {
if (getPlatformConditionKind(getDeclRefStr(C->getFn())) != Kind)
return false;
if (auto *Arg = C->getArgs()->getUnlabeledUnaryExpr()) {
auto ArgStr = getDeclRefStr(Arg);
for (auto V : Vals) {
if (ArgStr == V)
return true;
}
}
}
return false;
}
// Search for the first occurrence of a _likely_ (but not definite) implicit
// simulator-environment platform condition, or negation thereof. This is
// defined as any logical conjunction of one or more os() platform conditions
// _strictly_ from the set {iOS, tvOS, watchOS} and one or more arch() platform
// conditions _strictly_ from the set {i386, x86_64}.
//
// These are (at the time of writing) defined as de-facto simulators in
// Platform.cpp, and if a user is testing them they're _likely_ looking for
// simulator-ness indirectly. If there is anything else in the condition aside
// from these conditions (or the negation of such a conjunction), we
// conservatively assume the user is testing something other than
// simulator-ness.
static Expr *findAnyLikelySimulatorEnvironmentTest(Expr *Condition) {
if (!Condition)
return nullptr;
if (auto *N = dyn_cast<PrefixUnaryExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(N->getOperand());
} else if (auto *P = dyn_cast<ParenExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(P->getSubExpr());
}
// We assume the user is writing the condition in CNF -- say (os(iOS) ||
// os(tvOS)) && (arch(i386) || arch(x86_64)) -- rather than DNF, as the former
// is exponentially more terse, and these conditions are already quite
// unwieldy. If field evidence shows people using other variants, possibly add
// them here.
auto isSimulatorPlatformOSTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::OS, {"iOS", "tvOS", "watchOS"});
};
auto isSimulatorPlatformArchTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::Arch, {"i386", "x86_64"});
};
if (auto *And = dyn_cast<BinaryExpr>(Condition)) {
if (getDeclRefStr(And->getFn()) == "&&") {
if ((isSimulatorPlatformOSTest(And->getLHS()) &&
isSimulatorPlatformArchTest(And->getRHS())) ||
(isSimulatorPlatformOSTest(And->getRHS()) &&
isSimulatorPlatformArchTest(And->getLHS()))) {
return And;
}
}
}
return nullptr;
}
} // end anonymous namespace
/// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
template<typename Result>
Result Parser::parseIfConfigRaw(
llvm::function_ref<void(SourceLoc clauseLoc, Expr *condition,
bool isActive, IfConfigElementsRole role)>
parseElements,
llvm::function_ref<Result(SourceLoc endLoc, bool hadMissingEnd)> finish) {
assert(Tok.is(tok::pound_if));
SyntaxParsingContext IfConfigCtx(SyntaxContext, SyntaxKind::IfConfigDecl);
Parser::StructureMarkerRAII ParsingDecl(
*this, Tok.getLoc(), Parser::StructureMarkerKind::IfConfig);
// Find the region containing code completion token.
SourceLoc codeCompletionClauseLoc;
if (SourceMgr.hasCodeCompletionBuffer() &&
SourceMgr.getCodeCompletionBufferID() == L->getBufferID() &&
SourceMgr.isBeforeInBuffer(Tok.getLoc(),
SourceMgr.getCodeCompletionLoc())) {
llvm::SaveAndRestore<Optional<StableHasher>> H(CurrentTokenHash, None);
BacktrackingScope backtrack(*this);
do {
auto startLoc = Tok.getLoc();
consumeToken();
skipUntilConditionalBlockClose();
auto endLoc = PreviousLoc;
if (SourceMgr.rangeContainsTokenLoc(SourceRange(startLoc, endLoc),
SourceMgr.getCodeCompletionLoc())){
codeCompletionClauseLoc = startLoc;
break;
}
} while (Tok.isNot(tok::pound_endif, tok::eof));
}
bool shouldEvaluate =
// Don't evaluate if it's in '-parse' mode, etc.
shouldEvaluatePoundIfDecls() &&
// If it's in inactive #if ... #endif block, there's no point to do it.
!InInactiveClauseEnvironment &&
// If this directive contains code completion location, 'isActive' is
// determined solely by which block has the completion token.
!codeCompletionClauseLoc.isValid();
bool foundActive = false;
bool isVersionCondition = false;
while (1) {
SyntaxParsingContext ClauseContext(SyntaxContext,
SyntaxKind::IfConfigClause);
bool isElse = Tok.is(tok::pound_else);
SourceLoc ClauseLoc = consumeToken();
Expr *Condition = nullptr;
bool isActive = false;
if (!Tok.isAtStartOfLine() && isElse && Tok.is(tok::kw_if)) {
diagnose(Tok, diag::unexpected_if_following_else_compilation_directive)
.fixItReplace(SourceRange(ClauseLoc, consumeToken()), "#elseif");
isElse = false;
}
// Parse the condition. Evaluate it to determine the active
// clause unless we're doing a parse-only pass.
if (isElse) {
isActive = !foundActive && shouldEvaluate;
if (SyntaxContext->isEnabled()) {
// Because we use the same libSyntax node for #elseif and #else, we need
// to disambiguate whether a postfix expression is the condition of
// #elseif or a postfix expression of the #else body.
// To do this, push three empty syntax nodes onto the stack.
// - First one for unexpected nodes between the #else keyword and the
// condition
// - One for the condition itself (whcih doesn't exist)
// - And finally one for the unexpected nodes between the condition and
// the elements
SyntaxContext->addRawSyntax(ParsedRawSyntaxNode());
SyntaxContext->addRawSyntax(ParsedRawSyntaxNode());
SyntaxContext->addRawSyntax(ParsedRawSyntaxNode());
}
} else {
llvm::SaveAndRestore<bool> S(InPoundIfEnvironment, true);
ParserResult<Expr> result = parseExprSequence(diag::expected_expr,
/*isBasic*/true,
/*isForDirective*/true);
if (result.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (result.isNull())
return makeParserError();
Condition = result.get();
if (validateIfConfigCondition(Condition, Context, Diags)) {
// Error in the condition;
isActive = false;
isVersionCondition = false;
} else if (!foundActive && shouldEvaluate) {
// Evaluate the condition only if we haven't found any active one and
// we're not in parse-only mode.
isActive = evaluateIfConfigCondition(Condition, Context);
isVersionCondition = isVersionIfConfigCondition(Condition);
}
}
// Treat the region containing code completion token as "active".
if (codeCompletionClauseLoc.isValid() && !foundActive)
isActive = (ClauseLoc == codeCompletionClauseLoc);
foundActive |= isActive;
if (!Tok.isAtStartOfLine() && Tok.isNot(tok::eof)) {
diagnose(Tok.getLoc(),
diag::extra_tokens_conditional_compilation_directive);
}
if (Expr *Test = findAnyLikelySimulatorEnvironmentTest(Condition)) {
diagnose(Test->getLoc(),
diag::likely_simulator_platform_condition)
.fixItReplace(Test->getSourceRange(),
"targetEnvironment(simulator)");
}
// Parse elements
llvm::SaveAndRestore<bool> S(InInactiveClauseEnvironment,
InInactiveClauseEnvironment || !isActive);
// Disable updating the interface hash inside inactive blocks.
Optional<llvm::SaveAndRestore<Optional<StableHasher>>> T;
if (!isActive)
T.emplace(CurrentTokenHash, None);
if (isActive || !isVersionCondition) {
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Normal);
} else if (SyntaxContext->isEnabled()) {
// We shouldn't skip code if we are building syntax tree.
// The parser will keep running and we just discard the AST part.
DiagnosticSuppression suppression(Context.Diags);
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::SyntaxOnly);
} else {
DiagnosticTransaction DT(Diags);
skipUntilConditionalBlockClose();
DT.abort();
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Skipped);
}
if (Tok.isNot(tok::pound_elseif, tok::pound_else))
break;
if (isElse)
diagnose(Tok, diag::expected_close_after_else_directive);
}
SyntaxContext->collectNodesInPlace(SyntaxKind::IfConfigClauseList);
SourceLoc EndLoc;
bool HadMissingEnd = parseEndIfDirective(EndLoc);
return finish(EndLoc, HadMissingEnd);
}
/// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
ParserResult<IfConfigDecl> Parser::parseIfConfig(
llvm::function_ref<void(SmallVectorImpl<ASTNode> &, bool)> parseElements) {
SmallVector<IfConfigClause, 4> clauses;
return parseIfConfigRaw<ParserResult<IfConfigDecl>>(
[&](SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role) {
SmallVector<ASTNode, 16> elements;
if (role != IfConfigElementsRole::Skipped)
parseElements(elements, isActive);
if (role == IfConfigElementsRole::SyntaxOnly)
elements.clear();
clauses.emplace_back(
clauseLoc, condition, Context.AllocateCopy(elements), isActive);
}, [&](SourceLoc endLoc, bool hadMissingEnd) {
auto *ICD = new (Context) IfConfigDecl(CurDeclContext,
Context.AllocateCopy(clauses),
endLoc, hadMissingEnd);
return makeParserResult(ICD);
});
}
ParserStatus Parser::parseIfConfigDeclAttributes(
DeclAttributes &attributes, bool ifConfigsAreDeclAttrs,
PatternBindingInitializer *initContext) {
ParserStatus status = makeParserSuccess();
return parseIfConfigRaw<ParserStatus>(
[&](SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role) {
if (isActive) {
status |= parseDeclAttributeList(
attributes, ifConfigsAreDeclAttrs, initContext);
} else if (role != IfConfigElementsRole::Skipped) {
DeclAttributes skippedAttributes;
PatternBindingInitializer *skippedInitContext = nullptr;
status |= parseDeclAttributeList(
skippedAttributes, ifConfigsAreDeclAttrs, skippedInitContext);
}
},
[&](SourceLoc endLoc, bool hadMissingEnd) {
return status;
});
}
bool Parser::skipIfConfigOfAttributes(bool &sawAnyAttributes) {
assert(Tok.is(tok::pound_if));
while (true) {
// #if / #else / #elseif
consumeToken();
// <expression>
skipUntilTokenOrEndOfLine(tok::NUM_TOKENS);
while (true) {
if (Tok.is(tok::at_sign)) {
sawAnyAttributes = true;
skipAnyAttribute();
continue;
}
if (Tok.is(tok::pound_if)) {
skipIfConfigOfAttributes(sawAnyAttributes);
continue;
}
break;
}
if (Tok.isNot(tok::pound_elseif, tok::pound_else))
break;
}
// If we ran out of tokens, say we consumed the rest.
if (Tok.is(tok::eof))
return true;
return Tok.isAtStartOfLine() && consumeIf(tok::pound_endif);
}
bool Parser::ifConfigContainsOnlyAttributes() {
assert(Tok.is(tok::pound_if));
bool sawAnyAttributes = false;
BacktrackingScope backtrack(*this);
return skipIfConfigOfAttributes(sawAnyAttributes) && sawAnyAttributes;
}