Files
swift-mirror/stdlib/public/Concurrency/Task.cpp
Rokhini Prabhu 1947102ebd Change the logic for adding new task status records to a task
This change has two parts to it:

1. Add in a new interface (addStatusRecordWithChecks) for adding task
status records that also takes in a function ref. This function ref will
be used to evaluate if current state of the parent task has any changes
that need to be propagated to the child task that has been created.

This is necessary to prevent the following race between task creation
and concurrent cancellation and escalation:

a. Parent task create child task. It does lazy relaxed loads on its own
   state while doing so and propagates this state to the child.
b. Child task is created but has not been attached to the parent
   task/task group.
c. Parent task gets cancelled by another thread.
d. Child task gets linked into the parent’s task status records but no
   reevaluation has happened to account for changes that might have happened to
   the parent after (a).

2. Move status record management functions from the
Runtime/Concurrency.h to TaskPrivate.h. Remove any corresponding
overrides that are no longer needed. Remove unused tryAddStatusRecord
method whose functionality is provided by addStatusRecordWithChecks.

Radar-Id: rdar://problem/86347801
2021-12-31 03:23:52 -08:00

1156 lines
40 KiB
C++

//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskLocal.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/ABI/Metadata.h"
#include "swift/Runtime/Mutex.h"
#include "swift/Runtime/HeapObject.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "Debug.h"
#include "Error.h"
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32)
#include <dlfcn.h>
#endif
#if defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
#include <Availability.h>
#include <TargetConditionals.h>
#if TARGET_OS_WATCH
// Bitcode compilation for the watch device precludes defining the following asm
// symbols, so we don't use them... but simulators are okay.
#if TARGET_OS_SIMULATOR
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
#ifdef __APPLE__
#if __POINTER_WIDTH__ == 64
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x1000000000000000");
#elif __ARM64_ARCH_8_32__
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x10000000");
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#endif // __APPLE__
#endif // !defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;
Metadata swift::TaskAllocatorSlabMetadata;
const void *const swift::_swift_concurrency_debug_asyncTaskSlabMetadata =
&TaskAllocatorSlabMetadata;
void FutureFragment::destroy() {
auto queueHead = waitQueue.load(std::memory_order_acquire);
switch (queueHead.getStatus()) {
case Status::Executing:
assert(false && "destroying a task that never completed");
case Status::Success:
resultType->vw_destroy(getStoragePtr());
break;
case Status::Error:
swift_errorRelease(getError());
break;
}
}
FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask,
AsyncContext *waitingTaskContext,
TaskContinuationFunction *resumeFn,
AsyncContext *callerContext,
OpaqueValue *result) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
bool contextIntialized = false;
while (true) {
switch (queueHead.getStatus()) {
case Status::Error:
case Status::Success:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, completed immediately",
waitingTask, this);
_swift_tsan_acquire(static_cast<Job *>(this));
if (contextIntialized) waitingTask->flagAsRunning();
// The task is done; we don't need to wait.
return queueHead.getStatus();
case Status::Executing:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, going to sleep",
waitingTask, this);
_swift_tsan_release(static_cast<Job *>(waitingTask));
// Task is not complete. We'll need to add ourselves to the queue.
break;
}
if (!contextIntialized) {
contextIntialized = true;
auto context =
reinterpret_cast<TaskFutureWaitAsyncContext *>(waitingTaskContext);
context->errorResult = nullptr;
context->successResultPointer = result;
context->ResumeParent = resumeFn;
context->Parent = callerContext;
waitingTask->flagAsSuspended();
}
// Put the waiting task at the beginning of the wait queue.
waitingTask->getNextWaitingTask() = queueHead.getTask();
auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
if (fragment->waitQueue.compare_exchange_weak(
queueHead, newQueueHead,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
// Escalate the priority of this task based on the priority
// of the waiting task.
swift_task_escalate(this, waitingTask->Flags.getPriority());
_swift_task_clearCurrent();
return FutureFragment::Status::Executing;
}
}
}
void NullaryContinuationJob::process(Job *_job) {
auto *job = cast<NullaryContinuationJob>(_job);
auto *task = job->Task;
auto *continuation = job->Continuation;
_swift_task_dealloc_specific(task, job);
auto *context = cast<ContinuationAsyncContext>(continuation->ResumeContext);
context->setErrorResult(nullptr);
swift_continuation_resume(continuation);
}
void AsyncTask::completeFuture(AsyncContext *context) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
SWIFT_TASK_DEBUG_LOG("complete future = %p", this);
assert(isFuture());
auto fragment = futureFragment();
// If an error was thrown, save it in the future fragment.
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
fragment->getError() = errorObject;
if (errorObject) {
hadErrorResult = true;
}
_swift_tsan_release(static_cast<Job *>(this));
// Update the status to signal completion.
auto newQueueHead = WaitQueueItem::get(
hadErrorResult ? Status::Error : Status::Success,
nullptr
);
auto queueHead = fragment->waitQueue.exchange(
newQueueHead, std::memory_order_acquire);
assert(queueHead.getStatus() == Status::Executing);
// If this is task group child, notify the parent group about the completion.
if (hasGroupChildFragment()) {
// then we must offer into the parent group that we completed,
// so it may `next()` poll completed child tasks in completion order.
auto group = groupChildFragment()->getGroup();
group->offer(this, context);
}
// Schedule every waiting task on the executor.
auto waitingTask = queueHead.getTask();
if (!waitingTask)
SWIFT_TASK_DEBUG_LOG("task %p had no waiting tasks", this);
while (waitingTask) {
// Find the next waiting task before we invalidate it by resuming
// the task.
auto nextWaitingTask = waitingTask->getNextWaitingTask();
SWIFT_TASK_DEBUG_LOG("waking task %p from future of task %p", waitingTask,
this);
// Fill in the return context.
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
if (hadErrorResult) {
waitingContext->fillWithError(fragment);
} else {
waitingContext->fillWithSuccess(fragment);
}
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
// Enqueue the waiter on the global executor.
// TODO: allow waiters to fill in a suggested executor
swift_task_enqueueGlobal(waitingTask);
// Move to the next task.
waitingTask = nextWaitingTask;
}
}
SWIFT_CC(swift)
static void destroyJob(SWIFT_CONTEXT HeapObject *obj) {
assert(false && "A non-task job should never be destroyed as heap metadata.");
}
AsyncTask::~AsyncTask() {
flagAsCompleted();
// For a future, destroy the result.
if (isFuture()) {
futureFragment()->destroy();
}
Private.destroy();
}
void AsyncTask::setTaskId() {
static std::atomic<uint64_t> NextId(1);
// We want the 32-bit Job::Id to be non-zero, so loop if we happen upon zero.
uint64_t Fetched;
do {
Fetched = NextId.fetch_add(1, std::memory_order_relaxed);
Id = Fetched & 0xffffffff;
} while (Id == 0);
_private().Id = (Fetched >> 32) & 0xffffffff;
}
SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
auto task = static_cast<AsyncTask*>(obj);
task->~AsyncTask();
// The task execution itself should always hold a reference to it, so
// if we get here, we know the task has finished running, which means
// swift_task_complete should have been run, which will have torn down
// the task-local allocator. There's actually nothing else to clean up
// here.
SWIFT_TASK_DEBUG_LOG("destroy task %p", task);
free(task);
}
static ExecutorRef executorForEnqueuedJob(Job *job) {
#if !SWIFT_CONCURRENCY_ENABLE_DISPATCH
return ExecutorRef::generic();
#else
void *jobQueue = job->SchedulerPrivate[Job::DispatchQueueIndex];
if (jobQueue == DISPATCH_QUEUE_GLOBAL_EXECUTOR)
return ExecutorRef::generic();
else
return ExecutorRef::forOrdinary(reinterpret_cast<HeapObject*>(jobQueue),
_swift_task_getDispatchQueueSerialExecutorWitnessTable());
#endif
}
static void jobInvoke(void *obj, void *unused, uint32_t flags) {
(void)unused;
Job *job = reinterpret_cast<Job *>(obj);
swift_job_run(job, executorForEnqueuedJob(job));
}
// Magic constant to identify Swift Job vtables to Dispatch.
static const unsigned long dispatchSwiftObjectType = 1;
FullMetadata<DispatchClassMetadata> swift::jobHeapMetadata = {
{
{
&destroyJob
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Job,
dispatchSwiftObjectType,
jobInvoke
}
};
/// Heap metadata for an asynchronous task.
static FullMetadata<DispatchClassMetadata> taskHeapMetadata = {
{
{
&destroyTask
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Task,
dispatchSwiftObjectType,
jobInvoke
}
};
const void *const swift::_swift_concurrency_debug_jobMetadata =
static_cast<Metadata *>(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
static_cast<Metadata *>(&taskHeapMetadata);
static void completeTaskImpl(AsyncTask *task,
AsyncContext *context,
SwiftError *error) {
assert(task && "completing task, but there is no active task registered");
// Store the error result.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
asyncContextPrefix->errorResult = error;
task->Private.complete(task);
SWIFT_TASK_DEBUG_LOG("task %p completed", task);
// Complete the future.
// Warning: This deallocates the task in case it's an async let task.
// The task must not be accessed afterwards.
if (task->isFuture()) {
task->completeFuture(context);
}
// TODO: set something in the status?
// if (task->hasChildFragment()) {
// TODO: notify the parent somehow?
// TODO: remove this task from the child-task chain?
// }
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTaskAndRelease(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
// Release the task, balancing the retain that a running task has on itself.
// If it was a group child task, it will remain until the group returns it.
swift_release(task);
}
/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Release the closure context.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
swift_release((HeapObject *)asyncContextPrefix->closureContext);
// Clean up the rest of the task.
return completeTaskAndRelease(context, error);
}
SWIFT_CC(swiftasync)
static void non_future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(AsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
_context, asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(FutureAsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
asyncContextPrefix->indirectResult, _context,
asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void task_wait_throwing_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(context->ResumeParent);
return resumeWithError(context->Parent, context->errorResult);
}
SWIFT_CC(swiftasync)
static void
task_future_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
return _context->ResumeParent(_context->Parent);
}
/// Implementation of task creation.
SWIFT_CC(swift)
static AsyncTaskAndContext swift_task_create_commonImpl(
size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
TaskContinuationFunction *function, void *closureContext,
size_t initialContextSize) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
// Propagate task-creation flags to job flags as appropriate.
JobFlags jobFlags(JobKind::Task, taskCreateFlags.getPriority());
jobFlags.task_setIsChildTask(taskCreateFlags.isChildTask());
if (futureResultType) {
jobFlags.task_setIsFuture(true);
assert(initialContextSize >= sizeof(FutureAsyncContext));
}
// Collect the options we know about.
ExecutorRef executor = ExecutorRef::generic();
TaskGroup *group = nullptr;
AsyncLet *asyncLet = nullptr;
bool hasAsyncLetResultBuffer = false;
for (auto option = options; option; option = option->getParent()) {
switch (option->getKind()) {
case TaskOptionRecordKind::Executor:
executor = cast<ExecutorTaskOptionRecord>(option)->getExecutor();
break;
case TaskOptionRecordKind::TaskGroup:
group = cast<TaskGroupTaskOptionRecord>(option)->getGroup();
assert(group && "Missing group");
jobFlags.task_setIsGroupChildTask(true);
break;
case TaskOptionRecordKind::AsyncLet:
asyncLet = cast<AsyncLetTaskOptionRecord>(option)->getAsyncLet();
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
case TaskOptionRecordKind::AsyncLetWithBuffer:
auto *aletRecord = cast<AsyncLetWithBufferTaskOptionRecord>(option);
asyncLet = aletRecord->getAsyncLet();
// TODO: Actually digest the result buffer into the async let task
// context, so that we can emplace the eventual result there instead
// of in a FutureFragment.
hasAsyncLetResultBuffer = true;
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
}
}
// Add to the task group, if requested.
if (taskCreateFlags.addPendingGroupTaskUnconditionally()) {
assert(group && "Missing group");
swift_taskGroup_addPending(group, /*unconditionally=*/true);
}
AsyncTask *parent = nullptr;
if (jobFlags.task_isChildTask()) {
parent = swift_task_getCurrent();
assert(parent != nullptr && "creating a child task with no active task");
}
// Inherit the priority of the currently-executing task if unspecified and
// we want to inherit.
if (jobFlags.getPriority() == JobPriority::Unspecified &&
(jobFlags.task_isChildTask() || taskCreateFlags.inheritContext())) {
AsyncTask *currentTask = parent;
if (!currentTask)
currentTask = swift_task_getCurrent();
if (currentTask)
jobFlags.setPriority(currentTask->getPriority());
else if (taskCreateFlags.inheritContext())
jobFlags.setPriority(swift_task_getCurrentThreadPriority());
}
// Adjust user-interactive priorities down to user-initiated.
if (jobFlags.getPriority() == JobPriority::UserInteractive)
jobFlags.setPriority(JobPriority::UserInitiated);
// If there is still no job priority, use the default priority.
if (jobFlags.getPriority() == JobPriority::Unspecified)
jobFlags.setPriority(JobPriority::Default);
// Figure out the size of the header.
size_t headerSize = sizeof(AsyncTask);
if (parent) {
headerSize += sizeof(AsyncTask::ChildFragment);
}
if (group) {
headerSize += sizeof(AsyncTask::GroupChildFragment);
}
if (futureResultType) {
headerSize += FutureFragment::fragmentSize(headerSize, futureResultType);
// Add the future async context prefix.
headerSize += sizeof(FutureAsyncContextPrefix);
} else {
// Add the async context prefix.
headerSize += sizeof(AsyncContextPrefix);
}
headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
// Allocate the initial context together with the job.
// This means that we never get rid of this allocation.
size_t amountToAllocate = headerSize + initialContextSize;
assert(amountToAllocate % MaximumAlignment == 0);
unsigned initialSlabSize = 512;
void *allocation = nullptr;
if (asyncLet) {
assert(parent);
// If there isn't enough room in the fixed async let allocation to
// set up the initial context, then we'll have to allocate more space
// from the parent.
if (asyncLet->getSizeOfPreallocatedSpace() < amountToAllocate) {
hasAsyncLetResultBuffer = false;
}
// DEPRECATED. This is separated from the above condition because we
// also have to handle an older async let ABI that did not provide
// space for the initial slab in the compiler-generated preallocation.
if (!hasAsyncLetResultBuffer) {
allocation = _swift_task_alloc_specific(parent,
amountToAllocate + initialSlabSize);
} else {
allocation = asyncLet->getPreallocatedSpace();
assert(asyncLet->getSizeOfPreallocatedSpace() >= amountToAllocate
&& "async let does not preallocate enough space for child task");
initialSlabSize = asyncLet->getSizeOfPreallocatedSpace()
- amountToAllocate;
}
} else {
allocation = malloc(amountToAllocate);
}
SWIFT_TASK_DEBUG_LOG("allocate task %p, parent = %p, slab %u", allocation,
parent, initialSlabSize);
AsyncContext *initialContext =
reinterpret_cast<AsyncContext*>(
reinterpret_cast<char*>(allocation) + headerSize);
// We can't just use `function` because it uses the new async function entry
// ABI -- passing parameters, closure context, indirect result addresses
// directly -- but AsyncTask->ResumeTask expects the signature to be
// `void (*, *, swiftasync *)`.
// Instead we use an adapter. This adaptor should use the storage prefixed to
// the async context to get at the parameters.
// See e.g. FutureAsyncContextPrefix.
if (!futureResultType) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(AsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(function);
asyncContextPrefix->closureContext = closureContext;
function = non_future_adapter;
assert(sizeof(AsyncContextPrefix) == 3 * sizeof(void *));
} else {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncGenericClosureEntryPoint *>(function);
function = future_adapter;
asyncContextPrefix->closureContext = closureContext;
assert(sizeof(FutureAsyncContextPrefix) == 4 * sizeof(void *));
}
// Initialize the task so that resuming it will run the given
// function on the initial context.
AsyncTask *task = nullptr;
bool captureCurrentVoucher = taskCreateFlags.copyTaskLocals() || jobFlags.task_isChildTask();
if (asyncLet) {
// Initialize the refcount bits to "immortal", so that
// ARC operations don't have any effect on the task.
task = new(allocation) AsyncTask(&taskHeapMetadata,
InlineRefCounts::Immortal, jobFlags,
function, initialContext,
captureCurrentVoucher);
} else {
task = new(allocation) AsyncTask(&taskHeapMetadata, jobFlags,
function, initialContext,
captureCurrentVoucher);
}
// Initialize the child fragment if applicable.
if (parent) {
auto childFragment = task->childFragment();
new (childFragment) AsyncTask::ChildFragment(parent);
}
// Initialize the group child fragment if applicable.
if (group) {
auto groupChildFragment = task->groupChildFragment();
new (groupChildFragment) AsyncTask::GroupChildFragment(group);
}
// Initialize the future fragment if applicable.
if (futureResultType) {
assert(task->isFuture());
auto futureFragment = task->futureFragment();
new (futureFragment) FutureFragment(futureResultType);
// Set up the context for the future so there is no error, and a successful
// result will be written into the future fragment's storage.
auto futureAsyncContextPrefix =
reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
futureAsyncContextPrefix->indirectResult = futureFragment->getStoragePtr();
}
SWIFT_TASK_DEBUG_LOG("creating task %p with parent %p", task, parent);
// Initialize the task-local allocator.
initialContext->ResumeParent = reinterpret_cast<TaskContinuationFunction *>(
asyncLet ? &completeTask
: closureContext ? &completeTaskWithClosure
: &completeTaskAndRelease);
if (asyncLet && initialSlabSize > 0) {
assert(parent);
void *initialSlab = (char*)allocation + amountToAllocate;
task->Private.initializeWithSlab(task, initialSlab, initialSlabSize);
} else {
task->Private.initialize(task);
}
// Perform additional linking between parent and child task.
if (parent) {
// If the parent was already cancelled, we carry this flag forward to the child.
//
// In a task group we would not have allowed the `add` to create a child anymore,
// however better safe than sorry and `async let` are not expressed as task groups,
// so they may have been spawned in any case still.
if (swift_task_isCancelled(parent) ||
(group && group->isCancelled()))
swift_task_cancel(task);
// Initialize task locals with a link to the parent task.
task->_private().Local.initializeLinkParent(task, parent);
}
// Configure the initial context.
//
// FIXME: if we store a null pointer here using the standard ABI for
// signed null pointers, then we'll have to authenticate context pointers
// as if they might be null, even though the only time they ever might
// be is the final hop. Store a signed null instead.
initialContext->Parent = nullptr;
initialContext->Flags = AsyncContextKind::Ordinary;
// Attach to the group, if needed.
if (group) {
swift_taskGroup_attachChild(group, task);
}
// If we're supposed to copy task locals, do so now.
if (taskCreateFlags.copyTaskLocals()) {
swift_task_localsCopyTo(task);
}
// Push the async let task status record.
if (asyncLet) {
asyncLet_addImpl(task, asyncLet, !hasAsyncLetResultBuffer);
}
// If we're supposed to enqueue the task, do so now.
if (taskCreateFlags.enqueueJob()) {
swift_retain(task);
swift_task_enqueue(task, executor);
}
return {task, initialContext};
}
/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function,
HeapObject *functionContext) {
auto fnPtr =
reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
(void *)fnPtr, ptrauth_key_process_independent_data, AuthDiscriminator);
#endif
return {reinterpret_cast<typename AsyncSignature::FunctionType *>(
fnPtr->Function.get()),
fnPtr->ExpectedContextSize};
}
SWIFT_CC(swift)
AsyncTaskAndContext swift::swift_task_create(
size_t taskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
void *closureEntry, HeapObject *closureContext) {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize)
= getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction
>(closureEntry, closureContext);
return swift_task_create_common(
taskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_waitImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, TaskContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
static void swift_task_future_waitImpl(
OpaqueValue *result,
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
TaskContinuationFunction *resumeFn,
AsyncContext *callContext) {
// Suspend the waiting task.
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_future_wait_resume_adapter;
waitingTask->ResumeContext = callContext;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_waitImpl(
result, callerContext, task, resumeFn, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
// Run the task with a successful result.
auto future = task->futureFragment();
future->getResultType()->vw_initializeWithCopy(result,
future->getStoragePtr());
return resumeFn(callerContext);
}
case FutureFragment::Status::Error:
swift_Concurrency_fatalError(0, "future reported an error, but wait cannot throw");
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
void swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
auto waitingTask = swift_task_getCurrent();
// Suspend the waiting task.
waitingTask->ResumeTask = task_wait_throwing_resume_adapter;
waitingTask->ResumeContext = callContext;
auto resumeFn = reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_wait_throwingImpl(
result, callerContext, task, resumeFunction, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
auto future = task->futureFragment();
future->getResultType()->vw_initializeWithCopy(result,
future->getStoragePtr());
return resumeFunction(callerContext, nullptr /*error*/);
}
case FutureFragment::Status::Error: {
// Run the task with an error result.
auto future = task->futureFragment();
auto error = future->getError();
swift_errorRetain(error);
return resumeFunction(callerContext, error);
}
}
}
size_t swift::swift_task_getJobFlags(AsyncTask *task) {
return task->Flags.getOpaqueValue();
}
SWIFT_CC(swift)
static AsyncTask *swift_task_suspendImpl() {
auto task = _swift_task_clearCurrent();
task->flagAsSuspended();
return task;
}
SWIFT_CC(swift)
static AsyncTask *swift_continuation_initImpl(ContinuationAsyncContext *context,
AsyncContinuationFlags flags) {
context->Flags = AsyncContextKind::Continuation;
if (flags.canThrow()) context->Flags.setCanThrow(true);
if (flags.isExecutorSwitchForced())
context->Flags.continuation_setIsExecutorSwitchForced(true);
context->ErrorResult = nullptr;
// Set the current executor as the target executor unless there's
// an executor override.
if (!flags.hasExecutorOverride())
context->ResumeToExecutor = ExecutorRef::generic();
// We can initialize this with a relaxed store because resumption
// must happen-after this call.
context->AwaitSynchronization.store(flags.isPreawaited()
? ContinuationStatus::Awaited
: ContinuationStatus::Pending,
std::memory_order_relaxed);
AsyncTask *task;
// A preawait immediately suspends the task.
if (flags.isPreawaited()) {
task = _swift_task_clearCurrent();
assert(task && "initializing a continuation with no current task");
task->flagAsSuspended();
} else {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
}
task->ResumeContext = context;
task->ResumeTask = context->ResumeParent;
return task;
}
SWIFT_CC(swiftasync)
static void swift_continuation_awaitImpl(ContinuationAsyncContext *context) {
#ifndef NDEBUG
auto task = swift_task_getCurrent();
assert(task && "awaiting continuation without a task");
assert(task->ResumeContext == context);
assert(task->ResumeTask == context->ResumeParent);
#endif
auto &sync = context->AwaitSynchronization;
auto oldStatus = sync.load(std::memory_order_acquire);
assert((oldStatus == ContinuationStatus::Pending ||
oldStatus == ContinuationStatus::Resumed) &&
"awaiting a corrupt or already-awaited continuation");
// If the status is already Resumed, we can resume immediately.
// Comparing against Pending may be very slightly more compact.
if (oldStatus != ContinuationStatus::Pending) {
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
// Load the current task (we alreaady did this in assertions builds).
#ifdef NDEBUG
auto task = swift_task_getCurrent();
#endif
// Flag the task as suspended.
task->flagAsSuspended();
// Try to transition to Awaited.
bool success =
sync.compare_exchange_strong(oldStatus, ContinuationStatus::Awaited,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire);
// If that succeeded, we have nothing to do.
if (success) {
_swift_task_clearCurrent();
return;
}
// If it failed, it should be because someone concurrently resumed
// (note that the compare-exchange above is strong).
assert(oldStatus == ContinuationStatus::Resumed &&
"continuation was concurrently corrupted or awaited");
// Restore the running state of the task and resume it.
task->flagAsRunning();
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
static void resumeTaskAfterContinuation(AsyncTask *task,
ContinuationAsyncContext *context) {
auto &sync = context->AwaitSynchronization;
auto status = sync.load(std::memory_order_acquire);
assert(status != ContinuationStatus::Resumed &&
"continuation was already resumed");
// Make sure TSan knows that the resume call happens-before the task
// restarting.
_swift_tsan_release(static_cast<Job *>(task));
// The status should be either Pending or Awaited. If it's Awaited,
// which is probably the most likely option, then we should immediately
// enqueue; we don't need to update the state because there shouldn't
// be a racing attempt to resume the continuation. If it's Pending,
// we need to set it to Resumed; if that fails (with a strong cmpxchg),
// it should be because the original thread concurrently set it to
// Awaited, and so we need to enqueue.
if (status == ContinuationStatus::Pending &&
sync.compare_exchange_strong(status, ContinuationStatus::Resumed,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_relaxed)) {
return;
}
assert(status == ContinuationStatus::Awaited &&
"detected concurrent attempt to resume continuation");
// TODO: maybe in some mode we should set the status to Resumed here
// to make a stronger best-effort attempt to catch racing attempts to
// resume the continuation?
swift_task_enqueue(task, context->ResumeToExecutor);
}
SWIFT_CC(swift)
static void swift_continuation_resumeImpl(AsyncTask *task) {
auto context = cast<ContinuationAsyncContext>(task->ResumeContext);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeImpl(AsyncTask *task) {
auto context = cast<ContinuationAsyncContext>(task->ResumeContext);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeWithErrorImpl(AsyncTask *task,
/* +1 */ SwiftError *error) {
auto context = cast<ContinuationAsyncContext>(task->ResumeContext);
context->ErrorResult = error;
resumeTaskAfterContinuation(task, context);
}
bool swift::swift_task_isCancelled(AsyncTask *task) {
return task->isCancelled();
}
SWIFT_CC(swift)
static CancellationNotificationStatusRecord*
swift_task_addCancellationHandlerImpl(
CancellationNotificationStatusRecord::FunctionType handler,
void *context) {
void *allocation =
swift_task_alloc(sizeof(CancellationNotificationStatusRecord));
auto unsigned_handler = swift_auth_code(handler, 3848);
auto *record = new (allocation)
CancellationNotificationStatusRecord(unsigned_handler, context);
bool fireHandlerNow = false;
addStatusRecord(record, [&](ActiveTaskStatus parentStatus) {
if (parentStatus.isCancelled()) {
fireHandlerNow = true;
// We don't fire the cancellation handler here since this function needs
// to be idempotent
}
return true;
});
if (fireHandlerNow) {
record->run();
}
return record;
}
SWIFT_CC(swift)
static void swift_task_removeCancellationHandlerImpl(
CancellationNotificationStatusRecord *record) {
removeStatusRecord(record);
swift_task_dealloc(record);
}
SWIFT_CC(swift)
static NullaryContinuationJob*
swift_task_createNullaryContinuationJobImpl(
size_t priority,
AsyncTask *continuation) {
void *allocation =
swift_task_alloc(sizeof(NullaryContinuationJob));
auto *job =
new (allocation) NullaryContinuationJob(
swift_task_getCurrent(), static_cast<JobPriority>(priority),
continuation);
return job;
}
SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
swift_reportError(0, message);
}
SWIFT_RUNTIME_ATTRIBUTE_NORETURN
SWIFT_CC(swift)
static void swift_task_asyncMainDrainQueueImpl() {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
bool Finished = false;
swift_task_donateThreadToGlobalExecutorUntil([](void *context) {
return *reinterpret_cast<bool*>(context);
}, &Finished);
#elif !SWIFT_CONCURRENCY_ENABLE_DISPATCH
// FIXME: consider implementing a concurrent global main queue for
// these environments?
swift_reportError(0, "operation unsupported without libdispatch: "
"swift_task_asyncMainDrainQueue");
#else
#if defined(_WIN32)
static void(FAR *pfndispatch_main)(void) = NULL;
if (pfndispatch_main)
return pfndispatch_main();
HMODULE hModule = LoadLibraryW(L"dispatch.dll");
if (hModule == NULL)
swift_reportError(0, "unable to load dispatch.dll");
pfndispatch_main =
reinterpret_cast<void (FAR *)(void)>(GetProcAddress(hModule,
"dispatch_main"));
if (pfndispatch_main == NULL)
swift_reportError(0, "unable to locate dispatch_main in dispatch.dll");
pfndispatch_main();
exit(0);
#else
// CFRunLoop is not available on non-Darwin targets. Foundation has an
// implementation, but CoreFoundation is not meant to be exposed. We can only
// assume the existence of `CFRunLoopRun` on Darwin platforms, where the
// system provides an implementation of CoreFoundation.
#if defined(__APPLE__)
auto runLoop =
reinterpret_cast<void (*)(void)>(dlsym(RTLD_DEFAULT, "CFRunLoopRun"));
if (runLoop) {
runLoop();
exit(0);
}
#endif
dispatch_main();
#endif
#endif
}
#define OVERRIDE_TASK COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH