mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
3312 lines
125 KiB
C++
3312 lines
125 KiB
C++
//===--- GenProto.cpp - Swift IR Generation for Protocols -----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for protocols in Swift.
|
|
//
|
|
// Protocols serve two masters: generic algorithms and existential
|
|
// types. In either case, the size and structure of a type is opaque
|
|
// to the code manipulating a value. Local values of the type must
|
|
// be stored in fixed-size buffers (which can overflow to use heap
|
|
// allocation), and basic operations on the type must be dynamically
|
|
// delegated to a collection of information that "witnesses" the
|
|
// truth that a particular type implements the protocol.
|
|
//
|
|
// In the comments throughout this file, three type names are used:
|
|
// 'B' is the type of a fixed-size buffer
|
|
// 'T' is the type which implements a protocol
|
|
// 'W' is the type of a witness to the protocol
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/ABI/MetadataValues.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/CanTypeVisitor.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/IRGenOptions.h"
|
|
#include "swift/SIL/SILDeclRef.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILValue.h"
|
|
#include "swift/SIL/SILWitnessVisitor.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "CallEmission.h"
|
|
#include "EnumPayload.h"
|
|
#include "Explosion.h"
|
|
#include "FixedTypeInfo.h"
|
|
#include "GenArchetype.h"
|
|
#include "GenClass.h"
|
|
#include "GenEnum.h"
|
|
#include "GenHeap.h"
|
|
#include "GenMeta.h"
|
|
#include "GenOpaque.h"
|
|
#include "GenPoly.h"
|
|
#include "GenType.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "Linking.h"
|
|
#include "MetadataPath.h"
|
|
#include "NecessaryBindings.h"
|
|
#include "ProtocolInfo.h"
|
|
#include "TypeInfo.h"
|
|
|
|
#include "GenProto.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
|
|
namespace {
|
|
/// A concrete witness table, together with its known layout.
|
|
class WitnessTable {
|
|
llvm::Value *Table;
|
|
const ProtocolInfo &Info;
|
|
public:
|
|
WitnessTable(llvm::Value *wtable, const ProtocolInfo &info)
|
|
: Table(wtable), Info(info) {}
|
|
|
|
llvm::Value *getTable() const { return Table; }
|
|
const ProtocolInfo &getInfo() const { return Info; }
|
|
};
|
|
|
|
/// A class which lays out a witness table in the abstract.
|
|
class WitnessTableLayout : public SILWitnessVisitor<WitnessTableLayout> {
|
|
unsigned NumWitnesses = 0;
|
|
SmallVector<WitnessTableEntry, 16> Entries;
|
|
|
|
WitnessIndex getNextIndex() {
|
|
return WitnessIndex(NumWitnesses++, /*isPrefix=*/false);
|
|
}
|
|
|
|
public:
|
|
/// The next witness is an out-of-line base protocol.
|
|
void addOutOfLineBaseProtocol(ProtocolDecl *baseProto) {
|
|
Entries.push_back(
|
|
WitnessTableEntry::forOutOfLineBase(baseProto, getNextIndex()));
|
|
}
|
|
|
|
void addMethod(FuncDecl *func) {
|
|
Entries.push_back(WitnessTableEntry::forFunction(func, getNextIndex()));
|
|
}
|
|
|
|
void addConstructor(ConstructorDecl *ctor) {
|
|
Entries.push_back(WitnessTableEntry::forFunction(ctor, getNextIndex()));
|
|
}
|
|
|
|
void addAssociatedType(AssociatedTypeDecl *ty,
|
|
ArrayRef<ProtocolDecl *> protos) {
|
|
// An associated type takes up a spot for the type metadata and for the
|
|
// witnesses to all its conformances.
|
|
Entries.push_back(
|
|
WitnessTableEntry::forAssociatedType(ty, getNextIndex()));
|
|
for (auto *proto : protos)
|
|
if (Lowering::TypeConverter::protocolRequiresWitnessTable(proto))
|
|
++NumWitnesses;
|
|
}
|
|
|
|
unsigned getNumWitnesses() const { return NumWitnesses; }
|
|
ArrayRef<WitnessTableEntry> getEntries() const { return Entries; }
|
|
};
|
|
|
|
/// A path through a protocol hierarchy.
|
|
class ProtocolPath {
|
|
IRGenModule &IGM;
|
|
|
|
/// The destination protocol.
|
|
ProtocolDecl *Dest;
|
|
|
|
/// The path from the selected origin down to the destination
|
|
/// protocol.
|
|
SmallVector<WitnessIndex, 8> ReversePath;
|
|
|
|
/// The origin index to use.
|
|
unsigned OriginIndex;
|
|
|
|
/// The best path length we found.
|
|
unsigned BestPathLength;
|
|
|
|
public:
|
|
/// Find a path from the given set of origins to the destination
|
|
/// protocol.
|
|
///
|
|
/// T needs to provide a couple of member functions:
|
|
/// ProtocolDecl *getProtocol() const;
|
|
/// const ProtocolInfo &getInfo() const;
|
|
template <class T>
|
|
ProtocolPath(IRGenModule &IGM, ArrayRef<T> origins, ProtocolDecl *dest)
|
|
: IGM(IGM), Dest(dest), BestPathLength(~0U) {
|
|
|
|
// Consider each of the origins in turn, breaking out if any of
|
|
// them yields a zero-length path.
|
|
for (unsigned i = 0, e = origins.size(); i != e; ++i) {
|
|
auto &origin = origins[i];
|
|
if (considerOrigin(origin.getProtocol(), origin.getInfo(), i))
|
|
break;
|
|
}
|
|
|
|
// Sanity check that we actually found a path at all.
|
|
assert(BestPathLength != ~0U);
|
|
assert(BestPathLength == ReversePath.size());
|
|
}
|
|
|
|
/// Returns the index of the origin protocol we chose.
|
|
unsigned getOriginIndex() const { return OriginIndex; }
|
|
|
|
/// Apply the path to the given witness table.
|
|
llvm::Value *apply(IRGenFunction &IGF, llvm::Value *wtable) const {
|
|
for (unsigned i = ReversePath.size(); i != 0; --i) {
|
|
wtable = emitInvariantLoadOfOpaqueWitness(IGF, wtable,
|
|
ReversePath[i-1]);
|
|
wtable = IGF.Builder.CreateBitCast(wtable, IGF.IGM.WitnessTablePtrTy);
|
|
}
|
|
return wtable;
|
|
}
|
|
|
|
private:
|
|
/// Consider paths starting from a new origin protocol.
|
|
/// Returns true if there's no point in considering other origins.
|
|
bool considerOrigin(ProtocolDecl *origin, const ProtocolInfo &originInfo,
|
|
unsigned originIndex) {
|
|
assert(BestPathLength != 0);
|
|
|
|
// If the origin *is* the destination, we can stop here.
|
|
if (origin == Dest) {
|
|
OriginIndex = originIndex;
|
|
BestPathLength = 0;
|
|
ReversePath.clear();
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if the origin gives rise to a better path, that's
|
|
// also cool.
|
|
if (findBetterPath(origin, originInfo, 0)) {
|
|
OriginIndex = originIndex;
|
|
return BestPathLength == 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Consider paths starting at the given protocol.
|
|
bool findBetterPath(ProtocolDecl *proto, const ProtocolInfo &protoInfo,
|
|
unsigned lengthSoFar) {
|
|
assert(lengthSoFar < BestPathLength);
|
|
assert(proto != Dest);
|
|
|
|
// Keep track of whether we found a better path than the
|
|
// previous best.
|
|
bool foundBetter = false;
|
|
for (auto base : proto->getInheritedProtocols(nullptr)) {
|
|
// ObjC protocols do not have witnesses.
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(base))
|
|
continue;
|
|
|
|
auto &baseEntry = protoInfo.getWitnessEntry(base);
|
|
assert(baseEntry.isBase());
|
|
|
|
// Compute the length down to this base.
|
|
unsigned lengthToBase = lengthSoFar;
|
|
if (baseEntry.isOutOfLineBase()) {
|
|
lengthToBase++;
|
|
|
|
// Don't consider this path if we reach a length that can't
|
|
// possibly be better than the best so far.
|
|
if (lengthToBase == BestPathLength) continue;
|
|
}
|
|
assert(lengthToBase < BestPathLength);
|
|
|
|
// If this base *is* the destination, go ahead and start
|
|
// building the path into ReversePath.
|
|
if (base == Dest) {
|
|
// Reset the collected best-path information.
|
|
BestPathLength = lengthToBase;
|
|
ReversePath.clear();
|
|
|
|
// Otherwise, if there isn't a better path through this base,
|
|
// don't accumulate anything in the path.
|
|
} else if (!findBetterPath(base, IGM.getProtocolInfo(base),
|
|
lengthToBase)) {
|
|
continue;
|
|
}
|
|
|
|
// Okay, we've found a better path, and ReversePath contains a
|
|
// path leading from base to Dest.
|
|
assert(BestPathLength >= lengthToBase);
|
|
foundBetter = true;
|
|
|
|
// Add the link from proto to base if necessary.
|
|
if (baseEntry.isOutOfLineBase()) {
|
|
ReversePath.push_back(baseEntry.getOutOfLineBaseIndex());
|
|
|
|
// If it isn't necessary, then we might be able to
|
|
// short-circuit considering the bases of this protocol.
|
|
} else {
|
|
if (lengthSoFar == BestPathLength)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return foundBetter;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
|
|
/// Detail about how an object conforms to a protocol.
|
|
class irgen::ConformanceInfo {
|
|
friend class ProtocolInfo;
|
|
public:
|
|
virtual ~ConformanceInfo() {}
|
|
virtual llvm::Value *getTable(IRGenFunction &IGF) const = 0;
|
|
/// Try to get this table as a constant pointer. This might just
|
|
/// not be supportable at all.
|
|
virtual llvm::Constant *tryGetConstantTable(IRGenModule &IGM) const = 0;
|
|
};
|
|
|
|
namespace {
|
|
|
|
/// Conformance info for a witness table that can be directly generated.
|
|
class DirectConformanceInfo : public ConformanceInfo {
|
|
friend class ProtocolInfo;
|
|
|
|
const NormalProtocolConformance *RootConformance;
|
|
public:
|
|
DirectConformanceInfo(const NormalProtocolConformance *C)
|
|
: RootConformance(C) {}
|
|
|
|
llvm::Value *getTable(IRGenFunction &IGF) const override {
|
|
return IGF.IGM.getAddrOfWitnessTable(RootConformance);
|
|
}
|
|
|
|
llvm::Constant *tryGetConstantTable(IRGenModule &IGM) const override {
|
|
return IGM.getAddrOfWitnessTable(RootConformance);
|
|
}
|
|
};
|
|
|
|
} //end anonymous namespace
|
|
|
|
static bool isNeverAllocated(FixedPacking packing) {
|
|
switch (packing) {
|
|
case FixedPacking::OffsetZero: return true;
|
|
case FixedPacking::Allocate: return false;
|
|
case FixedPacking::Dynamic: return false;
|
|
}
|
|
llvm_unreachable("bad FixedPacking value");
|
|
}
|
|
|
|
namespace {
|
|
/// An operation to be peformed for various kinds of packing.
|
|
struct DynamicPackingOperation {
|
|
virtual ~DynamicPackingOperation() = default;
|
|
|
|
/// Emit the operation at a concrete packing kind.
|
|
///
|
|
/// Immediately after this call, there will be an unconditional
|
|
/// branch to the continuation block.
|
|
virtual void emitForPacking(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing) = 0;
|
|
|
|
/// Given that we are currently at the beginning of the
|
|
/// continuation block, complete the operation.
|
|
virtual void complete(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type) = 0;
|
|
};
|
|
|
|
/// A class for merging a particular kind of value across control flow.
|
|
template <class T> class DynamicPackingPHIMapping;
|
|
|
|
/// An implementation of DynamicPackingPHIMapping for a single LLVM value.
|
|
template <> class DynamicPackingPHIMapping<llvm::Value*> {
|
|
llvm::PHINode *PHI = nullptr;
|
|
public:
|
|
void collect(IRGenFunction &IGF, SILType T,
|
|
const TypeInfo &type, llvm::Value *value) {
|
|
// Add the result to the phi, creating it (unparented) if necessary.
|
|
if (!PHI) PHI = llvm::PHINode::Create(value->getType(), 2,
|
|
"dynamic-packing.result");
|
|
PHI->addIncoming(value, IGF.Builder.GetInsertBlock());
|
|
}
|
|
void complete(IRGenFunction &IGF, SILType T, const TypeInfo &type) {
|
|
assert(PHI);
|
|
IGF.Builder.Insert(PHI);
|
|
}
|
|
llvm::Value *get(IRGenFunction &IGF, SILType T, const TypeInfo &type) {
|
|
assert(PHI);
|
|
return PHI;
|
|
}
|
|
};
|
|
|
|
/// An implementation of DynamicPackingPHIMapping for Addresses.
|
|
template <> class DynamicPackingPHIMapping<Address>
|
|
: private DynamicPackingPHIMapping<llvm::Value*> {
|
|
typedef DynamicPackingPHIMapping<llvm::Value*> super;
|
|
public:
|
|
void collect(IRGenFunction &IGF, SILType T,
|
|
const TypeInfo &type, Address value) {
|
|
super::collect(IGF, T, type, value.getAddress());
|
|
}
|
|
void complete(IRGenFunction &IGF, SILType T,
|
|
const TypeInfo &type) {
|
|
super::complete(IGF, T, type);
|
|
}
|
|
Address get(IRGenFunction &IGF, SILType T, const TypeInfo &type) {
|
|
return type.getAddressForPointer(super::get(IGF, T, type));
|
|
}
|
|
};
|
|
|
|
/// An implementation of packing operations based around a lambda.
|
|
template <class ResultTy, class FnTy>
|
|
class LambdaDynamicPackingOperation : public DynamicPackingOperation {
|
|
FnTy Fn;
|
|
DynamicPackingPHIMapping<ResultTy> Mapping;
|
|
public:
|
|
explicit LambdaDynamicPackingOperation(FnTy &&fn) : Fn(fn) {}
|
|
void emitForPacking(IRGenFunction &IGF, SILType T, const TypeInfo &type,
|
|
FixedPacking packing) override {
|
|
Mapping.collect(IGF, T, type, Fn(IGF, T, type, packing));
|
|
}
|
|
|
|
void complete(IRGenFunction &IGF, SILType T,
|
|
const TypeInfo &type) override {
|
|
Mapping.complete(IGF, T, type);
|
|
}
|
|
|
|
ResultTy get(IRGenFunction &IGF, SILType T, const TypeInfo &type) {
|
|
return Mapping.get(IGF, T, type);
|
|
}
|
|
};
|
|
|
|
/// A partial specialization for lambda-based packing operations
|
|
/// that return 'void'.
|
|
template <class FnTy>
|
|
class LambdaDynamicPackingOperation<void, FnTy>
|
|
: public DynamicPackingOperation {
|
|
FnTy Fn;
|
|
public:
|
|
explicit LambdaDynamicPackingOperation(FnTy &&fn) : Fn(fn) {}
|
|
void emitForPacking(IRGenFunction &IGF, SILType T, const TypeInfo &type,
|
|
FixedPacking packing) override {
|
|
Fn(IGF, T, type, packing);
|
|
}
|
|
void complete(IRGenFunction &IGF, SILType T,
|
|
const TypeInfo &type) override {}
|
|
void get(IRGenFunction &IGF, SILType T, const TypeInfo &type) {}
|
|
};
|
|
}
|
|
|
|
/// Dynamic check for the enabling conditions of different kinds of
|
|
/// packing into a fixed-size buffer, and perform an operation at each
|
|
/// of them.
|
|
static void emitDynamicPackingOperation(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
DynamicPackingOperation &operation) {
|
|
auto indirectBB = IGF.createBasicBlock("dynamic-packing.indirect");
|
|
auto directBB = IGF.createBasicBlock("dynamic-packing.direct");
|
|
auto contBB = IGF.createBasicBlock("dynamic-packing.cont");
|
|
|
|
// Branch.
|
|
auto isInline = type.isDynamicallyPackedInline(IGF, T);
|
|
IGF.Builder.CreateCondBr(isInline, directBB, indirectBB);
|
|
|
|
// Emit the indirect path.
|
|
IGF.Builder.emitBlock(indirectBB);
|
|
operation.emitForPacking(IGF, T, type, FixedPacking::Allocate);
|
|
IGF.Builder.CreateBr(contBB);
|
|
|
|
// Emit the direct path.
|
|
IGF.Builder.emitBlock(directBB);
|
|
operation.emitForPacking(IGF, T, type, FixedPacking::OffsetZero);
|
|
IGF.Builder.CreateBr(contBB);
|
|
|
|
// Enter the continuation block and add the PHI if required.
|
|
IGF.Builder.emitBlock(contBB);
|
|
operation.complete(IGF, T, type);
|
|
}
|
|
|
|
/// A helper function for creating a lambda-based DynamicPackingOperation.
|
|
template <class ResultTy, class FnTy>
|
|
LambdaDynamicPackingOperation<ResultTy, FnTy>
|
|
makeLambdaDynamicPackingOperation(FnTy &&fn) {
|
|
return LambdaDynamicPackingOperation<ResultTy, FnTy>(std::move(fn));
|
|
}
|
|
|
|
/// Perform an operation on a type that requires dynamic packing.
|
|
template <class ResultTy, class... ArgTys>
|
|
static ResultTy emitForDynamicPacking(IRGenFunction &IGF,
|
|
ResultTy (*fn)(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
ArgTys... args),
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
// using enable_if to block template argument deduction
|
|
typename std::enable_if<true,ArgTys>::type... args) {
|
|
auto operation = makeLambdaDynamicPackingOperation<ResultTy>(
|
|
[&](IRGenFunction &IGF, SILType T, const TypeInfo &type, FixedPacking packing) {
|
|
return fn(IGF, T, type, packing, args...);
|
|
});
|
|
emitDynamicPackingOperation(IGF, T, type, operation);
|
|
return operation.get(IGF, T, type);
|
|
}
|
|
|
|
/// Emit a 'projectBuffer' operation. Always returns a T*.
|
|
static Address emitProjectBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
llvm::PointerType *resultTy = type.getStorageType()->getPointerTo();
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
Address slot = IGF.Builder.CreateBitCast(buffer, resultTy->getPointerTo(),
|
|
"storage-slot");
|
|
llvm::Value *address = IGF.Builder.CreateLoad(slot);
|
|
return type.getAddressForPointer(address);
|
|
}
|
|
|
|
case FixedPacking::OffsetZero: {
|
|
return IGF.Builder.CreateBitCast(buffer, resultTy, "object");
|
|
}
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitProjectBuffer, T, type, buffer);
|
|
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
|
|
}
|
|
namespace swift { namespace irgen { using ::emitProjectBuffer; } }
|
|
|
|
/// Project to the address of a value in a value buffer.
|
|
Address irgen::emitProjectBuffer(IRGenFunction &IGF, SILType valueType,
|
|
Address buffer) {
|
|
const TypeInfo &valueTI = IGF.getTypeInfo(valueType);
|
|
FixedPacking packing = valueTI.getFixedPacking(IGF.IGM);
|
|
return ::emitProjectBuffer(IGF, valueType, valueTI, packing, buffer);
|
|
}
|
|
|
|
/// Emit an 'allocateBuffer' operation. Always returns a T*.
|
|
static Address emitAllocateBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
auto sizeAndAlign = type.getSizeAndAlignmentMask(IGF, T);
|
|
llvm::Value *addr =
|
|
IGF.emitAllocRawCall(sizeAndAlign.first, sizeAndAlign.second);
|
|
buffer = IGF.Builder.CreateBitCast(buffer, IGF.IGM.Int8PtrPtrTy);
|
|
IGF.Builder.CreateStore(addr, buffer);
|
|
|
|
addr = IGF.Builder.CreateBitCast(addr,
|
|
type.getStorageType()->getPointerTo());
|
|
return type.getAddressForPointer(addr);
|
|
}
|
|
|
|
case FixedPacking::OffsetZero:
|
|
return emitProjectBuffer(IGF, T, type, packing, buffer);
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitAllocateBuffer, T, type, buffer);
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
}
|
|
namespace swift { namespace irgen { using ::emitAllocateBuffer; } }
|
|
|
|
/// Allocate space for a value in a value buffer.
|
|
Address irgen::emitAllocateBuffer(IRGenFunction &IGF, SILType valueType,
|
|
Address buffer) {
|
|
const TypeInfo &valueTI = IGF.getTypeInfo(valueType);
|
|
FixedPacking packing = valueTI.getFixedPacking(IGF.IGM);
|
|
return emitAllocateBuffer(IGF, valueType, valueTI, packing, buffer);
|
|
}
|
|
|
|
/// Emit a 'deallocateBuffer' operation.
|
|
static void emitDeallocateBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
switch (packing) {
|
|
case FixedPacking::Allocate: {
|
|
Address slot =
|
|
IGF.Builder.CreateBitCast(buffer, IGF.IGM.Int8PtrPtrTy);
|
|
llvm::Value *addr = IGF.Builder.CreateLoad(slot, "storage");
|
|
auto sizeAndAlignMask = type.getSizeAndAlignmentMask(IGF, T);
|
|
IGF.emitDeallocRawCall(addr, sizeAndAlignMask.first,
|
|
sizeAndAlignMask.second);
|
|
return;
|
|
}
|
|
|
|
case FixedPacking::OffsetZero:
|
|
return;
|
|
|
|
case FixedPacking::Dynamic:
|
|
return emitForDynamicPacking(IGF, &emitDeallocateBuffer, T, type, buffer);
|
|
}
|
|
llvm_unreachable("bad packing!");
|
|
}
|
|
namespace swift { namespace irgen { using ::emitDeallocateBuffer; } }
|
|
|
|
/// Deallocate space for a value in a value buffer.
|
|
void irgen::emitDeallocateBuffer(IRGenFunction &IGF, SILType valueType,
|
|
Address buffer) {
|
|
const TypeInfo &valueTI = IGF.getTypeInfo(valueType);
|
|
FixedPacking packing = valueTI.getFixedPacking(IGF.IGM);
|
|
emitDeallocateBuffer(IGF, valueType, valueTI, packing, buffer);
|
|
}
|
|
|
|
/// Emit a 'destroyBuffer' operation.
|
|
static void emitDestroyBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address buffer) {
|
|
// Special-case dynamic packing in order to thread the jumps.
|
|
if (packing == FixedPacking::Dynamic)
|
|
return emitForDynamicPacking(IGF, &emitDestroyBuffer, T, type, buffer);
|
|
|
|
Address object = emitProjectBuffer(IGF, T, type, packing, buffer);
|
|
type.destroy(IGF, object, T);
|
|
emitDeallocateBuffer(IGF, T, type, packing, buffer);
|
|
}
|
|
|
|
/// Emit an 'initializeWithCopy' operation.
|
|
static void emitInitializeWithCopy(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
Address dest, Address src) {
|
|
type.initializeWithCopy(IGF, dest, src, T);
|
|
}
|
|
|
|
/// Emit an 'initializeWithTake' operation.
|
|
static void emitInitializeWithTake(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
Address dest, Address src) {
|
|
type.initializeWithTake(IGF, dest, src, T);
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithCopyOfBuffer' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithCopyOfBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address src) {
|
|
// Special-case dynamic packing in order to thread the jumps.
|
|
if (packing == FixedPacking::Dynamic)
|
|
return emitForDynamicPacking(IGF, &emitInitializeBufferWithCopyOfBuffer,
|
|
T, type, dest, src);
|
|
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
Address srcObject = emitProjectBuffer(IGF, T, type, packing, src);
|
|
emitInitializeWithCopy(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithTakeOfBuffer' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithTakeOfBuffer(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address src) {
|
|
switch (packing) {
|
|
|
|
case FixedPacking::Dynamic:
|
|
// Special-case dynamic packing in order to thread the jumps.
|
|
return emitForDynamicPacking(IGF, &emitInitializeBufferWithTakeOfBuffer,
|
|
T, type, dest, src);
|
|
|
|
case FixedPacking::OffsetZero: {
|
|
// Both of these allocations/projections should be no-ops.
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
Address srcObject = emitProjectBuffer(IGF, T, type, packing, src);
|
|
emitInitializeWithTake(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
case FixedPacking::Allocate: {
|
|
// Just copy the out-of-line storage pointers.
|
|
llvm::Type *ptrTy = type.getStorageType()->getPointerTo()->getPointerTo();
|
|
src = IGF.Builder.CreateBitCast(src, ptrTy);
|
|
llvm::Value *addr = IGF.Builder.CreateLoad(src);
|
|
dest = IGF.Builder.CreateBitCast(dest, ptrTy);
|
|
IGF.Builder.CreateStore(addr, dest);
|
|
return type.getAddressForPointer(addr);
|
|
}
|
|
}
|
|
llvm_unreachable("bad fixed packing");
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithCopy' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithCopy(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address srcObject) {
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
emitInitializeWithCopy(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
/// Emit an 'initializeBufferWithTake' operation.
|
|
/// Returns the address of the destination object.
|
|
static Address emitInitializeBufferWithTake(IRGenFunction &IGF,
|
|
SILType T,
|
|
const TypeInfo &type,
|
|
FixedPacking packing,
|
|
Address dest,
|
|
Address srcObject) {
|
|
Address destObject = emitAllocateBuffer(IGF, T, type, packing, dest);
|
|
emitInitializeWithTake(IGF, T, type, destObject, srcObject);
|
|
return destObject;
|
|
}
|
|
|
|
static llvm::Value *getArg(llvm::Function::arg_iterator &it,
|
|
StringRef name) {
|
|
llvm::Value *arg = it++;
|
|
arg->setName(name);
|
|
return arg;
|
|
}
|
|
|
|
/// Get the next argument as a pointer to the given storage type.
|
|
static Address getArgAs(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
const TypeInfo &type,
|
|
StringRef name) {
|
|
llvm::Value *arg = getArg(it, name);
|
|
llvm::Value *result =
|
|
IGF.Builder.CreateBitCast(arg, type.getStorageType()->getPointerTo());
|
|
return type.getAddressForPointer(result);
|
|
}
|
|
|
|
/// Get the next argument as a pointer to the given storage type.
|
|
static Address getArgAsBuffer(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
StringRef name) {
|
|
llvm::Value *arg = getArg(it, name);
|
|
return Address(arg, getFixedBufferAlignment(IGF.IGM));
|
|
}
|
|
|
|
/// Get the next argument and use it as the 'self' type metadata.
|
|
static void getArgAsLocalSelfTypeMetadata(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
CanType abstractType);
|
|
|
|
/// Build a value witness that initializes an array front-to-back.
|
|
static void emitInitializeArrayFrontToBackWitness(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator argv,
|
|
CanType abstractType,
|
|
SILType concreteType,
|
|
const TypeInfo &type,
|
|
IsTake_t take) {
|
|
Address destArray = getArgAs(IGF, argv, type, "dest");
|
|
Address srcArray = getArgAs(IGF, argv, type, "src");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeArrayFrontToBack(IGF, type, destArray, srcArray, count,
|
|
concreteType, take);
|
|
|
|
destArray = IGF.Builder.CreateBitCast(destArray, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(destArray.getAddress());
|
|
}
|
|
|
|
/// Build a value witness that initializes an array back-to-front.
|
|
static void emitInitializeArrayBackToFrontWitness(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator argv,
|
|
CanType abstractType,
|
|
SILType concreteType,
|
|
const TypeInfo &type,
|
|
IsTake_t take) {
|
|
Address destArray = getArgAs(IGF, argv, type, "dest");
|
|
Address srcArray = getArgAs(IGF, argv, type, "src");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeArrayBackToFront(IGF, type, destArray, srcArray, count,
|
|
concreteType, take);
|
|
|
|
destArray = IGF.Builder.CreateBitCast(destArray, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(destArray.getAddress());
|
|
}
|
|
|
|
/// Build a specific value-witness function.
|
|
static void buildValueWitnessFunction(IRGenModule &IGM,
|
|
llvm::Function *fn,
|
|
ValueWitness index,
|
|
FixedPacking packing,
|
|
CanType abstractType,
|
|
SILType concreteType,
|
|
const TypeInfo &type) {
|
|
assert(isValueWitnessFunction(index));
|
|
|
|
IRGenFunction IGF(IGM, fn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, fn);
|
|
|
|
auto argv = fn->arg_begin();
|
|
switch (index) {
|
|
case ValueWitness::AllocateBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
Address result = emitAllocateBuffer(IGF, concreteType, type, packing, buffer);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::AssignWithCopy: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.assignWithCopy(IGF, dest, src, concreteType);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::AssignWithTake: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.assignWithTake(IGF, dest, src, concreteType);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DeallocateBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
emitDeallocateBuffer(IGF, concreteType, type, packing, buffer);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::Destroy: {
|
|
Address object = getArgAs(IGF, argv, type, "object");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
type.destroy(IGF, object, concreteType);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DestroyArray: {
|
|
Address array = getArgAs(IGF, argv, type, "array");
|
|
llvm::Value *count = getArg(argv, "count");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto entry = IGF.Builder.GetInsertBlock();
|
|
auto iter = IGF.createBasicBlock("iter");
|
|
auto loop = IGF.createBasicBlock("loop");
|
|
auto exit = IGF.createBasicBlock("exit");
|
|
IGF.Builder.CreateBr(iter);
|
|
IGF.Builder.emitBlock(iter);
|
|
|
|
auto counter = IGF.Builder.CreatePHI(IGM.SizeTy, 2);
|
|
counter->addIncoming(count, entry);
|
|
auto elementVal = IGF.Builder.CreatePHI(array.getType(), 2);
|
|
elementVal->addIncoming(array.getAddress(), entry);
|
|
Address element(elementVal, array.getAlignment());
|
|
|
|
auto done = IGF.Builder.CreateICmpEQ(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 0));
|
|
IGF.Builder.CreateCondBr(done, exit, loop);
|
|
|
|
IGF.Builder.emitBlock(loop);
|
|
type.destroy(IGF, element, concreteType);
|
|
auto nextCounter = IGF.Builder.CreateSub(counter,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1));
|
|
auto nextElement = type.indexArray(IGF, element,
|
|
llvm::ConstantInt::get(IGM.SizeTy, 1),
|
|
concreteType);
|
|
auto loopEnd = IGF.Builder.GetInsertBlock();
|
|
counter->addIncoming(nextCounter, loopEnd);
|
|
elementVal->addIncoming(nextElement.getAddress(), loopEnd);
|
|
IGF.Builder.CreateBr(iter);
|
|
|
|
IGF.Builder.emitBlock(exit);
|
|
IGF.Builder.CreateRetVoid();
|
|
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DestroyBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
emitDestroyBuffer(IGF, concreteType, type, packing, buffer);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithCopyOfBuffer: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAsBuffer(IGF, argv, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithCopyOfBuffer(IGF, concreteType,
|
|
type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithTakeOfBuffer: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAsBuffer(IGF, argv, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithTakeOfBuffer(IGF, concreteType,
|
|
type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithCopy: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithCopy(IGF, concreteType, type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeBufferWithTake: {
|
|
Address dest = getArgAsBuffer(IGF, argv, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result =
|
|
emitInitializeBufferWithTake(IGF, concreteType, type, packing, dest, src);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeWithCopy: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeWithCopy(IGF, concreteType, type, dest, src);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithCopy: {
|
|
emitInitializeArrayFrontToBackWitness(IGF, argv, abstractType, concreteType,
|
|
type, IsNotTake);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeWithTake: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
emitInitializeWithTake(IGF, concreteType, type, dest, src);
|
|
dest = IGF.Builder.CreateBitCast(dest, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithTakeFrontToBack: {
|
|
emitInitializeArrayFrontToBackWitness(IGF, argv, abstractType, concreteType,
|
|
type, IsTake);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::InitializeArrayWithTakeBackToFront: {
|
|
emitInitializeArrayBackToFrontWitness(IGF, argv, abstractType, concreteType,
|
|
type, IsTake);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::ProjectBuffer: {
|
|
Address buffer = getArgAsBuffer(IGF, argv, "buffer");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
Address result = emitProjectBuffer(IGF, concreteType, type, packing, buffer);
|
|
result = IGF.Builder.CreateBitCast(result, IGF.IGM.OpaquePtrTy);
|
|
IGF.Builder.CreateRet(result.getAddress());
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::StoreExtraInhabitant: {
|
|
Address dest = getArgAs(IGF, argv, type, "dest");
|
|
llvm::Value *index = getArg(argv, "index");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
type.storeExtraInhabitant(IGF, index, dest, concreteType);
|
|
IGF.Builder.CreateRetVoid();
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::GetExtraInhabitantIndex: {
|
|
Address src = getArgAs(IGF, argv, type, "src");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
llvm::Value *idx = type.getExtraInhabitantIndex(IGF, src, concreteType);
|
|
IGF.Builder.CreateRet(idx);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::GetEnumTag: {
|
|
auto &strategy = getEnumImplStrategy(IGM, concreteType);
|
|
|
|
llvm::Value *value = getArg(argv, "value");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto enumTy = type.getStorageType()->getPointerTo();
|
|
value = IGF.Builder.CreateBitCast(value, enumTy);
|
|
auto enumAddr = type.getAddressForPointer(value);
|
|
|
|
llvm::Value *result = strategy.emitGetEnumTag(IGF, enumAddr, concreteType);
|
|
result = IGF.Builder.CreateZExtOrTrunc(result, IGF.IGM.Int32Ty);
|
|
|
|
IGF.Builder.CreateRet(result);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::DestructiveProjectEnumData: {
|
|
llvm::Value *value = getArg(argv, "value");
|
|
getArgAsLocalSelfTypeMetadata(IGF, argv, abstractType);
|
|
|
|
auto &strategy = getEnumImplStrategy(IGM, concreteType);
|
|
if (strategy.getElementsWithPayload().size() > 0) {
|
|
strategy.destructiveProjectDataForLoad(
|
|
IGF, Address(value, type.getBestKnownAlignment()));
|
|
}
|
|
|
|
IGF.Builder.CreateRet(value);
|
|
return;
|
|
}
|
|
|
|
case ValueWitness::Size:
|
|
case ValueWitness::Flags:
|
|
case ValueWitness::Stride:
|
|
case ValueWitness::ExtraInhabitantFlags:
|
|
llvm_unreachable("these value witnesses aren't functions");
|
|
}
|
|
llvm_unreachable("bad value witness kind!");
|
|
}
|
|
|
|
static llvm::Constant *asOpaquePtr(IRGenModule &IGM, llvm::Constant *in) {
|
|
return llvm::ConstantExpr::getBitCast(in, IGM.Int8PtrTy);
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and returns
|
|
/// void immediately.
|
|
static llvm::Constant *getNoOpVoidFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_noop_void_return",
|
|
IGM.VoidTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
IGF.Builder.CreateRetVoid();
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and returns
|
|
/// the first one immediately.
|
|
static llvm::Constant *getReturnSelfFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_noop_self_return",
|
|
IGM.Int8PtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
IGF.Builder.CreateRet(IGF.CurFn->arg_begin());
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining assignWithCopy on the first two: it loads a pointer from
|
|
/// the second, retains it, loads a pointer from the first, stores the
|
|
/// new pointer in the first, and releases the old pointer.
|
|
static llvm::Constant *getAssignWithCopyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_assignWithCopy_strong",
|
|
ptrPtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
IGF.emitRetainCall(newValue);
|
|
llvm::Value *oldValue = IGF.Builder.CreateLoad(dest, "old");
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
IGF.emitRelease(oldValue);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining assignWithTake on the first two: it loads a pointer from
|
|
/// the second, retains it, loads a pointer from the first, stores the
|
|
/// new pointer in the first, and releases the old pointer.
|
|
static llvm::Constant *getAssignWithTakeStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_assignWithTake_strong",
|
|
ptrPtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
llvm::Value *oldValue = IGF.Builder.CreateLoad(dest, "old");
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
IGF.emitRelease(oldValue);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes three pointer arguments and does a
|
|
/// retaining initWithCopy on the first two: it loads a pointer from
|
|
/// the second, retains it, and stores that in the first.
|
|
static llvm::Constant *getInitWithCopyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *ptrPtrTy = IGM.RefCountedPtrTy->getPointerTo();
|
|
llvm::Type *argTys[] = { ptrPtrTy, ptrPtrTy, IGM.WitnessTablePtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_initWithCopy_strong",
|
|
ptrPtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
|
|
llvm::Value *newValue = IGF.Builder.CreateLoad(src, "new");
|
|
IGF.emitRetainCall(newValue);
|
|
IGF.Builder.CreateStore(newValue, dest);
|
|
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments, loads a
|
|
/// pointer from the first, and calls swift_release on it immediately.
|
|
static llvm::Constant *getDestroyStrongFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrPtrTy, IGM.WitnessTablePtrTy };
|
|
return IGM.getOrCreateHelperFunction("__swift_destroy_strong",
|
|
IGM.VoidTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
Address arg(IGF.CurFn->arg_begin(), IGM.getPointerAlignment());
|
|
IGF.emitRelease(IGF.Builder.CreateLoad(arg));
|
|
IGF.Builder.CreateRetVoid();
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments, memcpys
|
|
/// from the second to the first, and returns the first argument.
|
|
static llvm::Constant *getMemCpyFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
// If we don't have a fixed type, use the standard copy-opaque-POD
|
|
// routine. It's not quite clear how in practice we'll be able to
|
|
// conclude that something is known-POD without knowing its size,
|
|
// but it's (1) conceivable and (2) needed as a general export anyway.
|
|
auto *fixedTI = dyn_cast<FixedTypeInfo>(&objectTI);
|
|
if (!fixedTI) return IGM.getCopyPODFn();
|
|
|
|
// We need to unique by both size and alignment. Note that we're
|
|
// assuming that it's safe to call a function that returns a pointer
|
|
// at a site that assumes the function returns void.
|
|
llvm::SmallString<40> name;
|
|
{
|
|
llvm::raw_svector_ostream nameStream(name);
|
|
nameStream << "__swift_memcpy";
|
|
nameStream << fixedTI->getFixedSize().getValue();
|
|
nameStream << '_';
|
|
nameStream << fixedTI->getFixedAlignment().getValue();
|
|
}
|
|
|
|
llvm::Type *argTys[] = { IGM.Int8PtrTy, IGM.Int8PtrTy, IGM.TypeMetadataPtrTy };
|
|
return IGM.getOrCreateHelperFunction(name, IGM.Int8PtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, fixedTI->getFixedAlignment());
|
|
Address src(it++, fixedTI->getFixedAlignment());
|
|
IGF.emitMemCpy(dest, src, fixedTI->getFixedSize());
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
});
|
|
}
|
|
|
|
/// Return a function which takes two buffer arguments, copies
|
|
/// a pointer from the second to the first, and returns the pointer.
|
|
static llvm::Constant *getCopyOutOfLinePointerFunction(IRGenModule &IGM) {
|
|
llvm::Type *argTys[] = { IGM.Int8PtrPtrTy, IGM.Int8PtrPtrTy,
|
|
IGM.TypeMetadataPtrTy };
|
|
|
|
return IGM.getOrCreateHelperFunction("__swift_copy_outline_pointer",
|
|
IGM.Int8PtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, IGM.getPointerAlignment());
|
|
Address src(it++, IGM.getPointerAlignment());
|
|
auto ptr = IGF.Builder.CreateLoad(src);
|
|
IGF.Builder.CreateStore(ptr, dest);
|
|
IGF.Builder.CreateRet(ptr);
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
enum class MemMoveOrCpy { MemMove, MemCpy };
|
|
}
|
|
|
|
/// Return a function which takes two pointer arguments and a count, memmoves
|
|
/// or memcpys from the second to the first, and returns the first argument.
|
|
static llvm::Constant *getMemOpArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI,
|
|
MemMoveOrCpy kind) {
|
|
llvm::Type *argTys[] = {
|
|
IGM.Int8PtrTy, IGM.Int8PtrTy, IGM.SizeTy,
|
|
IGM.TypeMetadataPtrTy
|
|
};
|
|
|
|
// TODO: Add a copyPODArray runtime entry point for bitwise-takable but non-
|
|
// fixed-size types. Currently only fixed-layout types should be known
|
|
// bitwise-takable.
|
|
auto &fixedTI = cast<FixedTypeInfo>(objectTI);
|
|
|
|
// We need to unique by both size and alignment. Note that we're
|
|
// assuming that it's safe to call a function that returns a pointer
|
|
// at a site that assumes the function returns void.
|
|
llvm::SmallString<40> name;
|
|
{
|
|
llvm::raw_svector_ostream nameStream(name);
|
|
switch (kind) {
|
|
case MemMoveOrCpy::MemCpy:
|
|
nameStream << "__swift_memcpy_array";
|
|
break;
|
|
case MemMoveOrCpy::MemMove:
|
|
nameStream << "__swift_memmove_array";
|
|
break;
|
|
}
|
|
nameStream << fixedTI.getFixedStride().getValue();
|
|
nameStream << '_';
|
|
nameStream << fixedTI.getFixedAlignment().getValue();
|
|
}
|
|
|
|
return IGM.getOrCreateHelperFunction(name, IGM.Int8PtrTy, argTys,
|
|
[&](IRGenFunction &IGF) {
|
|
auto it = IGF.CurFn->arg_begin();
|
|
Address dest(it++, fixedTI.getFixedAlignment());
|
|
Address src(it++, fixedTI.getFixedAlignment());
|
|
llvm::Value *count = it++;
|
|
llvm::Value *stride
|
|
= llvm::ConstantInt::get(IGM.SizeTy, fixedTI.getFixedStride().getValue());
|
|
llvm::Value *totalCount = IGF.Builder.CreateNUWMul(count, stride);
|
|
switch (kind) {
|
|
case MemMoveOrCpy::MemMove:
|
|
IGF.Builder.CreateMemMove(dest.getAddress(), src.getAddress(), totalCount,
|
|
fixedTI.getFixedAlignment().getValue());
|
|
break;
|
|
case MemMoveOrCpy::MemCpy:
|
|
IGF.Builder.CreateMemCpy(dest.getAddress(), src.getAddress(), totalCount,
|
|
fixedTI.getFixedAlignment().getValue());
|
|
break;
|
|
}
|
|
IGF.Builder.CreateRet(dest.getAddress());
|
|
});
|
|
}
|
|
|
|
static llvm::Constant *getMemMoveArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
return getMemOpArrayFunction(IGM, objectTI, MemMoveOrCpy::MemMove);
|
|
}
|
|
static llvm::Constant *getMemCpyArrayFunction(IRGenModule &IGM,
|
|
const TypeInfo &objectTI) {
|
|
return getMemOpArrayFunction(IGM, objectTI, MemMoveOrCpy::MemCpy);
|
|
}
|
|
|
|
/// Find a witness to the fact that a type is a value type.
|
|
/// Always returns an i8*.
|
|
static llvm::Constant *getValueWitness(IRGenModule &IGM,
|
|
ValueWitness index,
|
|
FixedPacking packing,
|
|
CanType abstractType,
|
|
SILType concreteType,
|
|
const TypeInfo &concreteTI) {
|
|
// Try to use a standard function.
|
|
switch (index) {
|
|
case ValueWitness::DeallocateBuffer:
|
|
if (isNeverAllocated(packing))
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
goto standard;
|
|
|
|
case ValueWitness::DestroyBuffer:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
if (isNeverAllocated(packing))
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
assert(isNeverAllocated(packing));
|
|
return asOpaquePtr(IGM, getDestroyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::Destroy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getDestroyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::DestroyArray:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getNoOpVoidFunction(IGM));
|
|
}
|
|
// TODO: A standard "destroy strong array" entrypoint for arrays of single
|
|
// refcounted pointer types.
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeBufferWithCopyOfBuffer:
|
|
case ValueWitness::InitializeBufferWithCopy:
|
|
if (packing == FixedPacking::OffsetZero) {
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getInitWithCopyStrongFunction(IGM));
|
|
}
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeBufferWithTakeOfBuffer:
|
|
if (packing == FixedPacking::Allocate) {
|
|
return asOpaquePtr(IGM, getCopyOutOfLinePointerFunction(IGM));
|
|
} else if (packing == FixedPacking::OffsetZero &&
|
|
concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeBufferWithTake:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)
|
|
&& packing == FixedPacking::OffsetZero)
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeWithTake:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithTakeFrontToBack:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemMoveArrayFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithTakeBackToFront:
|
|
if (concreteTI.isBitwiseTakable(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemMoveArrayFunction(IGM, concreteTI));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::AssignWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getAssignWithCopyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::AssignWithTake:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getAssignWithTakeStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyFunction(IGM, concreteTI));
|
|
} else if (concreteTI.isSingleSwiftRetainablePointer(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getInitWithCopyStrongFunction(IGM));
|
|
}
|
|
goto standard;
|
|
|
|
case ValueWitness::InitializeArrayWithCopy:
|
|
if (concreteTI.isPOD(ResilienceScope::Local)) {
|
|
return asOpaquePtr(IGM, getMemCpyArrayFunction(IGM, concreteTI));
|
|
}
|
|
// TODO: A standard "copy strong array" entrypoint for arrays of single
|
|
// refcounted pointer types.
|
|
goto standard;
|
|
|
|
case ValueWitness::AllocateBuffer:
|
|
case ValueWitness::ProjectBuffer:
|
|
if (packing == FixedPacking::OffsetZero)
|
|
return asOpaquePtr(IGM, getReturnSelfFunction(IGM));
|
|
goto standard;
|
|
|
|
case ValueWitness::Size: {
|
|
if (auto value = concreteTI.getStaticSize(IGM))
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
|
|
// Just fill in null here if the type can't be statically laid out.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::Flags: {
|
|
uint64_t flags = 0;
|
|
|
|
// If we locally know that the type has fixed layout, we can emit
|
|
// meaningful flags for it.
|
|
if (auto *fixedTI = dyn_cast<FixedTypeInfo>(&concreteTI)) {
|
|
flags |= fixedTI->getFixedAlignment().getValue() - 1;
|
|
if (!fixedTI->isPOD(ResilienceScope::Local))
|
|
flags |= ValueWitnessFlags::IsNonPOD;
|
|
assert(packing == FixedPacking::OffsetZero ||
|
|
packing == FixedPacking::Allocate);
|
|
if (packing != FixedPacking::OffsetZero)
|
|
flags |= ValueWitnessFlags::IsNonInline;
|
|
|
|
if (fixedTI->getFixedExtraInhabitantCount(IGM) > 0)
|
|
flags |= ValueWitnessFlags::Enum_HasExtraInhabitants;
|
|
|
|
if (!fixedTI->isBitwiseTakable(ResilienceScope::Local))
|
|
flags |= ValueWitnessFlags::IsNonBitwiseTakable;
|
|
}
|
|
|
|
if (concreteType.getEnumOrBoundGenericEnum())
|
|
flags |= ValueWitnessFlags::HasEnumWitnesses;
|
|
|
|
auto value = IGM.getSize(Size(flags));
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::Stride: {
|
|
if (auto value = concreteTI.getStaticStride(IGM))
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
|
|
// Just fill in null here if the type can't be statically laid out.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::StoreExtraInhabitant:
|
|
case ValueWitness::GetExtraInhabitantIndex: {
|
|
if (!concreteTI.mayHaveExtraInhabitants(IGM)) {
|
|
assert(concreteType.getEnumOrBoundGenericEnum());
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
goto standard;
|
|
}
|
|
|
|
case ValueWitness::ExtraInhabitantFlags: {
|
|
if (!concreteTI.mayHaveExtraInhabitants(IGM)) {
|
|
assert(concreteType.getEnumOrBoundGenericEnum());
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
// If we locally know that the type has fixed layout, we can emit
|
|
// meaningful flags for it.
|
|
if (auto *fixedTI = dyn_cast<FixedTypeInfo>(&concreteTI)) {
|
|
uint64_t numExtraInhabitants = fixedTI->getFixedExtraInhabitantCount(IGM);
|
|
assert(numExtraInhabitants <= ExtraInhabitantFlags::NumExtraInhabitantsMask);
|
|
auto value = IGM.getSize(Size(numExtraInhabitants));
|
|
return llvm::ConstantExpr::getIntToPtr(value, IGM.Int8PtrTy);
|
|
}
|
|
|
|
// Otherwise, just fill in null here if the type can't be statically
|
|
// queried for extra inhabitants.
|
|
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
}
|
|
|
|
case ValueWitness::GetEnumTag:
|
|
case ValueWitness::DestructiveProjectEnumData:
|
|
assert(concreteType.getEnumOrBoundGenericEnum());
|
|
goto standard;
|
|
}
|
|
llvm_unreachable("bad value witness kind");
|
|
|
|
standard:
|
|
llvm::Function *fn =
|
|
IGM.getAddrOfValueWitness(abstractType, index, ForDefinition);
|
|
if (fn->empty())
|
|
buildValueWitnessFunction(IGM, fn, index, packing, abstractType,
|
|
concreteType, concreteTI);
|
|
return asOpaquePtr(IGM, fn);
|
|
}
|
|
|
|
namespace {
|
|
/// A class which lays out a specific conformance to a protocol.
|
|
class WitnessTableBuilder : public SILWitnessVisitor<WitnessTableBuilder> {
|
|
IRGenModule &IGM;
|
|
SmallVectorImpl<llvm::Constant*> &Table;
|
|
CanType ConcreteType;
|
|
GenericParamList *ConcreteGenerics = nullptr;
|
|
const TypeInfo &ConcreteTI;
|
|
const ProtocolConformance &Conformance;
|
|
ArrayRef<Substitution> Substitutions;
|
|
ArrayRef<SILWitnessTable::Entry> SILEntries;
|
|
#ifndef NDEBUG
|
|
const ProtocolInfo &PI;
|
|
#endif
|
|
|
|
void computeSubstitutionsForType() {
|
|
// FIXME: This is a bit of a hack; the AST doesn't directly encode
|
|
// substitutions for the conformance of a generic type to a
|
|
// protocol, so we have to dig them out.
|
|
Type ty = ConcreteType;
|
|
while (ty) {
|
|
if (auto nomTy = ty->getAs<NominalType>())
|
|
ty = nomTy->getParent();
|
|
else
|
|
break;
|
|
}
|
|
if (ty) {
|
|
if (auto boundTy = ty->getAs<BoundGenericType>()) {
|
|
ConcreteGenerics = boundTy->getDecl()->getGenericParams();
|
|
Substitutions = boundTy->getSubstitutions(/*FIXME:*/nullptr, nullptr);
|
|
} else {
|
|
assert(!ty || !ty->isSpecialized());
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
WitnessTableBuilder(IRGenModule &IGM,
|
|
SmallVectorImpl<llvm::Constant*> &table,
|
|
SILWitnessTable *SILWT)
|
|
: IGM(IGM), Table(table),
|
|
ConcreteType(SILWT->getConformance()->getType()->getCanonicalType()),
|
|
ConcreteTI(
|
|
IGM.getTypeInfoForUnlowered(SILWT->getConformance()->getType())),
|
|
Conformance(*SILWT->getConformance()),
|
|
SILEntries(SILWT->getEntries())
|
|
#ifndef NDEBUG
|
|
, PI(IGM.getProtocolInfo(SILWT->getConformance()->getProtocol()))
|
|
#endif
|
|
{
|
|
computeSubstitutionsForType();
|
|
}
|
|
|
|
/// A base protocol is witnessed by a pointer to the conformance
|
|
/// of this type to that protocol.
|
|
void addOutOfLineBaseProtocol(ProtocolDecl *baseProto) {
|
|
#ifndef NDEBUG
|
|
auto &entry = SILEntries.front();
|
|
assert(entry.getKind() == SILWitnessTable::BaseProtocol
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getBaseProtocolWitness().Requirement == baseProto
|
|
&& "sil witness table does not match protocol");
|
|
auto piEntry = PI.getWitnessEntry(baseProto);
|
|
assert(piEntry.getOutOfLineBaseIndex().getValue() == Table.size()
|
|
&& "offset doesn't match ProtocolInfo layout");
|
|
#endif
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// TODO: Use the witness entry instead of falling through here.
|
|
|
|
// Look for a protocol type info.
|
|
const ProtocolInfo &basePI = IGM.getProtocolInfo(baseProto);
|
|
const ProtocolConformance *astConf
|
|
= Conformance.getInheritedConformance(baseProto);
|
|
const ConformanceInfo &conf =
|
|
basePI.getConformance(IGM, ConcreteType, ConcreteTI,
|
|
baseProto, *astConf);
|
|
|
|
llvm::Constant *baseWitness = conf.tryGetConstantTable(IGM);
|
|
assert(baseWitness && "couldn't get a constant table!");
|
|
Table.push_back(asOpaquePtr(IGM, baseWitness));
|
|
}
|
|
|
|
void addMethodFromSILWitnessTable(AbstractFunctionDecl *iface) {
|
|
auto &entry = SILEntries.front();
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// Handle missing optional requirements.
|
|
if (entry.getKind() == SILWitnessTable::MissingOptional) {
|
|
Table.push_back(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
assert(entry.getKind() == SILWitnessTable::Method
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getMethodWitness().Requirement.getDecl() == iface
|
|
&& "sil witness table does not match protocol");
|
|
auto piEntry = PI.getWitnessEntry(iface);
|
|
assert(piEntry.getFunctionIndex().getValue() == Table.size()
|
|
&& "offset doesn't match ProtocolInfo layout");
|
|
#endif
|
|
|
|
SILFunction *Func = entry.getMethodWitness().Witness;
|
|
llvm::Constant *witness = nullptr;
|
|
if (Func) {
|
|
witness = IGM.getAddrOfSILFunction(Func, NotForDefinition);
|
|
witness = llvm::ConstantExpr::getBitCast(witness, IGM.Int8PtrTy);
|
|
} else {
|
|
// The method is removed by dead method elimination.
|
|
// It should be never called. We add a pointer to an error function.
|
|
witness = llvm::ConstantExpr::getBitCast(IGM.getDeadMethodErrorFn(),
|
|
IGM.Int8PtrTy);
|
|
}
|
|
Table.push_back(witness);
|
|
return;
|
|
}
|
|
|
|
void addMethod(FuncDecl *iface) {
|
|
return addMethodFromSILWitnessTable(iface);
|
|
}
|
|
|
|
void addConstructor(ConstructorDecl *iface) {
|
|
return addMethodFromSILWitnessTable(iface);
|
|
}
|
|
|
|
void addAssociatedType(AssociatedTypeDecl *ty,
|
|
ArrayRef<ProtocolDecl *> protos) {
|
|
#ifndef NDEBUG
|
|
auto &entry = SILEntries.front();
|
|
assert(entry.getKind() == SILWitnessTable::AssociatedType
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeWitness().Requirement == ty
|
|
&& "sil witness table does not match protocol");
|
|
auto piEntry = PI.getWitnessEntry(ty);
|
|
assert(piEntry.getAssociatedTypeIndex().getValue() == Table.size()
|
|
&& "offset doesn't match ProtocolInfo layout");
|
|
#endif
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// FIXME: Use info from SILWitnessTable instead of falling through.
|
|
|
|
// Determine whether the associated type has static metadata. If it
|
|
// doesn't, then this witness table is a template that requires runtime
|
|
// instantiation.
|
|
|
|
// FIXME: Add static type metadata.
|
|
Table.push_back(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
|
|
// FIXME: Add static witness tables for type conformances.
|
|
for (auto protocol : protos) {
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
|
|
auto &entry = SILEntries.front();
|
|
(void)entry;
|
|
assert(entry.getKind() == SILWitnessTable::AssociatedTypeProtocol
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeProtocolWitness().Requirement == ty
|
|
&& "sil witness table does not match protocol");
|
|
assert(entry.getAssociatedTypeProtocolWitness().Protocol == protocol
|
|
&& "sil witness table does not match protocol");
|
|
|
|
SILEntries = SILEntries.slice(1);
|
|
|
|
// FIXME: Use info from SILWitnessTable instead of falling through.
|
|
// FIXME: Add static witness table reference.
|
|
Table.push_back(llvm::ConstantPointerNull::get(IGM.Int8PtrTy));
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Collect the value witnesses for a particular type.
|
|
static void addValueWitnesses(IRGenModule &IGM, FixedPacking packing,
|
|
CanType abstractType,
|
|
SILType concreteType, const TypeInfo &concreteTI,
|
|
SmallVectorImpl<llvm::Constant*> &table) {
|
|
for (unsigned i = 0; i != NumRequiredValueWitnesses; ++i) {
|
|
table.push_back(getValueWitness(IGM, ValueWitness(i),
|
|
packing, abstractType, concreteType,
|
|
concreteTI));
|
|
}
|
|
if (concreteType.getEnumOrBoundGenericEnum() ||
|
|
concreteTI.mayHaveExtraInhabitants(IGM)) {
|
|
for (auto i = unsigned(ValueWitness::First_ExtraInhabitantValueWitness);
|
|
i <= unsigned(ValueWitness::Last_ExtraInhabitantValueWitness);
|
|
++i) {
|
|
table.push_back(getValueWitness(IGM, ValueWitness(i), packing,
|
|
abstractType, concreteType, concreteTI));
|
|
}
|
|
}
|
|
if (concreteType.getEnumOrBoundGenericEnum()) {
|
|
for (auto i = unsigned(ValueWitness::First_EnumValueWitness);
|
|
i <= unsigned(ValueWitness::Last_EnumValueWitness);
|
|
++i) {
|
|
table.push_back(getValueWitness(IGM, ValueWitness(i), packing,
|
|
abstractType, concreteType, concreteTI));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// True if a type has a generic-parameter-dependent value witness table.
|
|
/// Currently, this is true if the size and/or alignment of the type is
|
|
/// dependent on its generic parameters.
|
|
bool irgen::hasDependentValueWitnessTable(IRGenModule &IGM, CanType ty) {
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(ty))
|
|
ty = ugt->getDecl()->getDeclaredTypeInContext()->getCanonicalType();
|
|
|
|
return !IGM.getTypeInfoForUnlowered(ty).isFixedSize();
|
|
}
|
|
|
|
static void addValueWitnessesForAbstractType(IRGenModule &IGM,
|
|
CanType abstractType,
|
|
SmallVectorImpl<llvm::Constant*> &witnesses) {
|
|
// Instantiate unbound generic types on their context archetypes.
|
|
CanType concreteFormalType = abstractType;
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(abstractType)) {
|
|
concreteFormalType = ugt->getDecl()->getDeclaredTypeInContext()->getCanonicalType();
|
|
}
|
|
|
|
auto concreteLoweredType = IGM.SILMod->Types.getLoweredType(concreteFormalType);
|
|
auto &concreteTI = IGM.getTypeInfo(concreteLoweredType);
|
|
FixedPacking packing = concreteTI.getFixedPacking(IGM);
|
|
|
|
addValueWitnesses(IGM, packing, abstractType,
|
|
concreteLoweredType, concreteTI, witnesses);
|
|
}
|
|
|
|
/// Emit a value-witness table for the given type, which is assumed to
|
|
/// be non-dependent.
|
|
llvm::Constant *irgen::emitValueWitnessTable(IRGenModule &IGM,
|
|
CanType abstractType) {
|
|
// We shouldn't emit global value witness tables for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting VWT for generic instance");
|
|
|
|
// We shouldn't emit global value witness tables for non-fixed-layout types.
|
|
assert(!hasDependentValueWitnessTable(IGM, abstractType) &&
|
|
"emitting global VWT for dynamic-layout type");
|
|
|
|
SmallVector<llvm::Constant*, MaxNumValueWitnesses> witnesses;
|
|
addValueWitnessesForAbstractType(IGM, abstractType, witnesses);
|
|
|
|
auto tableTy = llvm::ArrayType::get(IGM.Int8PtrTy, witnesses.size());
|
|
auto table = llvm::ConstantArray::get(tableTy, witnesses);
|
|
|
|
auto addr = IGM.getAddrOfValueWitnessTable(abstractType, table->getType());
|
|
auto global = cast<llvm::GlobalVariable>(addr);
|
|
global->setConstant(true);
|
|
global->setInitializer(table);
|
|
|
|
return llvm::ConstantExpr::getBitCast(global, IGM.WitnessTablePtrTy);
|
|
}
|
|
|
|
llvm::Constant *IRGenModule::emitFixedTypeLayout(CanType t,
|
|
const FixedTypeInfo &ti) {
|
|
auto silTy = SILType::getPrimitiveAddressType(t);
|
|
// Collect the interesting information that gets encoded in a type layout
|
|
// record, to see if there's one we can reuse.
|
|
unsigned size = ti.getFixedSize().getValue();
|
|
unsigned align = ti.getFixedAlignment().getValue();
|
|
|
|
bool pod = ti.isPOD(ResilienceScope::Component);
|
|
bool bt = ti.isBitwiseTakable(ResilienceScope::Component);
|
|
unsigned numExtraInhabitants = ti.getFixedExtraInhabitantCount(*this);
|
|
|
|
// Try to use common type layouts exported by the runtime.
|
|
llvm::Constant *commonValueWitnessTable = nullptr;
|
|
if (pod && bt && numExtraInhabitants == 0) {
|
|
if (size == 0)
|
|
commonValueWitnessTable =
|
|
getAddrOfValueWitnessTable(Context.TheEmptyTupleType);
|
|
if ( (size == 1 && align == 1)
|
|
|| (size == 2 && align == 2)
|
|
|| (size == 4 && align == 4)
|
|
|| (size == 8 && align == 8)
|
|
|| (size == 16 && align == 16)
|
|
|| (size == 32 && align == 32))
|
|
commonValueWitnessTable =
|
|
getAddrOfValueWitnessTable(BuiltinIntegerType::get(size * 8, Context)
|
|
->getCanonicalType());
|
|
}
|
|
|
|
if (commonValueWitnessTable) {
|
|
auto index = llvm::ConstantInt::get(Int32Ty,
|
|
(unsigned)ValueWitness::First_TypeLayoutWitness);
|
|
return llvm::ConstantExpr::getGetElementPtr(Int8PtrTy,
|
|
commonValueWitnessTable,
|
|
index);
|
|
}
|
|
|
|
// Otherwise, see if a layout has been emitted with these characteristics
|
|
// already.
|
|
FixedLayoutKey key{size, numExtraInhabitants, align, pod, bt};
|
|
|
|
auto found = PrivateFixedLayouts.find(key);
|
|
if (found != PrivateFixedLayouts.end())
|
|
return found->second;
|
|
|
|
// Emit the layout values.
|
|
SmallVector<llvm::Constant *, MaxNumTypeLayoutWitnesses> witnesses;
|
|
FixedPacking packing = ti.getFixedPacking(*this);
|
|
for (auto witness = ValueWitness::First_TypeLayoutWitness;
|
|
witness <= ValueWitness::Last_RequiredTypeLayoutWitness;
|
|
witness = ValueWitness(unsigned(witness) + 1)) {
|
|
witnesses.push_back(getValueWitness(*this, witness,
|
|
packing, t, silTy, ti));
|
|
}
|
|
|
|
if (ti.mayHaveExtraInhabitants(*this))
|
|
for (auto witness = ValueWitness::First_ExtraInhabitantValueWitness;
|
|
witness <= ValueWitness::Last_TypeLayoutWitness;
|
|
witness = ValueWitness(unsigned(witness) + 1))
|
|
witnesses.push_back(getValueWitness(*this, witness,
|
|
packing, t, silTy, ti));
|
|
|
|
auto layoutTy = llvm::ArrayType::get(Int8PtrTy, witnesses.size());
|
|
auto layoutVal = llvm::ConstantArray::get(layoutTy, witnesses);
|
|
|
|
llvm::Constant *layoutVar
|
|
= new llvm::GlobalVariable(Module, layoutTy, /*constant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage, layoutVal,
|
|
"type_layout_" + llvm::Twine(size)
|
|
+ "_" + llvm::Twine(align)
|
|
+ "_" + llvm::Twine::utohexstr(numExtraInhabitants)
|
|
+ (pod ? "_pod" :
|
|
bt ? "_bt" : ""));
|
|
|
|
auto zero = llvm::ConstantInt::get(Int32Ty, 0);
|
|
llvm::Constant *indices[] = {zero, zero};
|
|
layoutVar = llvm::ConstantExpr::getGetElementPtr(layoutTy, layoutVar,
|
|
indices);
|
|
|
|
PrivateFixedLayouts.insert({key, layoutVar});
|
|
return layoutVar;
|
|
}
|
|
|
|
/// Emit the elements of a dependent value witness table template into a
|
|
/// vector.
|
|
void irgen::emitDependentValueWitnessTablePattern(IRGenModule &IGM,
|
|
CanType abstractType,
|
|
SmallVectorImpl<llvm::Constant*> &fields) {
|
|
// We shouldn't emit global value witness tables for generic type instances.
|
|
assert(!isa<BoundGenericType>(abstractType) &&
|
|
"emitting VWT for generic instance");
|
|
|
|
// We shouldn't emit global value witness tables for fixed-layout types.
|
|
assert(hasDependentValueWitnessTable(IGM, abstractType) &&
|
|
"emitting VWT pattern for fixed-layout type");
|
|
|
|
addValueWitnessesForAbstractType(IGM, abstractType, fields);
|
|
}
|
|
|
|
/// Do a memoized witness-table layout for a protocol.
|
|
const ProtocolInfo &IRGenModule::getProtocolInfo(ProtocolDecl *protocol) {
|
|
return Types.getProtocolInfo(protocol);
|
|
}
|
|
|
|
/// Do a memoized witness-table layout for a protocol.
|
|
const ProtocolInfo &TypeConverter::getProtocolInfo(ProtocolDecl *protocol) {
|
|
// Check whether we've already translated this protocol.
|
|
auto it = Protocols.find(protocol);
|
|
if (it != Protocols.end()) return *it->second;
|
|
|
|
// If not, lay out the protocol's witness table, if it needs one.
|
|
WitnessTableLayout layout;
|
|
if (Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
layout.visitProtocolDecl(protocol);
|
|
|
|
// Create a ProtocolInfo object from the layout.
|
|
ProtocolInfo *info = ProtocolInfo::create(layout.getNumWitnesses(),
|
|
layout.getEntries());
|
|
info->NextConverted = FirstProtocol;
|
|
FirstProtocol = info;
|
|
|
|
// Memoize.
|
|
Protocols.insert(std::make_pair(protocol, info));
|
|
|
|
// Done.
|
|
return *info;
|
|
}
|
|
|
|
/// Allocate a new ProtocolInfo.
|
|
ProtocolInfo *ProtocolInfo::create(unsigned numWitnesses,
|
|
ArrayRef<WitnessTableEntry> table) {
|
|
unsigned numEntries = table.size();
|
|
size_t bufferSize =
|
|
sizeof(ProtocolInfo) + numEntries * sizeof(WitnessTableEntry);
|
|
void *buffer = ::operator new(bufferSize);
|
|
return new(buffer) ProtocolInfo(numWitnesses, table);
|
|
}
|
|
|
|
ProtocolInfo::~ProtocolInfo() {
|
|
for (auto &conf : Conformances) {
|
|
delete conf.second;
|
|
}
|
|
}
|
|
|
|
/// Find the conformance information for a protocol.
|
|
const ConformanceInfo &
|
|
ProtocolInfo::getConformance(IRGenModule &IGM, CanType concreteType,
|
|
const TypeInfo &concreteTI,
|
|
ProtocolDecl *protocol,
|
|
const ProtocolConformance &conformance) const {
|
|
// Check whether we've already cached this.
|
|
auto it = Conformances.find(&conformance);
|
|
if (it != Conformances.end()) return *it->second;
|
|
|
|
// Drill down to the root normal conformance.
|
|
auto normalConformance = conformance.getRootNormalConformance();
|
|
|
|
// Emit a direct-referencing conformance.
|
|
// FIXME: For some conformances we need to do lazy initialization or runtime
|
|
// instantiation.
|
|
ConformanceInfo *info = new DirectConformanceInfo(normalConformance);
|
|
auto res = Conformances.insert(std::make_pair(&conformance, info));
|
|
return *res.first->second;
|
|
}
|
|
|
|
void IRGenModule::emitSILWitnessTable(SILWitnessTable *wt) {
|
|
// Don't emit a witness table if it is a declaration.
|
|
if (wt->isDeclaration())
|
|
return;
|
|
// Don't emit a witness table that is available externally if we are emitting
|
|
// code for the JIT. We do not do any optimization for the JIT and it has
|
|
// problems with external symbols that get merged with non-external symbols.
|
|
if (Opts.UseJIT && isAvailableExternally(wt->getLinkage()))
|
|
return;
|
|
|
|
// Build the witnesses.
|
|
SmallVector<llvm::Constant*, 32> witnesses;
|
|
WitnessTableBuilder(*this, witnesses, wt)
|
|
.visitProtocolDecl(wt->getConformance()->getProtocol());
|
|
|
|
assert(getProtocolInfo(wt->getConformance()->getProtocol())
|
|
.getNumWitnesses() == witnesses.size()
|
|
&& "witness table size doesn't match ProtocolInfo");
|
|
|
|
// Produce the initializer value.
|
|
auto tableTy = llvm::ArrayType::get(FunctionPtrTy, witnesses.size());
|
|
auto initializer = llvm::ConstantArray::get(tableTy, witnesses);
|
|
|
|
auto global = cast<llvm::GlobalVariable>(
|
|
getAddrOfWitnessTable(wt->getConformance(), tableTy));
|
|
global->setConstant(true);
|
|
global->setInitializer(initializer);
|
|
global->setAlignment(getWitnessTableAlignment().getValue());
|
|
|
|
// Build the conformance record, if it lives in this TU.
|
|
if (isAvailableExternally(wt->getLinkage()))
|
|
return;
|
|
|
|
addProtocolConformanceRecord(wt->getConformance());
|
|
}
|
|
|
|
|
|
/// True if a function's signature in LLVM carries polymorphic parameters.
|
|
/// Generic functions and protocol witnesses carry polymorphic parameters.
|
|
bool irgen::hasPolymorphicParameters(CanSILFunctionType ty) {
|
|
switch (ty->getRepresentation()) {
|
|
case SILFunctionTypeRepresentation::CFunctionPointer:
|
|
case SILFunctionTypeRepresentation::Block:
|
|
// Should never be polymorphic.
|
|
assert(!ty->isPolymorphic() && "polymorphic C function?!");
|
|
return false;
|
|
|
|
case SILFunctionTypeRepresentation::Thick:
|
|
case SILFunctionTypeRepresentation::Thin:
|
|
case SILFunctionTypeRepresentation::Method:
|
|
case SILFunctionTypeRepresentation::ObjCMethod:
|
|
return ty->isPolymorphic();
|
|
|
|
case SILFunctionTypeRepresentation::WitnessMethod:
|
|
// Always carries polymorphic parameters for the Self type.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct Fulfillment {
|
|
Fulfillment() = default;
|
|
Fulfillment(unsigned sourceIndex, MetadataPath &&path)
|
|
: SourceIndex(sourceIndex), Path(std::move(path)) {}
|
|
|
|
/// The source index.
|
|
unsigned SourceIndex;
|
|
|
|
/// The path from the source metadata.
|
|
MetadataPath Path;
|
|
};
|
|
typedef std::pair<Type, ProtocolDecl*> FulfillmentKey;
|
|
|
|
/// A class for computing how to pass arguments to a polymorphic
|
|
/// function. The subclasses of this are the places which need to
|
|
/// be updated if the convention changes.
|
|
class PolymorphicConvention {
|
|
public:
|
|
enum class SourceKind {
|
|
/// The polymorphic arguments are derived from a source class
|
|
/// pointer.
|
|
ClassPointer,
|
|
|
|
/// The polymorphic arguments are derived from a type metadata
|
|
/// pointer.
|
|
Metadata,
|
|
|
|
/// The polymorphic arguments are passed from generic type
|
|
/// metadata for the origin type.
|
|
GenericLValueMetadata,
|
|
|
|
/// The polymorphic arguments are derived from a Self type binding
|
|
/// passed via the WitnessMethod convention.
|
|
WitnessSelf,
|
|
|
|
/// The polymorphic arguments are derived from a Self type binding
|
|
/// embedded in a thick WitnessMethod function value.
|
|
WitnessExtraData,
|
|
};
|
|
|
|
static bool requiresSourceIndex(SourceKind kind) {
|
|
return (kind == SourceKind::ClassPointer ||
|
|
kind == SourceKind::Metadata ||
|
|
kind == SourceKind::GenericLValueMetadata);
|
|
}
|
|
|
|
enum : unsigned { InvalidSourceIndex = ~0U };
|
|
|
|
class Source {
|
|
/// The kind of source this is.
|
|
SourceKind Kind;
|
|
|
|
/// The parameter index, for ClassPointer and Metadata sources.
|
|
unsigned Index;
|
|
|
|
public:
|
|
CanType Type;
|
|
|
|
Source(SourceKind kind, unsigned index, CanType type)
|
|
: Kind(kind), Index(index), Type(type) {
|
|
assert(index != InvalidSourceIndex || !requiresSourceIndex(kind));
|
|
}
|
|
|
|
SourceKind getKind() const { return Kind; }
|
|
unsigned getParamIndex() const {
|
|
assert(requiresSourceIndex(getKind()));
|
|
return Index;
|
|
}
|
|
};
|
|
|
|
protected:
|
|
ModuleDecl &M;
|
|
CanSILFunctionType FnType;
|
|
|
|
/// This is the canonical "mangling" signature of the function type, which
|
|
/// is minimized in a way such that getAllDependentTypes() excludes
|
|
/// types with equality constraints to concrete types.
|
|
CanGenericSignature Generics;
|
|
|
|
std::vector<Source> Sources;
|
|
|
|
llvm::DenseMap<FulfillmentKey, Fulfillment> Fulfillments;
|
|
|
|
auto getConformsTo(Type t) -> decltype(Generics->getConformsTo(t, M)) {
|
|
return Generics->getConformsTo(t, M);
|
|
}
|
|
|
|
public:
|
|
PolymorphicConvention(CanSILFunctionType fnType, Module &M)
|
|
: M(M), FnType(fnType) {
|
|
initGenerics();
|
|
|
|
auto params = fnType->getParameters();
|
|
unsigned selfIndex = ~0U;
|
|
|
|
auto rep = fnType->getRepresentation();
|
|
|
|
if (rep == SILFunctionTypeRepresentation::WitnessMethod) {
|
|
// Protocol witnesses always derive all polymorphic parameter
|
|
// information from the Self argument. We also *cannot* consider other
|
|
// arguments; doing so would potentially make the signature
|
|
// incompatible with other witnesses for the same method.
|
|
selfIndex = params.size() - 1;
|
|
Sources.emplace_back(SourceKind::WitnessSelf, InvalidSourceIndex,
|
|
CanType());
|
|
considerWitnessSelf(params[selfIndex], selfIndex);
|
|
} else if (rep == SILFunctionTypeRepresentation::ObjCMethod) {
|
|
// Objective-C methods also always derive all polymorphic parameter
|
|
// information from the Self argument.
|
|
selfIndex = params.size() - 1;
|
|
Sources.emplace_back(SourceKind::ClassPointer, selfIndex, CanType());
|
|
considerWitnessSelf(params[selfIndex], selfIndex);
|
|
} else {
|
|
// We don't need to pass anything extra as long as all of the
|
|
// archetypes (and their requirements) are producible from
|
|
// arguments.
|
|
|
|
// Consider 'self' first.
|
|
if (fnType->hasSelfParam()) {
|
|
selfIndex = params.size() - 1;
|
|
considerParameter(params[selfIndex], selfIndex, true);
|
|
}
|
|
|
|
// Now consider the rest of the parameters.
|
|
for (auto index : indices(params)) {
|
|
if (index != selfIndex)
|
|
considerParameter(params[index], index, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extract dependent type metadata for a value witness function of the given
|
|
/// type.
|
|
PolymorphicConvention(NominalTypeDecl *ntd, Module &M)
|
|
: M(M), FnType(getNotionalFunctionType(ntd))
|
|
{
|
|
initGenerics();
|
|
|
|
auto paramType = FnType->getParameters()[0].getType();
|
|
Sources.emplace_back(SourceKind::Metadata, 0, paramType);
|
|
|
|
considerBoundGenericType(cast<BoundGenericType>(paramType),
|
|
MetadataPath());
|
|
}
|
|
|
|
ArrayRef<Source> getSources() const { return Sources; }
|
|
|
|
GenericSignatureWitnessIterator getAllDependentTypes() const {
|
|
return Generics ? Generics->getAllDependentTypes()
|
|
: GenericSignatureWitnessIterator::emptyRange();
|
|
}
|
|
|
|
/// Given that we have metadata for a type, is it exactly of the
|
|
/// specified type, or might it be a subtype?
|
|
enum IsExact_t : bool { IsInexact = false, IsExact = true };
|
|
|
|
private:
|
|
void initGenerics() {
|
|
assert(hasPolymorphicParameters(FnType));
|
|
|
|
// The canonical mangling signature removes dependent types that are
|
|
// equal to concrete types, but isn't necessarily parallel with
|
|
// substitutions.
|
|
Generics = FnType->getGenericSignature();
|
|
}
|
|
|
|
static CanSILFunctionType getNotionalFunctionType(NominalTypeDecl *D) {
|
|
ASTContext &ctx = D->getASTContext();
|
|
SILFunctionType::ExtInfo extInfo(SILFunctionType::Representation::Method,
|
|
/*noreturn*/ false);
|
|
SILResultInfo result(TupleType::getEmpty(ctx),
|
|
ResultConvention::Unowned);
|
|
SILParameterInfo param(D->getDeclaredInterfaceType()->getCanonicalType(),
|
|
ParameterConvention::Direct_Owned);
|
|
|
|
CanGenericSignature sig = D->getGenericSignatureOfContext()
|
|
? D->getGenericSignatureOfContext()->getCanonicalSignature()
|
|
: nullptr;
|
|
|
|
return SILFunctionType::get(sig, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
param, result, None, ctx);
|
|
}
|
|
|
|
/// Is the given type interesting for fulfillments?
|
|
static bool isInterestingTypeForFulfillments(CanType type) {
|
|
return type->hasTypeParameter();
|
|
}
|
|
|
|
void considerNewTypeSource(SourceKind kind, unsigned paramIndex,
|
|
CanType type, IsExact_t isExact) {
|
|
if (!isInterestingTypeForFulfillments(type)) return;
|
|
|
|
// Remember how many fulfillments we currently have.
|
|
auto numFulfillments = Fulfillments.size();
|
|
|
|
// Prospectively add a source.
|
|
Sources.emplace_back(kind, paramIndex, type);
|
|
|
|
// Consider the source.
|
|
considerType(type, MetadataPath(), isExact);
|
|
|
|
// If we didn't add anything, remove the source.
|
|
if (Fulfillments.size() == numFulfillments)
|
|
Sources.pop_back();
|
|
}
|
|
|
|
/// Testify to generic parameters in the Self type.
|
|
void considerWitnessSelf(SILParameterInfo param, unsigned paramIndex) {
|
|
CanType selfTy = param.getType();
|
|
if (auto metaTy = dyn_cast<AnyMetatypeType>(selfTy))
|
|
selfTy = metaTy.getInstanceType();
|
|
Sources.back().Type = selfTy;
|
|
|
|
if (auto nomTy = dyn_cast<NominalType>(selfTy))
|
|
considerNominalType(nomTy, MetadataPath());
|
|
else if (auto bgTy = dyn_cast<BoundGenericType>(selfTy))
|
|
considerBoundGenericType(bgTy, MetadataPath());
|
|
else if (auto paramTy = dyn_cast<GenericTypeParamType>(selfTy))
|
|
considerWitnessParamType(paramTy);
|
|
else
|
|
llvm_unreachable("witness for non-nominal type?!");
|
|
}
|
|
|
|
void considerParameter(SILParameterInfo param, unsigned paramIndex,
|
|
bool isSelfParameter) {
|
|
auto type = param.getType();
|
|
switch (param.getConvention()) {
|
|
// Out-parameters don't give us a value we can use.
|
|
case ParameterConvention::Indirect_Out:
|
|
return;
|
|
|
|
// In-parameters do, but right now we don't bother, for no good
|
|
// reason. But if this is 'self', consider passing an extra
|
|
// metatype.
|
|
case ParameterConvention::Indirect_In:
|
|
case ParameterConvention::Indirect_In_Guaranteed:
|
|
case ParameterConvention::Indirect_Inout:
|
|
if (!isSelfParameter) return;
|
|
if (type->getNominalOrBoundGenericNominal()) {
|
|
considerNewTypeSource(SourceKind::GenericLValueMetadata,
|
|
paramIndex, type, IsExact);
|
|
}
|
|
return;
|
|
|
|
case ParameterConvention::Direct_Owned:
|
|
case ParameterConvention::Direct_Unowned:
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
case ParameterConvention::Direct_Deallocating:
|
|
// Classes are sources of metadata.
|
|
if (type->getClassOrBoundGenericClass()) {
|
|
considerNewTypeSource(SourceKind::ClassPointer, paramIndex, type,
|
|
IsInexact);
|
|
return;
|
|
}
|
|
|
|
// Thick metatypes are sources of metadata.
|
|
if (auto metatypeTy = dyn_cast<MetatypeType>(type)) {
|
|
if (metatypeTy->getRepresentation() != MetatypeRepresentation::Thick)
|
|
return;
|
|
|
|
CanType objTy = metatypeTy.getInstanceType();
|
|
considerNewTypeSource(SourceKind::Metadata, paramIndex, objTy,
|
|
IsInexact);
|
|
return;
|
|
}
|
|
|
|
return;
|
|
}
|
|
llvm_unreachable("bad parameter convention");
|
|
}
|
|
|
|
/// Given that we have a source for metadata of the given type, check
|
|
/// to see if it fulfills anything.
|
|
///
|
|
/// \param isExact - true if the metadata is known to be exactly the
|
|
/// metadata for the given type, false if it might be a subtype
|
|
void considerType(CanType type, MetadataPath &&path, IsExact_t isExact) {
|
|
|
|
// Type parameters. Inexact metadata are useless here.
|
|
if (isExact && type->isTypeParameter()) {
|
|
return considerTypeParameter(type, std::move(path));
|
|
}
|
|
|
|
// Inexact metadata will be a problem if we ever try to use this
|
|
// to remember that we already have the metadata for something.
|
|
if (auto nomTy = dyn_cast<NominalType>(type)) {
|
|
return considerNominalType(nomTy, std::move(path));
|
|
}
|
|
if (auto boundTy = dyn_cast<BoundGenericType>(type)) {
|
|
return considerBoundGenericType(boundTy, std::move(path));
|
|
}
|
|
|
|
// TODO: tuples
|
|
// TODO: functions
|
|
// TODO: metatypes
|
|
}
|
|
|
|
void considerParentType(CanType parent, MetadataPath &&path) {
|
|
// We might not have a parent type.
|
|
if (!parent) return;
|
|
|
|
// If we do, it has to be nominal one way or another.
|
|
path.addNominalParentComponent();
|
|
considerType(parent, std::move(path), IsExact);
|
|
}
|
|
|
|
void considerNominalType(CanNominalType type, MetadataPath &&path) {
|
|
// Nominal types add no generic arguments themselves, but they
|
|
// may have the arguments of their parents.
|
|
considerParentType(type.getParent(), std::move(path));
|
|
}
|
|
|
|
void considerBoundGenericType(CanBoundGenericType type,
|
|
MetadataPath &&path) {
|
|
auto params = type->getDecl()->getGenericParams()->getAllArchetypes();
|
|
auto substitutions = type->getSubstitutions(&M, nullptr);
|
|
assert(params.size() >= substitutions.size() &&
|
|
"generic decl archetypes should parallel generic type subs");
|
|
|
|
for (unsigned i = 0, e = substitutions.size(); i != e; ++i) {
|
|
auto sub = substitutions[i];
|
|
CanType arg = sub.getReplacement()->getCanonicalType();
|
|
|
|
if (!isInterestingTypeForFulfillments(arg))
|
|
continue;
|
|
|
|
// If the argument is a type parameter, fulfill conformances for it.
|
|
if (arg->isTypeParameter()) {
|
|
considerTypeArgConformances(arg, params[i], path, i);
|
|
}
|
|
|
|
// Refine the path.
|
|
MetadataPath argPath = path;
|
|
argPath.addNominalTypeArgumentComponent(i);
|
|
considerType(arg, std::move(argPath), IsExact);
|
|
}
|
|
|
|
// Also match against the parent. The polymorphic type
|
|
// will start with any arguments from the parent.
|
|
considerParentType(CanType(type->getParent()), std::move(path));
|
|
}
|
|
|
|
void considerTypeArgConformances(CanType arg, ArchetypeType *param,
|
|
const MetadataPath &path,
|
|
unsigned argIndex) {
|
|
// Our sources are the protocol conformances that are recorded in
|
|
// the generic metadata.
|
|
auto storedConformances = param->getConformsTo();
|
|
if (storedConformances.empty()) return;
|
|
|
|
// Our targets are the conformances required for the type argument.
|
|
auto requiredConformances = getConformsTo(arg);
|
|
if (requiredConformances.empty()) return;
|
|
|
|
for (auto target : requiredConformances) {
|
|
// Ignore trivial protocols.
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(target))
|
|
continue;
|
|
|
|
// Check each of the stored conformances.
|
|
for (size_t confIndex : indices(storedConformances)) {
|
|
// TODO: maybe this should consider indirect conformance.
|
|
// But that should be part of the metadata path.
|
|
if (target == storedConformances[confIndex]) {
|
|
MetadataPath confPath = path;
|
|
confPath.addNominalTypeArgumentConformanceComponent(argIndex,
|
|
confIndex);
|
|
addFulfillment(arg, target, std::move(confPath));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// We found a reference to the dependent arg type at the given path.
|
|
/// Add any fulfillments this gives us.
|
|
void considerTypeParameter(CanType arg, MetadataPath &&path) {
|
|
addFulfillment(arg, nullptr, std::move(path));
|
|
}
|
|
|
|
/// We're binding an archetype for a protocol witness.
|
|
void considerWitnessParamType(CanGenericTypeParamType arg) {
|
|
assert(arg->getDepth() == 0 && arg->getIndex() == 0);
|
|
|
|
// First of all, the archetype or concrete type fulfills its own
|
|
// requirements.
|
|
addSelfFulfillment(arg, MetadataPath());
|
|
|
|
// FIXME: We can't pass associated types of Self through the witness
|
|
// CC, so as a hack, fake up impossible fulfillments for the associated
|
|
// types. For now all conformances are concrete, so the associated types
|
|
// can be recovered by substitution on the implementation side. For
|
|
// default implementations, we will need to get associated types from
|
|
// witness tables anyway.
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Is this a dependent member?
|
|
auto depMemTy = dyn_cast<DependentMemberType>(CanType(depTy));
|
|
if (!depMemTy)
|
|
continue;
|
|
|
|
// Is it rooted in a generic parameter?
|
|
CanType rootTy;
|
|
do {
|
|
rootTy = depMemTy.getBase();
|
|
} while ((depMemTy = dyn_cast<DependentMemberType>(rootTy)));
|
|
|
|
auto rootParamTy = dyn_cast<GenericTypeParamType>(rootTy);
|
|
if (!rootParamTy)
|
|
continue;
|
|
|
|
// If so, suppress providing metadata for the type by making up a bogus
|
|
// fulfillment.
|
|
if (rootParamTy == arg) {
|
|
MetadataPath path;
|
|
path.addImpossibleComponent();
|
|
addSelfFulfillment(CanType(depTy), std::move(path));
|
|
}
|
|
}
|
|
}
|
|
|
|
void addSelfFulfillment(CanType arg, MetadataPath &&path) {
|
|
for (auto protocol : getConformsTo(arg)) {
|
|
addFulfillment(arg, protocol, MetadataPath(path));
|
|
}
|
|
addFulfillment(arg, nullptr, std::move(path));
|
|
}
|
|
|
|
/// Testify that there's a fulfillment at the given path.
|
|
void addFulfillment(CanType arg, ProtocolDecl *proto,
|
|
MetadataPath &&path) {
|
|
assert(!Sources.empty() && "adding fulfillment without source?");
|
|
auto sourceIndex = Sources.size() - 1;
|
|
|
|
// Only add a fulfillment if we don't have any previous
|
|
// fulfillment for that value or if it 's cheaper than the existing
|
|
// fulfillment.
|
|
assert(arg->isTypeParameter() && "fulfilling non-dependent type?!");
|
|
auto key = FulfillmentKey(arg, proto);
|
|
|
|
auto it = Fulfillments.find(key);
|
|
if (it != Fulfillments.end()) {
|
|
if (path.cost() < it->second.Path.cost()) {
|
|
it->second.SourceIndex = sourceIndex;
|
|
it->second.Path = std::move(path);
|
|
}
|
|
} else {
|
|
Fulfillments.insert(std::make_pair(key,
|
|
Fulfillment(sourceIndex, std::move(path))));
|
|
}
|
|
}
|
|
};
|
|
|
|
/// A class for binding type parameters of a generic function.
|
|
class EmitPolymorphicParameters : public PolymorphicConvention {
|
|
IRGenFunction &IGF;
|
|
GenericParamList *ContextParams;
|
|
|
|
struct SourceValue {
|
|
llvm::Value *Value = nullptr;
|
|
MetadataPath::Map<llvm::Value*> Cache;
|
|
};
|
|
|
|
std::vector<SourceValue> SourceValues;
|
|
|
|
public:
|
|
EmitPolymorphicParameters(IRGenFunction &IGF,
|
|
SILFunction &Fn)
|
|
: PolymorphicConvention(Fn.getLoweredFunctionType(),
|
|
*IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF), ContextParams(Fn.getContextGenericParams()) {}
|
|
|
|
void emit(Explosion &in, WitnessMetadata *witnessMetadata,
|
|
const GetParameterFn &getParameter);
|
|
|
|
/// Emit polymorphic parameters for a generic value witness.
|
|
EmitPolymorphicParameters(IRGenFunction &IGF, NominalTypeDecl *ntd)
|
|
: PolymorphicConvention(ntd, *IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF), ContextParams(ntd->getGenericParams()) {}
|
|
|
|
void emitForGenericValueWitness(llvm::Value *selfMeta);
|
|
|
|
private:
|
|
// Emit metadata bindings after the source, if any, has been bound.
|
|
void emitWithSourcesBound(Explosion &in);
|
|
|
|
CanType getArgTypeInContext(unsigned paramIndex) const {
|
|
return ArchetypeBuilder::mapTypeIntoContext(
|
|
IGF.IGM.SILMod->getSwiftModule(), ContextParams,
|
|
FnType->getParameters()[paramIndex].getType())
|
|
->getCanonicalType();
|
|
}
|
|
|
|
/// Emit the source value for parameters.
|
|
llvm::Value *emitSourceForParameters(const Source &source,
|
|
Explosion &in,
|
|
WitnessMetadata *witnessMetadata,
|
|
const GetParameterFn &getParameter) {
|
|
switch (source.getKind()) {
|
|
case SourceKind::Metadata:
|
|
return getParameter(source.getParamIndex());
|
|
|
|
case SourceKind::ClassPointer: {
|
|
unsigned paramIndex = source.getParamIndex();
|
|
llvm::Value *instanceRef = getParameter(paramIndex);
|
|
SILType instanceType =
|
|
SILType::getPrimitiveObjectType(getArgTypeInContext(paramIndex));
|
|
return emitDynamicTypeOfHeapObject(IGF, instanceRef, instanceType);
|
|
}
|
|
|
|
case SourceKind::GenericLValueMetadata: {
|
|
llvm::Value *metatype = in.claimNext();
|
|
metatype->setName("Self");
|
|
|
|
// Mark this as the cached metatype for the l-value's object type.
|
|
CanType argTy = getArgTypeInContext(source.getParamIndex());
|
|
IGF.setUnscopedLocalTypeData(argTy, LocalTypeData::forMetatype(),
|
|
metatype);
|
|
return metatype;
|
|
}
|
|
|
|
case SourceKind::WitnessSelf: {
|
|
assert(witnessMetadata && "no metadata for witness method");
|
|
llvm::Value *metatype = witnessMetadata->SelfMetadata;
|
|
assert(metatype && "no Self metadata for witness method");
|
|
|
|
// Mark this as the cached metatype for Self.
|
|
CanType argTy = getArgTypeInContext(FnType->getParameters().size() - 1);
|
|
IGF.setUnscopedLocalTypeData(argTy,
|
|
LocalTypeData::forMetatype(), metatype);
|
|
return metatype;
|
|
}
|
|
|
|
case SourceKind::WitnessExtraData: {
|
|
// The 'Self' parameter is provided last.
|
|
// TODO: For default implementations, the witness table pointer for
|
|
// the 'Self : P' conformance must be provided last along with the
|
|
// metatype.
|
|
llvm::Value *metatype = in.takeLast();
|
|
metatype->setName("Self");
|
|
return metatype;
|
|
}
|
|
}
|
|
llvm_unreachable("bad source kind!");
|
|
}
|
|
|
|
/// Produce the metadata value for the given depth, using the
|
|
/// given cache.
|
|
llvm::Value *getMetadataForFulfillment(const Fulfillment &fulfillment) {
|
|
unsigned sourceIndex = fulfillment.SourceIndex;
|
|
auto &source = getSources()[sourceIndex];
|
|
auto &sourceValue = SourceValues[sourceIndex];
|
|
|
|
return fulfillment.Path.followFromTypeMetadata(IGF, source.Type,
|
|
sourceValue.Value,
|
|
&sourceValue.Cache);
|
|
}
|
|
};
|
|
};
|
|
|
|
/// Emit a polymorphic parameters clause, binding all the metadata necessary.
|
|
void EmitPolymorphicParameters::emit(Explosion &in,
|
|
WitnessMetadata *witnessMetadata,
|
|
const GetParameterFn &getParameter) {
|
|
SourceValues.reserve(getSources().size());
|
|
for (const Source &source : getSources()) {
|
|
llvm::Value *value =
|
|
emitSourceForParameters(source, in, witnessMetadata, getParameter);
|
|
SourceValues.emplace_back();
|
|
SourceValues.back().Value = value;
|
|
}
|
|
|
|
emitWithSourcesBound(in);
|
|
}
|
|
|
|
/// Emit a polymorphic parameters clause for a generic value witness, binding
|
|
/// all the metadata necessary.
|
|
void
|
|
EmitPolymorphicParameters::emitForGenericValueWitness(llvm::Value *selfMeta) {
|
|
// We get the source metadata verbatim from the value witness signature.
|
|
assert(getSources().size() == 1);
|
|
SourceValues.emplace_back();
|
|
SourceValues.back().Value = selfMeta;
|
|
|
|
// All our archetypes should be satisfiable from the source.
|
|
Explosion empty;
|
|
emitWithSourcesBound(empty);
|
|
}
|
|
|
|
void
|
|
EmitPolymorphicParameters::emitWithSourcesBound(Explosion &in) {
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Get the corresponding context archetype.
|
|
auto contextTy
|
|
= ArchetypeBuilder::mapTypeIntoContext(IGF.IGM.SILMod->getSwiftModule(),
|
|
ContextParams, depTy)
|
|
->getAs<ArchetypeType>();
|
|
assert(contextTy);
|
|
|
|
// Derive the appropriate metadata reference.
|
|
llvm::Value *metadata;
|
|
|
|
// If the reference is fulfilled by the source, go for it.
|
|
auto it = Fulfillments.find(FulfillmentKey(depTy, nullptr));
|
|
if (it != Fulfillments.end()) {
|
|
metadata = getMetadataForFulfillment(it->second);
|
|
|
|
// Otherwise, it's just next in line.
|
|
} else {
|
|
metadata = in.claimNext();
|
|
}
|
|
|
|
// Collect all the witness tables.
|
|
SmallVector<llvm::Value *, 8> wtables;
|
|
assert(contextTy->getConformsTo() == makeArrayRef(getConformsTo(depTy)));
|
|
for (auto protocol : contextTy->getConformsTo()) {
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
|
|
llvm::Value *wtable;
|
|
|
|
// If the protocol witness table is fulfilled by the source, go for it.
|
|
auto it = Fulfillments.find(FulfillmentKey(depTy, protocol));
|
|
if (it != Fulfillments.end()) {
|
|
wtable = getMetadataForFulfillment(it->second);
|
|
|
|
// Otherwise, it's just next in line.
|
|
} else {
|
|
wtable = in.claimNext();
|
|
}
|
|
wtables.push_back(wtable);
|
|
}
|
|
IGF.bindArchetype(contextTy, metadata, wtables);
|
|
}
|
|
}
|
|
|
|
llvm::Value *
|
|
MetadataPath::followFromTypeMetadata(IRGenFunction &IGF,
|
|
CanType sourceType,
|
|
llvm::Value *source,
|
|
Map<llvm::Value*> *cache) const {
|
|
return follow(IGF, sourceType, nullptr, source,
|
|
Path.begin(), Path.end(), cache);
|
|
}
|
|
|
|
llvm::Value *
|
|
MetadataPath::followFromWitnessTable(IRGenFunction &IGF,
|
|
ProtocolDecl *sourceDecl,
|
|
llvm::Value *source,
|
|
Map<llvm::Value*> *cache) const {
|
|
return follow(IGF, CanType(), sourceDecl, source,
|
|
Path.begin(), Path.end(), cache);
|
|
}
|
|
|
|
llvm::Value *MetadataPath::follow(IRGenFunction &IGF,
|
|
CanType sourceType, Decl *sourceDecl,
|
|
llvm::Value *source,
|
|
iterator begin, iterator end,
|
|
Map<llvm::Value*> *cache) {
|
|
assert(source && "no source metadata value!");
|
|
iterator i = begin;
|
|
|
|
// If there's a cache, look for the entry matching the longest prefix
|
|
// of this path.
|
|
if (cache) {
|
|
auto result = cache->findPrefix(begin, end);
|
|
if (result.first) {
|
|
source = *result.first;
|
|
|
|
// If that was the end, there's no more work to do; don't bother
|
|
// adjusting the source decl/type.
|
|
if (result.second == end)
|
|
return source;
|
|
|
|
// Advance sourceDecl/sourceType past the cached prefix.
|
|
while (i != result.second) {
|
|
Component component = *i++;
|
|
(void)followComponent(IGF, sourceType, sourceDecl,
|
|
/*source*/ nullptr, component);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Drill in on the actual source value.
|
|
while (i != end) {
|
|
auto component = *i++;
|
|
source = followComponent(IGF, sourceType, sourceDecl, source, component);
|
|
|
|
// Remember this in the cache at the next position.
|
|
if (cache) {
|
|
cache->insertNew(begin, i, source);
|
|
}
|
|
}
|
|
|
|
return source;
|
|
}
|
|
|
|
/// Drill down on a single stage of component.
|
|
///
|
|
/// sourceType and sourceDecl will be adjusted to refer to the new
|
|
/// component. Source can be null, in which case this will be the only
|
|
/// thing done.
|
|
llvm::Value *MetadataPath::followComponent(IRGenFunction &IGF,
|
|
CanType &sourceType,
|
|
Decl *&sourceDecl,
|
|
llvm::Value *source,
|
|
Component component) {
|
|
switch (component.getKind()) {
|
|
case Component::Kind::NominalTypeArgument: {
|
|
auto generic = cast<BoundGenericType>(sourceType);
|
|
auto index = component.getPrimaryIndex();
|
|
if (source) {
|
|
source = emitArgumentMetadataRef(IGF, generic->getDecl(), index, source);
|
|
}
|
|
|
|
auto subs = generic->getSubstitutions(IGF.IGM.SILMod->getSwiftModule(),
|
|
nullptr);
|
|
sourceType = subs[index].getReplacement()->getCanonicalType();
|
|
return source;
|
|
}
|
|
|
|
/// Generic type argument protocol conformance.
|
|
case Component::Kind::NominalTypeArgumentConformance: {
|
|
auto generic = cast<BoundGenericType>(sourceType);
|
|
auto argIndex = component.getPrimaryIndex();
|
|
auto confIndex = component.getSecondaryIndex();
|
|
|
|
ProtocolDecl *protocol =
|
|
generic->getDecl()->getGenericParams()->getAllArchetypes()[argIndex]
|
|
->getConformsTo()[confIndex];
|
|
|
|
if (source) {
|
|
source = emitArgumentWitnessTableRef(IGF, generic->getDecl(), argIndex,
|
|
protocol, source);
|
|
}
|
|
|
|
sourceType = CanType();
|
|
sourceDecl = protocol;
|
|
return source;
|
|
}
|
|
|
|
case Component::Kind::NominalParent: {
|
|
NominalTypeDecl *nominalDecl;
|
|
if (auto nominal = dyn_cast<NominalType>(sourceType)) {
|
|
nominalDecl = nominal->getDecl();
|
|
sourceType = nominal.getParent();
|
|
} else {
|
|
auto generic = cast<BoundGenericType>(sourceType);
|
|
nominalDecl = generic->getDecl();
|
|
sourceType = generic.getParent();
|
|
}
|
|
|
|
if (source) {
|
|
source = emitParentMetadataRef(IGF, nominalDecl, source);
|
|
}
|
|
return source;
|
|
}
|
|
|
|
case Component::Kind::Impossible:
|
|
llvm_unreachable("following an impossible path!");
|
|
|
|
}
|
|
llvm_unreachable("bad metata path component");
|
|
}
|
|
|
|
/// Collect any required metadata for a witness method from the end of
|
|
/// the given parameter list.
|
|
void irgen::collectTrailingWitnessMetadata(IRGenFunction &IGF,
|
|
SILFunction &fn,
|
|
Explosion ¶ms,
|
|
WitnessMetadata &witnessMetadata) {
|
|
assert(fn.getLoweredFunctionType()->getRepresentation()
|
|
== SILFunctionTypeRepresentation::WitnessMethod);
|
|
|
|
llvm::Value *metatype = params.takeLast();
|
|
assert(metatype->getType() == IGF.IGM.TypeMetadataPtrTy &&
|
|
"parameter signature mismatch: witness metadata didn't "
|
|
"end in metatype?");
|
|
metatype->setName("Self");
|
|
witnessMetadata.SelfMetadata = metatype;
|
|
}
|
|
|
|
/// Perform all the bindings necessary to emit the given declaration.
|
|
void irgen::emitPolymorphicParameters(IRGenFunction &IGF,
|
|
SILFunction &Fn,
|
|
Explosion &in,
|
|
WitnessMetadata *witnessMetadata,
|
|
const GetParameterFn &getParameter) {
|
|
EmitPolymorphicParameters(IGF, Fn).emit(in, witnessMetadata, getParameter);
|
|
}
|
|
|
|
/// Perform the metadata bindings necessary to emit a generic value witness.
|
|
void irgen::emitPolymorphicParametersForGenericValueWitness(IRGenFunction &IGF,
|
|
NominalTypeDecl *ntd,
|
|
llvm::Value *selfMeta) {
|
|
// Nothing to do if the type isn't generic.
|
|
if (!ntd->getGenericParamsOfContext())
|
|
return;
|
|
|
|
EmitPolymorphicParameters(IGF, ntd).emitForGenericValueWitness(selfMeta);
|
|
// Register the 'Self' argument as generic metadata for the type.
|
|
IGF.setUnscopedLocalTypeData(ntd->getDeclaredTypeInContext()->getCanonicalType(),
|
|
LocalTypeData::forMetatype(), selfMeta);
|
|
}
|
|
|
|
/// Get the next argument and use it as the 'self' type metadata.
|
|
static void getArgAsLocalSelfTypeMetadata(IRGenFunction &IGF,
|
|
llvm::Function::arg_iterator &it,
|
|
CanType abstractType) {
|
|
llvm::Value *arg = getArg(it, "Self");
|
|
assert(arg->getType() == IGF.IGM.TypeMetadataPtrTy &&
|
|
"Self argument is not a type?!");
|
|
if (auto ugt = dyn_cast<UnboundGenericType>(abstractType)) {
|
|
emitPolymorphicParametersForGenericValueWitness(IGF, ugt->getDecl(), arg);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A CRTP class for finding the archetypes we need to bind in order
|
|
/// to perform value operations on the given type.
|
|
struct FindArchetypesForValueOperations
|
|
: CanTypeVisitor<FindArchetypesForValueOperations>
|
|
{
|
|
NecessaryBindings &Bindings;
|
|
public:
|
|
FindArchetypesForValueOperations(NecessaryBindings &bindings)
|
|
: Bindings(bindings) {}
|
|
|
|
// We're collecting archetypes.
|
|
void visitArchetypeType(CanArchetypeType type) {
|
|
Bindings.addArchetype(type);
|
|
}
|
|
|
|
// We need to walk into tuples.
|
|
void visitTupleType(CanTupleType tuple) {
|
|
for (auto eltType : tuple.getElementTypes()) {
|
|
visit(eltType);
|
|
}
|
|
}
|
|
|
|
// Walk into on-stack block storage.
|
|
void visitSILBlockStorageType(CanSILBlockStorageType t) {
|
|
visit(t->getCaptureType());
|
|
}
|
|
|
|
// We do not need to walk into any of these types, because their
|
|
// value operations do not depend on the specifics of their
|
|
// sub-structure (or they have none).
|
|
void visitAnyFunctionType(CanAnyFunctionType fn) {}
|
|
void visitSILFunctionType(CanSILFunctionType fn) {}
|
|
void visitBuiltinType(CanBuiltinType type) {}
|
|
void visitAnyMetatypeType(CanAnyMetatypeType type) {}
|
|
void visitModuleType(CanModuleType type) {}
|
|
void visitDynamicSelfType(CanDynamicSelfType type) {}
|
|
void visitProtocolCompositionType(CanProtocolCompositionType type) {}
|
|
void visitReferenceStorageType(CanReferenceStorageType type) {}
|
|
void visitSILBoxType(CanSILBoxType t) {}
|
|
|
|
// L-values are impossible.
|
|
void visitLValueType(CanLValueType type) {
|
|
llvm_unreachable("cannot store l-value type directly");
|
|
}
|
|
void visitInOutType(CanInOutType type) {
|
|
llvm_unreachable("cannot store inout type directly");
|
|
}
|
|
|
|
// Bind archetypes from the parent of nominal types.
|
|
void visitNominalType(CanNominalType type) {
|
|
if (auto parent = CanType(type->getParent()))
|
|
visit(parent);
|
|
}
|
|
// Bind archetypes from bound generic types and their parents.
|
|
void visitBoundGenericType(CanBoundGenericType type) {
|
|
if (auto parent = CanType(type->getParent()))
|
|
visit(parent);
|
|
for (auto arg : type->getGenericArgs())
|
|
visit(CanType(arg));
|
|
}
|
|
|
|
// FIXME: Will need to bind the archetype that this eventually refers to.
|
|
void visitGenericTypeParamType(CanGenericTypeParamType type) { }
|
|
|
|
// FIXME: Will need to bind the archetype that this eventually refers to.
|
|
void visitDependentMemberType(CanDependentMemberType type) { }
|
|
};
|
|
}
|
|
|
|
NecessaryBindings
|
|
NecessaryBindings::forFunctionInvocations(IRGenModule &IGM,
|
|
CanSILFunctionType origType,
|
|
CanSILFunctionType substType,
|
|
ArrayRef<Substitution> subs) {
|
|
NecessaryBindings bindings;
|
|
// Collect bindings required by the polymorphic parameters to the function.
|
|
for (auto &sub : subs) {
|
|
sub.getReplacement().findIf([&](Type t) -> bool {
|
|
if (auto archetype = dyn_cast<ArchetypeType>(t->getCanonicalType())) {
|
|
bindings.addArchetype(archetype);
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
return bindings;
|
|
}
|
|
|
|
NecessaryBindings
|
|
NecessaryBindings::forValueOperations(IRGenModule &IGM, CanType type) {
|
|
NecessaryBindings bindings;
|
|
FindArchetypesForValueOperations(bindings).visit(type);
|
|
return bindings;
|
|
}
|
|
|
|
Size NecessaryBindings::getBufferSize(IRGenModule &IGM) const {
|
|
unsigned numPointers = 0;
|
|
|
|
// We need one pointer for each archetype and witness table.
|
|
for (auto type : Types) {
|
|
numPointers++;
|
|
for (auto proto : type->getConformsTo())
|
|
if (Lowering::TypeConverter::protocolRequiresWitnessTable(proto))
|
|
numPointers++;
|
|
}
|
|
|
|
return IGM.getPointerSize() * numPointers;
|
|
}
|
|
|
|
void NecessaryBindings::restore(IRGenFunction &IGF, Address buffer) const {
|
|
if (Types.empty()) return;
|
|
|
|
// Cast the buffer to %type**.
|
|
auto metatypePtrPtrTy = IGF.IGM.TypeMetadataPtrTy->getPointerTo();
|
|
buffer = IGF.Builder.CreateBitCast(buffer, metatypePtrPtrTy);
|
|
|
|
for (unsigned archetypeI = 0, e = Types.size(), metadataI = 0;
|
|
archetypeI != e; ++archetypeI) {
|
|
auto archetype = Types[archetypeI];
|
|
|
|
// GEP to the appropriate slot.
|
|
Address slot = buffer;
|
|
if (metadataI) slot = IGF.Builder.CreateConstArrayGEP(slot, metadataI,
|
|
IGF.IGM.getPointerSize());
|
|
++metadataI;
|
|
|
|
// Load the archetype's metatype.
|
|
llvm::Value *metatype = IGF.Builder.CreateLoad(slot);
|
|
|
|
// Load the witness tables for the archetype's protocol constraints.
|
|
SmallVector<llvm::Value*, 4> witnesses;
|
|
for (unsigned protocolI : indices(archetype->getConformsTo())) {
|
|
auto protocol = archetype->getConformsTo()[protocolI];
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
Address witnessSlot = IGF.Builder.CreateConstArrayGEP(buffer, metadataI,
|
|
IGF.IGM.getPointerSize());
|
|
witnessSlot = IGF.Builder.CreateBitCast(witnessSlot,
|
|
IGF.IGM.WitnessTablePtrTy->getPointerTo());
|
|
++metadataI;
|
|
llvm::Value *witness = IGF.Builder.CreateLoad(witnessSlot);
|
|
witnesses.push_back(witness);
|
|
}
|
|
|
|
IGF.bindArchetype(archetype, metatype, witnesses);
|
|
}
|
|
}
|
|
|
|
void NecessaryBindings::save(IRGenFunction &IGF, Address buffer) const {
|
|
if (Types.empty()) return;
|
|
|
|
// Cast the buffer to %type**.
|
|
auto metatypePtrPtrTy = IGF.IGM.TypeMetadataPtrTy->getPointerTo();
|
|
buffer = IGF.Builder.CreateBitCast(buffer, metatypePtrPtrTy);
|
|
|
|
for (unsigned typeI = 0, typeE = Types.size(),
|
|
metadataI = 0; typeI != typeE; ++typeI) {
|
|
auto archetype = Types[typeI];
|
|
|
|
// GEP to the appropriate slot.
|
|
Address slot = buffer;
|
|
if (metadataI) slot = IGF.Builder.CreateConstArrayGEP(slot, metadataI,
|
|
IGF.IGM.getPointerSize());
|
|
++metadataI;
|
|
|
|
// Find the metatype for the appropriate archetype and store it in
|
|
// the slot.
|
|
llvm::Value *metatype =
|
|
IGF.getLocalTypeData(CanType(archetype), LocalTypeData::forMetatype());
|
|
IGF.Builder.CreateStore(metatype, slot);
|
|
|
|
// Find the witness tables for the archetype's protocol constraints and
|
|
// store them in the slot.
|
|
for (unsigned protocolI : indices(archetype->getConformsTo())) {
|
|
auto protocol = archetype->getConformsTo()[protocolI];
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
Address witnessSlot = IGF.Builder.CreateConstArrayGEP(buffer, metadataI,
|
|
IGF.IGM.getPointerSize());
|
|
witnessSlot = IGF.Builder.CreateBitCast(witnessSlot,
|
|
IGF.IGM.WitnessTablePtrTy->getPointerTo());
|
|
++metadataI;
|
|
llvm::Value *witness =
|
|
IGF.getLocalTypeData(CanType(archetype),
|
|
LocalTypeData::forArchetypeProtocolWitness(protocolI));
|
|
IGF.Builder.CreateStore(witness, witnessSlot);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NecessaryBindings::addArchetype(CanArchetypeType type) {
|
|
if (Types.insert(type))
|
|
// Collect the associated archetypes.
|
|
for (auto nested : type->getNestedTypes())
|
|
if (auto assocArchetype = nested.second.getAsArchetype())
|
|
addArchetype(CanArchetypeType(assocArchetype));
|
|
}
|
|
|
|
llvm::Value *irgen::emitImpliedWitnessTableRef(IRGenFunction &IGF,
|
|
ArrayRef<ProtocolEntry> entries,
|
|
ProtocolDecl *target,
|
|
const GetWitnessTableFn &getWitnessTable) {
|
|
ProtocolPath path(IGF.IGM, entries, target);
|
|
auto wtable = getWitnessTable(path.getOriginIndex());
|
|
wtable = path.apply(IGF, wtable);
|
|
return wtable;
|
|
}
|
|
|
|
/// Emit a protocol witness table for a conformance.
|
|
llvm::Value *irgen::emitWitnessTableRef(IRGenFunction &IGF,
|
|
CanType srcType,
|
|
const TypeInfo &srcTI,
|
|
ProtocolDecl *proto,
|
|
const ProtocolInfo &protoI,
|
|
ProtocolConformance *conformance) {
|
|
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(proto)
|
|
&& "protocol does not have witness tables?!");
|
|
|
|
// If the source type is an archetype and we don't have concrete conformance
|
|
// info, the conformance must be via one of the protocol requirements of the
|
|
// archetype. Look at what's locally bound.
|
|
if (!conformance) {
|
|
auto archetype = cast<ArchetypeType>(srcType);
|
|
return emitWitnessTableRef(IGF, archetype, proto);
|
|
}
|
|
|
|
// All other source types should be concrete enough that we have conformance
|
|
// info for them.
|
|
auto &conformanceI = protoI.getConformance(IGF.IGM, srcType,
|
|
srcTI, proto, *conformance);
|
|
return conformanceI.getTable(IGF);
|
|
}
|
|
|
|
/// Emit the witness table references required for the given type
|
|
/// substitution.
|
|
void irgen::emitWitnessTableRefs(IRGenFunction &IGF,
|
|
const Substitution &sub,
|
|
SmallVectorImpl<llvm::Value*> &out) {
|
|
auto conformances = sub.getConformances();
|
|
|
|
// We don't need to do anything if we have no protocols to conform to.
|
|
auto archetypeProtos = sub.getArchetype()->getConformsTo();
|
|
assert(!conformances.size() || archetypeProtos.size() == conformances.size());
|
|
|
|
if (archetypeProtos.empty()) return;
|
|
|
|
// Look at the replacement type.
|
|
CanType replType = sub.getReplacement()->getCanonicalType();
|
|
auto &replTI = IGF.getTypeInfoForUnlowered(replType);
|
|
|
|
for (unsigned j = 0, je = archetypeProtos.size(); j != je; ++j) {
|
|
auto proto = archetypeProtos[j];
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(proto))
|
|
continue;
|
|
|
|
auto conformance = conformances.size() ? conformances[j] : nullptr;
|
|
auto wtable = emitWitnessTableRef(IGF, replType, replTI, proto,
|
|
IGF.IGM.getProtocolInfo(proto),
|
|
conformance);
|
|
|
|
out.push_back(wtable);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class EmitPolymorphicArguments : public PolymorphicConvention {
|
|
IRGenFunction &IGF;
|
|
public:
|
|
EmitPolymorphicArguments(IRGenFunction &IGF,
|
|
CanSILFunctionType polyFn)
|
|
: PolymorphicConvention(polyFn, *IGF.IGM.SILMod->getSwiftModule()),
|
|
IGF(IGF) {}
|
|
|
|
void emit(CanType substInputType, ArrayRef<Substitution> subs,
|
|
WitnessMetadata *witnessMetadata, Explosion &out);
|
|
|
|
private:
|
|
void emitEarlySources(CanType substInputType, Explosion &out) {
|
|
for (auto &source : getSources()) {
|
|
switch (source.getKind()) {
|
|
// Already accounted for in the parameters.
|
|
case SourceKind::ClassPointer:
|
|
case SourceKind::Metadata:
|
|
continue;
|
|
|
|
// Needs a special argument.
|
|
case SourceKind::GenericLValueMetadata: {
|
|
out.add(IGF.emitTypeMetadataRef(substInputType));
|
|
continue;
|
|
}
|
|
|
|
// Witness 'Self' argument(s) are added as a special case in
|
|
// EmitPolymorphicArguments::emit.
|
|
case SourceKind::WitnessSelf:
|
|
continue;
|
|
|
|
// The 'Self' argument(s) are added implicitly from ExtraData
|
|
// of the function value.
|
|
case SourceKind::WitnessExtraData:
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad source kind!");
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
void irgen::emitTrailingWitnessArguments(IRGenFunction &IGF,
|
|
WitnessMetadata &witnessMetadata,
|
|
Explosion &args) {
|
|
llvm::Value *self = witnessMetadata.SelfMetadata;
|
|
assert(self && "no Self value bound");
|
|
args.add(self);
|
|
}
|
|
|
|
/// Pass all the arguments necessary for the given function.
|
|
void irgen::emitPolymorphicArguments(IRGenFunction &IGF,
|
|
CanSILFunctionType origFnType,
|
|
CanSILFunctionType substFnType,
|
|
ArrayRef<Substitution> subs,
|
|
WitnessMetadata *witnessMetadata,
|
|
Explosion &out) {
|
|
// Grab the apparent 'self' type. If there isn't a 'self' type,
|
|
// we're not going to try to access this anyway.
|
|
CanType substInputType;
|
|
if (!substFnType->getParameters().empty()) {
|
|
auto selfParam = substFnType->getParameters().back();
|
|
substInputType = selfParam.getType();
|
|
// If the parameter is a direct metatype parameter, this is a static method
|
|
// of the instance type. We can assume this because:
|
|
// - metatypes cannot directly conform to protocols
|
|
// - even if they could, they would conform as a value type 'self' and thus
|
|
// be passed indirectly as an @in or @inout parameter.
|
|
if (auto meta = dyn_cast<MetatypeType>(substInputType)) {
|
|
if (!selfParam.isIndirect())
|
|
substInputType = meta.getInstanceType();
|
|
}
|
|
}
|
|
|
|
EmitPolymorphicArguments(IGF, origFnType).emit(substInputType, subs,
|
|
witnessMetadata, out);
|
|
}
|
|
|
|
void EmitPolymorphicArguments::emit(CanType substInputType,
|
|
ArrayRef<Substitution> subs,
|
|
WitnessMetadata *witnessMetadata,
|
|
Explosion &out) {
|
|
// Add all the early sources.
|
|
emitEarlySources(substInputType, out);
|
|
|
|
// For now, treat all archetypes independently.
|
|
// FIXME: Later, we'll want to emit only the minimal set of archetypes,
|
|
// because non-primary archetypes (which correspond to associated types)
|
|
// will have their witness tables embedded in the witness table corresponding
|
|
// to their parent.
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// The substitutions should be in the same order.
|
|
const Substitution &sub = subs.front();
|
|
subs = subs.slice(1);
|
|
|
|
CanType argType = sub.getReplacement()->getCanonicalType();
|
|
|
|
// If same-type constraints have eliminated the genericity of this
|
|
// parameter, it doesn't need an independent metadata parameter.
|
|
if (Generics->isConcreteType(depTy, M))
|
|
continue;
|
|
|
|
// Add the metadata reference unless it's fulfilled.
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, nullptr))) {
|
|
out.add(IGF.emitTypeMetadataRef(argType));
|
|
}
|
|
|
|
// Nothing else to do if there aren't any protocols to witness.
|
|
auto protocols = getConformsTo(depTy);
|
|
auto conformances = sub.getConformances();
|
|
assert(!conformances.size() || protocols.size() == conformances.size());
|
|
|
|
if (protocols.empty()) continue;
|
|
|
|
auto &argTI = IGF.getTypeInfoForUnlowered(argType);
|
|
|
|
// Add witness tables for each of the required protocols.
|
|
for (unsigned i = 0, e = protocols.size(); i != e; ++i) {
|
|
auto protocol = protocols[i];
|
|
|
|
// Skip this if the protocol doesn't require a witness table.
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
|
|
// Skip this if it's fulfilled by the source.
|
|
if (Fulfillments.count(FulfillmentKey(depTy, protocol)))
|
|
continue;
|
|
|
|
auto conformance = conformances.size() ? conformances[i] : nullptr;
|
|
auto wtable = emitWitnessTableRef(IGF,
|
|
argType, argTI,
|
|
protocol,
|
|
IGF.IGM.getProtocolInfo(protocol),
|
|
conformance);
|
|
out.add(wtable);
|
|
}
|
|
}
|
|
assert(subs.empty()
|
|
&& "did not use all substitutions?!");
|
|
|
|
// For a witness call, add the Self argument metadata arguments last.
|
|
for (auto &source : getSources()) {
|
|
switch (source.getKind()) {
|
|
case SourceKind::Metadata:
|
|
case SourceKind::ClassPointer:
|
|
// Already accounted for in the arguments.
|
|
continue;
|
|
|
|
case SourceKind::GenericLValueMetadata:
|
|
// Added in the early phase.
|
|
continue;
|
|
|
|
case SourceKind::WitnessSelf: {
|
|
assert(witnessMetadata && "no metadata structure for witness method");
|
|
auto self = IGF.emitTypeMetadataRef(substInputType);
|
|
witnessMetadata->SelfMetadata = self;
|
|
continue;
|
|
}
|
|
|
|
case SourceKind::WitnessExtraData:
|
|
// The 'Self' argument(s) are added implicitly from ExtraData of the
|
|
// function value.
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad source kind");
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A class for expanding a polymorphic signature.
|
|
class ExpandPolymorphicSignature : public PolymorphicConvention {
|
|
IRGenModule &IGM;
|
|
public:
|
|
ExpandPolymorphicSignature(IRGenModule &IGM, CanSILFunctionType fn)
|
|
: PolymorphicConvention(fn, *IGM.SILMod->getSwiftModule()), IGM(IGM) {}
|
|
|
|
void expand(SmallVectorImpl<llvm::Type*> &out) {
|
|
for (auto &source : getSources())
|
|
addEarlySource(source, out);
|
|
|
|
for (auto depTy : getAllDependentTypes()) {
|
|
// Only emit parameters for independent parameters that haven't been
|
|
// constrained to concrete types.
|
|
if (Generics->isConcreteType(depTy, M))
|
|
continue;
|
|
|
|
// Pass the type argument if not fulfilled.
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, nullptr))) {
|
|
out.push_back(IGM.TypeMetadataPtrTy);
|
|
}
|
|
|
|
// Pass each signature requirement that needs a witness table
|
|
// separately (unless fulfilled).
|
|
for (auto protocol : getConformsTo(depTy)) {
|
|
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(protocol))
|
|
continue;
|
|
|
|
if (!Fulfillments.count(FulfillmentKey(depTy, protocol))) {
|
|
out.push_back(IGM.WitnessTablePtrTy);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Add signature elements for the source metadata.
|
|
void addEarlySource(const Source &source,
|
|
SmallVectorImpl<llvm::Type*> &out) {
|
|
switch (source.getKind()) {
|
|
case SourceKind::ClassPointer: return; // already accounted for
|
|
case SourceKind::Metadata: return; // already accounted for
|
|
case SourceKind::GenericLValueMetadata:
|
|
return out.push_back(IGM.TypeMetadataPtrTy);
|
|
case SourceKind::WitnessSelf:
|
|
return; // handled as a special case in expand()
|
|
case SourceKind::WitnessExtraData:
|
|
return; // added implicitly as ExtraData
|
|
}
|
|
llvm_unreachable("bad source kind");
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Given a generic signature, add the argument types required in order to call it.
|
|
void irgen::expandPolymorphicSignature(IRGenModule &IGM,
|
|
CanSILFunctionType polyFn,
|
|
SmallVectorImpl<llvm::Type*> &out) {
|
|
ExpandPolymorphicSignature(IGM, polyFn).expand(out);
|
|
}
|
|
|
|
void irgen::expandTrailingWitnessSignature(IRGenModule &IGM,
|
|
CanSILFunctionType polyFn,
|
|
SmallVectorImpl<llvm::Type*> &out) {
|
|
assert(polyFn->getRepresentation()
|
|
== SILFunctionTypeRepresentation::WitnessMethod);
|
|
|
|
assert(getTrailingWitnessSignatureLength(IGM, polyFn) == 1);
|
|
|
|
// A witness method always provides Self.
|
|
out.push_back(IGM.TypeMetadataPtrTy);
|
|
|
|
// TODO: Should also provide the protocol witness table,
|
|
// for default implementations.
|
|
}
|
|
|
|
void
|
|
irgen::emitWitnessMethodValue(IRGenFunction &IGF,
|
|
CanType baseTy,
|
|
SILDeclRef member,
|
|
ProtocolConformance *conformance,
|
|
Explosion &out) {
|
|
auto fn = cast<AbstractFunctionDecl>(member.getDecl());
|
|
|
|
// The protocol we're calling on.
|
|
ProtocolDecl *fnProto = cast<ProtocolDecl>(fn->getDeclContext());
|
|
|
|
// Find the witness table.
|
|
// FIXME conformance for concrete type
|
|
auto &baseTI = IGF.getTypeInfoForUnlowered(baseTy);
|
|
auto &fnProtoInfo = IGF.IGM.getProtocolInfo(fnProto);
|
|
llvm::Value *wtable = emitWitnessTableRef(IGF, baseTy, baseTI,
|
|
fnProto,
|
|
fnProtoInfo,
|
|
conformance);
|
|
|
|
// Find the witness we're interested in.
|
|
auto index = fnProtoInfo.getWitnessEntry(fn).getFunctionIndex();
|
|
llvm::Value *witness = emitInvariantLoadOfOpaqueWitness(IGF, wtable, index);
|
|
|
|
// Cast the witness pointer to i8*.
|
|
witness = IGF.Builder.CreateBitCast(witness, IGF.IGM.Int8PtrTy);
|
|
|
|
// Build the value.
|
|
out.add(witness);
|
|
}
|