Files
swift-mirror/include/swift/Basic/UninitializedArray.h
John McCall e345c85e26 Add some optimized data structures for maps on a small number of
keys, especially enumerated keys.
2024-01-28 22:30:26 -05:00

157 lines
5.7 KiB
C++

//===--- UninitializedArray.h - Array of uninitialized objects --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This file defines the UninitializedArray "data structure", which
/// can hold an uninitialized array of values and provides explicit
/// operations to copy, move, and destroy them.
///
//===----------------------------------------------------------------------===//
#ifndef SWIFT_BASIC_UNINITIALIZEDARRAY_H
#define SWIFT_BASIC_UNINITIALIZEDARRAY_H
#include <assert.h>
#include <memory>
namespace swift {
/// An array of uninitialized elements. The user is responsible for
/// ensuring that it's used properly.
template <class T, size_t N>
class UninitializedArray {
union {
T elements[N];
};
public:
UninitializedArray() {}
UninitializedArray(const UninitializedArray &other) = delete;
UninitializedArray &operator=(const UninitializedArray &other) = delete;
UninitializedArray(UninitializedArray &&other) = delete;
UninitializedArray &operator=(UninitializedArray &&other) = delete;
~UninitializedArray() {}
using iterator = T *;
using const_iterator = const T *;
iterator begin() { return elements; }
const_iterator begin() const { return elements; }
// We intentionally don't provide end() because it's too easy to use it
// accidentally when there's no guarantee that those elements exist.
template <class... Args>
T &emplace(size_t i, Args &&...args) {
assert(i < N);
return *::new ((void*) &elements[i]) T(std::forward<Args>(args)...);
}
T &operator[](size_t i) {
assert(i < N);
return elements[i];
}
const T &operator[](size_t i) const {
assert(i < N);
return elements[i];
}
/// Given that this array contains no initialized elements and the other
/// array contains at least newSize initialized elements, fill this array
/// with newSize initialized elements copied from the other array.
void copyInitialize(const UninitializedArray &other, size_t newSize) {
assert(newSize <= N);
std::uninitialized_copy(other.begin(), other.begin() + newSize, begin());
}
/// Given that this array contains oldSize initialized elements and the other
/// array contains at least newSize initialized elements, fill this array
/// with newSize initialized elements copied from the other array.
void copyAssign(const UninitializedArray &other,
size_t oldSize, size_t newSize) {
assert(oldSize <= N);
assert(newSize <= N);
auto commonSize = std::min(oldSize, newSize);
auto thisBegin = begin();
auto otherBegin = other.begin();
// Copy-assign the common prefix.
std::copy(otherBegin, otherBegin + commonSize, thisBegin);
// If there are more elements in the other array, copy-initialize those
// elements into this array starting after the common prefix.
if (oldSize < newSize) {
std::uninitialized_copy(otherBegin + commonSize, otherBegin + newSize,
thisBegin + commonSize);
// Otherwise, if there were more elements in this array, destroy the
// excess elements.
} else if (oldSize > newSize) {
std::destroy(thisBegin + commonSize, thisBegin + oldSize);
}
}
/// Given that this array contains no initialized elements and the other
/// array contains exactly newSize initialized elements, fill this array
/// with newSize initialized elements destructively moved from the other
/// array. The other array is left with no initialized elements.
void destructiveMoveInitialize(UninitializedArray &&other, size_t newSize) {
assert(newSize <= N);
auto it = std::move_iterator(other.begin());
std::uninitialized_copy(it, it + newSize, begin());
std::destroy(other.begin(), other.begin() + newSize);
}
/// Given that this array contains oldSize initialized elements and the other
/// array contains exactly newSize initialized elements, fill this array with
/// newSize initialized elements destructively moved from the other array.
/// The other array is left with no initialized elements.
void destructiveMoveAssign(UninitializedArray &&other,
size_t oldSize, size_t newSize) {
assert(oldSize <= N);
assert(newSize <= N);
auto commonSize = std::min(oldSize, newSize);
auto thisBegin = begin();
auto otherBegin = std::move_iterator(other.begin());
// Move-assign the common prefix. Note that we use a move_iterator to
// cause all these "copies" to be moves.
std::copy(otherBegin, otherBegin + commonSize, thisBegin);
// If there are more elements in the new array, move-initialize those
// elements starting after the common prefix.
if (oldSize < newSize) {
std::uninitialized_copy(otherBegin + commonSize, otherBegin + newSize,
thisBegin + commonSize);
// Otherwise, if there were more elements in this array, destroy the
// excess elements.
} else if (oldSize > newSize) {
std::destroy(thisBegin + commonSize, thisBegin + oldSize);
}
// Destroy all of the elements in the other array.
std::destroy(other.begin(), other.begin() + oldSize);
}
/// Given thait this array contains exactly oldSize initialized elements,
/// destroy those elements, leaving it with no initialized elements.
void destroy(size_t oldSize) {
assert(oldSize <= N);
std::destroy(begin(), begin() + oldSize);
}
};
} // end namespace swift
#endif