Files
swift-mirror/lib/SILOptimizer/Transforms/GenericSpecializer.cpp
Michael Gottesman 1b97c0393c [ownership] Loosen restrictions around what we specialize and add generic specialization tests behind a flag.
The idea is that this will let me remove these assertions that were in place to
make sure we were really conservative around specializing ownership code. For me
to remove that I need to be able to actually test out this code (since I think
there are some code paths where this will trigger in other parts of the compiler
now).

So to work out the kinks, I added a flag that allows for the generic specializer
to process ownership code and translated most of the .sil test cases/fixed any
bugs that I found. This hopefully will expose anything that is missing.

NOTE: I have not enabled the generic specializer running in ownership in the
pipeline. This is just a step in that direction by adding tests/etc.
2020-07-03 02:54:19 -07:00

146 lines
5.0 KiB
C++

//===--- GenericSpecializer.cpp - Specialization of generic functions -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Specialize calls to generic functions by substituting static type
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-generic-specializer"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
// For testing during bring up.
static llvm::cl::opt<bool> EnableGenericSpecializerWithOwnership(
"sil-generic-specializer-enable-ownership", llvm::cl::init(false));
namespace {
class GenericSpecializer : public SILFunctionTransform {
bool specializeAppliesInFunction(SILFunction &F);
/// The entry point to the transformation.
void run() override {
SILFunction &F = *getFunction();
// TODO: We should be able to handle ownership.
if (F.hasOwnership() && !EnableGenericSpecializerWithOwnership)
return;
LLVM_DEBUG(llvm::dbgs() << "***** GenericSpecializer on function:"
<< F.getName() << " *****\n");
if (specializeAppliesInFunction(F))
invalidateAnalysis(SILAnalysis::InvalidationKind::Everything);
}
};
} // end anonymous namespace
bool GenericSpecializer::specializeAppliesInFunction(SILFunction &F) {
SILOptFunctionBuilder FunctionBuilder(*this);
DeadInstructionSet DeadApplies;
llvm::SmallSetVector<SILInstruction *, 8> Applies;
OptRemark::Emitter ORE(DEBUG_TYPE, F.getModule());
bool Changed = false;
for (auto &BB : F) {
// Collect the applies for this block in reverse order so that we
// can pop them off the end of our vector and process them in
// forward order.
for (auto &I : llvm::reverse(BB)) {
// Skip non-apply instructions, apply instructions with no
// substitutions, apply instructions where we do not statically
// know the called function, and apply instructions where we do
// not have the body of the called function.
ApplySite Apply = ApplySite::isa(&I);
if (!Apply || !Apply.hasSubstitutions())
continue;
auto *Callee = Apply.getReferencedFunctionOrNull();
if (!Callee)
continue;
if (!Callee->isDefinition()) {
ORE.emit([&]() {
using namespace OptRemark;
return RemarkMissed("NoDef", I)
<< "Unable to specialize generic function "
<< NV("Callee", Callee) << " since definition is not visible";
});
continue;
}
Applies.insert(Apply.getInstruction());
}
// Attempt to specialize each apply we collected, deleting any
// that we do specialize (along with other instructions we clone
// in the process of doing so). We pop from the end of the list to
// avoid tricky iterator invalidation issues.
while (!Applies.empty()) {
auto *I = Applies.pop_back_val();
auto Apply = ApplySite::isa(I);
assert(Apply && "Expected an apply!");
SILFunction *Callee = Apply.getReferencedFunctionOrNull();
assert(Callee && "Expected to have a known callee");
if (!Apply.canOptimize() || !Callee->shouldOptimize())
continue;
// We have a call that can potentially be specialized, so
// attempt to do so.
llvm::SmallVector<SILFunction *, 2> NewFunctions;
trySpecializeApplyOfGeneric(FunctionBuilder, Apply, DeadApplies,
NewFunctions, ORE);
// Remove all the now-dead applies. We must do this immediately
// rather than defer it in order to avoid problems with cloning
// dead instructions when doing recursive specialization.
while (!DeadApplies.empty()) {
auto *AI = DeadApplies.pop_back_val();
// Remove any applies we are deleting so that we don't attempt
// to specialize them.
Applies.remove(AI);
recursivelyDeleteTriviallyDeadInstructions(AI, true);
Changed = true;
}
// If calling the specialization utility resulted in new functions
// (as opposed to returning a previous specialization), we need to notify
// the pass manager so that the new functions get optimized.
for (SILFunction *NewF : reverse(NewFunctions)) {
addFunctionToPassManagerWorklist(NewF, Callee);
}
}
}
return Changed;
}
SILTransform *swift::createGenericSpecializer() {
return new GenericSpecializer();
}