Files
swift-mirror/lib/AST/ASTContext.cpp

177 lines
6.3 KiB
C++

//===--- ASTContext.cpp - ASTContext Implementation -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
using namespace swift;
/// IdentifierTableMapTy - This is the type underlying IdentifierTable.
typedef llvm::StringMap<char, llvm::BumpPtrAllocator&> IdentifierTableMapTy;
/// TupleTypesMapTy - This is the actual type underlying ASTContext::TupleTypes.
typedef llvm::FoldingSet<TupleType> TupleTypesMapTy;
/// FunctionTypesMapTy - This is the actual type underlying 'FunctionTypes'.
typedef llvm::DenseMap<std::pair<Type*,Type*>, FunctionType*>FunctionTypesMapTy;
ASTContext::ASTContext(llvm::SourceMgr &sourcemgr)
: Allocator(new llvm::BumpPtrAllocator()),
IdentifierTable(new IdentifierTableMapTy(*Allocator)),
TupleTypes(new TupleTypesMapTy()),
FunctionTypes(new FunctionTypesMapTy()),
SourceMgr(sourcemgr),
VoidType(getTupleType(0, 0)), // void is aka "()"
DependentTy(new (*this) DependentType()),
IntType(new (*this) BuiltinType(BuiltinIntKind)) {
}
ASTContext::~ASTContext() {
delete (TupleTypesMapTy*)TupleTypes; TupleTypes = 0;
delete (FunctionTypesMapTy*)FunctionTypes; FunctionTypes = 0;
delete (IdentifierTableMapTy*)IdentifierTable;
delete Allocator;
}
void *ASTContext::Allocate(unsigned long Bytes, unsigned Alignment) {
return Allocator->Allocate(Bytes, Alignment);
}
/// getIdentifier - Return the uniqued and AST-Context-owned version of the
/// specified string.
Identifier ASTContext::getIdentifier(llvm::StringRef Str) {
// Make sure null pointers stay null.
if (Str.empty()) return Identifier(0);
IdentifierTableMapTy &Table = *((IdentifierTableMapTy*)IdentifierTable);
return Identifier(Table.GetOrCreateValue(Str).getKeyData());
}
//===----------------------------------------------------------------------===//
// Type manipulation routines.
//===----------------------------------------------------------------------===//
/// getCanonicalType - Get the canonicalized version of a type, stripping off
/// sugar like argument names and type aliases.
Type *ASTContext::getCanonicalType(Type *T) {
// If the type is itself canonical or if the canonical type was already
// computed, just return what we have.
if (T->CanonicalType)
return T->CanonicalType;
switch (T->Kind) {
case BuiltinIntKind:
case BuiltinDependentKind: assert(0 && "These are always canonical");
case TupleTypeKind: {
llvm::SmallVector<llvm::PointerUnion<Type*, NamedDecl*>, 8> CanElts;
TupleType *TT = llvm::cast<TupleType>(T);
CanElts.resize(TT->NumFields);
for (unsigned i = 0, e = TT->NumFields; i != e; ++i)
if (TT->Fields[i].is<Type*>())
CanElts[i] = getCanonicalType(TT->Fields[i].get<Type*>());
else
CanElts[i] = getCanonicalType(TT->Fields[i].get<NamedDecl*>()->Ty);
return T->CanonicalType = getTupleType(CanElts.data(), CanElts.size());
}
case FunctionTypeKind: {
FunctionType *FT = llvm::cast<FunctionType>(T);
return T->CanonicalType = getFunctionType(getCanonicalType(FT->Input),
getCanonicalType(FT->Result));
}
}
assert(0 && "Unreachable");
}
void TupleType::Profile(llvm::FoldingSetNodeID &ID,
const TypeOrDecl *Fields, unsigned NumFields) {
ID.AddInteger(NumFields);
for (unsigned i = 0; i != NumFields; ++i)
if (Type *Ty = Fields[i].dyn_cast<Type*>())
ID.AddPointer(Ty);
else
ID.AddPointer(Fields[i].get<NamedDecl*>());
}
/// getTupleType - Return the uniqued tuple type with the specified elements.
TupleType *ASTContext::getTupleType(const TupleType::TypeOrDecl *Fields,
unsigned NumFields) {
// Check to see if we've already seen this tuple before.
llvm::FoldingSetNodeID ID;
TupleType::Profile(ID, Fields, NumFields);
TupleTypesMapTy &TupleTypesMap = *(TupleTypesMapTy*)TupleTypes;
// FIXME: This is pointless for types with named fields. The NamedDecl fields
// themselves are not unique'd so they all get their own addresses, which
// means that we'll never get a hit here. This should unique all-type tuples
// though.
void *InsertPos = 0;
if (TupleType *TT = TupleTypesMap.FindNodeOrInsertPos(ID, InsertPos))
return TT;
// Okay, we didn't find one. Make a copy of the fields list into ASTContext
// owned memory.
TupleType::TypeOrDecl *FieldsCopy =
(TupleType::TypeOrDecl *)Allocate(sizeof(*Fields)*NumFields, 8);
bool IsCanonical = true; // All canonical elts means this is canonical.
for (unsigned i = 0, e = NumFields; i != e; ++i) {
FieldsCopy[i] = Fields[i];
if (Fields[i].is<Type*>()) {
IsCanonical &= Fields[i].get<Type*>()->isCanonical();
} else {
// TODO: Can the vardecl have a dependent type?
IsCanonical = false;
}
}
TupleType *New = new (*this) TupleType(FieldsCopy, NumFields);
TupleTypesMap.InsertNode(New, InsertPos);
// If the type is canonical then set the canonical type pointer to itself.
if (IsCanonical)
New->CanonicalType = New;
return New;
}
/// getFunctionType - Return a uniqued function type with the specified
/// input and result.
FunctionType *ASTContext::getFunctionType(Type *Input, Type *Result) {
FunctionType *&Entry =
(*(FunctionTypesMapTy*)FunctionTypes)[std::make_pair(Input, Result)];
if (Entry) return Entry;
Entry = new (*this) FunctionType(Input, Result);
// If the input and result types are canonical, then so is the result.
if (Input->isCanonical() && Result->isCanonical())
Entry->CanonicalType = Entry;
return Entry;
}