mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
2348 lines
80 KiB
C++
2348 lines
80 KiB
C++
//===--- CSSolver.cpp - Constraint Solver ---------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the constraint solver used in the type checker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "CSStep.h"
|
|
#include "ConstraintGraph.h"
|
|
#include "ConstraintSystem.h"
|
|
#include "SolutionResult.h"
|
|
#include "TypeCheckType.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/TypeWalker.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <tuple>
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constraint solver statistics
|
|
//===----------------------------------------------------------------------===//
|
|
#define DEBUG_TYPE "Constraint solver overall"
|
|
#define JOIN2(X,Y) X##Y
|
|
STATISTIC(NumSolutionAttempts, "# of solution attempts");
|
|
STATISTIC(TotalNumTypeVariables, "# of type variables created");
|
|
|
|
#define CS_STATISTIC(Name, Description) \
|
|
STATISTIC(Overall##Name, Description);
|
|
#include "ConstraintSolverStats.def"
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "Constraint solver largest system"
|
|
#define CS_STATISTIC(Name, Description) \
|
|
STATISTIC(Largest##Name, Description);
|
|
#include "ConstraintSolverStats.def"
|
|
STATISTIC(LargestSolutionAttemptNumber, "# of the largest solution attempt");
|
|
|
|
TypeVariableType *ConstraintSystem::createTypeVariable(
|
|
ConstraintLocator *locator,
|
|
unsigned options) {
|
|
++TotalNumTypeVariables;
|
|
auto tv = TypeVariableType::getNew(getASTContext(), assignTypeVariableID(),
|
|
locator, options);
|
|
addTypeVariable(tv);
|
|
return tv;
|
|
}
|
|
|
|
Solution ConstraintSystem::finalize() {
|
|
assert(solverState);
|
|
|
|
// Create the solution.
|
|
Solution solution(*this, CurrentScore);
|
|
|
|
// Update the best score we've seen so far.
|
|
auto &ctx = getASTContext();
|
|
if (!retainAllSolutions()) {
|
|
assert(ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks ||
|
|
!solverState->BestScore || CurrentScore <= *solverState->BestScore);
|
|
|
|
if (!solverState->BestScore || CurrentScore <= *solverState->BestScore) {
|
|
solverState->BestScore = CurrentScore;
|
|
}
|
|
}
|
|
|
|
for (auto tv : getTypeVariables()) {
|
|
if (getFixedType(tv))
|
|
continue;
|
|
|
|
switch (solverState->AllowFreeTypeVariables) {
|
|
case FreeTypeVariableBinding::Disallow:
|
|
llvm_unreachable("Solver left free type variables");
|
|
|
|
case FreeTypeVariableBinding::Allow:
|
|
break;
|
|
|
|
case FreeTypeVariableBinding::UnresolvedType:
|
|
assignFixedType(tv, ctx.TheUnresolvedType);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// For each of the type variables, get its fixed type.
|
|
for (auto tv : getTypeVariables()) {
|
|
solution.typeBindings[tv] = simplifyType(tv)->reconstituteSugar(false);
|
|
}
|
|
|
|
// Copy over the resolved overloads.
|
|
solution.overloadChoices.insert(ResolvedOverloads.begin(),
|
|
ResolvedOverloads.end());
|
|
|
|
// For each of the constraint restrictions, record it with simplified,
|
|
// canonical types.
|
|
if (solverState) {
|
|
for (auto &restriction : ConstraintRestrictions) {
|
|
using std::get;
|
|
CanType first = simplifyType(get<0>(restriction))->getCanonicalType();
|
|
CanType second = simplifyType(get<1>(restriction))->getCanonicalType();
|
|
solution.ConstraintRestrictions[{first, second}] = get<2>(restriction);
|
|
}
|
|
}
|
|
|
|
// For each of the fixes, record it as an operation on the affected
|
|
// expression.
|
|
unsigned firstFixIndex = 0;
|
|
if (solverState && solverState->PartialSolutionScope) {
|
|
firstFixIndex = solverState->PartialSolutionScope->numFixes;
|
|
}
|
|
solution.Fixes.append(Fixes.begin() + firstFixIndex, Fixes.end());
|
|
|
|
// Remember all the disjunction choices we made.
|
|
for (auto &choice : DisjunctionChoices) {
|
|
// We shouldn't ever register disjunction choices multiple times,
|
|
// but saving and re-applying solutions can cause us to get
|
|
// multiple entries. We should use an optimized PartialSolution
|
|
// structure for that use case, which would optimize a lot of
|
|
// stuff here.
|
|
assert(!solution.DisjunctionChoices.count(choice.first) ||
|
|
solution.DisjunctionChoices[choice.first] == choice.second);
|
|
solution.DisjunctionChoices.insert(choice);
|
|
}
|
|
|
|
// Remember the opened types.
|
|
for (const auto &opened : OpenedTypes) {
|
|
// We shouldn't ever register opened types multiple times,
|
|
// but saving and re-applying solutions can cause us to get
|
|
// multiple entries. We should use an optimized PartialSolution
|
|
// structure for that use case, which would optimize a lot of
|
|
// stuff here.
|
|
#if false
|
|
assert((solution.OpenedTypes.count(opened.first) == 0 ||
|
|
solution.OpenedTypes[opened.first] == opened.second)
|
|
&& "Already recorded");
|
|
#endif
|
|
solution.OpenedTypes.insert(opened);
|
|
}
|
|
|
|
// Remember the opened existential types.
|
|
for (const auto &openedExistential : OpenedExistentialTypes) {
|
|
assert(solution.OpenedExistentialTypes.count(openedExistential.first) == 0||
|
|
solution.OpenedExistentialTypes[openedExistential.first]
|
|
== openedExistential.second &&
|
|
"Already recorded");
|
|
solution.OpenedExistentialTypes.insert(openedExistential);
|
|
}
|
|
|
|
// Remember the defaulted type variables.
|
|
solution.DefaultedConstraints.insert(DefaultedConstraints.begin(),
|
|
DefaultedConstraints.end());
|
|
|
|
for (auto &nodeType : addedNodeTypes) {
|
|
solution.addedNodeTypes.insert(nodeType);
|
|
}
|
|
|
|
// Remember contextual types.
|
|
solution.contextualTypes.assign(
|
|
contextualTypes.begin(), contextualTypes.end());
|
|
|
|
for (auto &e : CheckedConformances)
|
|
solution.Conformances.push_back({e.first, e.second});
|
|
|
|
for (const auto &transformed : functionBuilderTransformed) {
|
|
solution.functionBuilderTransformed.insert(transformed);
|
|
}
|
|
|
|
return solution;
|
|
}
|
|
|
|
void ConstraintSystem::applySolution(const Solution &solution) {
|
|
// Update the score.
|
|
CurrentScore += solution.getFixedScore();
|
|
|
|
// Assign fixed types to the type variables solved by this solution.
|
|
for (auto binding : solution.typeBindings) {
|
|
// If we haven't seen this type variable before, record it now.
|
|
addTypeVariable(binding.first);
|
|
|
|
// If we don't already have a fixed type for this type variable,
|
|
// assign the fixed type from the solution.
|
|
if (!getFixedType(binding.first) && !binding.second->hasTypeVariable())
|
|
assignFixedType(binding.first, binding.second, /*updateState=*/false);
|
|
}
|
|
|
|
// Register overload choices.
|
|
// FIXME: Copy these directly into some kind of partial solution?
|
|
for (auto overload : solution.overloadChoices)
|
|
ResolvedOverloads.insert(overload);
|
|
|
|
// Register constraint restrictions.
|
|
// FIXME: Copy these directly into some kind of partial solution?
|
|
for (auto restriction : solution.ConstraintRestrictions) {
|
|
ConstraintRestrictions.push_back(
|
|
std::make_tuple(restriction.first.first, restriction.first.second,
|
|
restriction.second));
|
|
}
|
|
|
|
// Register the solution's disjunction choices.
|
|
for (auto &choice : solution.DisjunctionChoices) {
|
|
DisjunctionChoices.push_back(choice);
|
|
}
|
|
|
|
// Register the solution's opened types.
|
|
for (const auto &opened : solution.OpenedTypes) {
|
|
OpenedTypes.push_back(opened);
|
|
}
|
|
|
|
// Register the solution's opened existential types.
|
|
for (const auto &openedExistential : solution.OpenedExistentialTypes) {
|
|
OpenedExistentialTypes.push_back(openedExistential);
|
|
}
|
|
|
|
// Register the defaulted type variables.
|
|
DefaultedConstraints.insert(DefaultedConstraints.end(),
|
|
solution.DefaultedConstraints.begin(),
|
|
solution.DefaultedConstraints.end());
|
|
|
|
// Add the node types back.
|
|
for (auto &nodeType : solution.addedNodeTypes) {
|
|
if (!hasType(nodeType.first))
|
|
setType(nodeType.first, nodeType.second);
|
|
}
|
|
|
|
// Add the contextual types.
|
|
for (const auto &contextualType : solution.contextualTypes) {
|
|
if (!getContextualTypeInfo(contextualType.first)) {
|
|
setContextualType(contextualType.first, contextualType.second.typeLoc,
|
|
contextualType.second.purpose);
|
|
}
|
|
}
|
|
|
|
// Register the conformances checked along the way to arrive to solution.
|
|
for (auto &conformance : solution.Conformances)
|
|
CheckedConformances.push_back(conformance);
|
|
|
|
for (const auto &transformed : solution.functionBuilderTransformed) {
|
|
functionBuilderTransformed.push_back(transformed);
|
|
}
|
|
|
|
// Register any fixes produced along this path.
|
|
Fixes.append(solution.Fixes.begin(), solution.Fixes.end());
|
|
}
|
|
|
|
/// Restore the type variable bindings to what they were before
|
|
/// we attempted to solve this constraint system.
|
|
void ConstraintSystem::restoreTypeVariableBindings(unsigned numBindings) {
|
|
auto &savedBindings = *getSavedBindings();
|
|
std::for_each(savedBindings.rbegin(), savedBindings.rbegin() + numBindings,
|
|
[](SavedTypeVariableBinding &saved) {
|
|
saved.restore();
|
|
});
|
|
savedBindings.erase(savedBindings.end() - numBindings,
|
|
savedBindings.end());
|
|
}
|
|
|
|
bool ConstraintSystem::simplify(bool ContinueAfterFailures) {
|
|
// While we have a constraint in the worklist, process it.
|
|
while (!ActiveConstraints.empty()) {
|
|
// Grab the next constraint from the worklist.
|
|
auto *constraint = &ActiveConstraints.front();
|
|
deactivateConstraint(constraint);
|
|
|
|
// Simplify this constraint.
|
|
switch (simplifyConstraint(*constraint)) {
|
|
case SolutionKind::Error:
|
|
if (!failedConstraint) {
|
|
failedConstraint = constraint;
|
|
}
|
|
|
|
if (getASTContext().TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log.indent(solverState ? solverState->depth * 2 : 0)
|
|
<< "(failed constraint ";
|
|
constraint->print(log, &getASTContext().SourceMgr);
|
|
log << ")\n";
|
|
}
|
|
|
|
retireConstraint(constraint);
|
|
break;
|
|
|
|
case SolutionKind::Solved:
|
|
if (solverState)
|
|
++solverState->NumSimplifiedConstraints;
|
|
retireConstraint(constraint);
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
if (solverState)
|
|
++solverState->NumUnsimplifiedConstraints;
|
|
break;
|
|
}
|
|
|
|
// Check whether a constraint failed. If so, we're done.
|
|
if (failedConstraint && !ContinueAfterFailures) {
|
|
return true;
|
|
}
|
|
|
|
// If the current score is worse than the best score we've seen so far,
|
|
// there's no point in continuing. So don't.
|
|
if (worseThanBestSolution()) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
template<typename T>
|
|
void truncate(std::vector<T> &vec, unsigned newSize) {
|
|
assert(newSize <= vec.size() && "Not a truncation!");
|
|
vec.erase(vec.begin() + newSize, vec.end());
|
|
}
|
|
|
|
/// Truncate the given small vector to the given new size.
|
|
template<typename T>
|
|
void truncate(SmallVectorImpl<T> &vec, unsigned newSize) {
|
|
assert(newSize <= vec.size() && "Not a truncation!");
|
|
vec.erase(vec.begin() + newSize, vec.end());
|
|
}
|
|
|
|
template<typename T, unsigned N>
|
|
void truncate(llvm::SmallSetVector<T, N> &vec, unsigned newSize) {
|
|
assert(newSize <= vec.size() && "Not a truncation!");
|
|
for (unsigned i = 0, n = vec.size() - newSize; i != n; ++i)
|
|
vec.pop_back();
|
|
}
|
|
|
|
template <typename K, typename V>
|
|
void truncate(llvm::MapVector<K, V> &map, unsigned newSize) {
|
|
assert(newSize <= map.size() && "Not a truncation!");
|
|
for (unsigned i = 0, n = map.size() - newSize; i != n; ++i)
|
|
map.pop_back();
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
ConstraintSystem::SolverState::SolverState(
|
|
ConstraintSystem &cs, FreeTypeVariableBinding allowFreeTypeVariables)
|
|
: CS(cs), AllowFreeTypeVariables(allowFreeTypeVariables) {
|
|
assert(!CS.solverState &&
|
|
"Constraint system should not already have solver state!");
|
|
CS.solverState = this;
|
|
|
|
++NumSolutionAttempts;
|
|
SolutionAttempt = NumSolutionAttempts;
|
|
|
|
// Record active constraints for re-activation at the end of lifetime.
|
|
for (auto &constraint : cs.ActiveConstraints)
|
|
activeConstraints.push_back(&constraint);
|
|
|
|
// If we're supposed to debug a specific constraint solver attempt,
|
|
// turn on debugging now.
|
|
ASTContext &ctx = CS.getASTContext();
|
|
auto &tyOpts = ctx.TypeCheckerOpts;
|
|
OldDebugConstraintSolver = tyOpts.DebugConstraintSolver;
|
|
if (tyOpts.DebugConstraintSolverAttempt &&
|
|
tyOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
|
|
tyOpts.DebugConstraintSolver = true;
|
|
llvm::raw_ostream &dbgOut = ctx.TypeCheckerDebug->getStream();
|
|
dbgOut << "---Constraint system #" << SolutionAttempt << "---\n";
|
|
CS.print(dbgOut);
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolverState::~SolverState() {
|
|
assert((CS.solverState == this) &&
|
|
"Expected constraint system to have this solver state!");
|
|
CS.solverState = nullptr;
|
|
|
|
// Make sure that all of the retired constraints have been returned
|
|
// to constraint system.
|
|
assert(!hasRetiredConstraints());
|
|
|
|
// Make sure that all of the generated constraints have been handled.
|
|
assert(generatedConstraints.empty());
|
|
|
|
// Re-activate constraints which were initially marked as "active"
|
|
// to restore original state of the constraint system.
|
|
for (auto *constraint : activeConstraints) {
|
|
// If the constraint is already active we can just move on.
|
|
if (constraint->isActive())
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure that constraint is present in the "inactive" set
|
|
// before transferring it to "active".
|
|
auto existing = llvm::find_if(CS.InactiveConstraints,
|
|
[&constraint](const Constraint &inactive) {
|
|
return &inactive == constraint;
|
|
});
|
|
assert(existing != CS.InactiveConstraints.end() &&
|
|
"All constraints should be present in 'inactive' list");
|
|
#endif
|
|
|
|
// Transfer the constraint to "active" set.
|
|
CS.activateConstraint(constraint);
|
|
}
|
|
|
|
// Restore debugging state.
|
|
TypeCheckerOptions &tyOpts = CS.getASTContext().TypeCheckerOpts;
|
|
tyOpts.DebugConstraintSolver = OldDebugConstraintSolver;
|
|
|
|
// Write our local statistics back to the overall statistics.
|
|
#define CS_STATISTIC(Name, Description) JOIN2(Overall,Name) += Name;
|
|
#include "ConstraintSolverStats.def"
|
|
|
|
// Update the "largest" statistics if this system is larger than the
|
|
// previous one.
|
|
// FIXME: This is not at all thread-safe.
|
|
if (NumStatesExplored > LargestNumStatesExplored.getValue()) {
|
|
LargestSolutionAttemptNumber = SolutionAttempt-1;
|
|
++LargestSolutionAttemptNumber;
|
|
#define CS_STATISTIC(Name, Description) \
|
|
JOIN2(Largest,Name) = Name-1; \
|
|
++JOIN2(Largest,Name);
|
|
#include "ConstraintSolverStats.def"
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolverScope::SolverScope(ConstraintSystem &cs)
|
|
: cs(cs), CGScope(cs.CG)
|
|
{
|
|
numTypeVariables = cs.TypeVariables.size();
|
|
numSavedBindings = cs.solverState->savedBindings.size();
|
|
numConstraintRestrictions = cs.ConstraintRestrictions.size();
|
|
numFixes = cs.Fixes.size();
|
|
numFixedRequirements = cs.FixedRequirements.size();
|
|
numDisjunctionChoices = cs.DisjunctionChoices.size();
|
|
numOpenedTypes = cs.OpenedTypes.size();
|
|
numOpenedExistentialTypes = cs.OpenedExistentialTypes.size();
|
|
numDefaultedConstraints = cs.DefaultedConstraints.size();
|
|
numAddedNodeTypes = cs.addedNodeTypes.size();
|
|
numCheckedConformances = cs.CheckedConformances.size();
|
|
numDisabledConstraints = cs.solverState->getNumDisabledConstraints();
|
|
numFavoredConstraints = cs.solverState->getNumFavoredConstraints();
|
|
numFunctionBuilderTransformed = cs.functionBuilderTransformed.size();
|
|
numResolvedOverloads = cs.ResolvedOverloads.size();
|
|
numInferredClosureTypes = cs.ClosureTypes.size();
|
|
numContextualTypes = cs.contextualTypes.size();
|
|
|
|
PreviousScore = cs.CurrentScore;
|
|
|
|
cs.solverState->registerScope(this);
|
|
assert(!cs.failedConstraint && "Unexpected failed constraint!");
|
|
}
|
|
|
|
ConstraintSystem::SolverScope::~SolverScope() {
|
|
// Erase the end of various lists.
|
|
while (cs.TypeVariables.size() > numTypeVariables)
|
|
cs.TypeVariables.pop_back();
|
|
|
|
truncate(cs.ResolvedOverloads, numResolvedOverloads);
|
|
|
|
// Restore bindings.
|
|
cs.restoreTypeVariableBindings(cs.solverState->savedBindings.size() -
|
|
numSavedBindings);
|
|
|
|
// Move any remaining active constraints into the inactive list.
|
|
if (!cs.ActiveConstraints.empty()) {
|
|
for (auto &constraint : cs.ActiveConstraints) {
|
|
constraint.setActive(false);
|
|
}
|
|
cs.InactiveConstraints.splice(cs.InactiveConstraints.end(),
|
|
cs.ActiveConstraints);
|
|
}
|
|
|
|
// Rollback all of the changes done to constraints by the current scope,
|
|
// e.g. add retired constraints back to the circulation and remove generated
|
|
// constraints introduced by the current scope.
|
|
cs.solverState->rollback(this);
|
|
|
|
// Remove any constraint restrictions.
|
|
truncate(cs.ConstraintRestrictions, numConstraintRestrictions);
|
|
|
|
// Remove any fixes.
|
|
truncate(cs.Fixes, numFixes);
|
|
|
|
// Remove any disjunction choices.
|
|
truncate(cs.DisjunctionChoices, numDisjunctionChoices);
|
|
|
|
// Remove any opened types.
|
|
truncate(cs.OpenedTypes, numOpenedTypes);
|
|
|
|
// Remove any conformances solver had to fix along
|
|
// the current path.
|
|
truncate(cs.FixedRequirements, numFixedRequirements);
|
|
|
|
// Remove any opened existential types.
|
|
truncate(cs.OpenedExistentialTypes, numOpenedExistentialTypes);
|
|
|
|
// Remove any defaulted type variables.
|
|
truncate(cs.DefaultedConstraints, numDefaultedConstraints);
|
|
|
|
// Remove any node types we registered.
|
|
for (unsigned i : range(numAddedNodeTypes, cs.addedNodeTypes.size())) {
|
|
cs.eraseType(cs.addedNodeTypes[i].first);
|
|
}
|
|
truncate(cs.addedNodeTypes, numAddedNodeTypes);
|
|
|
|
// Remove any conformances checked along the current path.
|
|
truncate(cs.CheckedConformances, numCheckedConformances);
|
|
|
|
/// Remove any builder transformed closures.
|
|
truncate(cs.functionBuilderTransformed, numFunctionBuilderTransformed);
|
|
|
|
// Remove any inferred closure types (e.g. used in function builder body).
|
|
truncate(cs.ClosureTypes, numInferredClosureTypes);
|
|
|
|
// Remove any contextual types.
|
|
truncate(cs.contextualTypes, numContextualTypes);
|
|
|
|
// Reset the previous score.
|
|
cs.CurrentScore = PreviousScore;
|
|
|
|
// Clear out other "failed" state.
|
|
cs.failedConstraint = nullptr;
|
|
}
|
|
|
|
/// Solve the system of constraints.
|
|
///
|
|
/// \param allowFreeTypeVariables How to bind free type variables in
|
|
/// the solution.
|
|
///
|
|
/// \returns a solution if a single unambiguous one could be found, or None if
|
|
/// ambiguous or unsolvable.
|
|
Optional<Solution>
|
|
ConstraintSystem::solveSingle(FreeTypeVariableBinding allowFreeTypeVariables,
|
|
bool allowFixes) {
|
|
|
|
SolverState state(*this, allowFreeTypeVariables);
|
|
state.recordFixes = allowFixes;
|
|
|
|
SmallVector<Solution, 4> solutions;
|
|
solveImpl(solutions);
|
|
filterSolutions(solutions);
|
|
|
|
if (solutions.size() != 1)
|
|
return Optional<Solution>();
|
|
|
|
return std::move(solutions[0]);
|
|
}
|
|
|
|
bool ConstraintSystem::Candidate::solve(
|
|
llvm::SmallDenseSet<OverloadSetRefExpr *> &shrunkExprs) {
|
|
// Don't attempt to solve candidate if there is closure
|
|
// expression involved, because it's handled specially
|
|
// by parent constraint system (e.g. parameter lists).
|
|
bool containsClosure = false;
|
|
E->forEachChildExpr([&](Expr *childExpr) -> Expr * {
|
|
if (isa<ClosureExpr>(childExpr)) {
|
|
containsClosure = true;
|
|
return nullptr;
|
|
}
|
|
return childExpr;
|
|
});
|
|
|
|
if (containsClosure)
|
|
return false;
|
|
|
|
auto cleanupImplicitExprs = [&](Expr *expr) {
|
|
expr->forEachChildExpr([&](Expr *childExpr) -> Expr * {
|
|
Type type = childExpr->getType();
|
|
if (childExpr->isImplicit() && type && type->hasTypeVariable())
|
|
childExpr->setType(Type());
|
|
return childExpr;
|
|
});
|
|
};
|
|
|
|
// Allocate new constraint system for sub-expression.
|
|
ConstraintSystem cs(DC, None);
|
|
cs.baseCS = &BaseCS;
|
|
|
|
// Set up expression type checker timer for the candidate.
|
|
cs.Timer.emplace(E, cs);
|
|
|
|
// Generate constraints for the new system.
|
|
if (auto generatedExpr = cs.generateConstraints(E)) {
|
|
E = generatedExpr;
|
|
} else {
|
|
// Failure to generate constraint system for sub-expression
|
|
// means we can't continue solving sub-expressions.
|
|
cleanupImplicitExprs(E);
|
|
return true;
|
|
}
|
|
|
|
// If this candidate is too complex given the number
|
|
// of the domains we have reduced so far, let's bail out early.
|
|
if (isTooComplexGiven(&cs, shrunkExprs))
|
|
return false;
|
|
|
|
auto &ctx = cs.getASTContext();
|
|
if (ctx.TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = cs.getASTContext().TypeCheckerDebug->getStream();
|
|
log << "--- Solving candidate for shrinking at ";
|
|
auto R = E->getSourceRange();
|
|
if (R.isValid()) {
|
|
R.print(log, ctx.SourceMgr, /*PrintText=*/ false);
|
|
} else {
|
|
log << "<invalid range>";
|
|
}
|
|
log << " ---\n";
|
|
|
|
E->dump(log);
|
|
log << '\n';
|
|
cs.print(log);
|
|
}
|
|
|
|
// If there is contextual type present, add an explicit "conversion"
|
|
// constraint to the system.
|
|
if (!CT.isNull()) {
|
|
auto constraintKind = ConstraintKind::Conversion;
|
|
if (CTP == CTP_CallArgument)
|
|
constraintKind = ConstraintKind::ArgumentConversion;
|
|
|
|
cs.addConstraint(constraintKind, cs.getType(E), CT,
|
|
cs.getConstraintLocator(E), /*isFavored=*/true);
|
|
}
|
|
|
|
// Try to solve the system and record all available solutions.
|
|
llvm::SmallVector<Solution, 2> solutions;
|
|
{
|
|
SolverState state(cs, FreeTypeVariableBinding::Allow);
|
|
|
|
// Use solve which doesn't try to filter solution list.
|
|
// Because we want the whole set of possible domain choices.
|
|
cs.solveImpl(solutions);
|
|
}
|
|
|
|
if (ctx.TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = cs.getASTContext().TypeCheckerDebug->getStream();
|
|
if (solutions.empty()) {
|
|
log << "--- No Solutions ---\n";
|
|
} else {
|
|
log << "--- Solutions ---\n";
|
|
for (unsigned i = 0, n = solutions.size(); i != n; ++i) {
|
|
auto &solution = solutions[i];
|
|
log << "--- Solution #" << i << " ---\n";
|
|
solution.dump(log);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record found solutions as suggestions.
|
|
this->applySolutions(solutions, shrunkExprs);
|
|
|
|
// Let's double-check if we have any implicit expressions
|
|
// with type variables and nullify their types.
|
|
cleanupImplicitExprs(E);
|
|
|
|
// No solutions for the sub-expression means that either main expression
|
|
// needs salvaging or it's inconsistent (read: doesn't have solutions).
|
|
return solutions.empty();
|
|
}
|
|
|
|
void ConstraintSystem::Candidate::applySolutions(
|
|
llvm::SmallVectorImpl<Solution> &solutions,
|
|
llvm::SmallDenseSet<OverloadSetRefExpr *> &shrunkExprs) const {
|
|
// A collection of OSRs with their newly reduced domains,
|
|
// it's domains are sets because multiple solutions can have the same
|
|
// choice for one of the type variables, and we want no duplication.
|
|
llvm::SmallDenseMap<OverloadSetRefExpr *, llvm::SmallSet<ValueDecl *, 2>>
|
|
domains;
|
|
for (auto &solution : solutions) {
|
|
for (auto choice : solution.overloadChoices) {
|
|
// Some of the choices might not have locators.
|
|
if (!choice.getFirst())
|
|
continue;
|
|
|
|
auto anchor = choice.getFirst()->getAnchor();
|
|
// Anchor is not available or expression is not an overload set.
|
|
if (!anchor || !isa<OverloadSetRefExpr>(anchor))
|
|
continue;
|
|
|
|
auto OSR = cast<OverloadSetRefExpr>(anchor);
|
|
auto overload = choice.getSecond().choice;
|
|
auto type = overload.getDecl()->getInterfaceType();
|
|
|
|
// One of the solutions has polymorphic type assigned with one of it's
|
|
// type variables. Such functions can only be properly resolved
|
|
// via complete expression, so we'll have to forget solutions
|
|
// we have already recorded. They might not include all viable overload
|
|
// choices.
|
|
if (type->is<GenericFunctionType>()) {
|
|
return;
|
|
}
|
|
|
|
domains[OSR].insert(overload.getDecl());
|
|
}
|
|
}
|
|
|
|
// Reduce the domains.
|
|
for (auto &domain : domains) {
|
|
auto OSR = domain.getFirst();
|
|
auto &choices = domain.getSecond();
|
|
|
|
// If the domain wasn't reduced, skip it.
|
|
if (OSR->getDecls().size() == choices.size()) continue;
|
|
|
|
// Update the expression with the reduced domain.
|
|
MutableArrayRef<ValueDecl *> decls(
|
|
Allocator.Allocate<ValueDecl *>(choices.size()),
|
|
choices.size());
|
|
|
|
std::uninitialized_copy(choices.begin(), choices.end(), decls.begin());
|
|
OSR->setDecls(decls);
|
|
|
|
// Record successfully shrunk expression.
|
|
shrunkExprs.insert(OSR);
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::shrink(Expr *expr) {
|
|
if (getASTContext().TypeCheckerOpts.SolverDisableShrink)
|
|
return;
|
|
|
|
using DomainMap = llvm::SmallDenseMap<Expr *, ArrayRef<ValueDecl *>>;
|
|
|
|
// A collection of original domains of all of the expressions,
|
|
// so they can be restored in case of failure.
|
|
DomainMap domains;
|
|
|
|
struct ExprCollector : public ASTWalker {
|
|
Expr *PrimaryExpr;
|
|
|
|
// The primary constraint system.
|
|
ConstraintSystem &CS;
|
|
|
|
// All of the sub-expressions which are suitable to be solved
|
|
// separately from the main system e.g. binary expressions, collections,
|
|
// function calls, coercions etc.
|
|
llvm::SmallVector<Candidate, 4> Candidates;
|
|
|
|
// Counts the number of overload sets present in the tree so far.
|
|
// Note that the traversal is depth-first.
|
|
llvm::SmallVector<std::pair<Expr *, unsigned>, 4> ApplyExprs;
|
|
|
|
// A collection of original domains of all of the expressions,
|
|
// so they can be restored in case of failure.
|
|
DomainMap &Domains;
|
|
|
|
ExprCollector(Expr *expr, ConstraintSystem &cs, DomainMap &domains)
|
|
: PrimaryExpr(expr), CS(cs), Domains(domains) {}
|
|
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
|
|
// A dictionary expression is just a set of tuples; try to solve ones
|
|
// that have overload sets.
|
|
if (auto collectionExpr = dyn_cast<CollectionExpr>(expr)) {
|
|
visitCollectionExpr(collectionExpr, CS.getContextualType(expr),
|
|
CS.getContextualTypePurpose(expr));
|
|
// Don't try to walk into the dictionary.
|
|
return {false, expr};
|
|
}
|
|
|
|
// Let's not attempt to type-check closures or expressions
|
|
// which constrain closures, because they require special handling
|
|
// when dealing with context and parameters declarations.
|
|
if (isa<ClosureExpr>(expr)) {
|
|
return {false, expr};
|
|
}
|
|
|
|
if (auto coerceExpr = dyn_cast<CoerceExpr>(expr)) {
|
|
if (coerceExpr->isLiteralInit())
|
|
ApplyExprs.push_back({coerceExpr, 1});
|
|
visitCoerceExpr(coerceExpr);
|
|
return {false, expr};
|
|
}
|
|
|
|
if (auto OSR = dyn_cast<OverloadSetRefExpr>(expr)) {
|
|
Domains[OSR] = OSR->getDecls();
|
|
}
|
|
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
|
|
auto func = applyExpr->getFn();
|
|
// Let's record this function application for post-processing
|
|
// as well as if it contains overload set, see walkToExprPost.
|
|
ApplyExprs.push_back(
|
|
{applyExpr, isa<OverloadSetRefExpr>(func) || isa<TypeExpr>(func)});
|
|
}
|
|
|
|
return { true, expr };
|
|
}
|
|
|
|
/// Determine whether this is an arithmetic expression comprised entirely
|
|
/// of literals.
|
|
static bool isArithmeticExprOfLiterals(Expr *expr) {
|
|
expr = expr->getSemanticsProvidingExpr();
|
|
|
|
if (auto prefix = dyn_cast<PrefixUnaryExpr>(expr))
|
|
return isArithmeticExprOfLiterals(prefix->getArg());
|
|
|
|
if (auto postfix = dyn_cast<PostfixUnaryExpr>(expr))
|
|
return isArithmeticExprOfLiterals(postfix->getArg());
|
|
|
|
if (auto binary = dyn_cast<BinaryExpr>(expr))
|
|
return isArithmeticExprOfLiterals(binary->getArg()->getElement(0)) &&
|
|
isArithmeticExprOfLiterals(binary->getArg()->getElement(1));
|
|
|
|
return isa<IntegerLiteralExpr>(expr) || isa<FloatLiteralExpr>(expr);
|
|
}
|
|
|
|
Expr *walkToExprPost(Expr *expr) override {
|
|
auto isSrcOfPrimaryAssignment = [&](Expr *expr) -> bool {
|
|
if (auto *AE = dyn_cast<AssignExpr>(PrimaryExpr))
|
|
return expr == AE->getSrc();
|
|
return false;
|
|
};
|
|
|
|
if (expr == PrimaryExpr || isSrcOfPrimaryAssignment(expr)) {
|
|
// If this is primary expression and there are no candidates
|
|
// to be solved, let's not record it, because it's going to be
|
|
// solved regardless.
|
|
if (Candidates.empty())
|
|
return expr;
|
|
|
|
auto contextualType = CS.getContextualType(expr);
|
|
// If there is a contextual type set for this expression.
|
|
if (!contextualType.isNull()) {
|
|
Candidates.push_back(Candidate(CS, PrimaryExpr, contextualType,
|
|
CS.getContextualTypePurpose(expr)));
|
|
return expr;
|
|
}
|
|
|
|
// Or it's a function application or assignment with other candidates
|
|
// present. Assignment should be easy to solve because we'd get a
|
|
// contextual type from the destination expression, otherwise shrink
|
|
// might produce incorrect results without considering aforementioned
|
|
// destination type.
|
|
if (isa<ApplyExpr>(expr) || isa<AssignExpr>(expr)) {
|
|
Candidates.push_back(Candidate(CS, PrimaryExpr));
|
|
return expr;
|
|
}
|
|
}
|
|
|
|
if (!isa<ApplyExpr>(expr))
|
|
return expr;
|
|
|
|
unsigned numOverloadSets = 0;
|
|
// Let's count how many overload sets do we have.
|
|
while (!ApplyExprs.empty()) {
|
|
auto &application = ApplyExprs.back();
|
|
auto applyExpr = application.first;
|
|
|
|
// Add overload sets tracked by current expression.
|
|
numOverloadSets += application.second;
|
|
ApplyExprs.pop_back();
|
|
|
|
// We've found the current expression, so record the number of
|
|
// overloads.
|
|
if (expr == applyExpr) {
|
|
ApplyExprs.push_back({applyExpr, numOverloadSets});
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there are fewer than two overloads in the chain
|
|
// there is no point of solving this expression,
|
|
// because we won't be able to reduce its domain.
|
|
if (numOverloadSets > 1 && !isArithmeticExprOfLiterals(expr))
|
|
Candidates.push_back(Candidate(CS, expr));
|
|
|
|
return expr;
|
|
}
|
|
|
|
private:
|
|
/// Extract type of the element from given collection type.
|
|
///
|
|
/// \param collection The type of the collection container.
|
|
///
|
|
/// \returns Null type, ErrorType or UnresolvedType on failure,
|
|
/// properly constructed type otherwise.
|
|
Type extractElementType(Type collection) {
|
|
auto &ctx = CS.getASTContext();
|
|
if (!collection || collection->hasError())
|
|
return collection;
|
|
|
|
auto base = collection.getPointer();
|
|
auto isInvalidType = [](Type type) -> bool {
|
|
return type.isNull() || type->hasUnresolvedType() ||
|
|
type->hasError();
|
|
};
|
|
|
|
// Array type.
|
|
if (auto array = dyn_cast<ArraySliceType>(base)) {
|
|
auto elementType = array->getBaseType();
|
|
// If base type is invalid let's return error type.
|
|
return elementType;
|
|
}
|
|
|
|
// Map or Set or any other associated collection type.
|
|
if (auto boundGeneric = dyn_cast<BoundGenericType>(base)) {
|
|
if (boundGeneric->hasUnresolvedType())
|
|
return boundGeneric;
|
|
|
|
llvm::SmallVector<TupleTypeElt, 2> params;
|
|
for (auto &type : boundGeneric->getGenericArgs()) {
|
|
// One of the generic arguments in invalid or unresolved.
|
|
if (isInvalidType(type))
|
|
return type;
|
|
|
|
params.push_back(type);
|
|
}
|
|
|
|
// If there is just one parameter, let's return it directly.
|
|
if (params.size() == 1)
|
|
return params[0].getType();
|
|
|
|
return TupleType::get(params, ctx);
|
|
}
|
|
|
|
return Type();
|
|
}
|
|
|
|
bool isSuitableCollection(TypeRepr *collectionTypeRepr) {
|
|
// Only generic identifier, array or dictionary.
|
|
switch (collectionTypeRepr->getKind()) {
|
|
case TypeReprKind::GenericIdent:
|
|
case TypeReprKind::Array:
|
|
case TypeReprKind::Dictionary:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void visitCoerceExpr(CoerceExpr *coerceExpr) {
|
|
auto subExpr = coerceExpr->getSubExpr();
|
|
// Coerce expression is valid only if it has sub-expression.
|
|
if (!subExpr) return;
|
|
|
|
unsigned numOverloadSets = 0;
|
|
subExpr->forEachChildExpr([&](Expr *childExpr) -> Expr * {
|
|
if (isa<OverloadSetRefExpr>(childExpr)) {
|
|
++numOverloadSets;
|
|
return childExpr;
|
|
}
|
|
|
|
if (auto nestedCoerceExpr = dyn_cast<CoerceExpr>(childExpr)) {
|
|
visitCoerceExpr(nestedCoerceExpr);
|
|
// Don't walk inside of nested coercion expression directly,
|
|
// that is be done by recursive call to visitCoerceExpr.
|
|
return nullptr;
|
|
}
|
|
|
|
// If sub-expression we are trying to coerce to type is a collection,
|
|
// let's allow collector discover it with assigned contextual type
|
|
// of coercion, which allows collections to be solved in parts.
|
|
if (auto collectionExpr = dyn_cast<CollectionExpr>(childExpr)) {
|
|
auto castTypeLoc = coerceExpr->getCastTypeLoc();
|
|
auto typeRepr = castTypeLoc.getTypeRepr();
|
|
|
|
if (typeRepr && isSuitableCollection(typeRepr)) {
|
|
// Clone representative to avoid modifying in-place,
|
|
// FIXME: We should try and silently resolve the type here,
|
|
// instead of cloning representative.
|
|
auto coercionRepr = typeRepr->clone(CS.getASTContext());
|
|
// Let's try to resolve coercion type from cloned representative.
|
|
auto resolution = TypeResolution::forContextual(CS.DC);
|
|
auto coercionType =
|
|
resolution.resolveType(coercionRepr, None);
|
|
|
|
// Looks like coercion type is invalid, let's skip this sub-tree.
|
|
if (coercionType->hasError())
|
|
return nullptr;
|
|
|
|
// Visit collection expression inline.
|
|
visitCollectionExpr(collectionExpr, coercionType,
|
|
CTP_CoerceOperand);
|
|
}
|
|
}
|
|
|
|
return childExpr;
|
|
});
|
|
|
|
// It's going to be inefficient to try and solve
|
|
// coercion in parts, so let's just make it a candidate directly,
|
|
// if it contains at least a single overload set.
|
|
|
|
if (numOverloadSets > 0)
|
|
Candidates.push_back(Candidate(CS, coerceExpr));
|
|
}
|
|
|
|
void visitCollectionExpr(CollectionExpr *collectionExpr,
|
|
Type contextualType = Type(),
|
|
ContextualTypePurpose CTP = CTP_Unused) {
|
|
// If there is a contextual type set for this collection,
|
|
// let's propagate it to the candidate.
|
|
if (!contextualType.isNull()) {
|
|
auto elementType = extractElementType(contextualType);
|
|
// If we couldn't deduce element type for the collection, let's
|
|
// not attempt to solve it.
|
|
if (!elementType ||
|
|
elementType->hasError() ||
|
|
elementType->hasUnresolvedType())
|
|
return;
|
|
|
|
contextualType = elementType;
|
|
}
|
|
|
|
for (auto element : collectionExpr->getElements()) {
|
|
unsigned numOverloads = 0;
|
|
element->walk(OverloadSetCounter(numOverloads));
|
|
|
|
// There are no overload sets in the element; skip it.
|
|
if (numOverloads == 0)
|
|
continue;
|
|
|
|
// Record each of the collection elements, which passed
|
|
// number of overload sets rule, as a candidate for solving
|
|
// with contextual type of the collection.
|
|
Candidates.push_back(Candidate(CS, element, contextualType, CTP));
|
|
}
|
|
}
|
|
};
|
|
|
|
ExprCollector collector(expr, *this, domains);
|
|
|
|
// Collect all of the binary/unary and call sub-expressions
|
|
// so we can start solving them separately.
|
|
expr->walk(collector);
|
|
|
|
llvm::SmallDenseSet<OverloadSetRefExpr *> shrunkExprs;
|
|
for (auto &candidate : collector.Candidates) {
|
|
// If there are no results, let's forget everything we know about the
|
|
// system so far. This actually is ok, because some of the expressions
|
|
// might require manual salvaging.
|
|
if (candidate.solve(shrunkExprs)) {
|
|
// Let's restore all of the original OSR domains for this sub-expression,
|
|
// this means that we can still make forward progress with solving of the
|
|
// top sub-expressions.
|
|
candidate.getExpr()->forEachChildExpr([&](Expr *childExpr) -> Expr * {
|
|
if (auto OSR = dyn_cast<OverloadSetRefExpr>(childExpr)) {
|
|
auto domain = domains.find(OSR);
|
|
if (domain == domains.end())
|
|
return childExpr;
|
|
|
|
OSR->setDecls(domain->getSecond());
|
|
shrunkExprs.erase(OSR);
|
|
}
|
|
|
|
return childExpr;
|
|
});
|
|
}
|
|
}
|
|
|
|
// Once "shrinking" is done let's re-allocate final version of
|
|
// the candidate list to the permanent arena, so it could
|
|
// survive even after primary constraint system is destroyed.
|
|
for (auto &OSR : shrunkExprs) {
|
|
auto choices = OSR->getDecls();
|
|
auto decls =
|
|
getASTContext().AllocateUninitialized<ValueDecl *>(choices.size());
|
|
|
|
std::uninitialized_copy(choices.begin(), choices.end(), decls.begin());
|
|
OSR->setDecls(decls);
|
|
}
|
|
}
|
|
|
|
static bool debugConstraintSolverForExpr(ASTContext &C, Expr *expr) {
|
|
if (C.TypeCheckerOpts.DebugConstraintSolver)
|
|
return true;
|
|
|
|
if (C.TypeCheckerOpts.DebugConstraintSolverOnLines.empty())
|
|
// No need to compute the line number to find out it's not present.
|
|
return false;
|
|
|
|
// Get the lines on which the expression starts and ends.
|
|
unsigned startLine = 0, endLine = 0;
|
|
if (expr->getSourceRange().isValid()) {
|
|
auto range =
|
|
Lexer::getCharSourceRangeFromSourceRange(C.SourceMgr,
|
|
expr->getSourceRange());
|
|
startLine = C.SourceMgr.getLineNumber(range.getStart());
|
|
endLine = C.SourceMgr.getLineNumber(range.getEnd());
|
|
}
|
|
|
|
assert(startLine <= endLine && "expr ends before it starts?");
|
|
|
|
auto &lines = C.TypeCheckerOpts.DebugConstraintSolverOnLines;
|
|
assert(std::is_sorted(lines.begin(), lines.end()) &&
|
|
"DebugConstraintSolverOnLines sorting invariant violated");
|
|
|
|
// Check if `lines` contains at least one line `L` where
|
|
// `startLine <= L <= endLine`. If it does, `lower_bound(startLine)` and
|
|
// `upper_bound(endLine)` will be different.
|
|
auto startBound = llvm::lower_bound(lines, startLine);
|
|
auto endBound = std::upper_bound(startBound, lines.end(), endLine);
|
|
|
|
return startBound != endBound;
|
|
}
|
|
|
|
bool ConstraintSystem::solve(Expr *&expr,
|
|
Type convertType,
|
|
ExprTypeCheckListener *listener,
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
llvm::SaveAndRestore<bool> debugForExpr(
|
|
getASTContext().TypeCheckerOpts.DebugConstraintSolver,
|
|
debugConstraintSolverForExpr(getASTContext(), expr));
|
|
|
|
// Attempt to solve the constraint system.
|
|
auto solution = solveImpl(expr,
|
|
convertType,
|
|
listener,
|
|
solutions,
|
|
allowFreeTypeVariables);
|
|
|
|
// The constraint system has failed
|
|
if (solution == SolutionKind::Error)
|
|
return true;
|
|
|
|
// If the system is unsolved or there are multiple solutions present but
|
|
// type checker options do not allow unresolved types, let's try to salvage
|
|
if (solution == SolutionKind::Unsolved ||
|
|
(solutions.size() != 1 &&
|
|
!Options.contains(
|
|
ConstraintSystemFlags::AllowUnresolvedTypeVariables))) {
|
|
if (shouldSuppressDiagnostics())
|
|
return true;
|
|
|
|
// Try to fix the system or provide a decent diagnostic.
|
|
auto salvagedResult = salvage();
|
|
switch (salvagedResult.getKind()) {
|
|
case SolutionResult::Kind::Success:
|
|
solutions.clear();
|
|
solutions.push_back(std::move(salvagedResult).takeSolution());
|
|
break;
|
|
|
|
case SolutionResult::Kind::Error:
|
|
case SolutionResult::Kind::Ambiguous:
|
|
return true;
|
|
|
|
case SolutionResult::Kind::UndiagnosedError:
|
|
diagnoseFailureFor(expr);
|
|
salvagedResult.markAsDiagnosed();
|
|
return true;
|
|
|
|
case SolutionResult::Kind::TooComplex:
|
|
getASTContext().Diags.diagnose(expr->getLoc(), diag::expression_too_complex)
|
|
.highlight(expr->getSourceRange());
|
|
salvagedResult.markAsDiagnosed();
|
|
return true;
|
|
}
|
|
|
|
// The system was salvaged; continue on as if nothing happened.
|
|
}
|
|
|
|
if (getExpressionTooComplex(solutions)) {
|
|
getASTContext().Diags.diagnose(expr->getLoc(), diag::expression_too_complex)
|
|
.highlight(expr->getSourceRange());
|
|
return true;
|
|
}
|
|
|
|
if (getASTContext().TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
if (solutions.size() == 1) {
|
|
log << "---Solution---\n";
|
|
solutions[0].dump(log);
|
|
} else {
|
|
for (unsigned i = 0, e = solutions.size(); i != e; ++i) {
|
|
log << "--- Solution #" << i << " ---\n";
|
|
solutions[i].dump(log);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::solveImpl(Expr *&expr,
|
|
Type convertType,
|
|
ExprTypeCheckListener *listener,
|
|
SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
if (getASTContext().TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log << "---Constraint solving for the expression at ";
|
|
auto R = expr->getSourceRange();
|
|
if (R.isValid()) {
|
|
R.print(log, getASTContext().SourceMgr, /*PrintText=*/ false);
|
|
} else {
|
|
log << "<invalid range>";
|
|
}
|
|
log << "---\n";
|
|
}
|
|
|
|
assert(!solverState && "cannot be used directly");
|
|
|
|
// Set up the expression type checker timer.
|
|
Timer.emplace(expr, *this);
|
|
|
|
Expr *origExpr = expr;
|
|
|
|
// Try to shrink the system by reducing disjunction domains. This
|
|
// goes through every sub-expression and generate its own sub-system, to
|
|
// try to reduce the domains of those subexpressions.
|
|
shrink(expr);
|
|
|
|
// Generate constraints for the main system.
|
|
if (auto generatedExpr = generateConstraints(expr))
|
|
expr = generatedExpr;
|
|
else {
|
|
if (listener)
|
|
listener->constraintGenerationFailed(expr);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// If there is a type that we're expected to convert to, add the conversion
|
|
// constraint.
|
|
if (convertType) {
|
|
auto constraintKind = ConstraintKind::Conversion;
|
|
|
|
auto ctp = getContextualTypePurpose(origExpr);
|
|
if ((ctp == CTP_ReturnStmt ||
|
|
ctp == CTP_ReturnSingleExpr ||
|
|
ctp == CTP_Initialization)
|
|
&& Options.contains(ConstraintSystemFlags::UnderlyingTypeForOpaqueReturnType))
|
|
constraintKind = ConstraintKind::OpaqueUnderlyingType;
|
|
|
|
if (ctp == CTP_CallArgument)
|
|
constraintKind = ConstraintKind::ArgumentConversion;
|
|
|
|
// In a by-reference yield, we expect the contextual type to be an
|
|
// l-value type, so the result must be bound to that.
|
|
if (ctp == CTP_YieldByReference)
|
|
constraintKind = ConstraintKind::Bind;
|
|
|
|
bool isForSingleExprFunction = ctp == CTP_ReturnSingleExpr;
|
|
auto *convertTypeLocator = getConstraintLocator(
|
|
expr, LocatorPathElt::ContextualType(isForSingleExprFunction));
|
|
|
|
if (allowFreeTypeVariables == FreeTypeVariableBinding::UnresolvedType) {
|
|
convertType = convertType.transform([&](Type type) -> Type {
|
|
if (type->is<UnresolvedType>())
|
|
return createTypeVariable(convertTypeLocator, TVO_CanBindToNoEscape);
|
|
return type;
|
|
});
|
|
}
|
|
|
|
addConstraint(constraintKind, getType(expr), convertType,
|
|
convertTypeLocator, /*isFavored*/ true);
|
|
}
|
|
|
|
// Notify the listener that we've built the constraint system.
|
|
if (listener && listener->builtConstraints(*this, expr)) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
if (getASTContext().TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log << "---Initial constraints for the given expression---\n";
|
|
print(log, expr);
|
|
log << "\n";
|
|
print(log);
|
|
}
|
|
|
|
// Try to solve the constraint system using computed suggestions.
|
|
solve(solutions, allowFreeTypeVariables);
|
|
|
|
// If there are no solutions let's mark system as unsolved,
|
|
// and solved otherwise even if there are multiple solutions still present.
|
|
return solutions.empty() ? SolutionKind::Unsolved : SolutionKind::Solved;
|
|
}
|
|
|
|
bool ConstraintSystem::solve(SmallVectorImpl<Solution> &solutions,
|
|
FreeTypeVariableBinding allowFreeTypeVariables) {
|
|
// Set up solver state.
|
|
SolverState state(*this, allowFreeTypeVariables);
|
|
|
|
// Solve the system.
|
|
solveImpl(solutions);
|
|
|
|
if (getASTContext().TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = getASTContext().TypeCheckerDebug->getStream();
|
|
log << "---Solver statistics---\n";
|
|
log << "Total number of scopes explored: " << solverState->NumStatesExplored << "\n";
|
|
log << "Maximum depth reached while exploring solutions: " << solverState->maxDepth << "\n";
|
|
if (Timer) {
|
|
auto timeInMillis =
|
|
1000 * Timer->getElapsedProcessTimeInFractionalSeconds();
|
|
log << "Time: " << timeInMillis << "ms\n";
|
|
}
|
|
}
|
|
|
|
// Filter deduced solutions, try to figure out if there is
|
|
// a single best solution to use, if not explicitly disabled
|
|
// by constraint system options.
|
|
if (!retainAllSolutions())
|
|
filterSolutions(solutions);
|
|
|
|
// We fail if there is no solution or the expression was too complex.
|
|
return solutions.empty() || getExpressionTooComplex(solutions);
|
|
}
|
|
|
|
void ConstraintSystem::solveImpl(SmallVectorImpl<Solution> &solutions) {
|
|
assert(solverState);
|
|
|
|
setPhase(ConstraintSystemPhase::Solving);
|
|
|
|
SWIFT_DEFER { setPhase(ConstraintSystemPhase::Finalization); };
|
|
|
|
// If constraint system failed while trying to
|
|
// genenerate constraints, let's stop right here.
|
|
if (failedConstraint)
|
|
return;
|
|
|
|
// Allocate new solver scope, so constraint system
|
|
// could be restored to its original state afterwards.
|
|
// Otherwise there is a risk that some of the constraints
|
|
// are not going to be re-introduced to the system.
|
|
SolverScope scope(*this);
|
|
|
|
SmallVector<std::unique_ptr<SolverStep>, 16> workList;
|
|
// First step is always wraps whole constraint system.
|
|
workList.push_back(std::make_unique<SplitterStep>(*this, solutions));
|
|
|
|
// Indicate whether previous step in the stack has failed
|
|
// (returned StepResult::Kind = Error), this is useful to
|
|
// propagate failures when unsolved steps are re-taken.
|
|
bool prevFailed = false;
|
|
|
|
// Advance the solver by taking a given step, which might involve
|
|
// a prelimilary "setup", if this is the first time this step is taken.
|
|
auto advance = [](SolverStep *step, bool prevFailed) -> StepResult {
|
|
auto currentState = step->getState();
|
|
if (currentState == StepState::Setup) {
|
|
step->setup();
|
|
step->transitionTo(StepState::Ready);
|
|
}
|
|
|
|
currentState = step->getState();
|
|
step->transitionTo(StepState::Running);
|
|
return currentState == StepState::Ready ? step->take(prevFailed)
|
|
: step->resume(prevFailed);
|
|
};
|
|
|
|
// Execute steps in LIFO order, which means that
|
|
// each individual step would either end up producing
|
|
// a solution, or producing another set of mergeable
|
|
// steps to take before arriving to solution.
|
|
while (!workList.empty()) {
|
|
auto &step = workList.back();
|
|
|
|
// Now let's try to advance to the next step or re-take previous,
|
|
// which should produce another steps to follow,
|
|
// or error, which means that current path is inconsistent.
|
|
{
|
|
auto result = advance(step.get(), prevFailed);
|
|
switch (result.getKind()) {
|
|
// It was impossible to solve this step, let's note that
|
|
// for followup steps, to propogate the error.
|
|
case SolutionKind::Error:
|
|
LLVM_FALLTHROUGH;
|
|
|
|
// Step has been solved successfully by either
|
|
// producing a partial solution, or more steps
|
|
// toward that solution.
|
|
case SolutionKind::Solved: {
|
|
workList.pop_back();
|
|
break;
|
|
}
|
|
|
|
// Keep this step in the work list to return to it
|
|
// once all other steps are done, this could be a
|
|
// disjunction which has to peek a new choice until
|
|
// it completely runs out of choices, or type variable
|
|
// binding.
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
|
|
prevFailed = result.getKind() == SolutionKind::Error;
|
|
result.transfer(workList);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::collectDisjunctions(
|
|
SmallVectorImpl<Constraint *> &disjunctions) {
|
|
for (auto &constraint : InactiveConstraints) {
|
|
if (constraint.getKind() == ConstraintKind::Disjunction)
|
|
disjunctions.push_back(&constraint);
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::filterDisjunction(
|
|
Constraint *disjunction, bool restoreOnFail,
|
|
llvm::function_ref<bool(Constraint *)> pred) {
|
|
assert(disjunction->getKind() == ConstraintKind::Disjunction);
|
|
|
|
SmallVector<Constraint *, 4> constraintsToRestoreOnFail;
|
|
unsigned choiceIdx = 0;
|
|
unsigned numEnabledTerms = 0;
|
|
ASTContext &ctx = getASTContext();
|
|
for (unsigned constraintIdx : indices(disjunction->getNestedConstraints())) {
|
|
auto constraint = disjunction->getNestedConstraints()[constraintIdx];
|
|
|
|
// Skip already-disabled constraints. Let's treat disabled
|
|
// choices which have a fix as "enabled" ones here, so we can
|
|
// potentially infer some type information from them.
|
|
if (constraint->isDisabled() && !constraint->getFix())
|
|
continue;
|
|
|
|
if (pred(constraint)) {
|
|
++numEnabledTerms;
|
|
choiceIdx = constraintIdx;
|
|
continue;
|
|
}
|
|
|
|
if (ctx.TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = ctx.TypeCheckerDebug->getStream();
|
|
log.indent(solverState ? solverState->depth * 2 + 2 : 0)
|
|
<< "(disabled disjunction term ";
|
|
constraint->print(log, &ctx.SourceMgr);
|
|
log << ")\n";
|
|
}
|
|
|
|
if (restoreOnFail)
|
|
constraintsToRestoreOnFail.push_back(constraint);
|
|
|
|
if (solverState)
|
|
solverState->disableContraint(constraint);
|
|
else
|
|
constraint->setDisabled();
|
|
}
|
|
|
|
switch (numEnabledTerms) {
|
|
case 0:
|
|
for (auto constraint : constraintsToRestoreOnFail) {
|
|
constraint->setEnabled();
|
|
}
|
|
return SolutionKind::Error;
|
|
|
|
case 1: {
|
|
// Only a single constraint remains. Retire the disjunction and make
|
|
// the remaining constraint active.
|
|
auto choice = disjunction->getNestedConstraints()[choiceIdx];
|
|
|
|
// This can only happen when subscript syntax is used to lookup
|
|
// something which doesn't exist in type marked with
|
|
// `@dynamicMemberLookup`.
|
|
// Since filtering currently runs as part of the `applicable function`
|
|
// constraint processing, "keypath dynamic member lookup" choice can't
|
|
// be attempted in-place because that would also try to operate on that
|
|
// constraint, so instead let's keep the disjunction, but disable all
|
|
// unviable choices.
|
|
if (choice->getOverloadChoice().getKind() ==
|
|
OverloadChoiceKind::KeyPathDynamicMemberLookup) {
|
|
// Early simplification of the "keypath dynamic member lookup" choice
|
|
// is impossible because it requires constraints associated with
|
|
// subscript index expression to be present.
|
|
if (Phase == ConstraintSystemPhase::ConstraintGeneration)
|
|
return SolutionKind::Unsolved;
|
|
|
|
for (auto *currentChoice : disjunction->getNestedConstraints()) {
|
|
if (currentChoice != choice)
|
|
solverState->disableContraint(currentChoice);
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Retire the disjunction. It's been solved.
|
|
retireConstraint(disjunction);
|
|
|
|
// Note the choice we made and simplify it. This introduces the
|
|
// new constraint into the system.
|
|
if (disjunction->shouldRememberChoice()) {
|
|
recordDisjunctionChoice(disjunction->getLocator(), choiceIdx);
|
|
}
|
|
|
|
if (ctx.TypeCheckerOpts.DebugConstraintSolver) {
|
|
auto &log = ctx.TypeCheckerDebug->getStream();
|
|
log.indent(solverState ? solverState->depth * 2 + 2 : 0)
|
|
<< "(introducing single enabled disjunction term ";
|
|
choice->print(log, &ctx.SourceMgr);
|
|
log << ")\n";
|
|
}
|
|
|
|
simplifyDisjunctionChoice(choice);
|
|
|
|
return failedConstraint ? SolutionKind::Unsolved : SolutionKind::Solved;
|
|
}
|
|
|
|
default:
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
}
|
|
|
|
// Attempt to find a disjunction of bind constraints where all options
|
|
// in the disjunction are binding the same type variable.
|
|
//
|
|
// Prefer disjunctions where the bound type variable is also the
|
|
// right-hand side of a conversion constraint, since having a concrete
|
|
// type that we're converting to can make it possible to split the
|
|
// constraint system into multiple ones.
|
|
static Constraint *selectBestBindingDisjunction(
|
|
ConstraintSystem &cs, SmallVectorImpl<Constraint *> &disjunctions) {
|
|
|
|
if (disjunctions.empty())
|
|
return nullptr;
|
|
|
|
auto getAsTypeVar = [&cs](Type type) {
|
|
return cs.simplifyType(type)->getRValueType()->getAs<TypeVariableType>();
|
|
};
|
|
|
|
Constraint *firstBindDisjunction = nullptr;
|
|
for (auto *disjunction : disjunctions) {
|
|
auto choices = disjunction->getNestedConstraints();
|
|
assert(!choices.empty());
|
|
|
|
auto *choice = choices.front();
|
|
if (choice->getKind() != ConstraintKind::Bind)
|
|
continue;
|
|
|
|
// We can judge disjunction based on the single choice
|
|
// because all of choices (of bind overload set) should
|
|
// have the same left-hand side.
|
|
// Only do this for simple type variable bindings, not for
|
|
// bindings like: ($T1) -> $T2 bind String -> Int
|
|
auto *typeVar = getAsTypeVar(choice->getFirstType());
|
|
if (!typeVar)
|
|
continue;
|
|
|
|
if (!firstBindDisjunction)
|
|
firstBindDisjunction = disjunction;
|
|
|
|
auto constraints = cs.getConstraintGraph().gatherConstraints(
|
|
typeVar, ConstraintGraph::GatheringKind::EquivalenceClass,
|
|
[](Constraint *constraint) {
|
|
return constraint->getKind() == ConstraintKind::Conversion;
|
|
});
|
|
|
|
for (auto *constraint : constraints) {
|
|
if (typeVar == getAsTypeVar(constraint->getSecondType()))
|
|
return disjunction;
|
|
}
|
|
}
|
|
|
|
// If we had any binding disjunctions, return the first of
|
|
// those. These ensure that we attempt to bind types earlier than
|
|
// trying the elements of other disjunctions, which can often mean
|
|
// we fail faster.
|
|
return firstBindDisjunction;
|
|
}
|
|
|
|
// For a given type, collect any concrete types or literal
|
|
// conformances we can reach by walking the constraint graph starting
|
|
// from this point.
|
|
//
|
|
// For example, if the type is a type variable, we'll walk back
|
|
// through the constraints mentioning this type variable and find what
|
|
// types are converted to this type along with what literals are
|
|
// conformed-to by this type.
|
|
void ConstraintSystem::ArgumentInfoCollector::walk(Type argType) {
|
|
llvm::SmallSet<TypeVariableType *, 4> visited;
|
|
llvm::SmallVector<Type, 4> worklist;
|
|
worklist.push_back(argType);
|
|
|
|
while (!worklist.empty()) {
|
|
auto itemTy = worklist.pop_back_val()->getRValueType();
|
|
|
|
if (!itemTy->is<TypeVariableType>()) {
|
|
addType(itemTy);
|
|
continue;
|
|
}
|
|
|
|
auto tyvar = itemTy->castTo<TypeVariableType>();
|
|
if (auto fixedTy = CS.getFixedType(tyvar)) {
|
|
addType(fixedTy);
|
|
continue;
|
|
}
|
|
|
|
auto *rep = CS.getRepresentative(tyvar);
|
|
|
|
// FIXME: This can happen when we have two type variables that are
|
|
// subtypes of each other. We would ideally merge those type
|
|
// variables somewhere.
|
|
if (visited.count(rep))
|
|
continue;
|
|
|
|
visited.insert(rep);
|
|
|
|
auto constraints = CS.getConstraintGraph().gatherConstraints(
|
|
rep, ConstraintGraph::GatheringKind::EquivalenceClass);
|
|
|
|
for (auto *constraint : constraints) {
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::LiteralConformsTo:
|
|
addLiteralProtocol(constraint->getProtocol());
|
|
break;
|
|
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal: {
|
|
auto firstTy = constraint->getFirstType();
|
|
auto secondTy = constraint->getSecondType();
|
|
if (firstTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(firstTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep))
|
|
worklist.push_back(secondTy);
|
|
}
|
|
if (secondTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(secondTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep))
|
|
worklist.push_back(firstTy);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::BridgingConversion:
|
|
case ConstraintKind::BindParam:
|
|
case ConstraintKind::OpaqueUnderlyingType: {
|
|
auto secondTy = constraint->getSecondType();
|
|
if (secondTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(secondTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep))
|
|
worklist.push_back(constraint->getFirstType());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
case ConstraintKind::EscapableFunctionOf: {
|
|
auto firstTy = constraint->getFirstType();
|
|
if (firstTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(firstTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep))
|
|
worklist.push_back(constraint->getSecondType());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::OptionalObject: {
|
|
// Get the underlying object type.
|
|
auto secondTy = constraint->getSecondType();
|
|
if (secondTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(secondTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep)) {
|
|
// See if we can actually determine what the underlying
|
|
// type is.
|
|
Type fixedTy;
|
|
auto firstTy = constraint->getFirstType();
|
|
if (!firstTy->is<TypeVariableType>()) {
|
|
fixedTy = firstTy;
|
|
} else {
|
|
fixedTy = CS.getFixedType(firstTy->castTo<TypeVariableType>());
|
|
}
|
|
if (fixedTy && fixedTy->getOptionalObjectType())
|
|
worklist.push_back(fixedTy->getOptionalObjectType());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::KeyPathApplication:
|
|
case ConstraintKind::KeyPath: {
|
|
auto firstTy = constraint->getFirstType();
|
|
if (firstTy->is<TypeVariableType>()) {
|
|
auto otherRep =
|
|
CS.getRepresentative(firstTy->castTo<TypeVariableType>());
|
|
if (otherRep->isEqual(rep))
|
|
worklist.push_back(constraint->getThirdType());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ConstraintKind::BindToPointerType:
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::ValueWitness:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::Disjunction:
|
|
case ConstraintKind::CheckedCast:
|
|
case ConstraintKind::OpenedExistentialOf:
|
|
case ConstraintKind::ApplicableFunction:
|
|
case ConstraintKind::DynamicCallableApplicableFunction:
|
|
case ConstraintKind::BindOverload:
|
|
case ConstraintKind::FunctionInput:
|
|
case ConstraintKind::FunctionResult:
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::OneWayEqual:
|
|
case ConstraintKind::DefaultClosureType:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::ArgumentInfoCollector::minimizeLiteralProtocols() {
|
|
if (LiteralProtocols.size() <= 1)
|
|
return;
|
|
|
|
llvm::SmallVector<std::pair<ProtocolDecl *, Type>, 2> candidates;
|
|
llvm::SmallVector<ProtocolDecl *, 2> skippedProtocols;
|
|
|
|
for (auto *protocol : LiteralProtocols) {
|
|
if (auto defaultType = TypeChecker::getDefaultType(protocol, CS.DC)) {
|
|
candidates.push_back({protocol, defaultType});
|
|
continue;
|
|
}
|
|
|
|
// Looks like argument expected to conform to something like
|
|
// `ExpressibleByNilLiteral` which doesn't have a default
|
|
// type and as a result can't participate in minimalization.
|
|
skippedProtocols.push_back(protocol);
|
|
}
|
|
|
|
if (candidates.size() <= 1)
|
|
return;
|
|
|
|
unsigned result = 0;
|
|
for (unsigned i = 1, n = candidates.size(); i != n; ++i) {
|
|
const auto &candidate = candidates[i];
|
|
|
|
auto first =
|
|
TypeChecker::conformsToProtocol(candidate.second, candidates[result].first,
|
|
CS.DC, ConformanceCheckFlags::InExpression);
|
|
auto second =
|
|
TypeChecker::conformsToProtocol(candidates[result].second, candidate.first,
|
|
CS.DC, ConformanceCheckFlags::InExpression);
|
|
if (first.isInvalid() == second.isInvalid())
|
|
return;
|
|
|
|
if (!first.isInvalid())
|
|
result = i;
|
|
}
|
|
|
|
LiteralProtocols.clear();
|
|
LiteralProtocols.insert(candidates[result].first);
|
|
LiteralProtocols.insert(skippedProtocols.begin(), skippedProtocols.end());
|
|
}
|
|
|
|
void ConstraintSystem::ArgumentInfoCollector::dump() const {
|
|
auto &log = CS.getASTContext().TypeCheckerDebug->getStream();
|
|
log << "types:\n";
|
|
for (auto type : Types)
|
|
type->print(log);
|
|
log << "\n";
|
|
|
|
log << "literal protocols:\n";
|
|
for (auto *proto : LiteralProtocols)
|
|
proto->print(log);
|
|
log << "\n";
|
|
}
|
|
|
|
// Check to see if we know something about the types of all arguments
|
|
// in the given function type.
|
|
bool ConstraintSystem::haveTypeInformationForAllArguments(
|
|
FunctionType *fnType) {
|
|
llvm::SetVector<Constraint *> literalConformsTo;
|
|
return llvm::all_of(fnType->getParams(),
|
|
[&](AnyFunctionType::Param param) -> bool {
|
|
ArgumentInfoCollector argInfo(*this, param);
|
|
auto countFacts = argInfo.getTypes().size() +
|
|
argInfo.getLiteralProtocols().size();
|
|
return countFacts > 0;
|
|
});
|
|
}
|
|
|
|
Constraint *ConstraintSystem::getUnboundBindOverloadDisjunction(
|
|
TypeVariableType *tyvar, unsigned *numOptionalUnwraps) {
|
|
if (numOptionalUnwraps)
|
|
*numOptionalUnwraps = 0;
|
|
|
|
auto *rep = getRepresentative(tyvar);
|
|
assert(!getFixedType(rep));
|
|
|
|
SmallPtrSet<TypeVariableType *, 4> visitedVars;
|
|
while (visitedVars.insert(rep).second) {
|
|
// Look for a disjunction that binds this type variable to an overload set.
|
|
TypeVariableType *optionalObjectTypeVar = nullptr;
|
|
auto disjunctions = getConstraintGraph().gatherConstraints(
|
|
rep, ConstraintGraph::GatheringKind::EquivalenceClass,
|
|
[this, rep, &optionalObjectTypeVar](Constraint *match) {
|
|
// If we have an "optional object of" constraint where the right-hand
|
|
// side is this type variable, we may need to follow that type
|
|
// variable to find the disjunction.
|
|
if (match->getKind() == ConstraintKind::OptionalObject) {
|
|
auto rhsTypeVar = match->getSecondType()->getAs<TypeVariableType>();
|
|
if (rhsTypeVar && getRepresentative(rhsTypeVar) == rep) {
|
|
optionalObjectTypeVar =
|
|
match->getFirstType()->getAs<TypeVariableType>();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// We only care about disjunctions of overload bindings.
|
|
if (match->getKind() != ConstraintKind::Disjunction ||
|
|
match->getNestedConstraints().front()->getKind() !=
|
|
ConstraintKind::BindOverload)
|
|
return false;
|
|
|
|
auto lhsTypeVar =
|
|
match->getNestedConstraints().front()->getFirstType()
|
|
->getAs<TypeVariableType>();
|
|
if (!lhsTypeVar)
|
|
return false;
|
|
|
|
return getRepresentative(lhsTypeVar) == rep;
|
|
});
|
|
|
|
// If we found a disjunction, return it.
|
|
if (!disjunctions.empty())
|
|
return disjunctions[0];
|
|
|
|
// If we found an "optional object of" constraint, follow it.
|
|
if (optionalObjectTypeVar && !getFixedType(optionalObjectTypeVar)) {
|
|
if (numOptionalUnwraps)
|
|
++*numOptionalUnwraps;
|
|
|
|
tyvar = optionalObjectTypeVar;
|
|
rep = getRepresentative(tyvar);
|
|
continue;
|
|
}
|
|
|
|
// There is nowhere else to look.
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Find a disjunction associated with an ApplicableFunction constraint
|
|
// where we have some information about all of the types of in the
|
|
// function application (even if we only know something about what the
|
|
// types conform to and not actually a concrete type).
|
|
Constraint *ConstraintSystem::selectApplyDisjunction() {
|
|
for (auto &constraint : InactiveConstraints) {
|
|
if (constraint.getKind() != ConstraintKind::ApplicableFunction)
|
|
continue;
|
|
|
|
auto *applicable = &constraint;
|
|
if (haveTypeInformationForAllArguments(
|
|
applicable->getFirstType()->castTo<FunctionType>())) {
|
|
auto *tyvar = applicable->getSecondType()->castTo<TypeVariableType>();
|
|
|
|
// If we have created the disjunction for this apply, find it.
|
|
auto *disjunction = getUnboundBindOverloadDisjunction(tyvar);
|
|
if (disjunction)
|
|
return disjunction;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isOperatorBindOverload(Constraint *bindOverload) {
|
|
if (bindOverload->getKind() != ConstraintKind::BindOverload)
|
|
return false;
|
|
|
|
auto choice = bindOverload->getOverloadChoice();
|
|
if (!choice.isDecl())
|
|
return false;
|
|
|
|
auto *funcDecl = dyn_cast<FuncDecl>(choice.getDecl());
|
|
return funcDecl && funcDecl->getOperatorDecl();
|
|
}
|
|
|
|
// Given a bind overload constraint for an operator, return the
|
|
// protocol designated as the first place to look for overloads of the
|
|
// operator.
|
|
static ArrayRef<NominalTypeDecl *>
|
|
getOperatorDesignatedNominalTypes(Constraint *bindOverload) {
|
|
auto choice = bindOverload->getOverloadChoice();
|
|
auto *funcDecl = cast<FuncDecl>(choice.getDecl());
|
|
auto *operatorDecl = funcDecl->getOperatorDecl();
|
|
return operatorDecl->getDesignatedNominalTypes();
|
|
}
|
|
|
|
void ConstraintSystem::sortDesignatedTypes(
|
|
SmallVectorImpl<NominalTypeDecl *> &nominalTypes,
|
|
Constraint *bindOverload) {
|
|
auto *tyvar = bindOverload->getFirstType()->castTo<TypeVariableType>();
|
|
auto applicableFns = getConstraintGraph().gatherConstraints(
|
|
tyvar, ConstraintGraph::GatheringKind::EquivalenceClass,
|
|
[](Constraint *match) {
|
|
return match->getKind() == ConstraintKind::ApplicableFunction;
|
|
});
|
|
|
|
// FIXME: This is not true when we run the constraint optimizer.
|
|
// assert(applicableFns.size() <= 1);
|
|
|
|
// We have a disjunction for an operator but no application of it,
|
|
// so it's being passed as an argument.
|
|
if (applicableFns.size() == 0)
|
|
return;
|
|
|
|
// FIXME: We have more than one applicable per disjunction as a
|
|
// result of merging disjunction type variables. We may want
|
|
// to rip that out at some point.
|
|
Constraint *foundApplicable = nullptr;
|
|
SmallVector<Optional<Type>, 2> argumentTypes;
|
|
for (auto *applicableFn : applicableFns) {
|
|
argumentTypes.clear();
|
|
auto *fnTy = applicableFn->getFirstType()->castTo<FunctionType>();
|
|
ArgumentInfoCollector argInfo(*this, fnTy);
|
|
// Stop if we hit anything with concrete types or conformances to
|
|
// literals.
|
|
if (!argInfo.getTypes().empty() || !argInfo.getLiteralProtocols().empty()) {
|
|
foundApplicable = applicableFn;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!foundApplicable)
|
|
return;
|
|
|
|
// FIXME: It would be good to avoid this redundancy.
|
|
auto *fnTy = foundApplicable->getFirstType()->castTo<FunctionType>();
|
|
ArgumentInfoCollector argInfo(*this, fnTy);
|
|
|
|
size_t nextType = 0;
|
|
for (auto argType : argInfo.getTypes()) {
|
|
auto *nominal = argType->getAnyNominal();
|
|
for (size_t i = nextType; i < nominalTypes.size(); ++i) {
|
|
if (nominal == nominalTypes[i]) {
|
|
std::swap(nominalTypes[nextType], nominalTypes[i]);
|
|
++nextType;
|
|
break;
|
|
} else if (auto *protoDecl = dyn_cast<ProtocolDecl>(nominalTypes[i])) {
|
|
if (TypeChecker::conformsToProtocol(
|
|
argType, protoDecl, DC, ConformanceCheckFlags::InExpression)) {
|
|
std::swap(nominalTypes[nextType], nominalTypes[i]);
|
|
++nextType;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (nextType + 1 >= nominalTypes.size())
|
|
return;
|
|
|
|
for (auto *protocol : argInfo.getLiteralProtocols()) {
|
|
auto defaultType = TypeChecker::getDefaultType(protocol, DC);
|
|
// ExpressibleByNilLiteral does not have a default type.
|
|
if (!defaultType)
|
|
continue;
|
|
auto *nominal = defaultType->getAnyNominal();
|
|
for (size_t i = nextType + 1; i < nominalTypes.size(); ++i) {
|
|
if (nominal == nominalTypes[i]) {
|
|
std::swap(nominalTypes[nextType], nominalTypes[i]);
|
|
++nextType;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ConstraintSystem::partitionForDesignatedTypes(
|
|
ArrayRef<Constraint *> Choices, ConstraintMatchLoop forEachChoice,
|
|
PartitionAppendCallback appendPartition) {
|
|
|
|
auto types = getOperatorDesignatedNominalTypes(Choices[0]);
|
|
if (types.empty())
|
|
return;
|
|
|
|
SmallVector<NominalTypeDecl *, 4> designatedNominalTypes(types.begin(),
|
|
types.end());
|
|
|
|
if (designatedNominalTypes.size() > 1)
|
|
sortDesignatedTypes(designatedNominalTypes, Choices[0]);
|
|
|
|
SmallVector<SmallVector<unsigned, 4>, 4> definedInDesignatedType;
|
|
SmallVector<SmallVector<unsigned, 4>, 4> definedInExtensionOfDesignatedType;
|
|
|
|
auto examineConstraint =
|
|
[&](unsigned constraintIndex, Constraint *constraint) -> bool {
|
|
auto *decl = constraint->getOverloadChoice().getDecl();
|
|
auto *funcDecl = cast<FuncDecl>(decl);
|
|
|
|
auto *parentDC = funcDecl->getParent();
|
|
auto *parentDecl = parentDC->getSelfNominalTypeDecl();
|
|
|
|
// Skip anything not defined in a nominal type.
|
|
if (!parentDecl)
|
|
return false;
|
|
|
|
for (auto designatedTypeIndex : indices(designatedNominalTypes)) {
|
|
auto *designatedNominal =
|
|
designatedNominalTypes[designatedTypeIndex];
|
|
|
|
if (parentDecl != designatedNominal)
|
|
continue;
|
|
|
|
auto &constraints =
|
|
isa<ExtensionDecl>(parentDC)
|
|
? definedInExtensionOfDesignatedType[designatedTypeIndex]
|
|
: definedInDesignatedType[designatedTypeIndex];
|
|
|
|
constraints.push_back(constraintIndex);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
definedInDesignatedType.resize(designatedNominalTypes.size());
|
|
definedInExtensionOfDesignatedType.resize(designatedNominalTypes.size());
|
|
|
|
forEachChoice(Choices, examineConstraint);
|
|
|
|
// Now collect the overload choices that are defined within the type
|
|
// that was designated in the operator declaration.
|
|
// Add partitions for each of the overloads we found in types that
|
|
// were designated as part of the operator declaration.
|
|
for (auto designatedTypeIndex : indices(designatedNominalTypes)) {
|
|
if (designatedTypeIndex < definedInDesignatedType.size()) {
|
|
auto &primary = definedInDesignatedType[designatedTypeIndex];
|
|
appendPartition(primary);
|
|
}
|
|
if (designatedTypeIndex < definedInExtensionOfDesignatedType.size()) {
|
|
auto &secondary = definedInExtensionOfDesignatedType[designatedTypeIndex];
|
|
appendPartition(secondary);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Performance hack: if there are two generic overloads, and one is
|
|
// more specialized than the other, prefer the more-specialized one.
|
|
static Constraint *tryOptimizeGenericDisjunction(
|
|
DeclContext *dc,
|
|
ArrayRef<Constraint *> constraints) {
|
|
llvm::SmallVector<Constraint *, 4> choices;
|
|
for (auto *choice : constraints) {
|
|
if (choices.size() > 2)
|
|
return nullptr;
|
|
|
|
if (!choice->isDisabled())
|
|
choices.push_back(choice);
|
|
}
|
|
|
|
if (choices.size() != 2)
|
|
return nullptr;
|
|
|
|
if (choices[0]->getKind() != ConstraintKind::BindOverload ||
|
|
choices[1]->getKind() != ConstraintKind::BindOverload ||
|
|
choices[0]->isFavored() ||
|
|
choices[1]->isFavored())
|
|
return nullptr;
|
|
|
|
OverloadChoice choiceA = choices[0]->getOverloadChoice();
|
|
OverloadChoice choiceB = choices[1]->getOverloadChoice();
|
|
|
|
if (!choiceA.isDecl() || !choiceB.isDecl())
|
|
return nullptr;
|
|
|
|
auto isViable = [](ValueDecl *decl) -> bool {
|
|
assert(decl);
|
|
|
|
auto *AFD = dyn_cast<AbstractFunctionDecl>(decl);
|
|
if (!AFD || !AFD->isGeneric())
|
|
return false;
|
|
|
|
if (AFD->getAttrs().hasAttribute<DisfavoredOverloadAttr>())
|
|
return false;
|
|
|
|
auto funcType = AFD->getInterfaceType();
|
|
auto hasAnyOrOptional = funcType.findIf([](Type type) -> bool {
|
|
if (type->getOptionalObjectType())
|
|
return true;
|
|
|
|
return type->isAny();
|
|
});
|
|
|
|
// If function declaration references `Any` or an optional type,
|
|
// let's not attempt it, because it's unclear
|
|
// without solving which overload is going to be better.
|
|
return !hasAnyOrOptional;
|
|
};
|
|
|
|
auto *declA = choiceA.getDecl();
|
|
auto *declB = choiceB.getDecl();
|
|
|
|
if (!isViable(declA) || !isViable(declB))
|
|
return nullptr;
|
|
|
|
switch (TypeChecker::compareDeclarations(dc, declA, declB)) {
|
|
case Comparison::Better:
|
|
return choices[0];
|
|
|
|
case Comparison::Worse:
|
|
return choices[1];
|
|
|
|
case Comparison::Unordered:
|
|
return nullptr;
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
void ConstraintSystem::partitionDisjunction(
|
|
ArrayRef<Constraint *> Choices, SmallVectorImpl<unsigned> &Ordering,
|
|
SmallVectorImpl<unsigned> &PartitionBeginning) {
|
|
// Apply a special-case rule for favoring one generic function over
|
|
// another.
|
|
if (auto favored = tryOptimizeGenericDisjunction(DC, Choices)) {
|
|
favorConstraint(favored);
|
|
}
|
|
|
|
SmallSet<Constraint *, 16> taken;
|
|
|
|
// Local function used to iterate over the untaken choices from the
|
|
// disjunction and use a higher-order function to determine if they
|
|
// should be part of a partition.
|
|
ConstraintMatchLoop forEachChoice =
|
|
[&](ArrayRef<Constraint *>,
|
|
std::function<bool(unsigned index, Constraint *)> fn) {
|
|
for (auto index : indices(Choices)) {
|
|
auto *constraint = Choices[index];
|
|
if (taken.count(constraint))
|
|
continue;
|
|
|
|
if (fn(index, constraint))
|
|
taken.insert(constraint);
|
|
}
|
|
};
|
|
|
|
// First collect some things that we'll generally put near the beginning or
|
|
// end of the partitioning.
|
|
|
|
SmallVector<unsigned, 4> favored;
|
|
SmallVector<unsigned, 4> simdOperators;
|
|
SmallVector<unsigned, 4> disabled;
|
|
SmallVector<unsigned, 4> unavailable;
|
|
|
|
// First collect disabled and favored constraints.
|
|
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
|
|
if (constraint->isDisabled()) {
|
|
disabled.push_back(index);
|
|
return true;
|
|
}
|
|
|
|
if (constraint->isFavored()) {
|
|
favored.push_back(index);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
});
|
|
|
|
// Then unavailable constraints if we're skipping them.
|
|
if (!shouldAttemptFixes()) {
|
|
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
|
|
if (constraint->getKind() != ConstraintKind::BindOverload)
|
|
return false;
|
|
|
|
auto *decl = constraint->getOverloadChoice().getDeclOrNull();
|
|
auto *funcDecl = dyn_cast_or_null<FuncDecl>(decl);
|
|
if (!funcDecl)
|
|
return false;
|
|
|
|
if (!funcDecl->getAttrs().isUnavailable(getASTContext()))
|
|
return false;
|
|
|
|
unavailable.push_back(index);
|
|
return true;
|
|
});
|
|
}
|
|
|
|
// Partition SIMD operators.
|
|
if (!getASTContext().TypeCheckerOpts.SolverEnableOperatorDesignatedTypes &&
|
|
isOperatorBindOverload(Choices[0])) {
|
|
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
|
|
if (!isOperatorBindOverload(constraint))
|
|
return false;
|
|
|
|
if (isSIMDOperator(constraint->getOverloadChoice().getDecl())) {
|
|
simdOperators.push_back(index);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
// Local function to create the next partition based on the options
|
|
// passed in.
|
|
PartitionAppendCallback appendPartition =
|
|
[&](SmallVectorImpl<unsigned> &options) {
|
|
if (options.size()) {
|
|
PartitionBeginning.push_back(Ordering.size());
|
|
Ordering.insert(Ordering.end(), options.begin(), options.end());
|
|
}
|
|
};
|
|
|
|
if (getASTContext().TypeCheckerOpts.SolverEnableOperatorDesignatedTypes &&
|
|
isOperatorBindOverload(Choices[0])) {
|
|
partitionForDesignatedTypes(Choices, forEachChoice, appendPartition);
|
|
}
|
|
|
|
SmallVector<unsigned, 4> everythingElse;
|
|
// Gather the remaining options.
|
|
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
|
|
everythingElse.push_back(index);
|
|
return true;
|
|
});
|
|
appendPartition(favored);
|
|
appendPartition(everythingElse);
|
|
appendPartition(simdOperators);
|
|
|
|
// Now create the remaining partitions from what we previously collected.
|
|
appendPartition(unavailable);
|
|
appendPartition(disabled);
|
|
|
|
assert(Ordering.size() == Choices.size());
|
|
}
|
|
|
|
Constraint *ConstraintSystem::selectDisjunction() {
|
|
SmallVector<Constraint *, 4> disjunctions;
|
|
|
|
collectDisjunctions(disjunctions);
|
|
if (disjunctions.empty())
|
|
return nullptr;
|
|
|
|
// Attempt apply disjunctions first. When we have operators with
|
|
// designated types, this is important, because it allows us to
|
|
// select all the preferred operator overloads prior to other
|
|
// disjunctions that we may not be able to short-circuit, allowing
|
|
// us to eliminate behavior that is exponential in the number of
|
|
// operators in the expression.
|
|
if (getASTContext().TypeCheckerOpts.SolverEnableOperatorDesignatedTypes) {
|
|
if (auto *disjunction = selectApplyDisjunction())
|
|
return disjunction;
|
|
}
|
|
|
|
if (auto *disjunction = selectBestBindingDisjunction(*this, disjunctions))
|
|
return disjunction;
|
|
|
|
// Pick the disjunction with the smallest number of active choices.
|
|
auto minDisjunction =
|
|
std::min_element(disjunctions.begin(), disjunctions.end(),
|
|
[&](Constraint *first, Constraint *second) -> bool {
|
|
return first->countActiveNestedConstraints() <
|
|
second->countActiveNestedConstraints();
|
|
});
|
|
|
|
if (minDisjunction != disjunctions.end())
|
|
return *minDisjunction;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool DisjunctionChoice::attempt(ConstraintSystem &cs) const {
|
|
cs.simplifyDisjunctionChoice(Choice);
|
|
|
|
if (ExplicitConversion)
|
|
propagateConversionInfo(cs);
|
|
|
|
// Attempt to simplify current choice might result in
|
|
// immediate failure, which is recorded in constraint system.
|
|
return !cs.failedConstraint && !cs.simplify();
|
|
}
|
|
|
|
bool DisjunctionChoice::isGenericOperator() const {
|
|
auto *decl = getOperatorDecl(Choice);
|
|
if (!decl)
|
|
return false;
|
|
|
|
auto interfaceType = decl->getInterfaceType();
|
|
return interfaceType->is<GenericFunctionType>();
|
|
}
|
|
|
|
bool DisjunctionChoice::isSymmetricOperator() const {
|
|
auto *decl = getOperatorDecl(Choice);
|
|
if (!decl)
|
|
return false;
|
|
|
|
auto func = dyn_cast<FuncDecl>(decl);
|
|
auto paramList = func->getParameters();
|
|
if (paramList->size() != 2)
|
|
return true;
|
|
|
|
auto firstType = paramList->get(0)->getInterfaceType();
|
|
auto secondType = paramList->get(1)->getInterfaceType();
|
|
return firstType->isEqual(secondType);
|
|
}
|
|
|
|
void DisjunctionChoice::propagateConversionInfo(ConstraintSystem &cs) const {
|
|
assert(ExplicitConversion);
|
|
|
|
auto LHS = Choice->getFirstType();
|
|
auto typeVar = LHS->getAs<TypeVariableType>();
|
|
if (!typeVar)
|
|
return;
|
|
|
|
// Use the representative (if any) to lookup constraints
|
|
// and potentially bind the coercion type to.
|
|
typeVar = typeVar->getImpl().getRepresentative(nullptr);
|
|
|
|
// If the representative already has a type assigned to it
|
|
// we can't really do anything here.
|
|
if (typeVar->getImpl().getFixedType(nullptr))
|
|
return;
|
|
|
|
auto bindings = cs.getPotentialBindings(typeVar);
|
|
if (bindings.InvolvesTypeVariables || bindings.Bindings.size() != 1)
|
|
return;
|
|
|
|
auto conversionType = bindings.Bindings[0].BindingType;
|
|
auto constraints = cs.CG.gatherConstraints(
|
|
typeVar,
|
|
ConstraintGraph::GatheringKind::EquivalenceClass,
|
|
[](Constraint *constraint) -> bool {
|
|
switch (constraint->getKind()) {
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::Defaultable:
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::LiteralConformsTo:
|
|
return false;
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
});
|
|
|
|
if (constraints.empty())
|
|
cs.addConstraint(ConstraintKind::Bind, typeVar, conversionType,
|
|
Choice->getLocator());
|
|
}
|