Files
swift-mirror/lib/AST/USRGeneration.cpp
Jordan Rose 1c651973c3 Excise "Accessibility" from the compiler (2/3)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.

This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
2017-08-28 11:34:44 -07:00

303 lines
10 KiB
C++

//===--- USRGeneration.cpp - Routines for USR generation ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Module.h"
#include "swift/AST/USRGeneration.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/SwiftNameTranslation.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
using namespace swift;
using namespace ide;
static inline StringRef getUSRSpacePrefix() {
return "s:";
}
bool ide::printTypeUSR(Type Ty, raw_ostream &OS) {
assert(!Ty->hasArchetype() && "cannot have contextless archetypes mangled.");
Mangle::ASTMangler Mangler;
OS << Mangler.mangleTypeForDebugger(Ty->getRValueType(), nullptr, nullptr);
return false;
}
bool ide::printDeclTypeUSR(const ValueDecl *D, raw_ostream &OS) {
Mangle::ASTMangler Mangler;
std::string MangledName = Mangler.mangleDeclType(D);
OS << MangledName;
return false;
}
static bool printObjCUSRFragment(const ValueDecl *D, StringRef ObjCName,
const ExtensionDecl *ExtContextD,
raw_ostream &OS) {
if (!D)
return true;
// The Swift module name that the decl originated from. If the decl is
// originating from ObjC code (ObjC module or the bridging header) then this
// will be empty.
StringRef ModuleName;
if (!D->hasClangNode())
ModuleName = D->getModuleContext()->getNameStr();
if (isa<ClassDecl>(D)) {
StringRef extContextName;
if (ExtContextD) {
extContextName = ExtContextD->getModuleContext()->getNameStr();
}
clang::index::generateUSRForObjCClass(ObjCName, OS,
ModuleName, extContextName);
} else if (isa<ProtocolDecl>(D)) {
clang::index::generateUSRForObjCProtocol(ObjCName, OS, ModuleName);
} else if (isa<VarDecl>(D)) {
clang::index::generateUSRForObjCProperty(ObjCName, D->isStatic(), OS);
} else if (isa<ConstructorDecl>(D)) {
// init() is a class member in Swift, but an instance method in ObjC.
clang::index::generateUSRForObjCMethod(ObjCName, /*IsInstanceMethod=*/true,
OS);
} else if (isa<AbstractFunctionDecl>(D)) {
clang::index::generateUSRForObjCMethod(ObjCName, D->isInstanceMember(), OS);
} else if (isa<EnumDecl>(D)) {
clang::index::generateUSRForGlobalEnum(ObjCName, OS, ModuleName);
} else if (isa<EnumElementDecl>(D)) {
clang::index::generateUSRForEnumConstant(ObjCName, OS);
} else {
llvm_unreachable("Unexpected value decl");
}
return false;
}
static bool printObjCUSRContext(const Decl *D, raw_ostream &OS) {
OS << clang::index::getUSRSpacePrefix();
auto *DC = D->getDeclContext();
if (auto *Parent = DC->getAsNominalTypeOrNominalTypeExtensionContext()) {
auto *extContextD = dyn_cast<ExtensionDecl>(DC);
auto ObjCName = objc_translation::getObjCNameForSwiftDecl(Parent);
if (printObjCUSRFragment(Parent, ObjCName.first.str(), extContextD, OS))
return true;
}
return false;
}
static bool printObjCUSRForAccessor(const AbstractStorageDecl *ASD,
AccessorKind Kind,
raw_ostream &OS) {
if (printObjCUSRContext(ASD, OS))
return true;
ObjCSelector Selector;
switch (Kind) {
case swift::AccessorKind::IsGetter:
Selector = ASD->getObjCGetterSelector();
break;
case swift::AccessorKind::IsSetter:
Selector = ASD->getObjCSetterSelector();
break;
default:
llvm_unreachable("invalid accessor kind");
}
assert(Selector);
llvm::SmallString<128> Buf;
clang::index::generateUSRForObjCMethod(Selector.getString(Buf),
ASD->isInstanceMember(), OS);
return false;
}
static bool printObjCUSR(const ValueDecl *D, raw_ostream &OS) {
if (printObjCUSRContext(D, OS))
return true;
auto *extContextD = dyn_cast<ExtensionDecl>(D->getDeclContext());
auto ObjCName = objc_translation::getObjCNameForSwiftDecl(D);
if (!ObjCName.first.empty())
return printObjCUSRFragment(D, ObjCName.first.str(), extContextD, OS);
assert(ObjCName.second);
llvm::SmallString<128> Buf;
return printObjCUSRFragment(D, ObjCName.second.getString(Buf),
extContextD, OS);
}
static bool shouldUseObjCUSR(const Decl *D) {
// Only the subscript getter/setter are visible to ObjC rather than the
// subscript itself
if (isa<SubscriptDecl>(D))
return false;
auto Parent = D->getDeclContext()->getInnermostDeclarationDeclContext();
if (Parent && (!shouldUseObjCUSR(Parent) || // parent should be visible too
!D->getDeclContext()->isTypeContext() || // no local decls
isa<TypeDecl>(D))) // nested types aren't supported
return false;
if (const auto *VD = dyn_cast<ValueDecl>(D)) {
if (isa<EnumElementDecl>(VD))
return true;
return objc_translation::isVisibleToObjC(VD, AccessLevel::Internal);
}
if (const auto *ED = dyn_cast<ExtensionDecl>(D)) {
if (auto ExtendedType = ED->getExtendedType()) {
auto baseClass = ExtendedType->getClassOrBoundGenericClass();
return baseClass && shouldUseObjCUSR(baseClass) && !baseClass->isForeign();
}
}
return false;
}
bool ide::printDeclUSR(const ValueDecl *D, raw_ostream &OS) {
if (!D->hasName() && !isa<ParamDecl>(D) &&
(!isa<FuncDecl>(D) ||
cast<FuncDecl>(D)->getAccessorKind() == AccessorKind::NotAccessor))
return true; // Ignore.
if (D->getModuleContext()->isBuiltinModule())
return true; // Ignore.
if (isa<ModuleDecl>(D))
return true; // Ignore.
auto interpretAsClangNode = [](const ValueDecl *D)->ClangNode {
ClangNode ClangN = D->getClangNode();
if (auto ClangD = ClangN.getAsDecl()) {
// NSErrorDomain causes the clang enum to be imported like this:
//
// struct MyError {
// enum Code : Int32 {
// case errFirst
// case errSecond
// }
// static var errFirst: MyError.Code { get }
// static var errSecond: MyError.Code { get }
// }
//
// The clang enum constants are associated with both the static vars and
// the enum cases.
// But we want unique USRs for the above symbols, so use the clang USR
// for the enum cases, and the Swift USR for the vars.
//
if (auto *ClangEnumConst = dyn_cast<clang::EnumConstantDecl>(ClangD)) {
if (auto *ClangEnum = dyn_cast<clang::EnumDecl>(ClangEnumConst->getDeclContext())) {
if (ClangEnum->hasAttr<clang::NSErrorDomainAttr>() && isa<VarDecl>(D))
return ClangNode();
}
}
}
return ClangN;
};
if (ClangNode ClangN = interpretAsClangNode(D)) {
llvm::SmallString<128> Buf;
if (auto ClangD = ClangN.getAsDecl()) {
bool Ignore = clang::index::generateUSRForDecl(ClangD, Buf);
if (!Ignore)
OS << Buf.str();
return Ignore;
}
auto &Importer = *D->getASTContext().getClangModuleLoader();
auto ClangMacroInfo = ClangN.getAsMacro();
bool Ignore = clang::index::generateUSRForMacro(
D->getBaseName().getIdentifier().str(),
ClangMacroInfo->getDefinitionLoc(),
Importer.getClangASTContext().getSourceManager(), Buf);
if (!Ignore)
OS << Buf.str();
return Ignore;
}
if (shouldUseObjCUSR(D)) {
return printObjCUSR(D, OS);
}
if (!D->hasInterfaceType())
return true;
// Invalid code.
if (D->getInterfaceType().findIf([](Type t) -> bool {
return t->is<ModuleType>();
}))
return true;
Mangle::ASTMangler NewMangler;
std::string Mangled = NewMangler.mangleDeclAsUSR(D, getUSRSpacePrefix());
OS << Mangled;
return false;
}
bool ide::printAccessorUSR(const AbstractStorageDecl *D, AccessorKind AccKind,
llvm::raw_ostream &OS) {
// AccKind should always be either IsGetter or IsSetter here, based
// on whether a reference is a mutating or non-mutating use. USRs
// aren't supposed to reflect implementation differences like stored
// vs. addressed vs. observing.
//
// On the other side, the implementation indexer should be
// registering the getter/setter USRs independently of how they're
// actually implemented. So a stored variable should still have
// getter/setter USRs (pointing to the variable declaration), and an
// addressed variable should have its "getter" point at the
// addressor.
AbstractStorageDecl *SD = const_cast<AbstractStorageDecl*>(D);
if (shouldUseObjCUSR(SD)) {
return printObjCUSRForAccessor(SD, AccKind, OS);
}
Mangle::ASTMangler NewMangler;
std::string Mangled = NewMangler.mangleAccessorEntityAsUSR(AccKind,
AddressorKind::NotAddressor, SD, getUSRSpacePrefix());
OS << Mangled;
return false;
}
bool ide::printExtensionUSR(const ExtensionDecl *ED, raw_ostream &OS) {
if (ED->getExtendedType().isNull())
return true;
// We make up a unique usr for each extension by combining a prefix
// and the USR of the first value member of the extension.
for (auto D : ED->getMembers()) {
if (auto VD = dyn_cast<ValueDecl>(D)) {
OS << getUSRSpacePrefix() << "e:";
return printDeclUSR(VD, OS);
}
}
if (ED->getExtendedType() && ED->getExtendedType()->getAnyNominal()) {
OS << getUSRSpacePrefix() << "e:";
printDeclUSR(ED->getExtendedType()->getAnyNominal(), OS);
} else {
return true;
}
for (auto Inherit : ED->getInherited()) {
if (auto T = Inherit.getType()) {
if (T->getAnyNominal())
return printDeclUSR(T->getAnyNominal(), OS);
}
}
return true;
}