mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
"Accessibility" has a different meaning for app developers, so we've already deliberately excised it from our diagnostics in favor of terms like "access control" and "access level". Do the same in the compiler now that we aren't constantly pulling things into the release branch. This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
1349 lines
56 KiB
C++
1349 lines
56 KiB
C++
//===--- DerivedConformanceCodable.cpp - Derived Codable ------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements explicit derivation of the Encodable and Decodable
|
|
// protocols for a struct or class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TypeChecker.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/Stmt.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "DerivedConformances.h"
|
|
|
|
using namespace swift;
|
|
using namespace DerivedConformance;
|
|
|
|
/// Returns whether the type represented by the given ClassDecl inherits from a
|
|
/// type which conforms to the given protocol.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to look up.
|
|
///
|
|
/// \param proto The protocol to check conformance for.
|
|
static bool inheritsConformanceTo(ClassDecl *target, ProtocolDecl *proto) {
|
|
if (!target->hasSuperclass())
|
|
return false;
|
|
|
|
auto &C = target->getASTContext();
|
|
auto *superclassDecl = target->getSuperclassDecl();
|
|
auto *superclassModule = superclassDecl->getModuleContext();
|
|
return (bool)superclassModule->lookupConformance(target->getSuperclass(),
|
|
proto,
|
|
C.getLazyResolver());
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Encodable.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsEncodable(ClassDecl *target) {
|
|
auto &C = target->getASTContext();
|
|
return inheritsConformanceTo(target,
|
|
C.getProtocol(KnownProtocolKind::Encodable));
|
|
}
|
|
|
|
/// Returns whether the superclass of the given class conforms to Decodable.
|
|
///
|
|
/// \param target The \c ClassDecl whose superclass to check.
|
|
static bool superclassIsDecodable(ClassDecl *target) {
|
|
auto &C = target->getASTContext();
|
|
return inheritsConformanceTo(target,
|
|
C.getProtocol(KnownProtocolKind::Decodable));
|
|
}
|
|
|
|
/// Represents the possible outcomes of checking whether a decl conforms to
|
|
/// Encodable or Decodable.
|
|
enum CodableConformanceType {
|
|
TypeNotValidated,
|
|
DoesNotConform,
|
|
Conforms
|
|
};
|
|
|
|
/// Returns whether the given type conforms to the given {En,De}codable
|
|
/// protocol.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,De}codable conformance.
|
|
///
|
|
/// \param context The \c DeclContext the var declarations belong to.
|
|
///
|
|
/// \param target The \c Type to validate.
|
|
///
|
|
/// \param proto The \c ProtocolDecl to check conformance to.
|
|
static CodableConformanceType typeConformsToCodable(TypeChecker &tc,
|
|
DeclContext *context,
|
|
Type target,
|
|
ProtocolDecl *proto) {
|
|
// Some generic types need to be introspected to get at their "true" Codable
|
|
// conformance.
|
|
if (auto referenceType = target->getAs<ReferenceStorageType>()) {
|
|
// This is a weak/unowned/unmanaged var. Get the inner type before checking
|
|
// conformance.
|
|
target = referenceType->getReferentType();
|
|
}
|
|
|
|
if (auto genericType = target->getAs<BoundGenericType>()) {
|
|
auto *nominalTypeDecl = genericType->getAnyNominal();
|
|
|
|
// Implicitly unwrapped optionals need to be unwrapped;
|
|
// ImplicitlyUnwrappedOptional does not need to conform to Codable directly
|
|
// -- only its inner type does.
|
|
if (nominalTypeDecl == tc.Context.getImplicitlyUnwrappedOptionalDecl() ||
|
|
// FIXME: Remove the following when conditional conformance lands.
|
|
// Some generic types in the stdlib currently conform to Codable even
|
|
// when the type they are generic on does not [Optional, Array, Set,
|
|
// Dictionary]. For synthesizing conformance, we don't want to
|
|
// consider these types as Codable if the nested type is not Codable.
|
|
// Look through the generic type parameters of these types recursively
|
|
// to avoid synthesizing code that will crash at runtime.
|
|
//
|
|
// We only want to look through generic params for these types; other
|
|
// types may validly conform to Codable even if their generic param
|
|
// types do not.
|
|
nominalTypeDecl == tc.Context.getOptionalDecl() ||
|
|
nominalTypeDecl == tc.Context.getArrayDecl() ||
|
|
nominalTypeDecl == tc.Context.getSetDecl() ||
|
|
nominalTypeDecl == tc.Context.getDictionaryDecl()) {
|
|
for (auto paramType : genericType->getGenericArgs()) {
|
|
if (typeConformsToCodable(tc, context, paramType, proto) != Conforms)
|
|
return DoesNotConform;
|
|
}
|
|
|
|
return Conforms;
|
|
}
|
|
}
|
|
|
|
return tc.conformsToProtocol(target, proto, context,
|
|
ConformanceCheckFlags::Used) ? Conforms
|
|
: DoesNotConform;
|
|
}
|
|
|
|
/// Returns whether the given variable conforms to the given {En,De}codable
|
|
/// protocol.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,De}codable conformance.
|
|
///
|
|
/// \param context The \c DeclContext the var declarations belong to.
|
|
///
|
|
/// \param varDecl The \c VarDecl to validate.
|
|
///
|
|
/// \param proto The \c ProtocolDecl to check conformance to.
|
|
static CodableConformanceType varConformsToCodable(TypeChecker &tc,
|
|
DeclContext *context,
|
|
VarDecl *varDecl,
|
|
ProtocolDecl *proto) {
|
|
// If the decl doesn't yet have a type, we may be seeing it before the type
|
|
// checker has gotten around to evaluating its type. For example:
|
|
//
|
|
// func foo() {
|
|
// let b = Bar(from: decoder) // <- evaluates Bar conformance to Codable,
|
|
// // forcing derivation
|
|
// }
|
|
//
|
|
// struct Bar : Codable {
|
|
// var x: Int // <- we get to valuate x's var decl here, but its type
|
|
// // hasn't yet been evaluated
|
|
// }
|
|
//
|
|
// Validate the decl eagerly.
|
|
if (!varDecl->hasType())
|
|
tc.validateDecl(varDecl);
|
|
|
|
// If the var decl didn't validate, it may still not have a type; confirm it
|
|
// has a type before ensuring the type conforms to Codable.
|
|
if (!varDecl->hasType())
|
|
return TypeNotValidated;
|
|
|
|
return typeConformsToCodable(tc, context, varDecl->getType(), proto);
|
|
}
|
|
|
|
/// Validates the given CodingKeys enum decl by ensuring its cases are a 1-to-1
|
|
/// match with the stored vars of the given type.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,De}codable conformance.
|
|
///
|
|
/// \param codingKeysDecl The \c CodingKeys enum decl to validate.
|
|
///
|
|
/// \param target The nominal type decl to validate the \c CodingKeys against.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to validate all the keys conform
|
|
/// to.
|
|
static bool
|
|
validateCodingKeysEnum(TypeChecker &tc, EnumDecl *codingKeysDecl,
|
|
NominalTypeDecl *target, ProtocolDecl *proto) {
|
|
// Look through all var decls in the given type.
|
|
// * Filter out lazy/computed vars.
|
|
// * Filter out ones which are present in the given decl (by name).
|
|
//
|
|
// If any of the entries in the CodingKeys decl are not present in the type
|
|
// by name, then this decl doesn't match.
|
|
// If there are any vars left in the type which don't have a default value
|
|
// (for Decodable), then this decl doesn't match.
|
|
|
|
// Here we'll hold on to properties by name -- when we've validated a property
|
|
// against its CodingKey entry, it will get removed.
|
|
llvm::SmallDenseMap<Identifier, VarDecl *, 8> properties;
|
|
for (auto *varDecl : target->getStoredProperties(/*skipInaccessible=*/true)) {
|
|
if (varDecl->getAttrs().hasAttribute<LazyAttr>())
|
|
continue;
|
|
|
|
properties[varDecl->getName()] = varDecl;
|
|
}
|
|
|
|
bool propertiesAreValid = true;
|
|
for (auto elt : codingKeysDecl->getAllElements()) {
|
|
auto it = properties.find(elt->getName());
|
|
if (it == properties.end()) {
|
|
tc.diagnose(elt->getLoc(), diag::codable_extraneous_codingkey_case_here,
|
|
elt->getName());
|
|
// TODO: Investigate typo-correction here; perhaps the case name was
|
|
// misspelled and we can provide a fix-it.
|
|
propertiesAreValid = false;
|
|
continue;
|
|
}
|
|
|
|
// We have a property to map to. Ensure it's {En,De}codable.
|
|
auto conformance = varConformsToCodable(tc, target->getDeclContext(),
|
|
it->second, proto);
|
|
switch (conformance) {
|
|
case Conforms:
|
|
// The property was valid. Remove it from the list.
|
|
properties.erase(it);
|
|
break;
|
|
|
|
case DoesNotConform:
|
|
tc.diagnose(it->second->getLoc(),
|
|
diag::codable_non_conforming_property_here,
|
|
proto->getDeclaredType(), it->second->getType());
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case TypeNotValidated:
|
|
// We don't produce a diagnostic for a type which failed to validate.
|
|
// This will produce a diagnostic elsewhere anyway.
|
|
propertiesAreValid = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!propertiesAreValid)
|
|
return false;
|
|
|
|
// If there are any remaining properties which the CodingKeys did not cover,
|
|
// we can skip them on encode. On decode, though, we can only skip them if
|
|
// they have a default value.
|
|
if (!properties.empty() &&
|
|
proto->isSpecificProtocol(KnownProtocolKind::Decodable)) {
|
|
for (auto it = properties.begin(); it != properties.end(); ++it) {
|
|
if (it->second->getParentInitializer() != nullptr) {
|
|
// Var has a default value.
|
|
continue;
|
|
}
|
|
|
|
propertiesAreValid = false;
|
|
tc.diagnose(it->second->getLoc(), diag::codable_non_decoded_property_here,
|
|
proto->getDeclaredType(), it->first);
|
|
}
|
|
}
|
|
|
|
return propertiesAreValid;
|
|
}
|
|
|
|
/// A type which has information about the validity of an encountered
|
|
/// CodingKeys type.
|
|
struct CodingKeysValidity {
|
|
bool hasType;
|
|
bool isValid;
|
|
CodingKeysValidity(bool ht, bool iv) : hasType(ht), isValid(iv) {}
|
|
};
|
|
|
|
/// Returns whether the given type has a valid nested \c CodingKeys enum.
|
|
///
|
|
/// If the type has an invalid \c CodingKeys entity, produces diagnostics to
|
|
/// complain about the error. In this case, the error result will be true -- in
|
|
/// the case where we don't have a valid CodingKeys enum and have produced
|
|
/// diagnostics here, we don't want to then attempt to synthesize a CodingKeys
|
|
/// enum.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param target The type decl whose nested \c CodingKeys type to validate.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to ensure the properties matching
|
|
/// the keys conform to.
|
|
///
|
|
/// \returns A \c CodingKeysValidity value representing the result of the check.
|
|
static CodingKeysValidity hasValidCodingKeysEnum(TypeChecker &tc,
|
|
NominalTypeDecl *target,
|
|
ProtocolDecl *proto) {
|
|
auto &C = tc.Context;
|
|
auto codingKeysDecls = target->lookupDirect(DeclName(C.Id_CodingKeys));
|
|
if (codingKeysDecls.empty())
|
|
return CodingKeysValidity(/*hasType=*/false, /*isValid=*/true);
|
|
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at the
|
|
// first result here.
|
|
auto result = codingKeysDecls.front();
|
|
|
|
auto *codingKeysTypeDecl = dyn_cast<TypeDecl>(result);
|
|
if (!codingKeysTypeDecl) {
|
|
tc.diagnose(result->getLoc(),
|
|
diag::codable_codingkeys_type_is_not_an_enum_here,
|
|
proto->getDeclaredType());
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
// If the decl hasn't been validated yet, do so.
|
|
tc.validateDecl(codingKeysTypeDecl);
|
|
|
|
// CodingKeys may be a typealias. If so, follow the alias to its canonical
|
|
// type.
|
|
auto codingKeysType = codingKeysTypeDecl->getDeclaredInterfaceType();
|
|
if (isa<TypeAliasDecl>(codingKeysTypeDecl))
|
|
codingKeysTypeDecl = codingKeysType->getAnyNominal();
|
|
|
|
// Ensure that the type we found conforms to the CodingKey protocol.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
if (!tc.conformsToProtocol(codingKeysType, codingKeyProto,
|
|
target->getDeclContext(),
|
|
ConformanceCheckFlags::Used)) {
|
|
tc.diagnose(codingKeysTypeDecl->getLoc(),
|
|
diag::codable_codingkeys_type_does_not_conform_here,
|
|
proto->getDeclaredType());
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
// CodingKeys must be an enum for synthesized conformance.
|
|
auto *codingKeysEnum = dyn_cast<EnumDecl>(codingKeysTypeDecl);
|
|
if (!codingKeysEnum) {
|
|
tc.diagnose(codingKeysTypeDecl->getLoc(),
|
|
diag::codable_codingkeys_type_is_not_an_enum_here,
|
|
proto->getDeclaredType());
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/false);
|
|
}
|
|
|
|
bool valid = validateCodingKeysEnum(tc, codingKeysEnum, target, proto);
|
|
return CodingKeysValidity(/*hasType=*/true, /*isValid=*/valid);
|
|
}
|
|
|
|
/// Synthesizes a new \c CodingKeys enum based on the {En,De}codable members of
|
|
/// the given type (\c nullptr if unable to synthesize).
|
|
///
|
|
/// If able to synthesize the enum, adds it directly to \c type.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,De}codable conformance.
|
|
///
|
|
/// \param target The nominal type decl whose nested \c CodingKeys type to
|
|
/// synthesize.
|
|
///
|
|
/// \param proto The {En,De}codable protocol to validate all the keys conform
|
|
/// to.
|
|
static EnumDecl *synthesizeCodingKeysEnum(TypeChecker &tc,
|
|
NominalTypeDecl *target,
|
|
ProtocolDecl *proto) {
|
|
auto &C = tc.Context;
|
|
|
|
// We want to look through all the var declarations of this type to create
|
|
// enum cases based on those var names.
|
|
auto *codingKeyProto = C.getProtocol(KnownProtocolKind::CodingKey);
|
|
auto *codingKeyType = codingKeyProto->getDeclaredType();
|
|
TypeLoc protoTypeLoc[1] = {TypeLoc::withoutLoc(codingKeyType)};
|
|
MutableArrayRef<TypeLoc> inherited = C.AllocateCopy(protoTypeLoc);
|
|
|
|
auto *enumDecl = new (C) EnumDecl(SourceLoc(), C.Id_CodingKeys, SourceLoc(),
|
|
inherited, nullptr, target);
|
|
enumDecl->setImplicit();
|
|
enumDecl->setAccess(AccessLevel::Private);
|
|
|
|
// For classes which inherit from something Encodable or Decodable, we
|
|
// provide case `super` as the first key (to be used in encoding super).
|
|
auto *classDecl = dyn_cast<ClassDecl>(target);
|
|
if (classDecl &&
|
|
(superclassIsEncodable(classDecl) || superclassIsDecodable(classDecl))) {
|
|
// TODO: Ensure the class doesn't already have or inherit a variable named
|
|
// "`super`"; otherwise we will generate an invalid enum. In that case,
|
|
// diagnose and bail.
|
|
auto *super = new (C) EnumElementDecl(SourceLoc(), C.Id_super, TypeLoc(),
|
|
/*HasArgumentType=*/false,
|
|
SourceLoc(), nullptr, enumDecl);
|
|
super->setImplicit();
|
|
enumDecl->addMember(super);
|
|
}
|
|
|
|
// Each of these vars needs a case in the enum. For each var decl, if the type
|
|
// conforms to {En,De}codable, add it to the enum.
|
|
bool allConform = true;
|
|
for (auto *varDecl : target->getStoredProperties(/*skipInaccessible=*/true)) {
|
|
if (varDecl->getAttrs().hasAttribute<LazyAttr>())
|
|
continue;
|
|
|
|
auto conformance = varConformsToCodable(tc, target->getDeclContext(),
|
|
varDecl, proto);
|
|
switch (conformance) {
|
|
case Conforms:
|
|
{
|
|
auto *elt = new (C) EnumElementDecl(SourceLoc(), varDecl->getName(),
|
|
TypeLoc(),
|
|
/*HasArgumentType=*/false,
|
|
SourceLoc(), nullptr, enumDecl);
|
|
elt->setImplicit();
|
|
enumDecl->addMember(elt);
|
|
break;
|
|
}
|
|
|
|
case DoesNotConform:
|
|
tc.diagnose(varDecl->getLoc(),
|
|
diag::codable_non_conforming_property_here,
|
|
proto->getDeclaredType(), varDecl->getType());
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case TypeNotValidated:
|
|
// We don't produce a diagnostic for a type which failed to validate.
|
|
// This will produce a diagnostic elsewhere anyway.
|
|
allConform = false;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!allConform)
|
|
return nullptr;
|
|
|
|
// Forcibly derive conformance to CodingKey.
|
|
tc.checkConformancesInContext(enumDecl, enumDecl);
|
|
|
|
// Add to the type.
|
|
target->addMember(enumDecl);
|
|
return enumDecl;
|
|
}
|
|
|
|
/// Fetches the \c CodingKeys enum nested in \c target, potentially reaching
|
|
/// through a typealias if the "CodingKeys" entity is a typealias.
|
|
///
|
|
/// This is only useful once a \c CodingKeys enum has been validated (via \c
|
|
/// hasValidCodingKeysEnum) or synthesized (via \c synthesizeCodingKeysEnum).
|
|
///
|
|
/// \param C The \c ASTContext to perform the lookup in.
|
|
///
|
|
/// \param target The target type to look in.
|
|
///
|
|
/// \return A retrieved canonical \c CodingKeys enum if \c target has a valid
|
|
/// one; \c nullptr otherwise.
|
|
static EnumDecl *lookupEvaluatedCodingKeysEnum(ASTContext &C,
|
|
NominalTypeDecl *target) {
|
|
auto codingKeyDecls = target->lookupDirect(DeclName(C.Id_CodingKeys));
|
|
if (codingKeyDecls.empty())
|
|
return nullptr;
|
|
|
|
auto *codingKeysDecl = codingKeyDecls.front();
|
|
if (auto *typealiasDecl = dyn_cast<TypeAliasDecl>(codingKeysDecl))
|
|
codingKeysDecl = typealiasDecl->getDeclaredInterfaceType()->getAnyNominal();
|
|
|
|
return dyn_cast<EnumDecl>(codingKeysDecl);
|
|
}
|
|
|
|
/// Creates a new var decl representing
|
|
///
|
|
/// var/let container : containerBase<keyType>
|
|
///
|
|
/// \c containerBase is the name of the type to use as the base (either
|
|
/// \c KeyedEncodingContainer or \c KeyedDecodingContainer).
|
|
///
|
|
/// \param C The AST context to create the decl in.
|
|
///
|
|
/// \param DC The \c DeclContext to create the decl in.
|
|
///
|
|
/// \param keyedContainerDecl The generic type to bind the key type in.
|
|
///
|
|
/// \param keyType The key type to bind to the container type.
|
|
///
|
|
/// \param spec Whether to declare the variable as immutable.
|
|
static VarDecl *createKeyedContainer(ASTContext &C, DeclContext *DC,
|
|
NominalTypeDecl *keyedContainerDecl,
|
|
Type keyType, VarDecl::Specifier spec) {
|
|
// Bind Keyed*Container to Keyed*Container<KeyType>
|
|
Type boundType[1] = {keyType};
|
|
auto containerType = BoundGenericType::get(keyedContainerDecl, Type(),
|
|
C.AllocateCopy(boundType));
|
|
|
|
// let container : Keyed*Container<KeyType>
|
|
auto *containerDecl = new (C) VarDecl(/*IsStatic=*/false, spec,
|
|
/*IsCaptureList=*/false, SourceLoc(),
|
|
C.Id_container, containerType, DC);
|
|
containerDecl->setImplicit();
|
|
containerDecl->setInterfaceType(containerType);
|
|
return containerDecl;
|
|
}
|
|
|
|
/// Creates a new \c CallExpr representing
|
|
///
|
|
/// base.container(keyedBy: CodingKeys.self)
|
|
///
|
|
/// \param C The AST context to create the expression in.
|
|
///
|
|
/// \param DC The \c DeclContext to create any decls in.
|
|
///
|
|
/// \param base The base expression to make the call on.
|
|
///
|
|
/// \param returnType The return type of the call.
|
|
///
|
|
/// \param param The parameter to the call.
|
|
static CallExpr *createContainerKeyedByCall(ASTContext &C, DeclContext *DC,
|
|
Expr *base, Type returnType,
|
|
NominalTypeDecl *param) {
|
|
// (keyedBy:)
|
|
auto *keyedByDecl = new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(),
|
|
SourceLoc(), C.Id_keyedBy, SourceLoc(),
|
|
C.Id_keyedBy, returnType, DC);
|
|
keyedByDecl->setImplicit();
|
|
keyedByDecl->setInterfaceType(returnType);
|
|
|
|
// container(keyedBy:) method name
|
|
auto *paramList = ParameterList::createWithoutLoc(keyedByDecl);
|
|
DeclName callName(C, C.Id_container, paramList);
|
|
|
|
// base.container(keyedBy:) expr
|
|
auto *unboundCall = new (C) UnresolvedDotExpr(base, SourceLoc(), callName,
|
|
DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// CodingKeys.self expr
|
|
auto *codingKeysExpr = TypeExpr::createForDecl(SourceLoc(),
|
|
param,
|
|
param->getDeclContext(),
|
|
/*Implicit=*/true);
|
|
auto *codingKeysMetaTypeExpr = new (C) DotSelfExpr(codingKeysExpr,
|
|
SourceLoc(), SourceLoc());
|
|
|
|
// Full bound base.container(keyedBy: CodingKeys.self) call
|
|
Expr *args[1] = {codingKeysMetaTypeExpr};
|
|
Identifier argLabels[1] = {C.Id_keyedBy};
|
|
return CallExpr::createImplicit(C, unboundCall, C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
}
|
|
|
|
/// Synthesizes the body for `func encode(to encoder: Encoder) throws`.
|
|
///
|
|
/// \param encodeDecl The function decl whose body to synthesize.
|
|
static void deriveBodyEncodable_encode(AbstractFunctionDecl *encodeDecl) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived func encode(to encoder: Encoder) throws {
|
|
// var container = encoder.container(keyedBy: CodingKeys.self)
|
|
// try container.encode(x, forKey: .x)
|
|
// try container.encode(y, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto *targetDecl = cast<NominalTypeDecl>(encodeDecl->getDeclContext());
|
|
|
|
auto *funcDC = cast<DeclContext>(encodeDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type, potentially looking through
|
|
// a typealias.
|
|
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
// b) The type is not an enum
|
|
assert(codingKeysEnum && "Missing CodingKeys decl.");
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to encode super.
|
|
|
|
// let container : KeyedEncodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedEncodingContainerDecl(),
|
|
codingKeysType,
|
|
VarDecl::Specifier::Var);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
// Need to generate
|
|
// `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// This is unconditional because a type with no properties should encode as an
|
|
// empty container.
|
|
//
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// encoder
|
|
auto encoderParam = encodeDecl->getParameterList(1)->get(0);
|
|
auto *encoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(encoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound encoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, encoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// Full `let container = encoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::None,
|
|
SourceLoc(),
|
|
containerPattern, callExpr,
|
|
funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `try container.encode(x, forKey: .x)` for all
|
|
// existing properties. Optional properties get `encodeIfPresent`.
|
|
for (auto *elt : codingKeysEnum->getAllElements()) {
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at
|
|
// the first result here.
|
|
auto matchingVars = targetDecl->lookupDirect(DeclName(elt->getName()));
|
|
|
|
// self.x
|
|
auto *selfRef = createSelfDeclRef(encodeDecl);
|
|
auto *varExpr = new (C) MemberRefExpr(selfRef, SourceLoc(),
|
|
ConcreteDeclRef(matchingVars[0]),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
auto *metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// encode(_:forKey:)/encodeIfPresent(_:forKey:)
|
|
auto methodName = C.Id_encode;
|
|
auto varType = cast<VarDecl>(matchingVars[0])->getType();
|
|
if (auto referenceType = varType->getAs<ReferenceStorageType>()) {
|
|
// This is a weak/unowned/unmanaged var. Get the inner type before
|
|
// checking optionality.
|
|
varType = referenceType->getReferentType();
|
|
}
|
|
|
|
if (varType->getAnyNominal() == C.getOptionalDecl() ||
|
|
varType->getAnyNominal() == C.getImplicitlyUnwrappedOptionalDecl()) {
|
|
methodName = C.Id_encodeIfPresent;
|
|
}
|
|
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
DeclName name(C, methodName, argNames);
|
|
auto *encodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
|
|
name, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// container.encode(self.x, forKey: CodingKeys.x)
|
|
Expr *args[2] = {varExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.encode(self.x, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
// Classes which inherit from something Codable should encode super as well.
|
|
auto *classDecl = dyn_cast<ClassDecl>(targetDecl);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
// Need to generate `try super.encode(to: container.superEncoder())`
|
|
|
|
// superEncoder()
|
|
auto *method = new (C) UnresolvedDeclRefExpr(DeclName(C.Id_superEncoder),
|
|
DeclRefKind::Ordinary,
|
|
DeclNameLoc());
|
|
|
|
// container.superEncoder()
|
|
auto *superEncoderRef = new (C) DotSyntaxCallExpr(containerExpr,
|
|
SourceLoc(), method);
|
|
|
|
// encode(to:) expr
|
|
auto *encodeDeclRef = new (C) DeclRefExpr(ConcreteDeclRef(encodeDecl),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(encodeDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.encode(to:)
|
|
auto *encodeCall = new (C) DotSyntaxCallExpr(superRef, SourceLoc(),
|
|
encodeDeclRef);
|
|
|
|
// super.encode(to: container.superEncoder())
|
|
Expr *args[1] = {superEncoderRef};
|
|
Identifier argLabels[1] = {C.Id_to};
|
|
auto *callExpr = CallExpr::createImplicit(C, encodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.encode(to: container.superEncoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
encodeDecl->setBody(body);
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `encode(to: Encoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
///
|
|
/// \param tc The type checker whose AST context to synthesize the decl in.
|
|
///
|
|
/// \param parentDecl The parent declaration of the type.
|
|
///
|
|
/// \param target The nominal type to synthesize the function for.
|
|
static FuncDecl *deriveEncodable_encode(TypeChecker &tc, Decl *parentDecl,
|
|
NominalTypeDecl *target) {
|
|
auto &C = tc.Context;
|
|
|
|
// Expected type: (Self) -> (Encoder) throws -> ()
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: ()
|
|
// Create from the inside out:
|
|
|
|
// (to: Encoder)
|
|
auto encoderType = C.getEncoderDecl()->getDeclaredInterfaceType();
|
|
auto inputTypeElt = TupleTypeElt(encoderType, C.Id_to);
|
|
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
|
|
|
|
// throws
|
|
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
|
|
/*Throws=*/true);
|
|
// ()
|
|
auto returnType = TupleType::getEmpty(C);
|
|
|
|
// (to: Encoder) throws -> ()
|
|
auto innerType = FunctionType::get(inputType, returnType, extInfo);
|
|
|
|
// Params: (self [implicit], Encoder)
|
|
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), target);
|
|
auto *encoderParam = new (C) ParamDecl(VarDecl::Specifier::Owned, SourceLoc(),
|
|
SourceLoc(), C.Id_to, SourceLoc(),
|
|
C.Id_encoder, encoderType, target);
|
|
encoderParam->setInterfaceType(encoderType);
|
|
|
|
ParameterList *params[] = {ParameterList::createWithoutLoc(selfDecl),
|
|
ParameterList::createWithoutLoc(encoderParam)};
|
|
|
|
// Func name: encode(to: Encoder)
|
|
DeclName name(C, C.Id_encode, params[1]);
|
|
auto *encodeDecl = FuncDecl::create(C, SourceLoc(), StaticSpellingKind::None,
|
|
SourceLoc(), name, SourceLoc(),
|
|
/*Throws=*/true, SourceLoc(), SourceLoc(),
|
|
nullptr, params,
|
|
TypeLoc::withoutLoc(returnType),
|
|
target);
|
|
encodeDecl->setImplicit();
|
|
encodeDecl->setBodySynthesizer(deriveBodyEncodable_encode);
|
|
|
|
// This method should be marked as 'override' for classes inheriting Encodable
|
|
// conformance from a parent class.
|
|
auto *classDecl = dyn_cast<ClassDecl>(target);
|
|
if (classDecl && superclassIsEncodable(classDecl)) {
|
|
auto *attr = new (C) SimpleDeclAttr<DAK_Override>(/*IsImplicit=*/true);
|
|
encodeDecl->getAttrs().add(attr);
|
|
}
|
|
|
|
// Evaluate the type of Self in (Self) -> (Encoder) throws -> ().
|
|
Type selfType = target->getDeclaredInterfaceType();
|
|
Type interfaceType;
|
|
if (auto sig = target->getGenericSignatureOfContext()) {
|
|
// Evaluate the below, but in a generic environment (if Self is generic).
|
|
encodeDecl->setGenericEnvironment(target->getGenericEnvironmentOfContext());
|
|
interfaceType = GenericFunctionType::get(sig, selfType, innerType,
|
|
FunctionType::ExtInfo());
|
|
} else {
|
|
// (Self) -> innerType == (Encoder) throws -> ()
|
|
interfaceType = FunctionType::get(selfType, innerType);
|
|
}
|
|
|
|
encodeDecl->setInterfaceType(interfaceType);
|
|
encodeDecl->setAccess(std::max(target->getFormalAccess(),
|
|
AccessLevel::Internal));
|
|
|
|
// If the type was not imported, the derived conformance is either from the
|
|
// type itself or an extension, in which case we will emit the declaration
|
|
// normally.
|
|
if (target->hasClangNode())
|
|
tc.Context.addExternalDecl(encodeDecl);
|
|
|
|
target->addMember(encodeDecl);
|
|
return encodeDecl;
|
|
}
|
|
|
|
/// Synthesizes the body for `init(from decoder: Decoder) throws`.
|
|
///
|
|
/// \param initDecl The function decl whose body to synthesize.
|
|
static void deriveBodyDecodable_init(AbstractFunctionDecl *initDecl) {
|
|
// struct Foo : Codable {
|
|
// var x: Int
|
|
// var y: String
|
|
//
|
|
// // Already derived by this point if possible.
|
|
// @derived enum CodingKeys : CodingKey {
|
|
// case x
|
|
// case y
|
|
// }
|
|
//
|
|
// @derived init(from decoder: Decoder) throws {
|
|
// let container = try decoder.container(keyedBy: CodingKeys.self)
|
|
// x = try container.decode(Type.self, forKey: .x)
|
|
// y = try container.decode(Type.self, forKey: .y)
|
|
// }
|
|
// }
|
|
|
|
// The enclosing type decl.
|
|
auto *targetDecl = cast<NominalTypeDecl>(initDecl->getDeclContext());
|
|
|
|
auto *funcDC = cast<DeclContext>(initDecl);
|
|
auto &C = funcDC->getASTContext();
|
|
|
|
// We'll want the CodingKeys enum for this type, potentially looking through
|
|
// a typealias.
|
|
auto *codingKeysEnum = lookupEvaluatedCodingKeysEnum(C, targetDecl);
|
|
// We should have bailed already if:
|
|
// a) The type does not have CodingKeys
|
|
// b) The type is not an enum
|
|
assert(codingKeysEnum && "Missing CodingKeys decl.");
|
|
|
|
// Generate a reference to containerExpr ahead of time in case there are no
|
|
// properties to encode or decode, but the type is a class which inherits from
|
|
// something Codable and needs to decode super.
|
|
|
|
// let container : KeyedDecodingContainer<CodingKeys>
|
|
auto codingKeysType = codingKeysEnum->getDeclaredType();
|
|
auto *containerDecl = createKeyedContainer(C, funcDC,
|
|
C.getKeyedDecodingContainerDecl(),
|
|
codingKeysType,
|
|
VarDecl::Specifier::Let);
|
|
|
|
auto *containerExpr = new (C) DeclRefExpr(ConcreteDeclRef(containerDecl),
|
|
DeclNameLoc(), /*Implicit=*/true,
|
|
AccessSemantics::DirectToStorage);
|
|
|
|
SmallVector<ASTNode, 5> statements;
|
|
auto enumElements = codingKeysEnum->getAllElements();
|
|
if (!enumElements.empty()) {
|
|
// Need to generate
|
|
// `let container = try decoder.container(keyedBy: CodingKeys.self)`
|
|
// `let container` (containerExpr) is generated above.
|
|
|
|
// decoder
|
|
auto decoderParam = initDecl->getParameterList(1)->get(0);
|
|
auto *decoderExpr = new (C) DeclRefExpr(ConcreteDeclRef(decoderParam),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// Bound decoder.container(keyedBy: CodingKeys.self) call
|
|
auto containerType = containerDecl->getInterfaceType();
|
|
auto *callExpr = createContainerKeyedByCall(C, funcDC, decoderExpr,
|
|
containerType, codingKeysEnum);
|
|
|
|
// try decoder.container(keyedBy: CodingKeys.self)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*implicit=*/true);
|
|
|
|
// Full `let container = decoder.container(keyedBy: CodingKeys.self)`
|
|
// binding.
|
|
auto *containerPattern = new (C) NamedPattern(containerDecl,
|
|
/*implicit=*/true);
|
|
auto *bindingDecl = PatternBindingDecl::create(C, SourceLoc(),
|
|
StaticSpellingKind::None,
|
|
SourceLoc(),
|
|
containerPattern, tryExpr,
|
|
funcDC);
|
|
statements.push_back(bindingDecl);
|
|
statements.push_back(containerDecl);
|
|
|
|
// Now need to generate `x = try container.decode(Type.self, forKey: .x)`
|
|
// for all existing properties. Optional properties get `decodeIfPresent`.
|
|
for (auto *elt : enumElements) {
|
|
// Only ill-formed code would produce multiple results for this lookup.
|
|
// This would get diagnosed later anyway, so we're free to only look at
|
|
// the first result here.
|
|
auto matchingVars = targetDecl->lookupDirect(DeclName(elt->getName()));
|
|
auto *varDecl = cast<VarDecl>(matchingVars[0]);
|
|
|
|
// Don't output a decode statement for a var let with a default value.
|
|
if (varDecl->isLet() && varDecl->getParentInitializer() != nullptr)
|
|
continue;
|
|
|
|
// Potentially unwrap a layer of optionality from the var type. If the var
|
|
// is Optional<T>, we want to decodeIfPresent(T.self, forKey: ...);
|
|
// otherwise, we can just decode(T.self, forKey: ...).
|
|
// This is also true if the type is an ImplicitlyUnwrappedOptional.
|
|
auto varType = varDecl->getType();
|
|
auto methodName = C.Id_decode;
|
|
if (auto referenceType = varType->getAs<ReferenceStorageType>()) {
|
|
// This is a weak/unowned/unmanaged var. Get the inner type before
|
|
// checking optionality.
|
|
varType = referenceType->getReferentType();
|
|
}
|
|
|
|
if (varType->getAnyNominal() == C.getOptionalDecl() ||
|
|
varType->getAnyNominal() == C.getImplicitlyUnwrappedOptionalDecl()) {
|
|
methodName = C.Id_decodeIfPresent;
|
|
|
|
// The type we request out of decodeIfPresent needs to be unwrapped
|
|
// one level.
|
|
// e.g. String? => decodeIfPresent(String.self, forKey: ...), not
|
|
// decodeIfPresent(String?.self, forKey: ...)
|
|
auto boundOptionalType =
|
|
dyn_cast<BoundGenericType>(varType->getCanonicalType());
|
|
varType = boundOptionalType->getGenericArgs()[0];
|
|
}
|
|
|
|
// Type.self (where Type === type(of: x))
|
|
// Calculating the metatype needs to happen after potential Optional
|
|
// unwrapping above.
|
|
auto *metaTyRef = TypeExpr::createImplicit(varType, C);
|
|
auto *targetExpr = new (C) DotSelfExpr(metaTyRef, SourceLoc(),
|
|
SourceLoc(), varType);
|
|
|
|
// CodingKeys.x
|
|
auto *eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit=*/true);
|
|
metaTyRef = TypeExpr::createImplicit(codingKeysType, C);
|
|
auto *keyExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
|
|
|
|
// decode(_:forKey:)/decodeIfPresent(_:forKey:)
|
|
SmallVector<Identifier, 2> argNames{Identifier(), C.Id_forKey};
|
|
DeclName name(C, methodName, argNames);
|
|
auto *decodeCall = new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
|
|
name, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// container.decode(Type.self, forKey: CodingKeys.x)
|
|
Expr *args[2] = {targetExpr, keyExpr};
|
|
auto *callExpr = CallExpr::createImplicit(C, decodeCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argNames));
|
|
|
|
// try container.decode(Type.self, forKey: CodingKeys.x)
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
|
|
auto *selfRef = createSelfDeclRef(initDecl);
|
|
auto *varExpr = new (C) UnresolvedDotExpr(selfRef, SourceLoc(),
|
|
DeclName(varDecl->getName()),
|
|
DeclNameLoc(),
|
|
/*implicit=*/true);
|
|
auto *assignExpr = new (C) AssignExpr(varExpr, SourceLoc(), tryExpr,
|
|
/*Implicit=*/true);
|
|
statements.push_back(assignExpr);
|
|
}
|
|
}
|
|
|
|
// Classes which have a superclass must call super.init(from:) if the
|
|
// superclass is Decodable, or super.init() if it is not.
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(targetDecl)) {
|
|
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
|
|
if (superclassIsDecodable(classDecl)) {
|
|
// Need to generate `try super.init(from: container.superDecoder())`
|
|
|
|
// container.superDecoder
|
|
auto *superDecoderRef =
|
|
new (C) UnresolvedDotExpr(containerExpr, SourceLoc(),
|
|
DeclName(C.Id_superDecoder),
|
|
DeclNameLoc(), /*Implicit=*/true);
|
|
|
|
// container.superDecoder()
|
|
auto *superDecoderCall =
|
|
CallExpr::createImplicit(C, superDecoderRef, ArrayRef<Expr *>(),
|
|
ArrayRef<Identifier>());
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.init(from:)
|
|
auto initName = DeclName(C, C.Id_init, C.Id_from);
|
|
auto *initCall = new (C) UnresolvedDotExpr(superRef, SourceLoc(),
|
|
initName, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
|
|
// super.decode(from: container.superDecoder())
|
|
Expr *args[1] = {superDecoderCall};
|
|
Identifier argLabels[1] = {C.Id_from};
|
|
auto *callExpr = CallExpr::createImplicit(C, initCall,
|
|
C.AllocateCopy(args),
|
|
C.AllocateCopy(argLabels));
|
|
|
|
// try super.init(from: container.superDecoder())
|
|
auto *tryExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
statements.push_back(tryExpr);
|
|
} else {
|
|
// The explicit constructor name is a compound name taking no arguments.
|
|
DeclName initName(C, C.Id_init, ArrayRef<Identifier>());
|
|
|
|
// We need to look this up in the superclass to see if it throws.
|
|
auto result = superclassDecl->lookupDirect(initName);
|
|
|
|
// We should have bailed one level up if this were not available.
|
|
assert(!result.empty());
|
|
|
|
// If the init is failable, we should have already bailed one level
|
|
// above.
|
|
ConstructorDecl *superInitDecl = cast<ConstructorDecl>(result.front());
|
|
assert(superInitDecl->getFailability() == OTK_None);
|
|
|
|
// super
|
|
auto *superRef = new (C) SuperRefExpr(initDecl->getImplicitSelfDecl(),
|
|
SourceLoc(), /*Implicit=*/true);
|
|
|
|
// super.init()
|
|
auto *superInitRef = new (C) UnresolvedDotExpr(superRef, SourceLoc(),
|
|
initName, DeclNameLoc(),
|
|
/*Implicit=*/true);
|
|
// super.init() call
|
|
Expr *callExpr = CallExpr::createImplicit(C, superInitRef,
|
|
ArrayRef<Expr *>(),
|
|
ArrayRef<Identifier>());
|
|
|
|
// If super.init throws, try super.init()
|
|
if (superInitDecl->hasThrows())
|
|
callExpr = new (C) TryExpr(SourceLoc(), callExpr, Type(),
|
|
/*Implicit=*/true);
|
|
|
|
statements.push_back(callExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto *body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc(),
|
|
/*implicit=*/true);
|
|
initDecl->setBody(body);
|
|
}
|
|
|
|
/// Synthesizes a function declaration for `init(from: Decoder) throws` with a
|
|
/// lazily synthesized body for the given type.
|
|
///
|
|
/// Adds the function declaration to the given type before returning it.
|
|
///
|
|
/// \param tc The type checker whose AST context to synthesize the decl in.
|
|
///
|
|
/// \param parentDecl The parent declaration of the type.
|
|
///
|
|
/// \param target The nominal type to synthesize the function for.
|
|
static ValueDecl *deriveDecodable_init(TypeChecker &tc, Decl *parentDecl,
|
|
NominalTypeDecl *target) {
|
|
auto &C = tc.Context;
|
|
|
|
// Expected type: (Self) -> (Decoder) throws -> (Self)
|
|
// Constructed as: func type
|
|
// input: Self
|
|
// throws
|
|
// output: function type
|
|
// input: Encoder
|
|
// output: Self
|
|
// Compute from the inside out:
|
|
|
|
// (from: Decoder)
|
|
auto decoderType = C.getDecoderDecl()->getDeclaredInterfaceType();
|
|
auto inputTypeElt = TupleTypeElt(decoderType, C.Id_from);
|
|
auto inputType = TupleType::get(ArrayRef<TupleTypeElt>(inputTypeElt), C);
|
|
|
|
// throws
|
|
auto extInfo = FunctionType::ExtInfo(FunctionTypeRepresentation::Swift,
|
|
/*Throws=*/true);
|
|
|
|
// (Self)
|
|
auto returnType = target->getDeclaredInterfaceType();
|
|
|
|
// (from: Decoder) throws -> (Self)
|
|
Type innerType = FunctionType::get(inputType, returnType, extInfo);
|
|
|
|
// Params: (self [implicit], Decoder)
|
|
// self should be inout if the type is a value type; not inout otherwise.
|
|
auto inOut = !isa<ClassDecl>(target);
|
|
auto *selfDecl = ParamDecl::createSelf(SourceLoc(), target,
|
|
/*isStatic=*/false,
|
|
/*isInOut=*/inOut);
|
|
auto *decoderParamDecl = new (C) ParamDecl(VarDecl::Specifier::Owned,
|
|
SourceLoc(),
|
|
SourceLoc(), C.Id_from,
|
|
SourceLoc(), C.Id_decoder,
|
|
decoderType, target);
|
|
decoderParamDecl->setImplicit();
|
|
decoderParamDecl->setInterfaceType(decoderType);
|
|
|
|
auto *paramList = ParameterList::createWithoutLoc(decoderParamDecl);
|
|
|
|
// Func name: init(from: Decoder)
|
|
DeclName name(C, C.Id_init, paramList);
|
|
|
|
auto *initDecl = new (C) ConstructorDecl(name, SourceLoc(), OTK_None,
|
|
SourceLoc(), /*Throws=*/true,
|
|
SourceLoc(), selfDecl, paramList,
|
|
/*GenericParams=*/nullptr, target);
|
|
initDecl->setImplicit();
|
|
initDecl->setBodySynthesizer(deriveBodyDecodable_init);
|
|
|
|
// This constructor should be marked as `required` for non-final classes.
|
|
if (isa<ClassDecl>(target) && !target->getAttrs().hasAttribute<FinalAttr>()) {
|
|
auto *reqAttr = new (C) SimpleDeclAttr<DAK_Required>(/*IsImplicit=*/true);
|
|
initDecl->getAttrs().add(reqAttr);
|
|
}
|
|
|
|
auto selfParam = computeSelfParam(initDecl);
|
|
auto initSelfParam = computeSelfParam(initDecl, /*init=*/true);
|
|
Type interfaceType;
|
|
Type initializerType;
|
|
if (auto sig = target->getGenericSignatureOfContext()) {
|
|
// Evaluate the below, but in a generic environment (if Self is generic).
|
|
initDecl->setGenericEnvironment(target->getGenericEnvironmentOfContext());
|
|
interfaceType = GenericFunctionType::get(sig, {selfParam}, innerType,
|
|
FunctionType::ExtInfo());
|
|
initializerType = GenericFunctionType::get(sig, {initSelfParam}, innerType,
|
|
FunctionType::ExtInfo());
|
|
} else {
|
|
// (Self) -> (Decoder) throws -> (Self)
|
|
interfaceType = FunctionType::get({selfParam}, innerType,
|
|
FunctionType::ExtInfo());
|
|
initializerType = FunctionType::get({initSelfParam}, innerType,
|
|
FunctionType::ExtInfo());
|
|
}
|
|
|
|
initDecl->setInterfaceType(interfaceType);
|
|
initDecl->setInitializerInterfaceType(initializerType);
|
|
initDecl->setAccess(std::max(target->getFormalAccess(),
|
|
AccessLevel::Internal));
|
|
|
|
// If the type was not imported, the derived conformance is either from the
|
|
// type itself or an extension, in which case we will emit the declaration
|
|
// normally.
|
|
if (target->hasClangNode())
|
|
tc.Context.addExternalDecl(initDecl);
|
|
|
|
target->addMember(initDecl);
|
|
return initDecl;
|
|
}
|
|
|
|
/// Returns whether the given type is valid for synthesizing {En,De}codable.
|
|
///
|
|
/// Checks to see whether the given type has a valid \c CodingKeys enum, and if
|
|
/// not, attempts to synthesize one for it.
|
|
///
|
|
/// \param tc The typechecker to use in validating {En,Decodable} conformance.
|
|
///
|
|
/// \param target The type to validate.
|
|
///
|
|
/// \param requirement The requirement we want to synthesize.
|
|
///
|
|
/// \param proto The *codable protocol to check for validity.
|
|
static bool canSynthesize(TypeChecker &tc, NominalTypeDecl *target,
|
|
ValueDecl *requirement, ProtocolDecl *proto) {
|
|
// Before we attempt to look up (or more importantly, synthesize) a CodingKeys
|
|
// entity on target, we need to make sure the type is otherwise valid.
|
|
//
|
|
// If we are synthesizing Decodable and the target is a class with a
|
|
// superclass, our synthesized init(from:) will need to call either
|
|
// super.init(from:) or super.init() depending on whether the superclass is
|
|
// Decodable itself.
|
|
//
|
|
// If the required initializer is not available, we shouldn't attempt to
|
|
// synthesize CodingKeys.
|
|
ASTContext &C = tc.Context;
|
|
auto *classDecl = dyn_cast<ClassDecl>(target);
|
|
if (proto->isSpecificProtocol(KnownProtocolKind::Decodable) && classDecl) {
|
|
if (auto *superclassDecl = classDecl->getSuperclassDecl()) {
|
|
DeclName memberName;
|
|
auto superType = superclassDecl->getDeclaredInterfaceType();
|
|
if (tc.conformsToProtocol(superType, proto, superclassDecl,
|
|
ConformanceCheckFlags::Used)) {
|
|
// super.init(from:) must be accessible.
|
|
memberName = cast<ConstructorDecl>(requirement)->getFullName();
|
|
} else {
|
|
// super.init() must be accessible.
|
|
// Passing an empty params array constructs a compound name with no
|
|
// arguments (as opposed to a simple name when omitted).
|
|
memberName = DeclName(C, DeclBaseName(C.Id_init),
|
|
ArrayRef<Identifier>());
|
|
}
|
|
|
|
auto result = tc.lookupMember(superclassDecl, superType, memberName);
|
|
|
|
if (result.empty()) {
|
|
// No super initializer for us to call.
|
|
tc.diagnose(superclassDecl, diag::decodable_no_super_init_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
} else if (result.size() > 1) {
|
|
// There are multiple results for this lookup. We'll end up producing a
|
|
// diagnostic later complaining about duplicate methods (if we haven't
|
|
// already), so just bail with a general error.
|
|
return false;
|
|
} else {
|
|
auto *initializer =
|
|
cast<ConstructorDecl>(result.front().getValueDecl());
|
|
if (!initializer->isDesignatedInit()) {
|
|
// We must call a superclass's designated initializer.
|
|
tc.diagnose(initializer,
|
|
diag::decodable_super_init_not_designated_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
} else if (!initializer->isAccessibleFrom(target)) {
|
|
// Cannot call an inaccessible method.
|
|
auto accessScope = initializer->getFormalAccessScope(target);
|
|
tc.diagnose(initializer, diag::decodable_inaccessible_super_init_here,
|
|
requirement->getFullName(), memberName,
|
|
accessScope.accessLevelForDiagnostics());
|
|
return false;
|
|
} else if (initializer->getFailability() != OTK_None) {
|
|
// We can't call super.init() if it's failable, since init(from:)
|
|
// isn't failable.
|
|
tc.diagnose(initializer, diag::decodable_super_init_is_failable_here,
|
|
requirement->getFullName(), memberName);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the target already has a valid CodingKeys enum, we won't need to
|
|
// synthesize one.
|
|
auto validity = hasValidCodingKeysEnum(tc, target, proto);
|
|
|
|
// We found a type, but it wasn't valid.
|
|
if (!validity.isValid)
|
|
return false;
|
|
|
|
// We can try to synthesize a type here.
|
|
if (!validity.hasType) {
|
|
auto *synthesizedEnum = synthesizeCodingKeysEnum(tc, target, proto);
|
|
if (!synthesizedEnum)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveEncodable(TypeChecker &tc,
|
|
Decl *parentDecl,
|
|
NominalTypeDecl *target,
|
|
ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(target) && !isa<ClassDecl>(target))
|
|
return nullptr;
|
|
|
|
if (requirement->getBaseName() != tc.Context.Id_encode) {
|
|
// Unknown requirement.
|
|
tc.diagnose(requirement->getLoc(), diag::broken_encodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
// Conformance can't be synthesized in an extension.
|
|
auto encodableProto = tc.Context.getProtocol(KnownProtocolKind::Encodable);
|
|
auto encodableType = encodableProto->getDeclaredType();
|
|
if (target != parentDecl) {
|
|
tc.diagnose(parentDecl->getLoc(), diag::cannot_synthesize_in_extension,
|
|
encodableType);
|
|
return nullptr;
|
|
}
|
|
|
|
// We're about to try to synthesize Encodable. If something goes wrong,
|
|
// we'll have to output at least one error diagnostic because we returned
|
|
// true from NominalTypeDecl::derivesProtocolConformance; if we don't, we're
|
|
// expected to return a witness here later (and we crash on an assertion).
|
|
// Producing a diagnostic stops compilation before then.
|
|
//
|
|
// A synthesis attempt will produce NOTE diagnostics throughout, but we'll
|
|
// want to collect them before displaying -- we want NOTEs to display
|
|
// _after_ a main diagnostic so we don't get a NOTE before the error it
|
|
// relates to.
|
|
//
|
|
// We can do this with a diagnostic transaction -- first collect failure
|
|
// diagnostics, then potentially collect notes. If we succeed in
|
|
// synthesizing Encodable, we can cancel the transaction and get rid of the
|
|
// fake failures.
|
|
auto diagnosticTransaction = DiagnosticTransaction(tc.Context.Diags);
|
|
tc.diagnose(target, diag::type_does_not_conform, target->getDeclaredType(),
|
|
encodableType);
|
|
tc.diagnose(requirement, diag::no_witnesses, diag::RequirementKind::Func,
|
|
requirement->getFullName(), encodableType, /*AddFixIt=*/false);
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
if (canSynthesize(tc, target, requirement, encodableProto)) {
|
|
diagnosticTransaction.abort();
|
|
return deriveEncodable_encode(tc, parentDecl, target);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
ValueDecl *DerivedConformance::deriveDecodable(TypeChecker &tc,
|
|
Decl *parentDecl,
|
|
NominalTypeDecl *target,
|
|
ValueDecl *requirement) {
|
|
// We can only synthesize Encodable for structs and classes.
|
|
if (!isa<StructDecl>(target) && !isa<ClassDecl>(target))
|
|
return nullptr;
|
|
|
|
if (requirement->getBaseName() != tc.Context.Id_init) {
|
|
// Unknown requirement.
|
|
tc.diagnose(requirement->getLoc(), diag::broken_decodable_requirement);
|
|
return nullptr;
|
|
}
|
|
|
|
// Conformance can't be synthesized in an extension.
|
|
auto decodableProto = tc.Context.getProtocol(KnownProtocolKind::Decodable);
|
|
auto decodableType = decodableProto->getDeclaredType();
|
|
if (target != parentDecl) {
|
|
tc.diagnose(parentDecl->getLoc(), diag::cannot_synthesize_in_extension,
|
|
decodableType);
|
|
return nullptr;
|
|
}
|
|
|
|
// We're about to try to synthesize Decodable. If something goes wrong,
|
|
// we'll have to output at least one error diagnostic. We need to collate
|
|
// diagnostics produced by canSynthesize and deriveDecodable_init to produce
|
|
// them in the right order -- see the comment in deriveEncodable for
|
|
// background on this transaction.
|
|
auto diagnosticTransaction = DiagnosticTransaction(tc.Context.Diags);
|
|
tc.diagnose(target, diag::type_does_not_conform, target->getDeclaredType(),
|
|
decodableType);
|
|
tc.diagnose(requirement, diag::no_witnesses,
|
|
diag::RequirementKind::Constructor, requirement->getFullName(),
|
|
decodableType, /*AddFixIt=*/false);
|
|
|
|
// Check other preconditions for synthesized conformance.
|
|
// This synthesizes a CodingKeys enum if possible.
|
|
if (canSynthesize(tc, target, requirement, decodableProto)) {
|
|
diagnosticTransaction.abort();
|
|
return deriveDecodable_init(tc, parentDecl, target);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|