Files
swift-mirror/lib/Sema/ITCDecl.cpp
Jordan Rose 1c651973c3 Excise "Accessibility" from the compiler (2/3)
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.

This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
2017-08-28 11:34:44 -07:00

382 lines
13 KiB
C++

//===--- ITCDecl.cpp - Iterative Type Checker for Declarations ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the portions of the IterativeTypeChecker
// class that involve declarations.
//
//===----------------------------------------------------------------------===//
#include "GenericTypeResolver.h"
#include "TypeChecker.h"
#include "swift/Sema/IterativeTypeChecker.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ExistentialLayout.h"
#include <tuple>
using namespace swift;
//===----------------------------------------------------------------------===//
// Inheritance clause handling
//===----------------------------------------------------------------------===//
static std::tuple<TypeResolutionOptions, DeclContext *,
MutableArrayRef<TypeLoc>>
decomposeInheritedClauseDecl(
llvm::PointerUnion<TypeDecl *, ExtensionDecl *> decl) {
TypeResolutionOptions options;
DeclContext *dc;
MutableArrayRef<TypeLoc> inheritanceClause;
if (auto typeDecl = decl.dyn_cast<TypeDecl *>()) {
inheritanceClause = typeDecl->getInherited();
if (auto nominal = dyn_cast<NominalTypeDecl>(typeDecl)) {
dc = nominal;
options |= (TR_GenericSignature |
TR_InheritanceClause |
TR_AllowUnavailableProtocol);
} else {
dc = typeDecl->getDeclContext();
if (isa<GenericTypeParamDecl>(typeDecl)) {
// For generic parameters, we want name lookup to look at just the
// signature of the enclosing entity.
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
dc = nominal;
options |= TR_GenericSignature;
} else if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
dc = ext;
options |= TR_GenericSignature;
} else if (auto func = dyn_cast<AbstractFunctionDecl>(dc)) {
dc = func;
options |= TR_GenericSignature;
} else if (!dc->isModuleScopeContext()) {
// Skip the generic parameter's context entirely.
dc = dc->getParent();
}
}
}
} else {
auto ext = decl.get<ExtensionDecl *>();
inheritanceClause = ext->getInherited();
dc = ext;
options |= (TR_GenericSignature |
TR_InheritanceClause |
TR_AllowUnavailableProtocol);
}
return std::make_tuple(options, dc, inheritanceClause);
}
static std::tuple<TypeResolutionOptions, DeclContext *, TypeLoc *>
decomposeInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType entry) {
TypeResolutionOptions options;
DeclContext *dc;
MutableArrayRef<TypeLoc> inheritanceClause;
std::tie(options, dc, inheritanceClause)
= decomposeInheritedClauseDecl(entry.first);
return std::make_tuple(options, dc, &inheritanceClause[entry.second]);
}
bool IterativeTypeChecker::isResolveInheritedClauseEntrySatisfied(
TypeCheckRequest::InheritedClauseEntryPayloadType payload) {
TypeLoc &inherited = *std::get<2>(decomposeInheritedClauseEntry(payload));
return !inherited.getType().isNull();
}
void IterativeTypeChecker::processResolveInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType payload,
UnsatisfiedDependency unsatisfiedDependency) {
TypeResolutionOptions options;
DeclContext *dc;
TypeLoc *inherited;
std::tie(options, dc, inherited) = decomposeInheritedClauseEntry(payload);
// FIXME: Declaration validation is overkill. Sink it down into type
// resolution when it is actually needed.
if (auto nominal = dyn_cast<NominalTypeDecl>(dc))
TC.validateDeclForNameLookup(nominal);
else if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
TC.validateExtension(ext);
}
// Validate the type of this inherited clause entry.
// FIXME: Recursion into existing type checker.
ProtocolRequirementTypeResolver protoResolver;
GenericTypeToArchetypeResolver archetypeResolver(dc);
GenericTypeResolver *resolver;
if (isa<ProtocolDecl>(dc)) {
resolver = &protoResolver;
} else {
resolver = &archetypeResolver;
}
if (TC.validateType(*inherited, dc, options, resolver,
&unsatisfiedDependency)) {
inherited->setInvalidType(getASTContext());
}
auto type = inherited->getType();
if (!type.isNull() && !isa<ProtocolDecl>(dc))
inherited->setType(dc->mapTypeOutOfContext(type));
}
bool IterativeTypeChecker::breakCycleForResolveInheritedClauseEntry(
TypeCheckRequest::InheritedClauseEntryPayloadType payload) {
std::get<2>(decomposeInheritedClauseEntry(payload))
->setInvalidType(getASTContext());
return true;
}
//===----------------------------------------------------------------------===//
// Superclass handling
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isTypeCheckSuperclassSatisfied(ClassDecl *payload) {
return payload->LazySemanticInfo.Superclass.getInt();
}
void IterativeTypeChecker::processTypeCheckSuperclass(
ClassDecl *classDecl,
UnsatisfiedDependency unsatisfiedDependency) {
// The superclass should be the first inherited type. However, so
// long as we see already-resolved types that refer to protocols,
// skip over them to keep looking for a misplaced superclass. The
// actual error will be diagnosed when we perform full semantic
// analysis on the class itself.
Type superclassType;
auto inheritedClause = classDecl->getInherited();
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// If this inherited type has not been resolved, we depend on it.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ classDecl, i }))) {
return;
}
// If this resolved inherited type is existential, keep going.
if (inherited.getType()->isExistentialType()) continue;
// If this resolved type is a class, we're done.
if (inherited.getType()->getClassOrBoundGenericClass()) {
superclassType = inherited.getType();
break;
}
}
// Set the superclass type.
if (classDecl->isInvalid())
superclassType = ErrorType::get(getASTContext());
classDecl->setSuperclass(superclassType);
}
bool IterativeTypeChecker::breakCycleForTypeCheckSuperclass(
ClassDecl *classDecl) {
classDecl->setSuperclass(ErrorType::get(getASTContext()));
return true;
}
//===----------------------------------------------------------------------===//
// Raw type handling
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isTypeCheckRawTypeSatisfied(EnumDecl *payload) {
return payload->LazySemanticInfo.RawType.getInt();
}
void IterativeTypeChecker::processTypeCheckRawType(
EnumDecl *enumDecl,
UnsatisfiedDependency unsatisfiedDependency) {
// The raw type should be the first inherited type. However, so
// long as we see already-resolved types that refer to protocols,
// skip over them to keep looking for a misplaced raw type. The
// actual error will be diagnosed when we perform full semantic
// analysis on the enum itself.
Type rawType;
auto inheritedClause = enumDecl->getInherited();
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// We depend on having resolved the inherited type.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ enumDecl, i }))) {
return;
}
// If this resolved inherited type is existential, keep going.
if (inherited.getType()->isExistentialType()) continue;
// Record this raw type.
rawType = inherited.getType();
break;
}
// Set the raw type.
enumDecl->setRawType(rawType);
}
bool IterativeTypeChecker::breakCycleForTypeCheckRawType(EnumDecl *enumDecl) {
enumDecl->setRawType(ErrorType::get(getASTContext()));
return true;
}
//===----------------------------------------------------------------------===//
// Inherited protocols
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isInheritedProtocolsSatisfied(ProtocolDecl *payload){
auto inheritedClause = payload->getInherited();
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
if (!inherited.getType()) return false;
}
return true;
}
void IterativeTypeChecker::processInheritedProtocols(
ProtocolDecl *protocol,
UnsatisfiedDependency unsatisfiedDependency) {
// Computing the set of inherited protocols depends on the complete
// inheritance clause.
// FIXME: Technically, we only need very basic name binding.
auto inheritedClause = protocol->getInherited();
bool anyDependencies = false;
bool diagnosedCircularity = false;
llvm::SmallSetVector<ProtocolDecl *, 4> allProtocols;
for (unsigned i = 0, n = inheritedClause.size(); i != n; ++i) {
TypeLoc &inherited = inheritedClause[i];
// We depend on having resolved the inherited type.
if (unsatisfiedDependency(
requestResolveInheritedClauseEntry({ protocol, i }))) {
anyDependencies = true;
continue;
}
// Collect existential types.
// FIXME: We'd prefer to keep what the user wrote here.
if (inherited.getType()->isExistentialType()) {
auto layout = inherited.getType()->getExistentialLayout();
for (auto inheritedProtocolTy: layout.getProtocols()) {
auto *inheritedProtocol = inheritedProtocolTy->getDecl();
if (inheritedProtocol == protocol ||
inheritedProtocol->inheritsFrom(protocol)) {
if (!diagnosedCircularity) {
diagnose(protocol,
diag::circular_protocol_def, protocol->getName().str())
.fixItRemove(inherited.getSourceRange());
diagnosedCircularity = true;
}
continue;
}
allProtocols.insert(inheritedProtocol);
}
}
}
// If we enumerated any dependencies, we can't complete this request.
if (anyDependencies)
return;
}
bool IterativeTypeChecker::breakCycleForInheritedProtocols(
ProtocolDecl *protocol) {
// FIXME: We'd like to drop just the problematic protocols, not
// everything.
return true;
}
//===----------------------------------------------------------------------===//
// Resolve a type declaration
//===----------------------------------------------------------------------===//
bool IterativeTypeChecker::isResolveTypeDeclSatisfied(TypeDecl *typeDecl) {
auto *dc = typeDecl->getDeclContext();
if (typeDecl->hasInterfaceType())
return true;
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (typeAliasDecl->getDeclContext()->isModuleScopeContext() &&
typeAliasDecl->getGenericParams() == nullptr) {
return typeAliasDecl->hasInterfaceType();
}
}
// If this request can *never* be satisfied due to recursion,
// return success and fail elsewhere.
if (typeDecl->isBeingValidated())
return true;
while (dc) {
if (auto nominal = dyn_cast<NominalTypeDecl>(dc)) {
if (nominal->isBeingValidated())
return true;
if (nominal->hasInterfaceType())
return false;
} else if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
if (ext->isBeingValidated())
return true;
if (ext->hasValidationStarted())
return false;
} else {
break;
}
dc = dc->getParent();
}
// Ok, we can try calling validateDecl().
return false;
}
void IterativeTypeChecker::processResolveTypeDecl(
TypeDecl *typeDecl,
UnsatisfiedDependency unsatisfiedDependency) {
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (typeAliasDecl->getDeclContext()->isModuleScopeContext() &&
typeAliasDecl->getGenericParams() == nullptr) {
TypeResolutionOptions options = TR_TypeAliasUnderlyingType;
if (typeAliasDecl->getFormalAccess() <= AccessLevel::FilePrivate)
options |= TR_KnownNonCascadingDependency;
// Note: recursion into old type checker is okay when passing in an
// unsatisfied-dependency callback.
GenericTypeToArchetypeResolver resolver(typeAliasDecl);
if (TC.validateType(typeAliasDecl->getUnderlyingTypeLoc(), typeAliasDecl,
options, &resolver, &unsatisfiedDependency)) {
typeAliasDecl->setInvalid();
typeAliasDecl->getUnderlyingTypeLoc().setInvalidType(getASTContext());
}
if (typeAliasDecl->getUnderlyingTypeLoc().wasValidated()) {
typeAliasDecl->setUnderlyingType(
typeAliasDecl->getUnderlyingTypeLoc().getType());
}
return;
}
// Fall through.
}
// FIXME: Recursion into the old type checker.
TC.validateDecl(typeDecl);
}
bool IterativeTypeChecker::breakCycleForResolveTypeDecl(TypeDecl *typeDecl) {
if (auto typeAliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
typeAliasDecl->setInvalid();
typeAliasDecl->setInterfaceType(ErrorType::get(getASTContext()));
typeAliasDecl->getUnderlyingTypeLoc().setInvalidType(getASTContext());
return true;
}
// FIXME: Generalize this.
return false;
}