Files
swift-mirror/lib/Parse/Lexer.cpp
Dave Zarzycki 1ca414e1c9 Part two of r3968
Other subsystems need to be in sync with r3968.

Swift SVN r3978
2013-02-07 00:12:51 +00:00

1160 lines
38 KiB
C++

//===--- Lexer.cpp - Swift Language Lexer ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Lexer and Token interfaces.
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Lexer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/Identifier.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// UTF8 Validation/Encoding/Decoding helper functions
//===----------------------------------------------------------------------===//
/// EncodeToUTF8 - Encode the specified code point into a UTF8 stream. Return
/// true if it is an erroneous code point.
static bool EncodeToUTF8(unsigned CharValue,
llvm::SmallVectorImpl<char> &Result) {
assert(CharValue >= 0x80 && "Single-byte encoding should be already handled");
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::CountLeadingZeros_32(CharValue);
unsigned LowHalf = CharValue & 0xFFFF;
// Reserved values in each plane
if (LowHalf == 0xFFFE || LowHalf == 0xFFFF)
return true;
// Handle the leading byte, based on the number of bits in the value.
unsigned NumTrailingBytes;
if (NumBits <= 5+6) {
// Encoding is 0x110aaaaa 10bbbbbb
Result.push_back(char(0xC0 | (CharValue >> 6)));
NumTrailingBytes = 1;
} else if (NumBits <= 4+6+6) {
// Encoding is 0x1110aaaa 10bbbbbb 10cccccc
Result.push_back(char(0xE0 | (CharValue >> (6+6))));
NumTrailingBytes = 2;
// UTF-16 surrogate pair values are not valid code points.
if (CharValue >= 0xD800 && CharValue <= 0xDFFF)
return true;
// U+FDD0...U+FDEF are also reserved
if (CharValue >= 0xFDD0 && CharValue <= 0xFDEF)
return true;
} else if (NumBits <= 3+6+6+6) {
// Encoding is 0x11110aaa 10bbbbbb 10cccccc 10dddddd
Result.push_back(char(0xF0 | (CharValue >> (6+6+6))));
NumTrailingBytes = 3;
// Reject over-large code points. These cannot be encoded as UTF-16
// surrogate pairs, so UTF-32 doesn't allow them.
if (CharValue > 0x10FFFF)
return true;
} else {
return true; // UTF8 can encode these, but they aren't valid code points.
}
// Emit all of the trailing bytes.
while (NumTrailingBytes--)
Result.push_back(char(0x80 | (0x3F & (CharValue >> (NumTrailingBytes*6)))));
return false;
}
/// CLO8 - Return the number of leading ones in the specified 8-bit value.
static unsigned CLO8(unsigned char C) {
return llvm::CountLeadingOnes_32(uint32_t(C) << 24);
}
/// isStartOfUTF8Character - Return true if this isn't a UTF8 continuation
/// character, which will be of the form 0b10XXXXXX
static bool isStartOfUTF8Character(unsigned char C) {
return (signed char)C >= 0 || C >= 0xC0; // C0 = 0b11000000
}
/// validateUTF8CharacterAndAdvance - Given a pointer to the starting byte of a
/// UTF8 character, validate it and advance the lexer past it. This returns the
/// encoded character or ~0U if the encoding is invalid.
static uint32_t validateUTF8CharacterAndAdvance(const char *&Ptr) {
assert((signed char)(*Ptr) < 0 && "Not the start of an encoded letter");
unsigned char CurByte = *Ptr++;
// Read the number of high bits set, which indicates the number of bytes in
// the character.
unsigned EncodedBytes = CLO8(CurByte);
// If this is 0b10XXXXXX, then it is a continuation character.
if (EncodedBytes == 1 ||
// If the number of encoded bytes is > 4, then this is an invalid
// character in the range of 0xF5 and above. These would start an
// encoding for something that couldn't be represented with UTF16
// digraphs, so Unicode rejects them.
EncodedBytes > 4) {
// Skip until we get the start of another character. This is guaranteed to
// at least stop at the nul at the end of the buffer.
while (!isStartOfUTF8Character(*Ptr))
++Ptr;
return ~0U;
}
// Drop the high bits indicating the # bytes of the result.
unsigned CharValue = (unsigned char)(CurByte << EncodedBytes) >> EncodedBytes;
// Read and validate the continuation bytes.
for (unsigned i = 1; i != EncodedBytes; ++i) {
CurByte = *Ptr;
// If the high bit isn't set or the second bit isn't clear, then this is not
// a continuation byte!
if (CurByte < 0x80 || CurByte >= 0xC0) return ~0U;
// Accumulate our result.
CharValue <<= 6;
CharValue |= CurByte & 0x3F;
++Ptr;
}
// UTF-16 surrogate pair values are not valid code points.
if (CharValue >= 0xD800 && CharValue <= 0xDFFF)
return ~0U;
// If we got here, we read the appropriate number of accumulated bytes.
// Verify that the encoding was actually minimal.
// Number of bits in the value, ignoring leading zeros.
unsigned NumBits = 32-llvm::CountLeadingZeros_32(CharValue);
if (NumBits <= 5+6)
return EncodedBytes == 2 ? CharValue : ~0U;
if (NumBits <= 4+6+6)
return EncodedBytes == 3 ? CharValue : ~0U;
return EncodedBytes == 4 ? CharValue : ~0U;
}
//===----------------------------------------------------------------------===//
// Setup and Helper Methods
//===----------------------------------------------------------------------===//
Lexer::Lexer(StringRef Buffer, llvm::SourceMgr &SourceMgr,
DiagnosticEngine *Diags, const char *CurrentPosition)
: SourceMgr(SourceMgr), Diags(Diags) {
BufferStart = Buffer.begin();
BufferEnd = Buffer.end();
CurPtr = CurrentPosition;
assert(CurPtr >= BufferStart && CurPtr <= BufferEnd &&
"Current position is out-of-range");
// Prime the lexer.
lexImpl();
}
InFlightDiagnostic Lexer::diagnose(const char *Loc, Diag<> ID) {
if (Diags)
return Diags->diagnose(getSourceLoc(Loc), ID);
return InFlightDiagnostic();
}
tok Lexer::getTokenKind(StringRef Text) {
assert(Text.data() >= BufferStart && Text.data() <= BufferEnd &&
"Text string does not fall within lexer's buffer");
Lexer L(StringRef(BufferStart, BufferEnd - BufferStart), SourceMgr, Diags,
Text.data());
Token Result;
L.lex(Result);
return Result.getKind();
}
void Lexer::formToken(tok Kind, const char *TokStart) {
NextToken.setToken(Kind, StringRef(TokStart, CurPtr-TokStart));
}
void Lexer::formStartingToken(tok Kind,const char *TokStart,tok FollowingKind) {
if (isStartingToken(TokStart)) {
NextToken.setToken(Kind, StringRef(TokStart, CurPtr-TokStart));
} else {
if (FollowingKind == tok::unknown)
diagnose(TokStart, diag::lex_missing_whitespace);
NextToken.setToken(FollowingKind, StringRef(TokStart, CurPtr-TokStart));
}
}
bool Lexer::isStartingToken(const char *TokStart) {
// Note: "NextToken" is actually the soon to be previous token.
switch (NextToken.getKind()) {
#define IDENTIFIER_KEYWORD(kw) case tok::kw_##kw:
#include "swift/Parse/Tokens.def"
case tok::identifier:
case tok::dollarident:
case tok::integer_literal:
case tok::floating_literal:
case tok::string_literal:
case tok::character_literal:
case tok::r_paren:
case tok::r_square:
case tok::r_brace: {
// If there is whitespace between the above tokens and this one,
// then the current token is a literal.
char LastChar = *(TokStart - 1);
return isspace(LastChar) || LastChar == '\0';
}
default:
return true;
}
}
//===----------------------------------------------------------------------===//
// Lexer Subroutines
//===----------------------------------------------------------------------===//
/// skipSlashSlashComment - Skip to the end of the line of a // comment.
void Lexer::skipSlashSlashComment() {
assert(CurPtr[-1] == '/' && CurPtr[0] == '/' && "Not a // comment");
while (1) {
switch (*CurPtr++) {
case '\n':
case '\r':
return; // If we found the end of the line, return.
default:
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) < 0) {
--CurPtr;
const char *CharStart = CurPtr;
if (validateUTF8CharacterAndAdvance(CurPtr) == ~0U)
diagnose(CharStart, diag::lex_invalid_utf8_character);
}
break; // Otherwise, eat other characters.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
break;
}
// Otherwise, we have a // comment at end of file.
--CurPtr;
return;
}
}
}
/// skipSlashStarComment - /**/ comments are skipped (treated as whitespace).
/// Note that (unlike in C) block comments can be nested.
void Lexer::skipSlashStarComment() {
const char *StartPtr = CurPtr-1;
assert(CurPtr[-1] == '/' && CurPtr[0] == '*' && "Not a /* comment");
// Make sure to advance over the * so that we don't incorrectly handle /*/ as
// the beginning and end of the comment.
++CurPtr;
// /**/ comments can be nested, keep track of how deep we've gone.
unsigned Depth = 1;
while (1) {
switch (*CurPtr++) {
case '*':
// Check for a '*/'
if (*CurPtr == '/') {
++CurPtr;
if (--Depth == 0)
return;
}
break;
case '/':
// Check for a '/*'
if (*CurPtr == '*') {
++CurPtr;
++Depth;
}
break;
default:
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) < 0) {
--CurPtr;
const char *CharStart = CurPtr;
if (validateUTF8CharacterAndAdvance(CurPtr) == ~0U)
diagnose(CharStart, diag::lex_invalid_utf8_character);
}
break; // Otherwise, eat other characters.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
break;
}
// Otherwise, we have an unterminated /* comment.
--CurPtr;
diagnose(CurPtr-(CurPtr[-1] == '\n'),
diag::lex_unterminated_block_comment);
diagnose(StartPtr, diag::lex_comment_start);
return;
}
}
}
static bool isValidStartOfIdentifier(char c) {
return isalpha(c) || c == '_';
}
static bool isValidContinuationOfIdentifier(char c) {
return isalnum(c) || c == '_' || c == '$';
}
/// isIdentifier - Checks whether a string matches the identifier regex.
bool Lexer::isIdentifier(llvm::StringRef string) {
if (string.empty()) return false;
if (!isValidStartOfIdentifier(string[0])) return false;
for (unsigned i = 1, e = string.size(); i != e; ++i)
if (!isValidContinuationOfIdentifier(string[i]))
return false;
return true;
}
/// lexIdentifier - Match [a-zA-Z_][a-zA-Z_$0-9]*
///
/// FIXME: We should also allow unicode characters in identifiers.
void Lexer::lexIdentifier() {
const char *TokStart = CurPtr-1;
assert(isValidStartOfIdentifier(*TokStart) && "Unexpected start");
// Lex [a-zA-Z_$0-9]*
while (isValidContinuationOfIdentifier(*CurPtr))
++CurPtr;
tok Kind =
llvm::StringSwitch<tok>(StringRef(TokStart, CurPtr-TokStart))
// Declarations and Type Keywords
.Case("class", tok::kw_class)
.Case("constructor", tok::kw_constructor)
.Case("destructor", tok::kw_destructor)
.Case("extension", tok::kw_extension)
.Case("func", tok::kw_func)
.Case("import", tok::kw_import)
.Case("oneof", tok::kw_oneof)
.Case("protocol", tok::kw_protocol)
.Case("requires", tok::kw_requires)
.Case("struct", tok::kw_struct)
.Case("typealias", tok::kw_typealias)
.Case("var", tok::kw_var)
.Case("static", tok::kw_static) // inside-out attribute that implies a decl
.Case("subscript", tok::kw_subscript)
// Statements
.Case("if", tok::kw_if)
.Case("else", tok::kw_else)
.Case("for", tok::kw_for)
.Case("do", tok::kw_do)
.Case("while", tok::kw_while)
.Case("return", tok::kw_return)
.Case("break", tok::kw_break)
.Case("continue", tok::kw_continue)
// Expressions
.Case("new", tok::kw_new)
// Reserved Identifiers
.Case("metatype", tok::kw_metatype)
.Case("super", tok::kw_super)
.Case("this", tok::kw_this)
.Case("This", tok::kw_This)
.Default(tok::identifier);
return formStartingToken(Kind, TokStart);
}
/// Is the operator beginning at the given character "left-bound"?
static bool isLeftBound(const char *tokBegin, const char *bufferBegin) {
// The first character in the file is not left-bound.
if (tokBegin == bufferBegin) return false;
switch (tokBegin[-1]) {
case ' ': case '\r': case '\n': case '\t': // whitespace
case '(': case '[': case '{': // opening delimiters
case ',': case ';': // expression separators
case '\0': // whitespace / last char in file
return false;
default:
return true;
}
}
/// Is the operator ending at the given character (actually one past the end)
/// "right-bound"?
static bool isRightBound(const char *tokEnd) {
switch (*tokEnd) {
case ' ': case '\r': case '\n': case '\t': // whitespace
case ')': case ']': case '}': // closing delimiters
case ',': case ';': // expression separators
case '\0': // whitespace / last char in file
return false;
default:
return true;
}
}
/// lexOperatorIdentifier - Match identifiers formed out of punctuation.
void Lexer::lexOperatorIdentifier() {
const char *TokStart = CurPtr-1;
// We only allow '.' in a series
if (*TokStart == '.') {
while (*CurPtr == '.')
++CurPtr;
if (CurPtr-TokStart > 3) {
diagnose(TokStart, diag::lex_unexpected_long_period_series);
return formToken(tok::unknown, TokStart);
}
} else {
while (Identifier::isOperatorChar(*CurPtr) && *CurPtr != '.')
++CurPtr;
}
// Decide between the binary, prefix, and postfix cases.
// It's binary if either both sides are bound or both sides are not bound.
// Otherwise, it's postfix if left-bound and prefix if right-bound.
bool leftBound = isLeftBound(TokStart, BufferStart);
bool rightBound = isRightBound(CurPtr);
// Match various reserved words.
if (CurPtr-TokStart == 1) {
switch (TokStart[0]) {
case '=':
return formToken(tok::equal, TokStart);
case '&':
if (leftBound == rightBound || leftBound)
break;
return formToken(tok::make_ref, TokStart);
case '.':
// Parsing the '.' in ".5" in "3.14*.5" breaks the rules we have for
// operators. It becomes a false-positive binary operator given our
// simple left bound versus right bound rule.
if (isdigit(CurPtr[0]) && isStartingToken(TokStart))
return lexNumber();
if (leftBound == rightBound)
return formToken(tok::period, TokStart);
if (rightBound)
return formToken(tok::unresolved_member, TokStart);
diagnose(TokStart, diag::lex_unary_postfix_dot_is_reserved);
return formToken(tok::unknown, TokStart);
}
} else if (CurPtr-TokStart == 2) {
switch ((TokStart[0] << 8) | TokStart[1]) {
case ('-' << 8) | '>': // ->
return formToken(tok::arrow, TokStart);
case ('*' << 8) | '/': // */
diagnose(TokStart, diag::lex_unexpected_block_comment_end);
return formToken(tok::unknown, TokStart);
}
} else {
if (CurPtr-TokStart == 3) {
switch ((TokStart[0] << 16) | (TokStart[1] << 8) | TokStart[0]) {
case ('.' << 16) | ('.' << 8) | '.':
return formToken(tok::ellipsis, TokStart);
}
}
// If there is a "//" in the middle of an identifier token, it starts
// a single-line comment.
auto Pos = StringRef(TokStart, CurPtr-TokStart).find("//");
if (Pos != StringRef::npos)
CurPtr = TokStart+Pos;
// If there is a "/*" in the middle of an identifier token, it starts
// a multi-line comment.
Pos = StringRef(TokStart, CurPtr-TokStart).find("/*");
if (Pos != StringRef::npos)
CurPtr = TokStart+Pos;
// Verify there is no "*/" in the middle of the identifier token, we reject
// it as potentially ending a block comment.
Pos = StringRef(TokStart, CurPtr-TokStart).find("*/");
if (Pos != StringRef::npos) {
diagnose(TokStart+Pos, diag::lex_unexpected_block_comment_end);
return formToken(tok::unknown, TokStart);
}
}
if (leftBound == rightBound)
return formToken(tok::oper_binary, TokStart);
return formToken(leftBound ? tok::oper_postfix : tok::oper_prefix, TokStart);
}
/// lexDollarIdent - Match $[0-9a-zA-Z_$]*
void Lexer::lexDollarIdent() {
const char *TokStart = CurPtr-1;
assert(*TokStart == '$');
// Lex [a-zA-Z_$0-9]*
while (isalnum(*CurPtr) || *CurPtr == '_' || *CurPtr == '$')
++CurPtr;
return formStartingToken(tok::dollarident, TokStart);
}
// Return true if the string starts with "[eE][+-][0-9]"
static bool isValidExponent(const char *P) {
if (*P != 'e' && *P != 'E')
return false;
++P;
if (*P != '+' && *P != '-')
return false;
++P;
return isdigit(*P);
}
static bool isxdigit(char c) {
return isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
}
void Lexer::lexHexNumber() {
// We assume we're starting from the 'x' in a '0x...' floating-point literal.
assert(*CurPtr == 'x' && "not a hex literal");
const char *TokStart = CurPtr-1;
assert(*TokStart == '0' && "not a hex literal");
// 0x[0-9a-fA-F]+
++CurPtr;
while (isxdigit(*CurPtr))
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
if (*CurPtr != '.' && *CurPtr != 'p' && *CurPtr != 'P')
return formStartingToken(tok::integer_literal, TokStart);
// (\.[0-9A-Fa-f]+)?
if (*CurPtr == '.') {
++CurPtr;
// If the character after the '.' is not a digit, assume we have an int
// literal followed by a dot expression.
if (!isxdigit(*CurPtr)) {
--CurPtr;
return formStartingToken(tok::integer_literal, TokStart);
}
while (isxdigit(*CurPtr))
++CurPtr;
if (*CurPtr != 'p' && *CurPtr != 'P') {
diagnose(CurPtr, diag::lex_expected_binary_exponent_in_hex_float_literal);
return formToken(tok::unknown, TokStart);
}
}
// [pP][+-]?[0-9]+
assert(*CurPtr == 'p' || *CurPtr == 'P' && "not at a hex float exponent?!");
++CurPtr;
if (*CurPtr == '+' || *CurPtr == '-')
++CurPtr; // Eat the sign.
if (!isdigit(*CurPtr)) {
diagnose(CurPtr, diag::lex_expected_digit_in_fp_exponent);
return formToken(tok::unknown, TokStart);
}
while (isdigit(*CurPtr))
++CurPtr;
return formStartingToken(tok::floating_literal, TokStart);
}
/// lexNumber:
/// integer_literal ::= [0-9]+
/// integer_literal ::= 0x[0-9a-fA-F]+
/// integer_literal ::= 0o[0-7]+
/// integer_literal ::= 0b[01]+
/// floating_literal ::= [0-9]+\.[0-9]+
/// floating_literal ::= [0-9]+(\.[0-9]*)?[eE][+-]?[0-9]+
/// floating_literal ::= \.[0-9]+([eE][+-]?[0-9]+)?
/// floating_literal ::= 0x[0-9A-Fa-f]+(\.[0-9A-Fa-f]+)?[pP][+-]?[0-9]+
void Lexer::lexNumber() {
const char *TokStart = CurPtr-1;
assert((isdigit(*TokStart) || *TokStart == '.') && "Unexpected start");
if (*TokStart == '0' && *CurPtr == 'x') {
return lexHexNumber();
} else if (*TokStart == '0' && *CurPtr == 'o') {
// 0o[0-7]+
++CurPtr;
while (*CurPtr >= '0' && *CurPtr <= '7')
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
return formStartingToken(tok::integer_literal, TokStart);
} else if (*TokStart == '0' && *CurPtr == 'b') {
// 0b[01]+
++CurPtr;
while (*CurPtr == '0' || *CurPtr == '1')
++CurPtr;
if (CurPtr - TokStart == 2) {
diagnose(CurPtr, diag::lex_expected_digit_in_int_literal);
return formToken(tok::unknown, TokStart);
}
return formStartingToken(tok::integer_literal, TokStart);
}
// Handle the leading character here as well.
--CurPtr;
// Handle a leading [0-9]+, lexing an integer or falling through if we have a
// floating point value.
if (isdigit(*CurPtr)) {
while (isdigit(*CurPtr))
++CurPtr;
// Floating literals must have '.', 'e', or 'E' after digits. If it is
// something else, then this is the end of the token.
if (*CurPtr != '.' && *CurPtr != 'e' && *CurPtr != 'E')
return formStartingToken(tok::integer_literal, TokStart);
// Lex things like 4.x as '4' followed by a tok::period.
if (*CurPtr == '.' && !isdigit(CurPtr[1]) && !isValidExponent(CurPtr+1))
return formStartingToken(tok::integer_literal, TokStart);
}
// Lex decimal point.
if (*CurPtr == '.') {
++CurPtr;
// Lex any digits after the decimal point.
while (isdigit(*CurPtr))
++CurPtr;
}
// Lex exponent.
if (*CurPtr == 'e' || *CurPtr == 'E') {
++CurPtr; // Eat the 'e'
if (*CurPtr == '+' || *CurPtr == '-')
++CurPtr; // Eat the sign.
if (!isdigit(*CurPtr)) {
diagnose(CurPtr, diag::lex_expected_digit_in_fp_exponent);
return formToken(tok::unknown, TokStart);
}
while (isdigit(*CurPtr))
++CurPtr;
}
return formStartingToken(tok::floating_literal, TokStart);
}
/// lexCharacter - Read a character and return its UTF32 code. If this is the
/// end of enclosing string/character sequence, this returns ~0U.
///
/// character_escape ::= [\][\] | [\]t | [\]n | [\]r | [\]" | [\]'
/// character_escape ::= [\]x hex hex
/// character_escape ::= [\]u hex hex hex hex
/// character_escape ::= [\]U hex hex hex hex hex hex hex hex
/// hex ::= [0-9a-fA-F]
unsigned Lexer::lexCharacter(const char *&CurPtr, bool StopAtDoubleQuote,
bool EmitDiagnostics) {
const char *CharStart = CurPtr;
switch (*CurPtr++) {
default: {// Normal characters are part of the string.
// If this is a "high" UTF-8 character, validate it.
if ((signed char)(CurPtr[-1]) >= 0)
return CurPtr[-1];
--CurPtr;
unsigned CharValue = validateUTF8CharacterAndAdvance(CurPtr);
if (CharValue != ~0U) return CharValue;
if (EmitDiagnostics)
diagnose(CharStart, diag::lex_invalid_utf8_character);
return 0;
}
case '"':
// If we found the closing " character, we're done.
if (StopAtDoubleQuote) {
--CurPtr;
return ~0U;
}
// In a single quoted string, this is just a character.
return CurPtr[-1];
case '\'':
if (!StopAtDoubleQuote) {
--CurPtr;
return ~0U;
}
// In a double quoted string, this is just a character.
return CurPtr[-1];
case 0:
if (CurPtr-2 != BufferEnd) {
if (EmitDiagnostics)
diagnose(CurPtr-2, diag::lex_nul_character);
return 0;
}
// FALL THROUGH.
case '\n': // String literals cannot have \n or \r in them.
case '\r':
--CurPtr;
return ~0U;
case '\\': // Escapes.
break;
}
unsigned CharValue = 0;
// Escape processing. We already ate the "\".
switch (*CurPtr) {
default: // Invalid escape.
diagnose(CurPtr, diag::lex_invalid_escape);
return 0;
// Simple single-character escapes.
case '0': ++CurPtr; return '\0';
case 'a': ++CurPtr; return '\a';
case 'b': ++CurPtr; return '\b';
case 'f': ++CurPtr; return '\f';
case 'n': ++CurPtr; return '\n';
case 'r': ++CurPtr; return '\r';
case 't': ++CurPtr; return '\t';
case 'v': ++CurPtr; return '\v';
case '"': ++CurPtr; return '"';
case '\'': ++CurPtr; return '\'';
case '\\': ++CurPtr; return '\\';
// Unicode escapes of various lengths.
case 'x': // \x HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2])) {
if (EmitDiagnostics)
diagnose(CurPtr, diag::lex_invalid_x_escape);
return 0;
}
StringRef(CurPtr+1, 2).getAsInteger(16, CharValue);
// Reject \x80 and above, since it is going to encode into a multibyte
// unicode encoding, which is something that C folks may not expect.
if (CharValue >= 0x80)
diagnose(CurPtr, diag::lex_invalid_hex_escape);
CurPtr += 3;
break;
case 'u': // \u HEX HEX HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2]) ||
!isxdigit(CurPtr[3]) || !isxdigit(CurPtr[4])) {
if (EmitDiagnostics)
diagnose(CurPtr, diag::lex_invalid_u_escape);
return 0;
}
StringRef(CurPtr+1, 4).getAsInteger(16, CharValue);
CurPtr += 5;
break;
case 'U': // \U HEX HEX HEX HEX HEX HEX HEX HEX
if (!isxdigit(CurPtr[1]) || !isxdigit(CurPtr[2]) ||
!isxdigit(CurPtr[3]) || !isxdigit(CurPtr[4]) ||
!isxdigit(CurPtr[5]) || !isxdigit(CurPtr[6]) ||
!isxdigit(CurPtr[7]) || !isxdigit(CurPtr[8])) {
if (EmitDiagnostics)
diagnose(CurPtr, diag::lex_invalid_U_escape);
return 0;
}
StringRef(CurPtr+1, 8).getAsInteger(16, CharValue);
CurPtr += 9;
break;
}
// Check to see if the encoding is valid.
llvm::SmallString<64> TempString;
if (CharValue >= 0x80 && EncodeToUTF8(CharValue, TempString)) {
if (EmitDiagnostics)
diagnose(CharStart, diag::lex_invalid_unicode_code_point);
return 0;
}
return CharValue;
}
/// lexCharacterLiteral:
/// character_literal ::= '([^'\\\n\r]|character_escape)'
void Lexer::lexCharacterLiteral() {
const char *TokStart = CurPtr-1;
assert(*TokStart == '\'' && "Unexpected start");
unsigned CharValue = lexCharacter(CurPtr, false, true);
// If this wasn't a normal character, then this is a malformed character.
if (CharValue == ~0U) {
diagnose(TokStart, diag::lex_invalid_character_literal);
return formToken(tok::unknown, TokStart);
}
if (*CurPtr != '\'') {
diagnose(TokStart, diag::lex_invalid_character_literal);
return formToken(tok::unknown, TokStart);;
}
++CurPtr;
return formStartingToken(tok::character_literal, TokStart);
}
/// getEncodedCharacterLiteral - Return the UTF32 codepoint for the specified
/// character literal.
uint32_t Lexer::getEncodedCharacterLiteral(const Token &Str) {
const char *CharStart = Str.getText().data()+1;
return lexCharacter(CharStart, false, false);
}
/// skipToEndOfInterpolatedExpression - Given the first character after a \(
/// sequence in a string literal (the start of an interpolated expression),
/// scan forward to the end of the interpolated expression and return the end.
/// On success, the returned pointer will point to a ')'. On failure, it will
/// point to something else. This basically just does brace matching.
static const char *skipToEndOfInterpolatedExpression(const char *CurPtr,
Lexer *L) {
SourceLoc InterpStart = Lexer::getSourceLoc(CurPtr-1);
unsigned ParenCount = 1;
while (true) {
// This is a very simple scanner. The implications of this include not
// being able to use string literals in an interpolated string, and not
// being able to break an expression over multiple lines in an interpolated
// string. Both of these limitations make this simple and allow us to
// recover from common errors though.
//
// On success scanning the expression body, the real lexer will be used to
// relex the body when parsing the expressions. We let it diagnose any
// issues with malformed tokens or other problems.
switch (*CurPtr++) {
// String literals in general cannot be split across multiple lines,
// interpolated ones are no exception.
case '\n':
case '\r':
// Will be diagnosed as an unterminated string literal.
return CurPtr-1;
// String literals cannot be used in interpolated string literals.
case '"':
L->diagnose(CurPtr - 1, diag::lex_unexpected_quote_string_interpolation)
<< SourceRange(InterpStart, Lexer::getSourceLoc(CurPtr-1));
return CurPtr-1;
case 0:
// If we hit EOF, we fail.
if (CurPtr-1 == L->getBufferEnd()) {
L->diagnose(CurPtr-1, diag::lex_unterminated_string);
return CurPtr-1;
}
continue;
// Paren nesting deeper to support "foo = \((a+b)-(c*d)) bar".
case '(':
++ParenCount;
continue;
case ')':
// If this is the last level of nesting, then we're done!
if (--ParenCount == 0)
return CurPtr-1;
continue;
default:
// Normal token character.
continue;
}
}
}
/// lexStringLiteral:
/// string_literal ::= ["]([^"\\\n\r]|character_escape)*["]
void Lexer::lexStringLiteral() {
const char *TokStart = CurPtr-1;
assert(*TokStart == '"' && "Unexpected start");
bool wasErroneous = false;
while (1) {
if (*CurPtr == '\\' && *(CurPtr + 1) == '(') {
// Consume tokens until we hit the corresponding ')'.
CurPtr += 2;
const char *EndPtr = skipToEndOfInterpolatedExpression(CurPtr, this);
if (*EndPtr == ')') {
// Successfully scanned the body of the expression literal.
CurPtr = EndPtr+1;
} else {
wasErroneous = true;
}
continue;
}
unsigned CharValue = lexCharacter(CurPtr, true, true);
// If this is a normal character, just munch it.
if (CharValue != ~0U)
continue;
switch (*CurPtr) {
default: assert(0 && "Unknown reason to stop lexing character");
// If we found the closing " character, we're done.
case '"':
++CurPtr;
if (wasErroneous) return formToken(tok::unknown, TokStart);
return formStartingToken(tok::string_literal, TokStart);
case 0:
case '\n': // String literals cannot have \n or \r in them.
case '\r':
diagnose(TokStart, diag::lex_unterminated_string);
return formToken(tok::unknown, TokStart);
}
}
}
/// getEncodedStringLiteral - Given a string literal token, return the bytes
/// that the actual string literal should codegen to. If a copy needs to be
/// made, it will be allocated out of the ASTContext allocator.
void Lexer::getEncodedStringLiteral(const Token &Str, ASTContext &Ctx,
llvm::SmallVectorImpl<StringSegment> &Segments) {
// Get the bytes behind the string literal, dropping the double quotes.
StringRef Bytes = Str.getText().drop_front().drop_back();
llvm::SmallString<64> TempString;
// Note that it is always safe to read one over the end of "Bytes" because
// we know that there is a terminating " character. Use BytesPtr to avoid a
// range check subscripting on the StringRef.
const char *BytesPtr = Bytes.begin();
while (BytesPtr != Bytes.end()) {
char CurChar = *BytesPtr++;
if (CurChar != '\\') {
TempString += CurChar;
continue;
}
// Invalid escapes are accepted by the lexer but diagnosed as an error. We
// just ignore them here.
unsigned CharValue; // Unicode character value for \x, \u, \U.
switch (*BytesPtr++) {
default:
continue; // Invalid escape, ignore it.
// Simple single-character escapes.
case 'a': TempString += '\a'; continue;
case 'b': TempString += '\b'; continue;
case 'f': TempString += '\f'; continue;
case 'n': TempString += '\n'; continue;
case 'r': TempString += '\r'; continue;
case 't': TempString += '\t'; continue;
case 'v': TempString += '\v'; continue;
case '"': TempString += '"'; continue;
case '\'': TempString += '\''; continue;
case '\\': TempString += '\\'; continue;
// String interpolation.
case '(': {
// Flush the current string.
if (!TempString.empty()) {
auto Res = Ctx.AllocateCopy(TempString);
Segments.push_back(StringSegment::getLiteral(StringRef(Res.data(),
Res.size())));
TempString.clear();
}
// Find the closing ')'.
const char *End = skipToEndOfInterpolatedExpression(BytesPtr, this);
assert(*End == ')' && "invalid string literal interpolations should"
" not be returned as string literals");
++End;
// Add an expression segment.
Segments.push_back(
StringSegment::getExpr(StringRef(BytesPtr, End-BytesPtr-1)));
// Reset the input bytes to the string that remains to be consumed.
Bytes = StringRef(End, Bytes.end() - End);
BytesPtr = End;
continue;
}
// Unicode escapes of various lengths.
case 'x': // \x HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 2).getAsInteger(16, CharValue);
BytesPtr += 2;
break;
case 'u': // \u HEX HEX HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]) ||
!isxdigit(BytesPtr[2]) || !isxdigit(BytesPtr[3]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 4).getAsInteger(16, CharValue);
BytesPtr += 4;
break;
case 'U': // \U HEX HEX HEX HEX HEX HEX HEX HEX
if (!isxdigit(BytesPtr[0]) || !isxdigit(BytesPtr[1]) ||
!isxdigit(BytesPtr[2]) || !isxdigit(BytesPtr[3]) ||
!isxdigit(BytesPtr[4]) || !isxdigit(BytesPtr[5]) ||
!isxdigit(BytesPtr[6]) || !isxdigit(BytesPtr[7]))
continue; // Ignore invalid escapes.
StringRef(BytesPtr, 8).getAsInteger(16, CharValue);
BytesPtr += 8;
break;
}
if (CharValue < 0x80)
TempString += (char)CharValue;
else
EncodeToUTF8(CharValue, TempString);
}
// If we didn't escape or reprocess anything, then we don't need to reallocate
// a copy of the string, just point to the lexer's version. We know that this
// is safe because unescaped strings are always shorter than their escaped
// forms (in a valid string).
if (Segments.empty() && TempString.size() == Bytes.size())
Segments.push_back(StringSegment::getLiteral(Bytes));
else if (Segments.empty() || !TempString.empty()) {
auto Res = Ctx.AllocateCopy(TempString);
Segments.push_back(StringSegment::getLiteral(StringRef(Res.data(),
Res.size())));
}
}
//===----------------------------------------------------------------------===//
// Main Lexer Loop
//===----------------------------------------------------------------------===//
void Lexer::lexImpl() {
assert(CurPtr >= BufferStart &&
CurPtr <= BufferEnd && "Cur Char Pointer out of range!");
Restart:
// Remember the start of the token so we can form the text range.
const char *TokStart = CurPtr;
switch (*CurPtr++) {
default:
diagnose(CurPtr-1, diag::lex_invalid_character);
return formToken(tok::unknown, TokStart);
case ' ':
case '\t':
case '\n':
case '\r':
goto Restart; // Skip whitespace.
case 0:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if (CurPtr-1 != BufferEnd) {
diagnose(CurPtr-1, diag::lex_nul_character);
goto Restart;
}
// Otherwise, this is the end of the buffer. Return EOF.
if (CurPtr[-2] != '\n' && CurPtr[-2] != '\r') {
// While we are not C, we should not ignore the strong Unix command-line
// tool conventions that motivate this warning.
diagnose(CurPtr-1, diag::lex_missing_newline_eof);
}
return formToken(tok::eof, TokStart);
case '{': return formStartingToken(tok::l_brace, TokStart);
case '[': return formStartingToken(tok::l_square_starting, TokStart,
tok::l_square_following);
case '(': return formStartingToken(tok::l_paren_starting, TokStart,
tok::l_paren_following);
case '}': return formToken(tok::r_brace, TokStart);
case ']': return formToken(tok::r_square, TokStart);
case ')':
// When lexing an interpolated string literal, the buffer will terminate
// with a ')'.
if (CurPtr-1 == BufferEnd)
return formToken(tok::eof, TokStart);
return formToken(tok::r_paren, TokStart);
case ',': return formToken(tok::comma, TokStart);
case ';': return formToken(tok::semi, TokStart);
case ':': return formToken(tok::colon, TokStart);
// Operator characters.
case '/':
if (CurPtr[0] == '/') { // "//"
skipSlashSlashComment();
goto Restart;
}
if (CurPtr[0] == '*') { // "/*"
skipSlashStarComment();
goto Restart;
}
// FALL THROUGH
case '=': case '-': case '+': case '*': case '%': case '<': case '>':
case '!': case '&': case '|': case '^': case '~': case '.':
return lexOperatorIdentifier();
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N':
case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U':
case 'V': case 'W': case 'X': case 'Y': case 'Z':
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u':
case 'v': case 'w': case 'x': case 'y': case 'z':
case '_':
return lexIdentifier();
case '$':
return lexDollarIdent();
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
return lexNumber();
case '\'':
return lexCharacterLiteral();
case '"':
return lexStringLiteral();
}
}
SourceLoc Lexer::getLocForEndOfToken(llvm::SourceMgr &SM, SourceLoc Loc) {
// Don't try to do anything with an invalid location.
if (!Loc.isValid())
return Loc;
// Figure out which buffer contains this location.
int BufferID = SM.FindBufferContainingLoc(Loc.Value);
if (BufferID < 0)
return SourceLoc();
const llvm::MemoryBuffer *Buffer = SM.getMemoryBuffer(BufferID);
if (!Buffer)
return SourceLoc();
Lexer L(Buffer->getBuffer(), SM, 0, Loc.Value.getPointer());
unsigned Length = L.peekNextToken().getLength();
return Loc.getAdvancedLoc(Length);
}