Files
swift-mirror/include/swift/Runtime/Metadata.h
Joe Groff 000d8e4953 Runtime: Add functions for dynamic single-payload dispatch.
Add functions to dynamically query the extra inhabitants of a single-payload union's payload metadata, then identify or store bit patterns used to represent empty cases, whether they happen to use extra inhabitants or added tag bits.

Swift SVN r8320
2013-09-17 01:29:35 +00:00

1058 lines
38 KiB
C++

//===--- Metadata.h - Swift Language ABI Metadata Support -------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Swift ABI for generating and uniquing metadata.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_METADATA_H
#define SWIFT_RUNTIME_METADATA_H
#include <cstddef>
#include <cstdint>
#include "swift/ABI/MetadataValues.h"
namespace swift {
struct HeapObject;
struct Metadata;
/// Storage for an arbitrary value. In C/C++ terms, this is an
/// 'object', because it is rooted in memory.
///
/// The context dictates what type is actually stored in this object,
/// and so this type is intentionally incomplete.
///
/// An object can be in one of two states:
/// - An uninitialized object has a completely unspecified state.
/// - An initialized object holds a valid value of the type.
struct OpaqueValue;
/// A fixed-size buffer for local values. It is capable of owning
/// (possibly in side-allocated memory) the storage necessary
/// to hold a value of an arbitrary type. Because it is fixed-size,
/// it can be allocated in places that must be agnostic to the
/// actual type: for example, within objects of existential type,
/// or for local variables in generic functions.
///
/// The context dictates its type, which ultimately means providing
/// access to a value witness table by which the value can be
/// accessed and manipulated.
///
/// A buffer can directly store three pointers and is pointer-aligned.
/// Three pointers is a sweet spot for Swift, because it means we can
/// store a structure containing a pointer, a size, and an owning
/// object, which is a common pattern in code due to ARC. In a GC
/// environment, this could be reduced to two pointers without much loss.
///
/// A buffer can be in one of three states:
/// - An unallocated buffer has a completely unspecified state.
/// - An allocated buffer has been initialized so that it
/// owns unintialized value storage for the stored type.
/// - An initialized buffer is an allocated buffer whose value
/// storage has been initialized.
struct ValueBuffer {
void *PrivateData[3];
};
struct ValueWitnessTable;
/// Types stored in the value-witness table.
class ValueWitnessFlags {
typedef size_t int_type;
enum : int_type {
AlignmentMask = 0x0000FFFF,
IsNonPOD = 0x00010000,
IsNonInline = 0x00020000,
HasExtraInhabitants = 0x00040000,
// Everything else is reserved.
};
int_type Data;
constexpr ValueWitnessFlags(int_type data) : Data(data) {}
public:
constexpr ValueWitnessFlags() : Data(0) {}
/// The required alignment of the first byte of an object of this
/// type, expressed as a mask of the low bits that must not be set
/// in the pointer.
///
/// This representation can be easily converted to the 'alignof'
/// result by merely adding 1, but it is more directly useful for
/// performing dynamic structure layouts, and it grants an
/// additional bit of precision in a compact field without needing
/// to switch to an exponent representation.
///
/// For example, if the type needs to be 8-byte aligned, the
/// appropriate alignment mask should be 0x7.
size_t getAlignmentMask() const {
return (Data & AlignmentMask);
}
constexpr ValueWitnessFlags withAlignmentMask(size_t alignMask) const {
return ValueWitnessFlags((Data & ~AlignmentMask) | alignMask);
}
size_t getAlignment() const { return getAlignmentMask() + 1; }
constexpr ValueWitnessFlags withAlignment(size_t alignment) const {
return withAlignmentMask(alignment - 1);
}
/// True if the type requires out-of-line allocation of its storage.
bool isInlineStorage() const { return !(Data & IsNonInline); }
constexpr ValueWitnessFlags withInlineStorage(bool isInline) const {
return ValueWitnessFlags((Data & ~IsNonInline) |
(isInline ? 0 : IsNonInline));
}
/// True if values of this type can be copied with memcpy and
/// destroyed with a no-op.
///
/// Unlike C++, non-POD types in Swift are still required to be
/// address-invariant, so a value can always be "moved" from place
/// to place with a memcpy.
bool isPOD() const { return !(Data & IsNonPOD); }
constexpr ValueWitnessFlags withPOD(bool isPOD) const {
return ValueWitnessFlags((Data & ~IsNonPOD) |
(isPOD ? 0 : IsNonPOD));
}
/// True if this type's binary representation has extra inhabitants, that is,
/// bit patterns that do not form valid values of the type.
///
/// If true, then the extra inhabitant value witness table entries are
/// available in this type's value witness table.
bool hasExtraInhabitants() const { return Data & HasExtraInhabitants; }
constexpr ValueWitnessFlags
withExtraInhabitants(bool hasExtraInhabitants) const {
return ValueWitnessFlags((Data & ~HasExtraInhabitants) |
(hasExtraInhabitants ? HasExtraInhabitants : 0));
}
};
class ExtraInhabitantFlags {
typedef size_t int_type;
enum : int_type {
NumExtraInhabitantsMask = 0x7FFFFFFFU,
};
int_type Data;
constexpr ExtraInhabitantFlags(int_type data) : Data(data) {}
public:
constexpr ExtraInhabitantFlags() : Data(0) {}
/// The number of extra inhabitants in the type's representation.
int getNumExtraInhabitants() const { return Data & NumExtraInhabitantsMask; }
constexpr ExtraInhabitantFlags
withNumExtraInhabitants(unsigned numExtraInhabitants) const {
return ExtraInhabitantFlags((Data & ~NumExtraInhabitantsMask) |
numExtraInhabitants);
}
};
namespace value_witness_types {
/// Given an initialized buffer, destroy its value and deallocate
/// the buffer. This can be decomposed as:
///
/// self->destroy(self->projectBuffer(buffer), self);
/// self->deallocateBuffer(buffer), self);
///
/// Preconditions:
/// 'buffer' is an initialized buffer
/// Postconditions:
/// 'buffer' is an unallocated buffer
typedef void destroyBuffer(ValueBuffer *buffer, const Metadata *self);
/// Given an unallocated buffer, initialize it as a copy of the
/// object in the source buffer. This can be decomposed as:
///
/// self->initalizeBufferWithCopy(dest, self->projectBuffer(src), self)
///
/// This operation does not need to be safe aginst 'dest' and 'src' aliasing.
///
/// Preconditions:
/// 'dest' is an unallocated buffer
/// Postconditions:
/// 'dest' is an initialized buffer
/// Invariants:
/// 'src' is an initialized buffer
typedef OpaqueValue *initializeBufferWithCopyOfBuffer(ValueBuffer *dest,
ValueBuffer *src,
const Metadata *self);
/// Given an allocated or initialized buffer, derive a pointer to
/// the object.
///
/// Invariants:
/// 'buffer' is an allocated or initialized buffer
typedef OpaqueValue *projectBuffer(ValueBuffer *buffer,
const Metadata *self);
/// Given an allocated buffer, deallocate the object.
///
/// Preconditions:
/// 'buffer' is an allocated buffer
/// Postconditions:
/// 'buffer' is an unallocated buffer
typedef void deallocateBuffer(ValueBuffer *buffer,
const Metadata *self);
/// Given an initialized object, destroy it.
///
/// Preconditions:
/// 'object' is an initialized object
/// Postconditions:
/// 'object' is an uninitialized object
typedef void destroy(OpaqueValue *object,
const Metadata *self);
/// Given an uninitialized buffer and an initialized object, allocate
/// storage in the buffer and copy the value there.
///
/// Returns the dest object.
///
/// Preconditions:
/// 'dest' is an uninitialized buffer
/// Postconditions:
/// 'dest' is an initialized buffer
/// Invariants:
/// 'src' is an initialized object
typedef OpaqueValue *initializeBufferWithCopy(ValueBuffer *dest,
OpaqueValue *src,
const Metadata *self);
/// Given an uninitialized object and an initialized object, copy
/// the value.
///
/// This operation does not need to be safe aginst 'dest' and 'src' aliasing.
///
/// Returns the dest object.
///
/// Preconditions:
/// 'dest' is an uninitialized object
/// Postconditions:
/// 'dest' is an initialized object
/// Invariants:
/// 'src' is an initialized object
typedef OpaqueValue *initializeWithCopy(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
/// Given two initialized objects, copy the value from one to the
/// other.
///
/// This operation must be safe aginst 'dest' and 'src' aliasing.
///
/// Returns the dest object.
///
/// Invariants:
/// 'dest' is an initialized object
/// 'src' is an initialized object
typedef OpaqueValue *assignWithCopy(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
/// Given an uninitialized buffer and an initialized object, move
/// the value from the object to the buffer, leaving the source object
/// uninitialized.
///
/// This operation does not need to be safe aginst 'dest' and 'src' aliasing.
///
/// Returns the dest object.
///
/// Preconditions:
/// 'dest' is an uninitialized buffer
/// 'src' is an initialized object
/// Postconditions:
/// 'dest' is an initialized buffer
/// 'src' is an uninitialized object
typedef OpaqueValue *initializeBufferWithTake(ValueBuffer *dest,
OpaqueValue *src,
const Metadata *self);
/// Given an uninitialized object and an initialized object, move
/// the value from one to the other, leaving the source object
/// uninitialized.
///
/// Guaranteed to be equivalent to a memcpy of self->size bytes.
/// There is no need for a initializeBufferWithTakeOfBuffer, because that
/// can simply be a pointer-aligned memcpy of sizeof(ValueBuffer)
/// bytes.
///
/// This operation does not need to be safe aginst 'dest' and 'src' aliasing.
///
/// Returns the dest object.
///
/// Preconditions:
/// 'dest' is an uninitialized object
/// 'src' is an initialized object
/// Postconditions:
/// 'dest' is an initialized object
/// 'src' is an uninitialized object
typedef OpaqueValue *initializeWithTake(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
/// Given an initialized object and an initialized object, move
/// the value from one to the other, leaving the source object
/// uninitialized.
///
/// This operation does not need to be safe aginst 'dest' and 'src' aliasing.
/// Therefore this can be decomposed as:
///
/// self->destroy(dest, self);
/// self->initializeWithTake(dest, src, self);
///
/// Returns the dest object.
///
/// Preconditions:
/// 'src' is an initialized object
/// Postconditions:
/// 'src' is an uninitialized object
/// Invariants:
/// 'dest' is an initialized object
typedef OpaqueValue *assignWithTake(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
/// Given an uninitialized buffer, allocate an object.
///
/// Returns the uninitialized object.
///
/// Preconditions:
/// 'buffer' is an uninitialized buffer
/// Postconditions:
/// 'buffer' is an allocated buffer
typedef OpaqueValue *allocateBuffer(ValueBuffer *buffer,
const Metadata *self);
/// Given an initialized object, return the metadata pointer for its dynamic
/// type.
///
/// Preconditions:
/// 'src' is an initialized object
typedef const Metadata *typeOf(OpaqueValue *src,
const Metadata *self);
/// The number of bytes required to store an object of this type.
/// This value may be zero. This value is not necessarily a
/// multiple of the alignment.
typedef size_t size;
/// Flags which apply to the type here.
typedef ValueWitnessFlags flags;
/// When allocating an array of objects of this type, the number of bytes
/// between array elements. This value may be zero. This value is always
/// a multiple of the alignment.
typedef size_t stride;
/// Store an extra inhabitant, named by a unique positive or zero index,
/// into the given uninitialized storage for the type.
typedef void storeExtraInhabitant(OpaqueValue *dest,
int index,
const Metadata *self);
/// Get the extra inhabitant index for the bit pattern stored at the given
/// address, or return -1 if there is a valid value at the address.
typedef int getExtraInhabitantIndex(const OpaqueValue *src,
const Metadata *self);
/// Flags which describe extra inhabitants.
typedef ExtraInhabitantFlags extraInhabitantFlags;
} // end namespace value_witness_types
/// A standard routine, suitable for placement in the value witness
/// table, for copying an opaque POD object.
extern "C" OpaqueValue *swift_copyPOD(OpaqueValue *dest,
OpaqueValue *src,
const Metadata *self);
#define FOR_ALL_FUNCTION_VALUE_WITNESSES(MACRO) \
MACRO(destroyBuffer) \
MACRO(initializeBufferWithCopyOfBuffer) \
MACRO(projectBuffer) \
MACRO(deallocateBuffer) \
MACRO(destroy) \
MACRO(initializeBufferWithCopy) \
MACRO(initializeWithCopy) \
MACRO(assignWithCopy) \
MACRO(initializeBufferWithTake) \
MACRO(initializeWithTake) \
MACRO(assignWithTake) \
MACRO(allocateBuffer) \
MACRO(typeOf)
/// A value-witness table. A value witness table is built around
/// the requirements of some specific type. The information in
/// a value-witness table is intended to be sufficient to lay out
/// and manipulate values of an arbitrary type.
struct ValueWitnessTable {
// For the meaning of all of these witnesses, consult the comments
// on their associated typedefs, above.
#define DECLARE_WITNESS(NAME) \
value_witness_types::NAME *NAME;
FOR_ALL_FUNCTION_VALUE_WITNESSES(DECLARE_WITNESS)
#undef DECLARE_WITNESS
value_witness_types::size size;
value_witness_types::flags flags;
value_witness_types::stride stride;
/// Would values of a type with the given layout requirements be
/// allocated inline?
static bool isValueInline(size_t size, size_t alignment) {
return (size <= sizeof(ValueBuffer) &&
alignment <= alignof(ValueBuffer));
}
/// Are values of this type allocated inline?
bool isValueInline() const {
return flags.isInlineStorage();
}
/// Is this type POD?
bool isPOD() const {
return flags.isPOD();
}
/// Return the size of this type. Unlike in C, this has not been
/// padded up to the alignment; that value is maintained as
/// 'stride'.
size_t getSize() const {
return size;
}
/// Return the stride of this type. This is the size rounded up to
/// be a multiple of the alignment.
size_t getStride() const {
return stride;
}
/// Return the alignment required by this type, in bytes.
size_t getAlignment() const {
return flags.getAlignment();
}
/// The alignment mask of this type. An offset may be rounded up to
/// the required alignment by adding this mask and masking by its
/// bit-negation.
///
/// For example, if the type needs to be 8-byte aligned, the value
/// of this witness is 0x7.
size_t getAlignmentMask() const {
return flags.getAlignmentMask();
}
/// The number of extra inhabitants, that is, bit patterns that do not form
/// valid values of the type, in this type's binary representation.
unsigned getNumExtraInhabitants() const;
};
/// A value-witness table with extra inhabitants entry points.
/// These entry points are available only if the HasExtraInhabitants flag bit is
/// set in the 'flags' field.
struct ExtraInhabitantsValueWitnessTable : ValueWitnessTable {
value_witness_types::storeExtraInhabitant *storeExtraInhabitant;
value_witness_types::getExtraInhabitantIndex *getExtraInhabitantIndex;
value_witness_types::extraInhabitantFlags extraInhabitantFlags;
constexpr ExtraInhabitantsValueWitnessTable()
: ValueWitnessTable{}, storeExtraInhabitant(nullptr),
getExtraInhabitantIndex(nullptr), extraInhabitantFlags() {}
constexpr ExtraInhabitantsValueWitnessTable(const ValueWitnessTable &base,
value_witness_types::storeExtraInhabitant *sei,
value_witness_types::getExtraInhabitantIndex *geii,
value_witness_types::extraInhabitantFlags eif)
: ValueWitnessTable(base), storeExtraInhabitant(sei),
getExtraInhabitantIndex(geii), extraInhabitantFlags(eif) {}
};
inline unsigned ValueWitnessTable::getNumExtraInhabitants() const {
// If the table does not have extra inhabitant witnesses, then there are zero.
if (!flags.hasExtraInhabitants())
return 0;
return static_cast<const ExtraInhabitantsValueWitnessTable &>(*this)
.extraInhabitantFlags
.getNumExtraInhabitants();
}
// Standard value-witness tables.
// The "Int" tables are used for arbitrary POD data with the matching
// size/alignment characteristics.
extern "C" const ValueWitnessTable _TWVBi8_; // Builtin.Int8
extern "C" const ValueWitnessTable _TWVBi16_; // Builtin.Int16
extern "C" const ValueWitnessTable _TWVBi32_; // Builtin.Int32
extern "C" const ValueWitnessTable _TWVBi64_; // Builtin.Int64
// The object-pointer table can be used for arbitrary Swift refcounted
// pointer types.
extern "C" const ValueWitnessTable _TWVBo; // Builtin.ObjectPointer
// The ObjC-pointer table can be used for arbitrary ObjC pointer types.
extern "C" const ValueWitnessTable _TWVBO; // Builtin.ObjCPointer
// The () -> () table can be used for arbitrary function types.
extern "C" const ValueWitnessTable _TWVFT_T_; // () -> ()
// The () table can be used for arbitrary empty types.
extern "C" const ValueWitnessTable _TWVT_; // ()
/// Return the value witnesses for unmanaged pointers.
static inline const ValueWitnessTable &getUnmanagedPointerValueWitnesses() {
#ifdef __LP64__
return _TWVBi64_;
#else
return _TWVBi32_;
#endif
}
/// The header before a metadata object which appears on all type
/// metadata. Note that heap metadata are not necessarily type
/// metadata, even for objects of a heap type: for example, objects of
/// Objective-C type possess a form of heap metadata (an Objective-C
/// Class pointer), but this metadata lacks the type metadata header.
/// This case can be distinguished using the isTypeMetadata() flag
/// on ClassMetadata.
struct TypeMetadataHeader {
/// A pointer to the value-witnesses for this type. This is only
/// present for type metadata.
const ValueWitnessTable *ValueWitnesses;
};
/// A "full" metadata pointer is simply an adjusted address point on a
/// metadata object; it points to the beginning of the metadata's
/// allocation, rather than to the canonical address point of the
/// metadata object.
template <class T> struct FullMetadata : T::HeaderType, T {
typedef typename T::HeaderType HeaderType;
FullMetadata() = default;
constexpr FullMetadata(const HeaderType &header, const T &metadata)
: HeaderType(header), T(metadata) {}
};
/// Given a canonical metadata pointer, produce the adjusted metadata pointer.
template <class T>
static inline FullMetadata<T> *asFullMetadata(T *metadata) {
return (FullMetadata<T>*) (((typename T::HeaderType*) metadata) - 1);
}
template <class T>
static inline const FullMetadata<T> *asFullMetadata(const T *metadata) {
return asFullMetadata(const_cast<T*>(metadata));
}
/// The common structure of all type metadata.
struct Metadata {
constexpr Metadata() : Kind(MetadataKind::Class) {}
constexpr Metadata(MetadataKind Kind) : Kind(Kind) {}
/// The basic header type.
typedef TypeMetadataHeader HeaderType;
private:
/// The kind. Only valid for non-class metadata; getKind() must be used to get
/// the kind value.
MetadataKind Kind;
public:
/// Get the metadata kind.
MetadataKind getKind() const {
if (Kind > MetadataKind::MetadataKind_Last)
return MetadataKind::Class;
return Kind;
}
/// Set the metadata kind.
void setKind(MetadataKind kind) {
Kind = kind;
}
/// Is this metadata for a class type?
bool isClassType() const {
return Kind > MetadataKind::MetadataKind_Last
|| Kind == MetadataKind::Class;
}
const ValueWitnessTable *getValueWitnesses() const {
return asFullMetadata(this)->ValueWitnesses;
}
void setValueWitnesses(const ValueWitnessTable *table) {
asFullMetadata(this)->ValueWitnesses = table;
}
protected:
friend struct OpaqueMetadata;
/// Metadata should not be publicly copied or moved.
constexpr Metadata(const Metadata &) = default;
Metadata &operator=(const Metadata &) = default;
constexpr Metadata(Metadata &&) = default;
Metadata &operator=(Metadata &&) = default;
};
/// The common structure of opaque metadata. Adds nothing.
struct OpaqueMetadata {
typedef TypeMetadataHeader HeaderType;
// We have to represent this as a member so we can list-initialize it.
Metadata base;
};
// Standard POD opaque metadata.
// The "Int" metadata are used for arbitrary POD data with the
// matching characteristics.
typedef FullMetadata<OpaqueMetadata> FullOpaqueMetadata;
extern "C" const FullOpaqueMetadata _TMdBi8_; // Builtin.Int8
extern "C" const FullOpaqueMetadata _TMdBi16_; // Builtin.Int16
extern "C" const FullOpaqueMetadata _TMdBi32_; // Builtin.Int32
extern "C" const FullOpaqueMetadata _TMdBi64_; // Builtin.Int64
extern "C" const FullOpaqueMetadata _TMdBo; // Builtin.ObjectPointer
extern "C" const FullOpaqueMetadata _TMdBO; // Builtin.ObjCPointer
// FIXME: The compiler should generate this.
extern "C" const FullOpaqueMetadata _TMdSb; // swift.Bool
/// The prefix on a heap metadata.
struct HeapMetadataHeaderPrefix {
/// Destroy the object, returning the allocated size of the object
/// or 0 if the object shouldn't be deallocated.
void (*destroy)(HeapObject *);
};
/// The header present on all heap metadata.
struct HeapMetadataHeader : HeapMetadataHeaderPrefix, TypeMetadataHeader {
constexpr HeapMetadataHeader(const HeapMetadataHeaderPrefix &heapPrefix,
const TypeMetadataHeader &typePrefix)
: HeapMetadataHeaderPrefix(heapPrefix), TypeMetadataHeader(typePrefix) {}
};
/// The common structure of all metadata for heap-allocated types. A
/// pointer to one of these can be retrieved by loading the 'isa'
/// field of any heap object, whether it was managed by Swift or by
/// Objective-C. However, when loading from an Objective-C object,
/// this metadata may not have the heap-metadata header, and it may
/// not be the Swift type metadata for the object's dynamic type.
struct HeapMetadata : Metadata {
typedef HeapMetadataHeader HeaderType;
HeapMetadata() = default;
constexpr HeapMetadata(const Metadata &base) : Metadata(base) {}
};
/// Information about a nominal type. Not described for now.
struct NominalTypeDescriptor;
/// The structure of all class metadata. This structure is embedded
/// directly within the class's heap metadata structure and therefore
/// cannot be extended without an ABI break.
///
/// Note that the layout of this type is compatible with the layout of
/// an Objective-C class.
struct ClassMetadata : public HeapMetadata {
ClassMetadata() = default;
constexpr ClassMetadata(const HeapMetadata &base,
const ClassMetadata *superClass,
uintptr_t data)
: HeapMetadata(base), SuperClass(superClass),
CacheData{ nullptr, nullptr }, Data(data) {}
/// The metadata for the super class. This is null for the root class.
const ClassMetadata *SuperClass;
/// The cache data is used for certain dynamic lookups; it is owned
/// by the runtime and generally needs to interoperate with
/// Objective-C's use.
void *CacheData[2];
/// The data pointer is used for out-of-line metadata and is
/// generally opaque, except that the compiler sets the low bit in
/// order to indicate that this is a Swift metatype and therefore
/// that the type metadata header is present.
uintptr_t Data;
/// Is this object a valid swift type metadata?
bool isTypeMetadata() const {
return Data & 1;
}
// After this come the class members, laid out as follows:
// - class members for the superclass (recursively)
// - metadata reference for the parent, if applicable
// - generic parameters for this class
// - class variables (if we choose to support these)
// - "tabulated" virtual methods
};
/// The structure of metadata for heap-allocated local variables.
/// This is non-type metadata.
///
/// It would be nice for tools to be able to dynamically discover the
/// type of a heap-allocated local variable. This should not require
/// us to aggressively produce metadata for the type, though. The
/// obvious solution is to simply place the mangling of the type after
/// the variable metadata.
///
/// One complication is that, in generic code, we don't want something
/// as low-priority (sorry!) as the convenience of tools to force us
/// to generate per-instantiation metadata for capturing variables.
/// In these cases, the heap-destructor function will be using
/// information stored in the allocated object (rather than in
/// metadata) to actually do the work of destruction, but even then,
/// that information needn't be metadata for the actual variable type;
/// consider the case of local variable of type (T, Int).
///
/// Anyway, that's all something to consider later.
struct HeapLocalVariableMetadata : public HeapMetadata {
// No extra fields for now.
};
/// The structure of metadata for heap-allocated arrays.
/// This is non-type metadata.
///
/// The comments on HeapLocalVariableMetadata about tools wanting type
/// discovery apply equally here.
struct HeapArrayMetadata : public HeapMetadata {
// No extra fields for now.
};
/// The structure of wrapper metadata for Objective-C classes. This
/// is used as a type metadata pointer when the actual class isn't
/// Swift-compiled.
struct ObjCClassWrapperMetadata : public Metadata {
const ClassMetadata *Class;
};
/// The structure of type metadata for structs.
struct StructMetadata : public Metadata {
/// An out-of-line description of the type.
const NominalTypeDescriptor *Description;
/// The parent type of this member type, or null if this is not a
/// member type.
const Metadata *Parent;
// This is followed by the generics information, if this type is generic.
};
/// The structure of function type metadata.
struct FunctionTypeMetadata : public Metadata {
/// The type metadata for the argument type.
const Metadata *ArgumentType;
/// The type metadata for the result type.
const Metadata *ResultType;
};
/// The structure of metadata for metatypes.
struct MetatypeMetadata : public Metadata {
/// The type metadata for the element.
const Metadata *InstanceType;
};
/// The structure of tuple type metadata.
struct TupleTypeMetadata : public Metadata {
TupleTypeMetadata() = default;
constexpr TupleTypeMetadata(const Metadata &base,
size_t numElements,
const char *labels)
: Metadata(base), NumElements(numElements), Labels(labels) {}
/// The number of elements.
size_t NumElements;
/// The labels string; see swift_getTupleTypeMetadata.
const char *Labels;
struct Element {
/// The type of the element.
const Metadata *Type;
/// The offset of the tuple element within the tuple.
size_t Offset;
OpaqueValue *findIn(OpaqueValue *tuple) const {
return (OpaqueValue*) (((char*) tuple) + Offset);
}
};
Element *getElements() {
return reinterpret_cast<Element*>(this+1);
}
const Element *getElements() const {
return reinterpret_cast<const Element *>(this+1);
}
};
/// The standard metadata for the empty tuple type.
extern "C" const FullMetadata<TupleTypeMetadata> _TMdT_;
/// \brief The header in front of a generic metadata template.
///
/// This is optimized so that the code generation pattern
/// requires the minimal number of independent arguments.
/// For example, we want to be able to allocate a generic class
/// Dictionary<T,U> like so:
/// extern GenericMetadata Dictionary_metadata_header;
/// void *arguments[] = { typeid(T), typeid(U) };
/// void *metadata = swift_getGenericMetadata(&Dictionary_metadata_header,
/// &arguments);
/// void *object = swift_allocObject(metadata);
///
/// Note that the metadata header is *not* const data; it includes 8
/// pointers worth of implementation-private data.
///
/// Both the metadata header and the arguments buffer are guaranteed
/// to be pointer-aligned.
struct GenericMetadata {
/// The fill function. Receives a pointer to the instantiated metadata and
/// the argument pointer passed to swift_getGenericMetadata.
void (*FillFunction)(void *metadata, const void *arguments);
/// The size of the template in bytes.
uint32_t MetadataSize;
/// The number of generic arguments that we need to unique on,
/// in words. The first 'NumArguments * sizeof(void*)' bytes of
/// the arguments buffer are the key. There may be additional private-contract
/// data used by FillFunction not used for uniquing.
uint16_t NumKeyArguments;
/// The offset of the address point in the template in bytes.
uint16_t AddressPoint;
/// Data that the runtime can use for its own purposes. It is guaranteed
/// to be zero-filled by the compiler.
void *PrivateData[8];
// Here there is a variably-sized field:
// char alignas(void*) MetadataTemplate[MetadataSize];
/// Return the starting address of the metadata template data.
const void *getMetadataTemplate() const {
return reinterpret_cast<const void *>(this + 1);
}
};
/// \brief Fetch a uniqued metadata object for a generic nominal type.
///
/// The basic algorithm for fetching a metadata object is:
/// func swift_getGenericMetadata(header, arguments) {
/// if (metadata = getExistingMetadata(&header.PrivateData,
/// arguments[0..header.NumArguments]))
/// return metadata
/// metadata = malloc(header.MetadataSize)
/// memcpy(metadata, header.MetadataTemplate, header.MetadataSize)
/// for (i in 0..header.NumFillInstructions)
/// metadata[header.FillInstructions[i].ToIndex]
/// = arguments[header.FillInstructions[i].FromIndex]
/// setExistingMetadata(&header.PrivateData,
/// arguments[0..header.NumArguments],
/// metadata)
/// return metadata
/// }
extern "C" const Metadata *
swift_getGenericMetadata(GenericMetadata *pattern,
const void *arguments);
/// \brief Fetch a uniqued metadata for a function type.
extern "C" const FunctionTypeMetadata *
swift_getFunctionTypeMetadata(const Metadata *argMetadata,
const Metadata *resultMetadata);
/// \brief Fetch a uniqued type metadata for an ObjC class.
extern "C" const Metadata *
swift_getObjCClassMetadata(const ClassMetadata *theClass);
/// \brief Fetch a uniqued metadata for a tuple type.
///
/// The labels argument is null if and only if there are no element
/// labels in the tuple. Otherwise, it is a null-terminated
/// concatenation of space-terminated NFC-normalized UTF-8 strings,
/// assumed to point to constant global memory.
///
/// That is, for the tuple type (a : Int, Int, c : Int), this
/// argument should be:
/// "a c \0"
///
/// This representation allows label strings to be efficiently
/// (1) uniqued within a linkage unit and (2) compared with strcmp.
/// In other words, it's optimized for code size and uniquing
/// efficiency, not for the convenience of actually consuming
/// these strings.
///
/// \param elements - potentially invalid if numElements is zero;
/// otherwise, an array of metadata pointers.
/// \param labels - the labels string
/// \param proposedWitnesses - an optional proposed set of value witnesses.
/// This is useful when working with a non-dependent tuple type
/// where the entrypoint is just being used to unique the metadata.
extern "C" const TupleTypeMetadata *
swift_getTupleTypeMetadata(size_t numElements,
const Metadata * const *elements,
const char *labels,
const ValueWitnessTable *proposedWitnesses);
extern "C" const TupleTypeMetadata *
swift_getTupleTypeMetadata2(const Metadata *elt0, const Metadata *elt1,
const char *labels,
const ValueWitnessTable *proposedWitnesses);
extern "C" const TupleTypeMetadata *
swift_getTupleTypeMetadata3(const Metadata *elt0, const Metadata *elt1,
const Metadata *elt2, const char *labels,
const ValueWitnessTable *proposedWitnesses);
/// \brief Fetch a uniqued metadata for a metatype type.
extern "C" const MetatypeMetadata *
swift_getMetatypeMetadata(const Metadata *instanceType);
/// \brief Checked dynamic cast to a class type.
///
/// \param object The object to cast.
/// \param targetType The type to which we are casting, which is known to be
/// a class type.
///
/// \returns the object if the cast succeeds, or null otherwise.
extern "C" const void *
swift_dynamicCastClass(const void *object, const ClassMetadata *targetType);
/// \brief Unconditional, checked dynamic cast to a class type.
///
/// Aborts if the object isn't of the target type.
///
/// \param object The object to cast.
/// \param targetType The type to which we are casting, which is known to be
/// a class type.
///
/// \returns the object.
extern "C" const void *
swift_dynamicCastClassUnconditional(const void *object,
const ClassMetadata *targetType);
/// \brief Checked Objective-C-style dynamic cast to a class type.
///
/// \param object The object to cast, or nil.
/// \param targetType The type to which we are casting, which is known to be
/// a class type.
///
/// \returns the object if the cast succeeds, or null otherwise.
extern "C" const void *
swift_dynamicCastObjCClass(const void *object, const ClassMetadata *targetType);
/// \brief Unconditional, checked, Objective-C-style dynamic cast to a class
/// type.
///
/// Aborts if the object isn't of the target type.
/// Note that unlike swift_dynamicCastClassUnconditional, this does not abort
/// if the object is 'nil'.
///
/// \param object The object to cast, or nil.
/// \param targetType The type to which we are casting, which is known to be
/// a class type.
///
/// \returns the object.
extern "C" const void *
swift_dynamicCastObjCClassUnconditional(const void *object,
const ClassMetadata *targetType);
/// \brief Checked dynamic cast of a class instance pointer to the given type.
///
/// \param object The class instance to cast.
///
/// \param targetType The type to which we are casting, which may be either a
/// class type or a wrapped Objective-C class type.
///
/// \returns the object, or null if it doesn't have the given target type.
extern "C" const void *
swift_dynamicCast(const void *object, const Metadata *targetType);
/// \brief Unconditional checked dynamic cast of a class instance pointer to
/// the given type.
///
/// Aborts if the object isn't of the target type.
///
/// \param object The class instance to cast.
///
/// \param targetType The type to which we are casting, which may be either a
/// class type or a wrapped Objective-C class type.
///
/// \returns the object.
extern "C" const void *
swift_dynamicCastUnconditional(const void *object,
const Metadata *targetType);
/// \brief Checked dynamic cast of an opaque value to the given type.
///
/// \param value Pointer to the value to cast.
///
/// \param sourceType The original static type of the value.
///
/// \param targetType The type to which we are casting, which may be any Swift
/// type metadata pointer.
extern "C" const OpaqueValue *
swift_dynamicCastIndirect(const OpaqueValue *value,
const Metadata *sourceType,
const Metadata *targetType);
/// \brief Unconditional checked dynamic cast of an opaque value to the given
/// type.
///
/// \param value Pointer to the value to cast.
///
/// \param sourceType The original static type of the value.
///
/// \param targetType The type to which we are casting, which may be any Swift
/// type metadata pointer.
extern "C" const OpaqueValue *
swift_dynamicCastIndirectUnconditional(const OpaqueValue *value,
const Metadata *sourceType,
const Metadata *targetType);
/// \brief Standard 'typeof' value witness for types with static metatypes.
///
/// \param obj A pointer to the object. Ignored.
/// \param self The type metadata for the object.
///
/// \returns self.
extern "C" const Metadata *
swift_staticTypeof(OpaqueValue *obj, const Metadata *self);
/// \brief Standard 'typeof' value witness for heap object references.
///
/// \param obj A pointer to the object reference.
/// \param self The static type metadata for the object. Ignored.
///
/// \returns The dynamic type metadata for the object.
extern "C" const Metadata *
swift_objectTypeof(OpaqueValue *obj, const Metadata *self);
/// \brief Standard 'typeof' value witness for ObjC object references.
///
/// \param obj A pointer to the object reference.
/// \param self The static type metadata for the object. Ignored.
///
/// \returns The dynamic type metadata for the object.
extern "C" const Metadata *
swift_objcTypeof(OpaqueValue *obj, const Metadata *self);
} // end namespace swift
#endif /* SWIFT_RUNTIME_METADATA_H */