Files
swift-mirror/lib/Sema/CSStep.cpp

1110 lines
38 KiB
C++

//===--- CSStep.cpp - Constraint Solver Steps -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c SolverStep class and its related types,
// which is used by constraint solver to do iterative solving.
//
//===----------------------------------------------------------------------===//
#include "CSStep.h"
#include "TypeChecker.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace swift;
using namespace constraints;
ComponentStep::Scope::Scope(ComponentStep &component)
: CS(component.CS), Component(component) {
TypeVars = std::move(CS.TypeVariables);
for (auto *typeVar : component.TypeVars)
CS.addTypeVariable(typeVar);
auto &workList = CS.InactiveConstraints;
workList.splice(workList.end(), *component.Constraints);
SolverScope = new ConstraintSystem::SolverScope(CS);
PrevPartialScope = CS.solverState->PartialSolutionScope;
CS.solverState->PartialSolutionScope = SolverScope;
}
StepResult SplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
// Try to run "connected components" algorithm and split
// type variables and their constraints into independent
// sub-systems to solve.
computeFollowupSteps(followup);
// If there is only one step, there is no reason to
// try to merge solutions, "split" step should be considered
// done and replaced by a single component step.
if (followup.size() < 2)
return replaceWith(std::move(followup.front()));
/// Wait until all of the steps are done.
return suspend(followup);
}
StepResult SplitterStep::resume(bool prevFailed) {
// Restore the state of the constraint system to before split.
CS.CG.setOrphanedConstraints(std::move(OrphanedConstraints));
auto &workList = CS.InactiveConstraints;
for (auto &component : Components)
workList.splice(workList.end(), component);
// If we came back to this step and previous (one of the components)
// failed, it means that we can't solve this step either.
if (prevFailed)
return done(/*isSuccess=*/false);
// Otherwise let's try to merge partial solutions together
// and form a complete solution(s) for this split.
return done(mergePartialSolutions());
}
void SplitterStep::computeFollowupSteps(
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps) {
// Compute next steps based on that connected components
// algorithm tells us is splittable.
auto &CG = CS.getConstraintGraph();
// Contract the edges of the constraint graph.
CG.optimize();
// Compute the connected components of the constraint graph.
auto components = CG.computeConnectedComponents(CS.getTypeVariables());
unsigned numComponents = components.size();
if (numComponents < 2) {
steps.push_back(std::make_unique<ComponentStep>(
CS, 0, &CS.InactiveConstraints, Solutions));
return;
}
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
auto indent = CS.solverState->getCurrentIndent();
// Verify that the constraint graph is valid.
CG.verify();
log.indent(indent) << "---Constraint graph---\n";
CG.print(CS.getTypeVariables(), log);
log.indent(indent) << "---Connected components---\n";
CG.printConnectedComponents(CS.getTypeVariables(), log);
}
// Take the orphaned constraints, because they'll go into a component now.
OrphanedConstraints = CG.takeOrphanedConstraints();
IncludeInMergedResults.resize(numComponents, true);
Components.resize(numComponents);
PartialSolutions = std::unique_ptr<SmallVector<Solution, 4>[]>(
new SmallVector<Solution, 4>[numComponents]);
// Add components.
for (unsigned i : indices(components)) {
unsigned solutionIndex = components[i].solutionIndex;
// If there are no dependencies, build a normal component step.
if (components[i].getDependencies().empty()) {
steps.push_back(std::make_unique<ComponentStep>(
CS, solutionIndex, &Components[i], std::move(components[i]),
PartialSolutions[solutionIndex]));
continue;
}
// Note that the partial results from any dependencies of this component
// need not be included in the final merged results, because they'll
// already be part of the partial results for this component.
for (auto dependsOn : components[i].getDependencies()) {
IncludeInMergedResults[dependsOn] = false;
}
// Otherwise, build a dependent component "splitter" step, which
// handles all combinations of incoming partial solutions.
steps.push_back(std::make_unique<DependentComponentSplitterStep>(
CS, &Components[i], solutionIndex, std::move(components[i]),
llvm::makeMutableArrayRef(PartialSolutions.get(), numComponents)));
}
assert(CS.InactiveConstraints.empty() && "Missed a constraint");
}
namespace {
/// Retrieve the size of a container.
template<typename Container>
unsigned getSize(const Container &container) {
return container.size();
}
/// Retrieve the size of a container referenced by a pointer.
template<typename Container>
unsigned getSize(const Container *container) {
return container->size();
}
/// Identity getSize() for cases where we are working with a count.
unsigned getSize(unsigned size) {
return size;
}
/// Compute the next combination of indices into the given array of
/// containers.
/// \param containers Containers (each of which must have a `size()`) in
/// which the indices will be generated.
/// \param indices The current indices into the containers, which will
/// be updated to represent the next combination.
/// \returns true to indicate that \c indices contains the next combination,
/// or \c false to indicate that there are no combinations left.
template<typename Container>
bool nextCombination(ArrayRef<Container> containers,
MutableArrayRef<unsigned> indices) {
assert(containers.size() == indices.size() &&
"Indices should have been initialized to the same size with 0s");
unsigned numIndices = containers.size();
for (unsigned n = numIndices; n > 0; --n) {
++indices[n - 1];
// If we haven't run out of solutions yet, we're done.
if (indices[n - 1] < getSize(containers[n - 1]))
break;
// If we ran out of solutions at the first position, we're done.
if (n == 1) {
return false;
}
// Zero out the indices from here to the end.
for (unsigned i = n - 1; i != numIndices; ++i)
indices[i] = 0;
}
return true;
}
}
bool SplitterStep::mergePartialSolutions() const {
assert(Components.size() >= 2);
// Compute the # of partial solutions that will be merged for each
// component. Components that shouldn't be included will get a count of 1,
// an we'll skip them later.
auto numComponents = Components.size();
SmallVector<unsigned, 2> countsVec;
countsVec.reserve(numComponents);
for (unsigned idx : range(numComponents)) {
countsVec.push_back(
IncludeInMergedResults[idx] ? PartialSolutions[idx].size() : 1);
}
// Produce all combinations of partial solutions.
ArrayRef<unsigned> counts = countsVec;
SmallVector<unsigned, 2> indices(numComponents, 0);
bool anySolutions = false;
size_t solutionMemory = 0;
do {
// Create a new solver scope in which we apply all of the relevant partial
// solutions.
ConstraintSystem::SolverScope scope(CS);
for (unsigned i : range(numComponents)) {
if (!IncludeInMergedResults[i])
continue;
CS.applySolution(PartialSolutions[i][indices[i]]);
}
// This solution might be worse than the best solution found so far.
// If so, skip it.
if (!CS.worseThanBestSolution()) {
// Finalize this solution.
auto solution = CS.finalize();
solutionMemory += solution.getTotalMemory();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(composed solution:";
CS.CurrentScore.print(log);
log << ")\n";
}
// Save this solution.
Solutions.push_back(std::move(solution));
anySolutions = true;
}
// Since merging partial solutions can go exponential, make sure we didn't
// pass the "too complex" thresholds including allocated memory and time.
if (CS.isTooComplex(solutionMemory))
return false;
} while (nextCombination(counts, indices));
return anySolutions;
}
StepResult DependentComponentSplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.getFailedConstraint() || CS.simplify())
return done(/*isSuccess=*/false);
// Figure out the sets of partial solutions that this component depends on.
SmallVector<const SmallVector<Solution, 4> *, 2> dependsOnSets;
for (auto index : Component.getDependencies()) {
dependsOnSets.push_back(&AllPartialSolutions[index]);
}
// Produce all combinations of partial solutions for the inputs.
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
SmallVector<unsigned, 2> indices(Component.getDependencies().size(), 0);
auto dependsOnSetsRef = llvm::makeArrayRef(dependsOnSets);
do {
// Form the set of input partial solutions.
SmallVector<const Solution *, 2> dependsOnSolutions;
for (auto index : swift::indices(indices)) {
dependsOnSolutions.push_back(&(*dependsOnSets[index])[indices[index]]);
}
ContextualSolutions.push_back(std::make_unique<SmallVector<Solution, 2>>());
followup.push_back(std::make_unique<ComponentStep>(
CS, Index, Constraints, Component, std::move(dependsOnSolutions),
*ContextualSolutions.back()));
} while (nextCombination(dependsOnSetsRef, indices));
/// Wait until all of the component steps are done.
return suspend(followup);
}
StepResult DependentComponentSplitterStep::resume(bool prevFailed) {
for (auto &ComponentStepSolutions : ContextualSolutions) {
Solutions.append(std::make_move_iterator(ComponentStepSolutions->begin()),
std::make_move_iterator(ComponentStepSolutions->end()));
}
return done(/*isSuccess=*/!Solutions.empty());
}
void DependentComponentSplitterStep::print(llvm::raw_ostream &Out) {
Out << "DependentComponentSplitterStep for dependencies on [";
interleave(
Component.getDependencies(), [&](unsigned index) { Out << index; },
[&] { Out << ", "; });
Out << "]\n";
}
StepResult ComponentStep::take(bool prevFailed) {
// One of the previous components created by "split"
// failed, it means that we can't solve this component.
if ((prevFailed && DependsOnPartialSolutions.empty()) ||
CS.isTooComplex(Solutions))
return done(/*isSuccess=*/false);
// Setup active scope, only if previous component didn't fail.
setupScope();
// If there are any dependent partial solutions to compose, do so now.
if (!DependsOnPartialSolutions.empty()) {
for (auto partial : DependsOnPartialSolutions) {
CS.applySolution(*partial);
}
// Activate all of the one-way constraints.
SmallVector<Constraint *, 4> oneWayConstraints;
for (auto &constraint : CS.InactiveConstraints) {
if (constraint.isOneWayConstraint())
oneWayConstraints.push_back(&constraint);
}
for (auto constraint : oneWayConstraints) {
CS.activateConstraint(constraint);
}
// Simplify again.
if (CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
}
/// Try to figure out what this step is going to be,
/// after the scope has been established.
SmallString<64> potentialBindings;
llvm::raw_svector_ostream bos(potentialBindings);
auto bestBindings = CS.determineBestBindings([&](const BindingSet &bindings) {
if (CS.isDebugMode() && bindings.hasViableBindings()) {
bos.indent(CS.solverState->getCurrentIndent() + 2);
bos << "(";
bindings.dump(bos, CS.solverState->getCurrentIndent() + 2);
bos << ")\n";
}
});
auto *disjunction = CS.selectDisjunction();
auto *conjunction = CS.selectConjunction();
if (CS.isDebugMode()) {
SmallVector<Constraint *, 4> disjunctions;
CS.collectDisjunctions(disjunctions);
std::vector<std::string> overloadDisjunctions;
for (const auto &disjunction : disjunctions) {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
auto constraints = disjunction->getNestedConstraints();
if (constraints[0]->getKind() == ConstraintKind::BindOverload)
overloadDisjunctions.push_back(
constraints[0]->getFirstType()->getString(PO));
}
if (!potentialBindings.empty() || !overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log << "(Potential Binding(s): " << '\n';
log << potentialBindings;
}
if (!overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log.indent(CS.solverState->getCurrentIndent() + 2);
log << "Disjunction(s) = [";
interleave(overloadDisjunctions, log, ", ");
log << "]\n";
}
if (!potentialBindings.empty() || !overloadDisjunctions.empty()) {
auto &log = getDebugLogger();
log << ")\n";
}
}
enum class StepKind { Binding, Disjunction, Conjunction };
auto chooseStep = [&]() -> Optional<StepKind> {
// Bindings usually happen first, but sometimes we want to prioritize a
// disjunction or conjunction.
if (bestBindings) {
if (disjunction && !bestBindings->favoredOverDisjunction(disjunction))
return StepKind::Disjunction;
if (conjunction && !bestBindings->favoredOverConjunction(conjunction))
return StepKind::Conjunction;
return StepKind::Binding;
}
if (disjunction)
return StepKind::Disjunction;
if (conjunction)
return StepKind::Conjunction;
return None;
};
if (auto step = chooseStep()) {
switch (*step) {
case StepKind::Binding:
return suspend(
std::make_unique<TypeVariableStep>(*bestBindings, Solutions));
case StepKind::Disjunction:
return suspend(
std::make_unique<DisjunctionStep>(CS, disjunction, Solutions));
case StepKind::Conjunction:
return suspend(
std::make_unique<ConjunctionStep>(CS, conjunction, Solutions));
}
llvm_unreachable("Unhandled case in switch!");
}
if (!CS.solverState->allowsFreeTypeVariables() && CS.hasFreeTypeVariables()) {
// If there are no disjunctions or type variables to bind
// we can't solve this system unless we have free type variables
// allowed in the solution.
return finalize(/*isSuccess=*/false);
}
auto printConstraints = [&](const ConstraintList &constraints) {
for (auto &constraint : constraints)
constraint.print(
getDebugLogger().indent(CS.solverState->getCurrentIndent()),
&CS.getASTContext().SourceMgr, CS.solverState->getCurrentIndent());
};
// If we don't have any disjunction or type variable choices left, we're done
// solving. Make sure we don't have any unsolved constraints left over, using
// report_fatal_error to make sure we trap in debug builds and fail the step
// in release builds.
if (!CS.ActiveConstraints.empty()) {
if (CS.isDebugMode()) {
getDebugLogger() << "(failed due to remaining active constraints:\n";
printConstraints(CS.ActiveConstraints);
getDebugLogger() << ")\n";
}
CS.InvalidState = true;
return finalize(/*isSuccess=*/false);
}
if (!CS.solverState->allowsFreeTypeVariables()) {
if (!CS.InactiveConstraints.empty()) {
if (CS.isDebugMode()) {
getDebugLogger() << "(failed due to remaining inactive constraints:\n";
printConstraints(CS.InactiveConstraints);
getDebugLogger() << ")\n";
}
CS.InvalidState = true;
return finalize(/*isSuccess=*/false);
}
}
// If this solution is worse than the best solution we've seen so far,
// skip it.
if (CS.worseThanBestSolution())
return finalize(/*isSuccess=*/false);
// If we only have relational or member constraints and are allowing
// free type variables, save the solution.
for (auto &constraint : CS.InactiveConstraints) {
switch (constraint.getClassification()) {
case ConstraintClassification::Relational:
case ConstraintClassification::Member:
continue;
default:
return finalize(/*isSuccess=*/false);
}
}
auto solution = CS.finalize();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(found solution:";
getCurrentScore().print(log);
log << ")\n";
}
Solutions.push_back(std::move(solution));
return finalize(/*isSuccess=*/true);
}
StepResult ComponentStep::finalize(bool isSuccess) {
// If this was a single component, there is nothing to be done,
// because it represents the whole constraint system at some
// point of the solver path.
if (IsSingle)
return done(isSuccess);
// Rewind all modifications done to constraint system.
ComponentScope.reset();
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << (isSuccess ? "finished" : "failed") << " component #" << Index
<< ")\n";
}
// If we came either back to this step and previous
// (either disjunction or type var) failed, it means
// that component as a whole has failed.
if (!isSuccess)
return done(/*isSuccess=*/false);
assert(!Solutions.empty() && "No Solutions?");
// For each of the partial solutions, subtract off the current score.
// It doesn't contribute.
for (auto &solution : Solutions)
solution.getFixedScore() -= OriginalScore;
// Restore the original best score.
CS.solverState->BestScore = OriginalBestScore;
// When there are multiple partial solutions for a given connected component,
// rank those solutions to pick the best ones. This limits the number of
// combinations we need to produce; in the common case, down to a single
// combination.
filterSolutions(Solutions, /*minimize=*/true);
return done(/*isSuccess=*/true);
}
void TypeVariableStep::setup() {
++CS.solverState->NumTypeVariablesBound;
}
bool TypeVariableStep::attempt(const TypeVariableBinding &choice) {
++CS.solverState->NumTypeVariableBindings;
if (choice.hasDefaultedProtocol())
SawFirstLiteralConstraint = true;
// Try to solve the system with typeVar := type
return choice.attempt(CS);
}
StepResult TypeVariableStep::resume(bool prevFailed) {
assert(ActiveChoice);
// If there was no failure in the sub-path it means
// that active binding has a solution.
AnySolved |= !prevFailed;
bool shouldStop = shouldStopAfter(ActiveChoice->second);
// Rewind back all of the changes made to constraint system.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Let's check if we should stop right before
// attempting any new bindings.
if (shouldStop)
return done(/*isSuccess=*/AnySolved);
// Attempt next type variable binding.
return take(prevFailed);
}
StepResult DisjunctionStep::resume(bool prevFailed) {
// If disjunction step is re-taken and there should be
// active choice, let's see if it has be solved or not.
assert(ActiveChoice);
// If choice (sub-path) has failed, it's okay, other
// choices have to be attempted regardless, since final
// decision could be made only after attempting all
// of the choices, so let's just ignore failed ones.
if (!prevFailed) {
auto &choice = ActiveChoice->second;
auto score = getBestScore(Solutions);
if (!choice.isGenericOperator() && choice.isSymmetricOperator()) {
if (!BestNonGenericScore || score < BestNonGenericScore) {
BestNonGenericScore = score;
if (shouldSkipGenericOperators()) {
// The disjunction choice producer shouldn't do the work
// to partition the generic operator choices if generic
// operators are going to be skipped.
Producer.setNeedsGenericOperatorOrdering(false);
}
}
}
AnySolved = true;
// Remember the last successfully solved choice,
// it would be useful when disjunction is exhausted.
LastSolvedChoice = {choice, *score};
}
// Rewind back the constraint system information.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Attempt next disjunction choice (if any left).
return take(prevFailed);
}
bool IsDeclRefinementOfRequest::evaluate(Evaluator &evaluator,
ValueDecl *declA,
ValueDecl *declB) const {
auto *typeA = declA->getInterfaceType()->getAs<GenericFunctionType>();
auto *typeB = declB->getInterfaceType()->getAs<GenericFunctionType>();
if (!typeA || !typeB)
return false;
auto genericSignatureA = typeA->getGenericSignature();
auto genericSignatureB = typeB->getGenericSignature();
// Substitute generic parameters with their archetypes in each generic function.
Type substTypeA = typeA->substGenericArgs(
genericSignatureA.getGenericEnvironment()->getForwardingSubstitutionMap());
Type substTypeB = typeB->substGenericArgs(
genericSignatureB.getGenericEnvironment()->getForwardingSubstitutionMap());
// Attempt to substitute archetypes from the second type with archetypes in the
// same structural position in the first type.
TypeSubstitutionMap substMap;
substTypeB = substTypeB->substituteBindingsTo(substTypeA,
[&](ArchetypeType *origType, CanType substType,
ArchetypeType *, ArrayRef<ProtocolConformanceRef>) -> CanType {
auto interfaceTy =
origType->getInterfaceType()->getCanonicalType()->getAs<SubstitutableType>();
// Make sure any duplicate bindings are equal to the one already recorded.
// Otherwise, the substitution has conflicting generic arguments.
auto bound = substMap.find(interfaceTy);
if (bound != substMap.end() && !bound->second->isEqual(substType))
return CanType();
substMap[interfaceTy] = substType;
return substType;
});
if (!substTypeB)
return false;
auto result = checkRequirements(
declA->getDeclContext()->getParentModule(),
genericSignatureB.getRequirements(),
QueryTypeSubstitutionMap{ substMap });
if (result != CheckRequirementsResult::Success)
return false;
return substTypeA->isEqual(substTypeB);
}
bool TypeChecker::isDeclRefinementOf(ValueDecl *declA, ValueDecl *declB) {
return evaluateOrDefault(declA->getASTContext().evaluator,
IsDeclRefinementOfRequest{ declA, declB },
false);
}
bool DisjunctionStep::shouldSkip(const DisjunctionChoice &choice) const {
auto &ctx = CS.getASTContext();
auto skip = [&](std::string reason) -> bool {
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(skipping " + reason + " ";
choice.print(log, &ctx.SourceMgr, CS.solverState->getCurrentIndent());
log << ")\n";
}
return true;
};
// Skip disabled overloads in the diagnostic mode if they do not have a
// fix attached to them e.g. overloads where labels didn't match up.
if (choice.isDisabled())
return skip("disabled");
// Skip unavailable overloads (unless in diagnostic mode).
if (choice.isUnavailable() && !CS.shouldAttemptFixes())
return skip("unavailable");
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
// If the solver already found a solution with a better overload choice that
// can be unconditionally substituted by the current choice, skip the current
// choice.
if (LastSolvedChoice && LastSolvedChoice->second == getCurrentScore() &&
choice.isGenericOperator()) {
auto *declA = LastSolvedChoice->first->getOverloadChoice().getDecl();
auto *declB = static_cast<Constraint *>(choice)->getOverloadChoice().getDecl();
if (declA->getBaseIdentifier().isArithmeticOperator() &&
TypeChecker::isDeclRefinementOf(declA, declB)) {
return skip("subtype");
}
}
// Don't attempt to solve for generic operators if we already have
// a non-generic solution.
// FIXME: Less-horrible but still horrible hack to attempt to
// speed things up. Skip the generic operators if we
// already have a solution involving non-generic operators,
// but continue looking for a better non-generic operator
// solution.
if (BestNonGenericScore && choice.isGenericOperator()) {
auto &score = BestNonGenericScore->Data;
// Not all of the unary operators have `CGFloat` overloads,
// so in order to preserve previous behavior (and overall
// best solution) with implicit Double<->CGFloat conversion
// we need to allow attempting generic operators for such cases.
if (score[SK_ImplicitValueConversion] > 0 && choice.isUnaryOperator())
return false;
if (shouldSkipGenericOperators())
return skip("generic");
}
return false;
}
bool DisjunctionStep::shouldStopAt(const DisjunctionChoice &choice) const {
if (!LastSolvedChoice)
return false;
auto *lastChoice = LastSolvedChoice->first;
auto delta = LastSolvedChoice->second - getCurrentScore();
bool hasUnavailableOverloads = delta.Data[SK_Unavailable] > 0;
bool hasFixes = delta.Data[SK_Fix] > 0;
bool hasAsyncMismatch = delta.Data[SK_AsyncInSyncMismatch] > 0;
auto isBeginningOfPartition = choice.isBeginningOfPartition();
// Attempt to short-circuit evaluation of this disjunction only
// if the disjunction choice we are comparing to did not involve:
// 1. selecting unavailable overloads
// 2. result in fixes being applied to reach a solution
// 3. selecting an overload that results in an async/sync mismatch
return !hasUnavailableOverloads && !hasFixes && !hasAsyncMismatch &&
(isBeginningOfPartition ||
shortCircuitDisjunctionAt(choice, lastChoice));
}
bool swift::isSIMDOperator(ValueDecl *value) {
if (!value)
return false;
auto func = dyn_cast<FuncDecl>(value);
if (!func)
return false;
if (!func->isOperator())
return false;
auto nominal = func->getDeclContext()->getSelfNominalTypeDecl();
if (!nominal)
return false;
if (nominal->getName().empty())
return false;
return nominal->getName().str().starts_with_insensitive("simd");
}
bool DisjunctionStep::shortCircuitDisjunctionAt(
Constraint *currentChoice, Constraint *lastSuccessfulChoice) const {
auto &ctx = CS.getASTContext();
// Anything without a fix is better than anything with a fix.
if (currentChoice->getFix() && !lastSuccessfulChoice->getFix())
return true;
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
if (auto restriction = currentChoice->getRestriction()) {
// Non-optional conversions are better than optional-to-optional
// conversions.
if (*restriction == ConversionRestrictionKind::OptionalToOptional)
return true;
// Array-to-pointer conversions are better than inout-to-pointer
// conversions.
if (auto successfulRestriction = lastSuccessfulChoice->getRestriction()) {
if (*successfulRestriction == ConversionRestrictionKind::ArrayToPointer &&
*restriction == ConversionRestrictionKind::InoutToPointer)
return true;
}
}
// Implicit conversions are better than checked casts.
if (currentChoice->getKind() == ConstraintKind::CheckedCast)
return true;
return false;
}
bool DisjunctionStep::attempt(const DisjunctionChoice &choice) {
++CS.solverState->NumDisjunctionTerms;
// If the disjunction requested us to, remember which choice we
// took for it.
if (auto *disjunctionLocator = getLocator()) {
auto index = choice.getIndex();
recordDisjunctionChoice(disjunctionLocator, index);
// Implicit unwraps of optionals are worse solutions than those
// not involving implicit unwraps.
if (!disjunctionLocator->getPath().empty()) {
auto kind = disjunctionLocator->getPath().back().getKind();
if (kind == ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice ||
kind == ConstraintLocator::DynamicLookupResult) {
assert(index == 0 || index == 1);
if (index == 1)
CS.increaseScore(SK_ForceUnchecked, disjunctionLocator);
}
}
}
return choice.attempt(CS);
}
bool ConjunctionStep::attempt(const ConjunctionElement &element) {
++CS.solverState->NumConjunctionTerms;
// Outside or previous element score doesn't affect
// subsequent elements.
CS.solverState->BestScore.reset();
// Apply solution inferred for all the previous elements
// because this element could reference declarations
// established in previous element(s).
if (!Solutions.empty()) {
assert(Solutions.size() == 1);
// Note that solution is removed here. This is done
// because we want build a single complete solution
// incrementally.
CS.applySolution(Solutions.pop_back_val());
}
// Make sure that element is solved in isolation
// by dropping all scoring information.
CS.CurrentScore = Score();
// Reset the scope counter to avoid "too complex" failures
// when closure has a lot of elements in the body.
CS.CountScopes = 0;
// If timer is enabled, let's reset it so that each element
// (expression) gets a fresh time slice to get solved. This
// is important for closures with large number of statements
// in them.
if (CS.Timer) {
CS.Timer.emplace(element.getLocator(), CS);
}
auto success = element.attempt(CS);
// If element attempt has failed, mark whole conjunction
// as a failure.
if (!success)
markAsFailed();
return success;
}
StepResult ConjunctionStep::resume(bool prevFailed) {
// Return from the follow-up splitter step that
// attempted to apply information gained from the
// isolated constraint to the outer context.
if (Snapshot && Snapshot->isScoped()) {
Snapshot.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
return done(/*isSuccess=*/!prevFailed);
}
// If conjunction step is re-taken and there should be
// active choice, let's see if it has be solved or not.
assert(ActiveChoice);
// Rewind back the constraint system information.
ActiveChoice.reset();
if (CS.isDebugMode())
getDebugLogger() << ")\n";
// Check whether it makes sense to continue solving
// this conjunction. Note that for conjunction constraint
// to be considered a success all of its elements have
// to produce a single solution.
{
auto failConjunction = [&]() {
markAsFailed();
return done(/*isSuccess=*/false);
};
if (prevFailed)
return failConjunction();
// There could be a local ambiguity related to
// the current element, let's try to resolve it.
if (Solutions.size() > 1)
filterSolutions(Solutions, /*minimize=*/true);
// In diagnostic mode we need to stop a conjunction
// but consider it successful if there are:
//
// - More than one solution for this element. Ambiguity
// needs to get propagated back to the outer context
// to be diagnosed.
// - A single solution that requires one or more fixes,
// continuing would result in more errors associated
// with the failed element.
if (CS.shouldAttemptFixes()) {
if (Solutions.size() > 1)
Producer.markExhausted();
if (Solutions.size() == 1) {
auto score = Solutions.front().getFixedScore();
if (score.Data[SK_Fix] > 0 && !CS.isForCodeCompletion())
Producer.markExhausted();
}
} else if (Solutions.size() != 1) {
return failConjunction();
}
// Since there is only one solution, let's
// consider this element as solved.
AnySolved = true;
}
// After all of the elements have been checked, let's
// see if conjunction was successful and if so, continue
// solving along the current path until complete
// solution is reached.
if (Producer.isExhausted()) {
// If one of the elements failed, that means while
// conjunction failed with it.
if (HadFailure)
return done(/*isSuccess=*/false);
// If this was an isolated conjunction solver needs to do
// the following:
//
// a. Return all of the previously out-of-scope constraints;
// b. Apply solution reached for the conjunction;
// c. Continue solving along this path to reach a
// complete solution using type information
// inferred from this step.
if (Conjunction->isIsolated()) {
if (CS.isDebugMode()) {
auto &log = getDebugLogger();
log << "(applying conjunction result to outer context\n";
}
assert(
Snapshot &&
"Isolated conjunction requires a snapshot of the constraint system");
// In diagnostic mode it's valid for an element to have
// multiple solutions. Ambiguity just needs to be merged
// into the outer context to be property diagnosed.
if (Solutions.size() > 1) {
assert(CS.shouldAttemptFixes());
// Restore all outer type variables, constraints
// and scoring information.
Snapshot.reset();
// Apply all of the information deduced from the
// conjunction (up to the point of ambiguity)
// back to the outer context and form a joined solution.
unsigned numSolutions = 0;
for (auto &solution : Solutions) {
ConstraintSystem::SolverScope scope(CS);
CS.applySolution(solution);
// `applySolution` changes best/current scores
// of the constraint system, so they have to be
// restored right afterwards because score of the
// element does contribute to the overall score.
restoreBestScore();
restoreCurrentScore(solution.getFixedScore());
// Transform all of the unbound outer variables into
// placeholders since we are not going to solve for
// each ambiguous solution.
{
unsigned numHoles = 0;
for (auto *typeVar : CS.getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed()) {
CS.assignFixedType(
typeVar, PlaceholderType::get(CS.getASTContext(), typeVar));
++numHoles;
}
}
CS.increaseScore(SK_Hole, Conjunction->getLocator(), numHoles);
}
if (CS.worseThanBestSolution())
continue;
// Note that `worseThanBestSolution` isn't checked
// here because `Solutions` were pre-filtered, and
// outer score is the same for all of them.
OuterSolutions.push_back(CS.finalize());
++numSolutions;
}
return done(/*isSuccess=*/numSolutions > 0);
}
auto solution = Solutions.pop_back_val();
auto score = solution.getFixedScore();
// Restore outer type variables and prepare to solve
// constraints associated with outer context together
// with information deduced from the conjunction.
Snapshot->setupOuterContext(std::move(solution));
// Pretend that conjunction never happened.
restoreOuterState(score);
// Now that all of the information from the conjunction has
// been applied, let's attempt to solve the outer scope.
return suspend(std::make_unique<SplitterStep>(CS, OuterSolutions));
}
}
// Attempt next conjunction choice.
return take(prevFailed);
}
void ConjunctionStep::restoreOuterState(const Score &solutionScore) const {
// Restore best/current score, since upcoming step is going to
// work with outer scope in relation to the conjunction.
restoreBestScore();
restoreCurrentScore(solutionScore);
// Active all of the previously out-of-scope constraints
// because conjunction can propagate type information up
// by allowing its elements to reference type variables
// from outer scope (e.g. variable declarations and or captures).
{
CS.ActiveConstraints.splice(CS.ActiveConstraints.end(),
CS.InactiveConstraints);
for (auto &constraint : CS.ActiveConstraints)
constraint.setActive(true);
}
}
void ConjunctionStep::SolverSnapshot::applySolution(const Solution &solution) {
CS.applySolution(solution);
if (!CS.shouldAttemptFixes())
return;
// If inference succeeded, we are done.
auto score = solution.getFixedScore();
if (score.Data[SK_Fix] == 0)
return;
// If this conjunction represents a closure and inference
// has failed, let's bind all of unresolved type variables
// in its interface type to holes to avoid extraneous
// fixes produced by outer context.
auto locator = Conjunction->getLocator();
if (locator->directlyAt<ClosureExpr>()) {
auto closureTy =
CS.getClosureType(castToExpr<ClosureExpr>(locator->getAnchor()));
CS.recordTypeVariablesAsHoles(closureTy);
}
// Same for a SingleValueStmtExpr, turn any unresolved type variables present
// in its type into holes.
if (locator->isForSingleValueStmtConjunction()) {
auto *SVE = castToExpr<SingleValueStmtExpr>(locator->getAnchor());
CS.recordTypeVariablesAsHoles(CS.getType(SVE));
}
}