Files
swift-mirror/stdlib/public/stubs/Stubs.cpp
Wojtek Czekalski 1ed9da86db Fix precision of float to string to max significant decimals
The default precision which is used for converting floating point numbers to strings leads to many confusing results. If we take a Float32 1.00000000 value and 1.00000012 of the same type, these two, obviously are not equal. However, if we log them, we are displayed the same value. So a much more helpful display using 9 decimal digits is thus: [1.00000000 != 1.00000012] showing that the two values are in fact different.
(example taken from: http://www.boost.org/doc/libs/1_59_0/libs/test/doc/html/boost_test/test_output/log_floating_points.html)

I'm by no means a floating point number expert, however having investigated this issue I found numerous sources saying that "magic" numbers 9 and 17 for 32 and 64 bit values respectively are the correct format. Numbers 9 and 17 represent the maximum number of decimal digits that round trips. This means that number 0.100000000000000005 and 0.1000000000000000 are the same as their floating-point representations are concerned.
2015-12-14 13:48:41 +01:00

364 lines
10 KiB
C++

//===--- Stubs.cpp - Swift Language ABI Runtime Stubs ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Misc stubs for functions which should be defined in the core standard
// library, but are difficult or impossible to write in Swift at the
// moment.
//
//===----------------------------------------------------------------------===//
#if defined(__FreeBSD__)
#define _WITH_GETLINE
#endif
#include <sys/resource.h>
#include <sys/errno.h>
#include <unistd.h>
#include <climits>
#include <cstdarg>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <xlocale.h>
#include <limits>
#include "llvm/ADT/StringExtras.h"
#include "swift/Runtime/Debug.h"
#include "swift/Basic/Lazy.h"
static uint64_t uint64ToStringImpl(char *Buffer, uint64_t Value,
int64_t Radix, bool Uppercase,
bool Negative) {
char *P = Buffer;
uint64_t Y = Value;
if (Y == 0) {
*P++ = '0';
} else if (Radix == 10) {
while (Y) {
*P++ = '0' + char(Y % 10);
Y /= 10;
}
} else {
unsigned Radix32 = Radix;
while (Y) {
*P++ = llvm::hexdigit(Y % Radix32, !Uppercase);
Y /= Radix32;
}
}
if (Negative)
*P++ = '-';
std::reverse(Buffer, P);
return size_t(P - Buffer);
}
extern "C" uint64_t swift_int64ToString(char *Buffer, size_t BufferLength,
int64_t Value, int64_t Radix,
bool Uppercase) {
if ((Radix >= 10 && BufferLength < 32) || (Radix < 10 && BufferLength < 65))
swift::crash("swift_int64ToString: insufficient buffer size");
if (Radix == 0 || Radix > 36)
swift::crash("swift_int64ToString: invalid radix for string conversion");
bool Negative = Value < 0;
// Compute an absolute value safely, without using unary negation on INT_MIN,
// which is undefined behavior.
uint64_t UnsignedValue = Value;
if (Negative) {
// Assumes two's complement representation.
UnsignedValue = ~UnsignedValue + 1;
}
return uint64ToStringImpl(Buffer, UnsignedValue, Radix, Uppercase,
Negative);
}
extern "C" uint64_t swift_uint64ToString(char *Buffer, intptr_t BufferLength,
uint64_t Value, int64_t Radix,
bool Uppercase) {
if ((Radix >= 10 && BufferLength < 32) || (Radix < 10 && BufferLength < 64))
swift::crash("swift_int64ToString: insufficient buffer size");
if (Radix == 0 || Radix > 36)
swift::crash("swift_int64ToString: invalid radix for string conversion");
return uint64ToStringImpl(Buffer, Value, Radix, Uppercase,
/*Negative=*/false);
}
#if defined(__APPLE__) || defined(__FreeBSD__)
static inline locale_t getCLocale() {
// On these platforms convenience functions from xlocale.h interpret nullptr
// as C locale.
return nullptr;
}
#else
static locale_t makeCLocale() {
locale_t CLocale = newlocale(LC_ALL_MASK, "C", nullptr);
if (!CLocale) {
swift::crash("makeCLocale: newlocale() returned a null pointer");
}
return CLocale;
}
static locale_t getCLocale() {
return SWIFT_LAZY_CONSTANT(makeCLocale());
}
#endif
#if defined(__APPLE__)
#define swift_snprintf_l snprintf_l
#else
static int swift_snprintf_l(char *Str, size_t StrSize, locale_t Locale,
const char *Format, ...) {
if (Locale == nullptr) {
Locale = getCLocale();
}
locale_t OldLocale = uselocale(Locale);
va_list Args;
va_start(Args, Format);
int Result = std::vsnprintf(Str, StrSize, Format, Args);
va_end(Args);
uselocale(OldLocale);
return Result;
}
#endif
template <typename T>
static uint64_t swift_floatingPointToString(char *Buffer, size_t BufferLength,
T Value, const char *Format) {
if (BufferLength < 32)
swift::crash("swift_floatingPointToString: insufficient buffer size");
const int Precision = std::numeric_limits<T>::max_digits10;
// Pass a null locale to use the C locale.
int i = swift_snprintf_l(Buffer, BufferLength, /*locale=*/nullptr, Format,
Precision, Value);
if (i < 0)
swift::crash(
"swift_floatingPointToString: unexpected return value from sprintf");
if (size_t(i) >= BufferLength)
swift::crash("swift_floatingPointToString: insufficient buffer size");
// Add ".0" to a float that (a) is not in scientific notation, (b) does not
// already have a fractional part, (c) is not infinite, and (d) is not a NaN
// value.
if (strchr(Buffer, 'e') == nullptr && strchr(Buffer, '.') == nullptr &&
strchr(Buffer, 'n') == nullptr) {
Buffer[i++] = '.';
Buffer[i++] = '0';
}
return i;
}
extern "C" uint64_t swift_float32ToString(char *Buffer, size_t BufferLength,
float Value) {
return swift_floatingPointToString<float>(Buffer, BufferLength, Value,
"%0.*g");
}
extern "C" uint64_t swift_float64ToString(char *Buffer, size_t BufferLength,
double Value) {
return swift_floatingPointToString<double>(Buffer, BufferLength, Value,
"%0.*g");
}
extern "C" uint64_t swift_float80ToString(char *Buffer, size_t BufferLength,
long double Value) {
return swift_floatingPointToString<long double>(Buffer, BufferLength, Value,
"%0.*Lg");
}
/// \param[out] LinePtr Replaced with the pointer to the malloc()-allocated
/// line. Can be NULL if no characters were read.
///
/// \returns Size of character data returned in \c LinePtr, or -1
/// if an error occurred, or EOF was reached.
extern "C" ssize_t swift_stdlib_readLine_stdin(char **LinePtr) {
size_t Capacity = 0;
return getline(LinePtr, &Capacity, stdin);
}
extern "C" float _swift_fmodf(float lhs, float rhs) {
return fmodf(lhs, rhs);
}
extern "C" double _swift_fmod(double lhs, double rhs) {
return fmod(lhs, rhs);
}
extern "C" long double _swift_fmodl(long double lhs, long double rhs) {
return fmodl(lhs, rhs);
}
// Although this builtin is provided by clang rt builtins,
// it isn't provided by libgcc, which is the default
// runtime library on Linux, even when compiling with clang.
// This implementation is copied here to avoid a new dependency
// on compiler-rt on Linux.
// FIXME: rdar://14883575 Libcompiler_rt omits muloti4
#if (defined(__APPLE__) && defined(__arm64__)) || \
(defined(__linux__) && defined(__x86_64__))
typedef int ti_int __attribute__ ((mode (TI)));
extern "C"
ti_int
__muloti4(ti_int a, ti_int b, int* overflow)
{
const int N = (int)(sizeof(ti_int) * CHAR_BIT);
const ti_int MIN = (ti_int)1 << (N-1);
const ti_int MAX = ~MIN;
*overflow = 0;
ti_int result = a * b;
if (a == MIN)
{
if (b != 0 && b != 1)
*overflow = 1;
return result;
}
if (b == MIN)
{
if (a != 0 && a != 1)
*overflow = 1;
return result;
}
ti_int sa = a >> (N - 1);
ti_int abs_a = (a ^ sa) - sa;
ti_int sb = b >> (N - 1);
ti_int abs_b = (b ^ sb) - sb;
if (abs_a < 2 || abs_b < 2)
return result;
if (sa == sb)
{
if (abs_a > MAX / abs_b)
*overflow = 1;
}
else
{
if (abs_a > MIN / -abs_b)
*overflow = 1;
}
return result;
}
#endif
#if defined(__linux__) && defined(__arm__)
// Similar to above, but with mulodi4. Perhaps this is
// something that shouldn't be done, and is a bandaid over
// some other lower-level architecture issue that I'm
// missing. Perhaps relevant bug report:
// FIXME: https://llvm.org/bugs/show_bug.cgi?id=14469
typedef int di_int __attribute__ ((mode (DI)));
extern "C"
di_int
__mulodi4(di_int a, di_int b, int* overflow)
{
const int N = (int)(sizeof(di_int) * CHAR_BIT);
const di_int MIN = (di_int)1 << (N-1);
const di_int MAX = ~MIN;
*overflow = 0;
di_int result = a * b;
if (a == MIN)
{
if (b != 0 && b != 1)
*overflow = 1;
return result;
}
if (b == MIN)
{
if (a != 0 && a != 1)
*overflow = 1;
return result;
}
di_int sa = a >> (N - 1);
di_int abs_a = (a ^ sa) - sa;
di_int sb = b >> (N - 1);
di_int abs_b = (b ^ sb) - sb;
if (abs_a < 2 || abs_b < 2)
return result;
if (sa == sb)
{
if (abs_a > MAX / abs_b)
*overflow = 1;
}
else
{
if (abs_a > MIN / -abs_b)
*overflow = 1;
}
return result;
}
#endif
// We can't return Float80, but we can receive a pointer to one, so
// switch the return type and the out parameter on strtold.
template <typename T>
static const char *_swift_stdlib_strtoX_clocale_impl(
const char * nptr, T* outResult, T huge,
T (*posixImpl)(const char *, char **, locale_t)
) {
char *EndPtr;
errno = 0;
const auto result = posixImpl(nptr, &EndPtr, getCLocale());
*outResult = result;
if (result == huge || result == -huge || result == 0.0 || result == -0.0) {
if (errno == ERANGE)
EndPtr = NULL;
}
return EndPtr;
}
extern "C" const char *_swift_stdlib_strtold_clocale(
const char * nptr, void *outResult) {
return _swift_stdlib_strtoX_clocale_impl(
nptr, static_cast<long double*>(outResult), HUGE_VALL, strtold_l);
}
extern "C" const char *_swift_stdlib_strtod_clocale(
const char * nptr, double *outResult) {
return _swift_stdlib_strtoX_clocale_impl(
nptr, outResult, HUGE_VAL, strtod_l);
}
extern "C" const char *_swift_stdlib_strtof_clocale(
const char * nptr, float *outResult) {
return _swift_stdlib_strtoX_clocale_impl(
nptr, outResult, HUGE_VALF, strtof_l);
}
extern "C" void _swift_stdlib_flockfile_stdout() {
flockfile(stdout);
}
extern "C" void _swift_stdlib_funlockfile_stdout() {
funlockfile(stdout);
}
extern "C" int _swift_stdlib_putc_stderr(int C) {
return putc(C, stderr);
}
extern "C" size_t _swift_stdlib_getHardwareConcurrency() {
return sysconf(_SC_NPROCESSORS_ONLN);
}