Files
swift-mirror/lib/Sema/DerivedConformanceRawRepresentable.cpp
Slava Pestov 1ee2db4520 AST: Accessors no longer appear as members of their parent DeclContext
Accessors logically belong to their storage and can be synthesized
on the fly, so removing them from the members list eliminates one
source of mutability (but doesn't eliminate it; there are also
witnesses for derived conformances, and implicit constructors).

Since a few ASTWalker implementations break in non-trivial ways when
the traversal is changed to visit accessors as children of the storage
rather than peers, I hacked up the ASTWalker to optionally preserve
the old traversal order for now. This is ugly and needs to be cleaned up,
but I want to avoid breaking _too_ much with this commit.
2019-07-30 15:56:00 -04:00

557 lines
20 KiB
C++

//===--- DerivedConformanceRawRepresentable.cpp - Derived RawRepresentable ===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements implicit derivation of the RawRepresentable protocol
// for an enum.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/APInt.h"
#include "DerivedConformances.h"
using namespace swift;
static LiteralExpr *cloneRawLiteralExpr(ASTContext &C, LiteralExpr *expr) {
LiteralExpr *clone;
if (auto intLit = dyn_cast<IntegerLiteralExpr>(expr)) {
clone = new (C) IntegerLiteralExpr(intLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (intLit->isNegative())
cast<IntegerLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (isa<NilLiteralExpr>(expr)) {
clone = new (C) NilLiteralExpr(expr->getLoc());
} else if (auto stringLit = dyn_cast<StringLiteralExpr>(expr)) {
clone = new (C) StringLiteralExpr(stringLit->getValue(), expr->getLoc());
} else if (auto floatLit = dyn_cast<FloatLiteralExpr>(expr)) {
clone = new (C) FloatLiteralExpr(floatLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (floatLit->isNegative())
cast<FloatLiteralExpr>(clone)->setNegative(expr->getLoc());
} else {
llvm_unreachable("invalid raw literal expr");
}
clone->setImplicit();
return clone;
}
static Type deriveRawRepresentable_Raw(DerivedConformance &derived) {
// enum SomeEnum : SomeType {
// @derived
// typealias Raw = SomeType
// }
auto rawInterfaceType = cast<EnumDecl>(derived.Nominal)->getRawType();
return derived.getConformanceContext()->mapTypeIntoContext(rawInterfaceType);
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_raw(AbstractFunctionDecl *toRawDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @derived
// var raw: SomeType {
// switch self {
// case A:
// return 111
// case B:
// return 222
// }
// }
// }
auto parentDC = toRawDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto enumDecl = parentDC->getSelfEnumDecl();
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = toRawDecl->mapTypeIntoContext(rawTy);
#ifndef NDEBUG
for (auto elt : enumDecl->getAllElements()) {
assert(elt->getTypeCheckedRawValueExpr() &&
"Enum element has no literal - missing a call to checkEnumRawValues()");
assert(elt->getTypeCheckedRawValueExpr()->getType()->isEqual(rawTy));
}
#endif
if (enumDecl->isObjC()) {
// Special case: ObjC enums are represented by their raw value, so just use
// a bitcast.
// return unsafeBitCast(self, to: RawType.self)
DeclName name(C, C.getIdentifier("unsafeBitCast"), {Identifier(), C.Id_to});
auto functionRef = new (C) UnresolvedDeclRefExpr(name,
DeclRefKind::Ordinary,
DeclNameLoc());
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto bareTypeExpr = TypeExpr::createImplicit(rawTy, C);
auto typeExpr = new (C) DotSelfExpr(bareTypeExpr, SourceLoc(), SourceLoc());
auto call = CallExpr::createImplicit(C, functionRef, {selfRef, typeExpr},
{Identifier(), C.Id_to});
auto returnStmt = new (C) ReturnStmt(SourceLoc(), call);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(returnStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
Type enumType = parentDC->getDeclaredTypeInContext();
SmallVector<ASTNode, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
auto pat = new (C) EnumElementPattern(TypeLoc::withoutLoc(enumType),
SourceLoc(), SourceLoc(),
Identifier(), elt, nullptr);
pat->setImplicit();
auto labelItem = CaseLabelItem(pat);
auto returnExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
auto returnStmt = new (C) ReturnStmt(SourceLoc(), returnExpr);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(returnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, SourceLoc(), labelItem, SourceLoc(),
SourceLoc(), body,
/*case body var decls*/ None));
}
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), selfRef,
SourceLoc(), cases, SourceLoc(), C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static void maybeMarkAsInlinable(DerivedConformance &derived,
AbstractFunctionDecl *afd) {
ASTContext &C = derived.TC.Context;
auto parentDC = derived.getConformanceContext();
if (!parentDC->getParentModule()->isResilient()) {
AccessScope access =
afd->getFormalAccessScope(nullptr,
/*treatUsableFromInlineAsPublic*/true);
if (auto *attr = afd->getAttrs().getAttribute<UsableFromInlineAttr>())
attr->setInvalid();
if (access.isPublic())
afd->getAttrs().add(new (C) InlinableAttr(/*implicit*/false));
}
}
static VarDecl *deriveRawRepresentable_raw(DerivedConformance &derived) {
ASTContext &C = derived.TC.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
// Define the property.
VarDecl *propDecl;
PatternBindingDecl *pbDecl;
std::tie(propDecl, pbDecl) = derived.declareDerivedProperty(
C.Id_rawValue, rawInterfaceType, rawType, /*isStatic=*/false,
/*isFinal=*/false);
// Define the getter.
auto getterDecl = DerivedConformance::addGetterToReadOnlyDerivedProperty(
propDecl, rawType);
getterDecl->setBodySynthesizer(&deriveBodyRawRepresentable_raw);
// If the containing module is not resilient, make sure clients can get at
// the raw value without function call overhead.
maybeMarkAsInlinable(derived, getterDecl);
derived.addMembersToConformanceContext({propDecl, pbDecl});
return propDecl;
}
/// Contains information needed to synthesize a runtime version check.
struct RuntimeVersionCheck {
PlatformKind Platform;
llvm::VersionTuple Version;
RuntimeVersionCheck(PlatformKind Platform, llvm::VersionTuple Version)
: Platform(Platform), Version(Version)
{ }
VersionRange getVersionRange() const {
return VersionRange::allGTE(Version);
}
/// Synthesizes a statement which returns nil if the runtime version check
/// fails, e.g. "guard #available(iOS 10, *) else { return nil }".
Stmt *createEarlyReturnStmt(ASTContext &C) const {
// platformSpec = "\(attr.platform) \(attr.introduced)"
auto platformSpec = new (C) PlatformVersionConstraintAvailabilitySpec(
Platform, SourceLoc(),
Version, SourceLoc()
);
// otherSpec = "*"
auto otherSpec = new (C) OtherPlatformAvailabilitySpec(SourceLoc());
// availableInfo = "#available(\(platformSpec), \(otherSpec))"
auto availableInfo = PoundAvailableInfo::create(
C, SourceLoc(), { platformSpec, otherSpec }, SourceLoc());
// This won't be filled in by TypeCheckAvailability because we have
// invalid SourceLocs in this area of the AST.
availableInfo->setAvailableRange(getVersionRange());
// earlyReturnBody = "{ return nil }"
auto earlyReturn = new (C) FailStmt(SourceLoc(), SourceLoc());
auto earlyReturnBody = BraceStmt::create(C, SourceLoc(),
ASTNode(earlyReturn),
SourceLoc(), /*implicit=*/true);
// guardStmt = "guard \(availableInfo) else \(earlyReturnBody)"
StmtConditionElement conds[1] = { availableInfo };
auto guardStmt = new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conds),
earlyReturnBody, /*implicit=*/true);
return guardStmt;
}
};
/// Checks if the case will be available at runtime given the current target
/// platform. If it will never be available, returns false. If it will always
/// be available, returns true. If it will sometimes be available, adds
/// information about the runtime check needed to ensure it is available to
/// \c versionCheck and returns true.
static bool checkAvailability(const EnumElementDecl* elt, ASTContext &C,
Optional<RuntimeVersionCheck> &versionCheck) {
auto *attr = elt->getAttrs().getPotentiallyUnavailable(C);
// Is it always available?
if (!attr)
return true;
AvailableVersionComparison availability = attr->getVersionAvailability(C);
assert(availability != AvailableVersionComparison::Available &&
"DeclAttributes::getPotentiallyUnavailable() shouldn't "
"return an available attribute");
// Is it never available?
if (availability != AvailableVersionComparison::PotentiallyUnavailable)
return false;
// It's conditionally available; create a version constraint and return true.
assert(attr->getPlatformAgnosticAvailability() ==
PlatformAgnosticAvailabilityKind::None &&
"can only express #available(somePlatform version) checks");
versionCheck.emplace(attr->Platform, *attr->Introduced);
return true;
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_init(AbstractFunctionDecl *initDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @available(iOS 10, *) case C = 333
// @derived
// init?(rawValue: SomeType) {
// switch rawValue {
// case 111:
// self = .A
// case 222:
// self = .B
// case 333:
// guard #available(iOS 10, *) else { return nil }
// self = .C
// default:
// return nil
// }
// }
// }
auto parentDC = initDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto nominalTypeDecl = parentDC->getSelfNominalTypeDecl();
auto enumDecl = cast<EnumDecl>(nominalTypeDecl);
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = initDecl->mapTypeIntoContext(rawTy);
#ifndef NDEBUG
for (auto elt : enumDecl->getAllElements()) {
assert(elt->getTypeCheckedRawValueExpr() &&
"Enum element has no literal - missing a call to checkEnumRawValues()");
assert(elt->getTypeCheckedRawValueExpr()->getType()->isEqual(rawTy));
}
#endif
bool isStringEnum =
(rawTy->getNominalOrBoundGenericNominal() == C.getStringDecl());
llvm::SmallVector<Expr *, 16> stringExprs;
Type enumType = parentDC->getDeclaredTypeInContext();
auto selfDecl = cast<ConstructorDecl>(initDecl)->getImplicitSelfDecl();
SmallVector<ASTNode, 4> cases;
unsigned Idx = 0;
for (auto elt : enumDecl->getAllElements()) {
// First, check case availability. If the case will definitely be
// unavailable, skip it. If it might be unavailable at runtime, save
// information about that check in versionCheck and keep processing this
// element.
Optional<RuntimeVersionCheck> versionCheck(None);
if (!checkAvailability(elt, C, versionCheck))
continue;
// litPat = elt.rawValueExpr as a pattern
LiteralExpr *litExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
if (isStringEnum) {
// In case of a string enum we are calling the _findStringSwitchCase
// function from the library and switching on the returned Int value.
stringExprs.push_back(litExpr);
litExpr = IntegerLiteralExpr::createFromUnsigned(C, Idx);
}
auto litPat = new (C) ExprPattern(litExpr, /*isResolved*/ true,
nullptr, nullptr);
litPat->setImplicit();
/// Statements in the body of this case.
SmallVector<ASTNode, 2> stmts;
// If checkAvailability() discovered we need a runtime version check,
// add it now.
if (versionCheck.hasValue())
stmts.push_back(ASTNode(versionCheck->createEarlyReturnStmt(C)));
// Create a statement which assigns the case to self.
// valueExpr = "\(enumType).\(elt)"
auto eltRef = new (C) DeclRefExpr(elt, DeclNameLoc(), /*implicit*/true);
auto metaTyRef = TypeExpr::createImplicit(enumType, C);
auto valueExpr = new (C) DotSyntaxCallExpr(eltRef, SourceLoc(), metaTyRef);
// assignment = "self = \(valueExpr)"
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::DirectToStorage);
auto assignment = new (C) AssignExpr(selfRef, SourceLoc(), valueExpr,
/*implicit*/ true);
stmts.push_back(ASTNode(assignment));
// body = "{ \(stmts) }" (the braces are silent)
auto body = BraceStmt::create(C, SourceLoc(),
stmts, SourceLoc());
// cases.append("case \(litPat): \(body)")
cases.push_back(CaseStmt::create(C, SourceLoc(), CaseLabelItem(litPat),
SourceLoc(), SourceLoc(), body,
/*case body var decls*/ None));
Idx++;
}
auto anyPat = new (C) AnyPattern(SourceLoc());
anyPat->setImplicit();
auto dfltLabelItem = CaseLabelItem::getDefault(anyPat);
auto dfltReturnStmt = new (C) FailStmt(SourceLoc(), SourceLoc());
auto dfltBody = BraceStmt::create(C, SourceLoc(),
ASTNode(dfltReturnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, SourceLoc(), dfltLabelItem, SourceLoc(),
SourceLoc(), dfltBody,
/*case body var decls*/ None));
auto rawDecl = initDecl->getParameters()->get(0);
auto rawRef = new (C) DeclRefExpr(rawDecl, DeclNameLoc(), /*implicit*/true);
Expr *switchArg = rawRef;
if (isStringEnum) {
// Call _findStringSwitchCase with an array of strings as argument.
auto *Fun = new (C) UnresolvedDeclRefExpr(
C.getIdentifier("_findStringSwitchCase"),
DeclRefKind::Ordinary, DeclNameLoc());
auto *strArray = ArrayExpr::create(C, SourceLoc(), stringExprs, {},
SourceLoc());;
Identifier tableId = C.getIdentifier("cases");
Identifier strId = C.getIdentifier("string");
auto *Args = TupleExpr::createImplicit(C, {strArray, rawRef},
{tableId, strId});
auto *CallExpr = CallExpr::create(C, Fun, Args, {}, {}, false, false);
switchArg = CallExpr;
}
auto switchStmt = SwitchStmt::create(LabeledStmtInfo(), SourceLoc(), switchArg,
SourceLoc(), cases, SourceLoc(), C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static ConstructorDecl *
deriveRawRepresentable_init(DerivedConformance &derived) {
auto &tc = derived.TC;
ASTContext &C = tc.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
auto equatableProto = tc.getProtocol(enumDecl->getLoc(),
KnownProtocolKind::Equatable);
assert(equatableProto);
assert(TypeChecker::conformsToProtocol(rawType, equatableProto,
enumDecl, None));
(void)equatableProto;
(void)rawType;
auto *rawDecl = new (C)
ParamDecl(ParamDecl::Specifier::Default, SourceLoc(), SourceLoc(),
C.Id_rawValue, SourceLoc(), C.Id_rawValue, parentDC);
rawDecl->setInterfaceType(rawInterfaceType);
rawDecl->setImplicit();
auto paramList = ParameterList::createWithoutLoc(rawDecl);
DeclName name(C, DeclBaseName::createConstructor(), paramList);
auto initDecl =
new (C) ConstructorDecl(name, SourceLoc(),
/*Failability=*/ OTK_Optional,
/*FailabilityLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
paramList,
/*GenericParams=*/nullptr, parentDC);
initDecl->setImplicit();
initDecl->setBodySynthesizer(&deriveBodyRawRepresentable_init);
// Compute the interface type of the initializer.
if (auto env = parentDC->getGenericEnvironmentOfContext())
initDecl->setGenericEnvironment(env);
initDecl->computeType();
initDecl->copyFormalAccessFrom(enumDecl, /*sourceIsParentContext*/true);
initDecl->setValidationToChecked();
// If the containing module is not resilient, make sure clients can construct
// an instance without function call overhead.
maybeMarkAsInlinable(derived, initDecl);
C.addSynthesizedDecl(initDecl);
derived.addMembersToConformanceContext({initDecl});
return initDecl;
}
static bool canSynthesizeRawRepresentable(DerivedConformance &derived) {
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto &tc = derived.TC;
// Validate the enum and its raw type.
tc.validateDecl(enumDecl);
// It must have a valid raw type.
Type rawType = enumDecl->getRawType();
if (!rawType)
return false;
auto parentDC = cast<DeclContext>(derived.ConformanceDecl);
rawType = parentDC->mapTypeIntoContext(rawType);
auto inherited = enumDecl->getInherited();
if (!inherited.empty() && inherited.front().wasValidated() &&
inherited.front().isError())
return false;
// The raw type must be Equatable, so that we have a suitable ~= for
// synthesized switch statements.
auto equatableProto =
tc.getProtocol(enumDecl->getLoc(), KnownProtocolKind::Equatable);
if (!equatableProto)
return false;
if (!TypeChecker::conformsToProtocol(rawType, equatableProto,
enumDecl, None))
return false;
// There must be enum elements.
if (enumDecl->getAllElements().empty())
return false;
// Have the type-checker validate that:
// - the enum elements all have the same type
// - they all match the enum type
for (auto elt : enumDecl->getAllElements()) {
// We cannot synthesize raw representable conformance for an enum with
// cases that have a payload.
if (elt->hasAssociatedValues())
return false;
tc.validateDecl(elt);
if (elt->isInvalid()) {
return false;
}
}
// If it meets all of those requirements, we can synthesize RawRepresentable conformance.
return true;
}
ValueDecl *DerivedConformance::deriveRawRepresentable(ValueDecl *requirement) {
// We can only synthesize RawRepresentable for enums.
if (!isa<EnumDecl>(Nominal))
return nullptr;
// Check other preconditions for synthesized conformance.
if (!canSynthesizeRawRepresentable(*this))
return nullptr;
if (requirement->getBaseName() == TC.Context.Id_rawValue)
return deriveRawRepresentable_raw(*this);
if (requirement->getBaseName() == DeclBaseName::createConstructor())
return deriveRawRepresentable_init(*this);
TC.diagnose(requirement->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}
Type DerivedConformance::deriveRawRepresentable(AssociatedTypeDecl *assocType) {
// We can only synthesize RawRepresentable for enums.
if (!isa<EnumDecl>(Nominal))
return nullptr;
// Check other preconditions for synthesized conformance.
if (!canSynthesizeRawRepresentable(*this))
return nullptr;
if (assocType->getName() == TC.Context.Id_RawValue) {
return deriveRawRepresentable_Raw(*this);
}
TC.diagnose(assocType->getLoc(), diag::broken_raw_representable_requirement);
return nullptr;
}