Files
swift-mirror/lib/Parse/ParseDecl.cpp
Jordan Rose 1fe8630bcd Accept (and prefer) "import type" as a scoped import for any non-protocol type.
Previously this was spelled "import typealias", and that spelling will
continue to be allowed (since someone may specifically be importing a
typealias and want that to match), but now that 'type' is a keyword,
"import type" is the right way to spell the generic "import any type"
scoped import.

Swift SVN r14488
2014-02-27 23:46:06 +00:00

3228 lines
105 KiB
C++

//===--- ParseDecl.cpp - Swift Language Parser for Declarations -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Declaration Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "swift/Parse/DelayedParsingCallbacks.h"
#include "swift/Parse/Lexer.h"
#include "swift/Subsystems.h"
#include "swift/AST/Attr.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include <algorithm>
using namespace swift;
/// \brief Build an implicit 'self' parameter for the specified DeclContext.
static Pattern *buildImplicitSelfParameter(SourceLoc Loc,
DeclContext *CurDeclContext,
VarDecl **SelfDeclRet = nullptr) {
ASTContext &Ctx = CurDeclContext->getASTContext();
auto *SelfDecl = new (Ctx) VarDecl(/*static*/ false, /*IsLet*/ true,
Loc, Ctx.Id_self,
Type(), CurDeclContext);
// FIXME: Remove SelfDeclRet when we don't need it anymore.
if (SelfDeclRet)
*SelfDeclRet = SelfDecl;
SelfDecl->setImplicit();
Pattern *P = new (Ctx) NamedPattern(SelfDecl, /*Implicit=*/true);
return new (Ctx) TypedPattern(P, TypeLoc());
}
/// \brief Main entrypoint for the parser.
///
/// \verbatim
/// top-level:
/// stmt-brace-item*
/// decl-sil [[only in SIL mode]
/// decl-sil-stage [[only in SIL mode]
/// \endverbatim
bool Parser::parseTopLevel() {
SF.ASTStage = SourceFile::Parsing;
// Prime the lexer.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
CurDeclContext = &SF;
// Parse the body of the file.
SmallVector<ASTNode, 128> Items;
skipExtraTopLevelRBraces();
// If we are in SIL mode, and if the first token is the start of a sil
// declaration, parse that one SIL function and return to the top level. This
// allows type declarations and other things to be parsed, name bound, and
// type checked in batches, similar to immediate mode. This also enforces
// that SIL bodies can only be at the top level.
if (Tok.is(tok::kw_sil)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseDeclSIL();
} else if (Tok.is(tok::kw_sil_stage)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseDeclSILStage();
} else if (Tok.is(tok::kw_sil_vtable)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILVTable();
} else if (Tok.is(tok::kw_sil_global)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILGlobal();
} else if (Tok.is(tok::kw_sil_witness_table)) {
assert(isInSILMode() && "'sil' should only be a keyword in SIL mode");
parseSILWitnessTable();
} else {
parseBraceItems(Items,
allowTopLevelCode() ? BraceItemListKind::TopLevelCode
: BraceItemListKind::TopLevelLibrary);
}
// If this is a Main source file, determine if we found code that needs to be
// executed (this is used by the repl to know whether to compile and run the
// newly parsed stuff).
bool FoundTopLevelCodeToExecute = false;
if (allowTopLevelCode()) {
for (auto V : Items)
if (isa<TopLevelCodeDecl>(V.get<Decl*>()))
FoundTopLevelCodeToExecute = true;
}
// Add newly parsed decls to the module.
for (auto Item : Items)
if (Decl *D = Item.dyn_cast<Decl*>())
SF.Decls.push_back(D);
// Note that the source file is fully parsed and verify it.
SF.ASTStage = SourceFile::Parsed;
verify(SF);
// Next time start relexing from the beginning of the comment so that we can
// attach it to the token.
State->markParserPosition(Tok.getCommentRange().getStart(), PreviousLoc);
return FoundTopLevelCodeToExecute;
}
bool Parser::skipExtraTopLevelRBraces() {
if (!Tok.is(tok::r_brace))
return false;
while (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::extra_rbrace)
.fixItRemove(Tok.getLoc());
consumeToken();
}
return true;
}
/// getTypeAttrFromString - If the specified string is a valid type attribute,
/// return the kind. Otherwise, return TAK_Count as a sentinel.
static TypeAttrKind getTypeAttrFromString(StringRef Str) {
return llvm::StringSwitch<TypeAttrKind>(Str)
#define TYPE_ATTR(X) .Case(#X, TAK_##X)
#include "swift/AST/Attr.def"
.Default(TAK_Count);
}
/// \verbatim
/// attribute:
/// 'asmname' '=' identifier
/// 'infix' '=' numeric_constant
/// 'unary'
/// 'stdlib'
/// 'weak'
/// 'inout'
/// 'unowned'
/// 'noreturn'
/// 'optional'
/// '!'? 'mutating'
/// 'requires_stored_property_inits'
/// \endverbatim
bool Parser::parseDeclAttribute(DeclAttributes &Attributes) {
SourceLoc InversionLoc = Tok.getLoc();
bool isInverted = consumeIf(tok::exclaim_postfix);
// If this not an identifier, the attribute is malformed.
if (Tok.isNot(tok::identifier) &&
Tok.isNot(tok::kw_in) &&
Tok.isNot(tok::kw_weak) &&
Tok.isNot(tok::kw_unowned)) {
diagnose(Tok, diag::expected_attribute_name);
return true;
}
// Determine which attribute it is, and diagnose it if unknown.
AttrKind attr = llvm::StringSwitch<AttrKind>(Tok.getText())
#define ATTR(X) .Case(#X, AK_##X)
#define VIRTUAL_ATTR(X)
#include "swift/AST/Attr.def"
.Default(AK_Count);
if (attr == AK_Count) {
if (getTypeAttrFromString(Tok.getText()) != TAK_Count)
diagnose(Tok, diag::type_attribute_applied_to_decl);
else
diagnose(Tok, diag::unknown_attribute, Tok.getText());
// Recover by eating @foo when foo is not known.
consumeToken();
// Recovery by eating "@foo=bar" if present.
if (consumeIf(tok::equal)) {
if (Tok.is(tok::identifier) ||
Tok.is(tok::integer_literal) ||
Tok.is(tok::floating_literal))
consumeToken();
}
return true;
}
// Ok, it is a valid attribute, eat it, and then process it.
SourceLoc Loc = consumeToken();
// Diagnose duplicated attributes.
if (Attributes.has(attr)) {
diagnose(Loc, diag::duplicate_attribute);
return false;
}
Attributes.setAttr(attr, Loc);
// If this is an inverted attribute like "@!mutating", verify that inversion
// is ok.
if (isInverted) {
if (attr == AK_mutating) {
Attributes.MutatingInverted = true;
} else {
diagnose(InversionLoc, diag::invalid_attribute_inversion);
isInverted = false;
}
}
// Handle any attribute-specific processing logic.
switch (attr) {
default: break;
// Ownership attributes.
case AK_weak:
case AK_unowned:
// Test for duplicate entries by temporarily removing this one.
Attributes.clearAttribute(attr);
if (Attributes.hasOwnership()) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
// Resilience attributes.
case AK_resilient:
case AK_fragile:
case AK_born_fragile:
// Test for duplicate entries by temporarily removing this one.
Attributes.clearAttribute(attr);
if (Attributes.getResilienceKind() != Resilience::Default) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
case AK_prefix:
if (Attributes.isPostfix()) {
diagnose(Loc, diag::cannot_combine_attribute, "postfix");
Attributes.clearAttribute(attr);
}
break;
case AK_postfix:
if (Attributes.isPrefix()) {
diagnose(Loc, diag::cannot_combine_attribute, "prefix");
Attributes.clearAttribute(attr);
}
break;
case AK_asmname: {
if (!consumeIf(tok::equal)) {
diagnose(Loc, diag::asmname_expected_equals);
Attributes.clearAttribute(attr);
return false;
}
if (Tok.isNot(tok::string_literal)) {
diagnose(Loc, diag::asmname_expected_string_literal);
Attributes.clearAttribute(attr);
return false;
}
SmallVector<Lexer::StringSegment, 1> Segments;
L->getStringLiteralSegments(Tok, Segments);
if (Segments.size() != 1 ||
Segments.front().Kind == Lexer::StringSegment::Expr) {
diagnose(Loc, diag::asmname_interpolated_string);
Attributes.clearAttribute(attr);
} else {
Attributes.AsmName = StringRef(
SourceMgr->getMemoryBuffer(BufferID)->getBufferStart() +
SourceMgr.getLocOffsetInBuffer(Segments.front().Loc, BufferID),
Segments.front().Length);
}
consumeToken(tok::string_literal);
break;
}
}
return false;
}
/// \verbatim
/// attribute-type:
/// 'noreturn'
/// \endverbatim
bool Parser::parseTypeAttribute(TypeAttributes &Attributes) {
// If this not an identifier, the attribute is malformed.
if (Tok.isNot(tok::identifier) && !Tok.is(tok::kw_in)) {
diagnose(Tok, diag::expected_attribute_name);
return true;
}
// Determine which attribute it is, and diagnose it if unknown.
TypeAttrKind attr = getTypeAttrFromString(Tok.getText());
if (attr == TAK_Count) {
StringRef Text = Tok.getText();
bool isDeclAttribute = false
#define ATTR(X) || Text == #X
#define VIRTUAL_ATTR(X)
#include "swift/AST/Attr.def"
;
if (isDeclAttribute)
diagnose(Tok, diag::decl_attribute_applied_to_type);
else
diagnose(Tok, diag::unknown_attribute, Tok.getText());
// Recover by eating @foo when foo is not known.
consumeToken();
// Recovery by eating "@foo=bar" if present.
if (consumeIf(tok::equal)) {
if (Tok.is(tok::identifier) ||
Tok.is(tok::integer_literal) ||
Tok.is(tok::floating_literal))
consumeToken();
}
return true;
}
// Ok, it is a valid attribute, eat it, and then process it.
StringRef Text = Tok.getText();
SourceLoc Loc = consumeToken();
// Diagnose duplicated attributes.
if (Attributes.has(attr))
diagnose(Loc, diag::duplicate_attribute);
else
Attributes.setAttr(attr, Loc);
// Handle any attribute-specific processing logic.
switch (attr) {
default: break;
case TAK_local_storage:
case TAK_sil_self:
case TAK_out:
case TAK_in:
case TAK_owned:
case TAK_guaranteed:
case TAK_autoreleased:
case TAK_callee_owned:
case TAK_callee_guaranteed:
case TAK_objc_metatype:
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, Text);
Attributes.clearAttribute(attr);
}
break;
// Ownership attributes.
case TAK_sil_weak:
case TAK_sil_unowned:
Attributes.clearAttribute(attr);
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, "local_storage");
return false;
}
if (Attributes.hasOwnership()) {
diagnose(Loc, diag::duplicate_attribute);
break;
}
Attributes.setAttr(attr, Loc);
break;
// 'inout' attribute.
case TAK_inout:
if (!isInSILMode()) {
diagnose(Loc, diag::inout_not_attribute);
return false;
}
break;
case TAK_opened: {
// Parse the opened existential ID in parents
SourceLoc beginLoc = Tok.getLoc(), idLoc, endLoc;
Attributes.setAttr(TAK_opened, beginLoc);
if (consumeIfNotAtStartOfLine(tok::l_paren)) {
if (Tok.is(tok::integer_literal)) {
unsigned openedID = 0;
idLoc = Tok.getLoc();
if (Tok.getText().getAsInteger(0, openedID)) {
diagnose(Tok, diag::opened_attribute_id_value);
} else {
Attributes.OpenedID = openedID;
}
consumeToken();
} else {
diagnose(Tok, diag::opened_attribute_id_value);
}
parseMatchingToken(tok::r_paren, endLoc,
diag::opened_attribute_expected_rparen,
beginLoc);
} else {
diagnose(Tok, diag::opened_attribute_expected_lparen);
}
if (!isInSILMode()) {
diagnose(Loc, diag::only_allowed_in_sil, "opened");
Attributes.clearAttribute(TAK_opened);
}
break;
}
// 'cc' attribute.
case TAK_cc: {
// Parse the cc name in parens.
SourceLoc beginLoc = Tok.getLoc(), nameLoc, endLoc;
StringRef name;
if (consumeIfNotAtStartOfLine(tok::l_paren)) {
if (Tok.is(tok::identifier)) {
nameLoc = Tok.getLoc();
name = Tok.getText();
consumeToken();
} else {
diagnose(Tok, diag::cc_attribute_expected_name);
}
parseMatchingToken(tok::r_paren, endLoc,
diag::cc_attribute_expected_rparen,
beginLoc);
} else {
diagnose(Tok, diag::cc_attribute_expected_lparen);
}
if (!name.empty()) {
Attributes.cc = llvm::StringSwitch<Optional<AbstractCC>>(name)
.Case("freestanding", AbstractCC::Freestanding)
.Case("method", AbstractCC::Method)
.Case("cdecl", AbstractCC::C)
.Case("objc_method", AbstractCC::ObjCMethod)
.Case("witness_method", AbstractCC::WitnessMethod)
.Default(Nothing);
if (!Attributes.cc) {
diagnose(nameLoc, diag::cc_attribute_unknown_cc_name, name);
Attributes.clearAttribute(attr);
}
}
return false;
}
}
return false;
}
/// \brief This is the internal implementation of \c parseDeclAttributeList,
/// which we expect to be inlined to handle the common case of an absent
/// attribute list.
///
/// \verbatim
/// attribute-list:
/// /*empty*/
/// attribute-list-clause attribute-list
/// attribute-list-clause:
/// '@' attribute
/// '@' attribute ','? attribute-list-clause
/// \endverbatim
bool Parser::parseDeclAttributeListPresent(DeclAttributes &Attributes) {
Attributes.AtLoc = Tok.getLoc();
do {
if (parseToken(tok::at_sign, diag::expected_in_attribute_list) ||
parseDeclAttribute(Attributes))
return true;
// Attribute lists allow, but don't require, separating commas.
} while (Tok.is(tok::at_sign) || consumeIf(tok::comma));
return false;
}
/// \brief This is the internal implementation of \c parseTypeAttributeList,
/// which we expect to be inlined to handle the common case of an absent
/// attribute list.
///
/// \verbatim
/// attribute-list:
/// /*empty*/
/// attribute-list-clause attribute-list
/// attribute-list-clause:
/// '@' attribute
/// '@' attribute ','? attribute-list-clause
/// \endverbatim
bool Parser::parseTypeAttributeListPresent(TypeAttributes &Attributes) {
Attributes.AtLoc = Tok.getLoc();
do {
if (parseToken(tok::at_sign, diag::expected_in_attribute_list) ||
parseTypeAttribute(Attributes))
return true;
// Attribute lists don't require separating commas.
} while (Tok.is(tok::at_sign) || consumeIf(tok::comma));
return false;
}
static bool isStartOfOperatorDecl(const Token &Tok, const Token &Tok2) {
return Tok.isContextualKeyword("operator")
&& (Tok2.isContextualKeyword("prefix")
|| Tok2.isContextualKeyword("postfix")
|| Tok2.isContextualKeyword("infix"));
}
static bool isStartOfModifiedDecl(const Token &Tok, const Token &Tok2,
bool &IsMutating) {
if (Tok.is(tok::kw_static)) {
IsMutating = false;
// Declarations beginning with 'static' are always modified decls.
return true;
}
if (Tok.is(tok::kw_class)) {
IsMutating = false;
// By looking at 'Tok' only, we don't know yet if it is a class function or
// property, or a class decl.
} else if (Tok.isContextualKeyword("mutating"))
IsMutating = true;
else
return false;
return
(Tok2.is(tok::kw_func) || Tok2.is(tok::kw_let) || Tok2.is(tok::kw_var) ||
Tok2.is(tok::kw_init) || Tok2.is(tok::kw_destructor) ||
Tok2.is(tok::kw_deinit) ||
Tok2.is(tok::kw_subscript) || Tok2.is(tok::kw_struct) ||
Tok2.is(tok::kw_enum) || Tok2.is(tok::kw_class) ||
Tok2.is(tok::kw_protocol) || Tok2.is(tok::kw_typealias));
}
/// isStartOfDecl - Return true if this is the start of a decl or decl-import.
bool Parser::isStartOfDecl(const Token &Tok, const Token &Tok2) {
switch (Tok.getKind()) {
case tok::at_sign:
case tok::kw_static:
case tok::kw_extension:
case tok::kw_let:
case tok::kw_var:
case tok::kw_typealias:
case tok::kw_enum:
case tok::kw_case:
case tok::kw_struct:
case tok::kw_class:
case tok::kw_import:
case tok::kw_subscript:
case tok::kw_init:
case tok::kw_deinit:
case tok::kw_destructor:
case tok::kw_func:
case tok::pound_if:
return true;
case tok::kw_protocol:
return !Tok2.isAnyOperator() || !Tok2.getText().equals("<");
default:
if (isStartOfOperatorDecl(Tok, Tok2)) return true;
bool isMutating = false;
return isStartOfModifiedDecl(Tok, Tok2, isMutating);
}
}
void Parser::consumeDecl(ParserPosition BeginParserPosition,
ParseDeclOptions Flags,
bool IsTopLevel) {
backtrackToPosition(BeginParserPosition);
SourceLoc BeginLoc = Tok.getLoc();
// Consume tokens up to code completion token.
while (Tok.isNot(tok::code_complete))
consumeToken();
// Consume the code completion token, if there is one.
consumeIf(tok::code_complete);
SourceLoc EndLoc = Tok.getLoc();
State->delayDecl(PersistentParserState::DelayedDeclKind::Decl, Flags.toRaw(),
CurDeclContext, { BeginLoc, EndLoc },
BeginParserPosition.PreviousLoc);
if (IsTopLevel) {
// Skip the rest of the file to prevent the parser from constructing the
// AST for it. Forward references are not allowed at the top level.
skipUntil(tok::eof);
}
}
void Parser::setLocalDiscriminator(ValueDecl *D) {
// If we're not in a local context, this is unnecessary.
if (!CurLocalContext || !D->getDeclContext()->isLocalContext())
return;
Identifier name = D->getName();
unsigned discriminator = CurLocalContext->claimNextNamedDiscriminator(name);
D->setLocalDiscriminator(discriminator);
}
/// \brief Parse a single syntactic declaration and return a list of decl
/// ASTs. This can return multiple results for var decls that bind to multiple
/// values, structs that define a struct decl and a constructor, etc.
///
/// \verbatim
/// decl:
/// decl-typealias
/// decl-extension
/// decl-let
/// decl-var
/// decl-class
/// decl-func
/// decl-enum
/// decl-struct
/// decl-import
/// decl-operator
/// \endverbatim
ParserStatus Parser::parseDecl(SmallVectorImpl<Decl*> &Entries,
ParseDeclOptions Flags) {
ParserPosition BeginParserPosition;
if (isCodeCompletionFirstPass())
BeginParserPosition = getParserPosition();
// Note that we're parsing a declaration.
StructureMarkerRAII ParsingDecl(*this, Tok.getLoc(),
StructureMarkerKind::Declaration);
DeclAttributes Attributes;
if (Tok.hasComment()) {
Attributes.CommentRange = Tok.getCommentRange();
Attributes.setAttr(AK_raw_doc_comment, SourceLoc());
}
parseDeclAttributeList(Attributes);
// If we see the 'static', 'class' or 'mutating' followed by a declaration
// keyword, parse it now.
SourceLoc StaticLoc, MutatingLoc;
bool UnhandledStatic = false, UnhandledMutating = false;
StaticSpellingKind StaticSpelling = StaticSpellingKind::None;
bool IsMutating = false;
if (isStartOfModifiedDecl(Tok, peekToken(), IsMutating)) {
if (IsMutating) {
MutatingLoc = consumeToken(tok::identifier);
UnhandledMutating = true;
} else {
assert(Tok.is(tok::kw_static) || Tok.is(tok::kw_class));
if (Tok.is(tok::kw_static))
StaticSpelling = StaticSpellingKind::KeywordStatic;
else
StaticSpelling = StaticSpellingKind::KeywordClass;
StaticLoc = consumeToken();
UnhandledStatic = true;
}
}
ParserResult<Decl> DeclResult;
ParserStatus Status;
switch (Tok.getKind()) {
case tok::kw_import:
DeclResult = parseDeclImport(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_extension:
DeclResult = parseDeclExtension(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_let:
case tok::kw_var:
Status = parseDeclVar(Flags, Attributes, Entries, StaticLoc,
StaticSpelling);
UnhandledStatic = false;
break;
case tok::kw_typealias:
DeclResult = parseDeclTypeAlias(!(Flags & PD_DisallowTypeAliasDef),
Flags.contains(PD_InProtocol), Attributes);
Status = DeclResult;
break;
case tok::kw_enum:
DeclResult = parseDeclEnum(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_case:
Status = parseDeclEnumCase(Flags, Attributes, Entries);
break;
case tok::kw_struct:
DeclResult = parseDeclStruct(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_class:
DeclResult = parseDeclClass(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_init:
DeclResult = parseDeclConstructor(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_deinit:
case tok::kw_destructor:
DeclResult = parseDeclDestructor(Flags, Attributes);
Status = DeclResult;
break;
case tok::kw_protocol:
DeclResult = parseDeclProtocol(Flags, Attributes);
Status = DeclResult;
break;
case tok::pound_if:
DeclResult = parseDeclIfConfig(Entries, Flags);
Status = DeclResult;
break;
case tok::kw_func:
DeclResult = parseDeclFunc(StaticLoc, StaticSpelling, MutatingLoc, Flags,
Attributes);
Status = DeclResult;
UnhandledStatic = false;
UnhandledMutating = false;
break;
case tok::kw_subscript:
if (StaticLoc.isValid()) {
diagnose(Tok, diag::subscript_static, StaticSpelling)
.fixItRemove(SourceRange(StaticLoc));
UnhandledStatic = false;
}
Status = parseDeclSubscript(Flags, Attributes, Entries);
break;
case tok::identifier:
if (isStartOfOperatorDecl(Tok, peekToken())) {
DeclResult = parseDeclOperator(Flags.contains(PD_AllowTopLevel),
Attributes);
break;
}
SWIFT_FALLTHROUGH;
default:
diagnose(Tok, diag::expected_decl);
DeclResult = makeParserErrorResult<Decl>();
Status = DeclResult;
break;
}
if (Status.hasCodeCompletion() && isCodeCompletionFirstPass() &&
!CurDeclContext->isModuleScopeContext()) {
// Only consume non-toplevel decls.
consumeDecl(BeginParserPosition, Flags, /*IsTopLevel=*/false);
// Pretend that there was no error.
return makeParserSuccess();
}
if (DeclResult.isNonNull())
Entries.push_back(DeclResult.get());
if (Status.isSuccess() && Tok.is(tok::semi))
Entries.back()->TrailingSemiLoc = consumeToken(tok::semi);
if (Status.isSuccess()) {
// If we parsed 'class' or 'static', but didn't handle it above, complain
// about it.
if (UnhandledStatic)
diagnose(Entries.back()->getLoc(), diag::decl_not_static,
StaticSpelling)
.fixItRemove(SourceRange(StaticLoc));
// If we parsed 'mutating' but didn't handle it above, complain about it.
if (UnhandledMutating)
diagnose(Entries.back()->getLoc(), diag::mutating_invalid)
.fixItRemove(SourceRange(MutatingLoc));
}
return Status;
}
void Parser::parseDeclDelayed() {
auto DelayedState = State->takeDelayedDeclState();
assert(DelayedState.get() && "should have delayed state");
auto BeginParserPosition = getParserPosition(DelayedState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(DelayedState->BodyEnd);
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to the beginning of the decl.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, DelayedState->takeScope());
ContextChange CC(*this, DelayedState->ParentContext);
SmallVector<Decl *, 2> Entries;
parseDecl(Entries, ParseDeclOptions(DelayedState->Flags));
}
/// \brief Parse an 'import' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-import:
/// 'import' attribute-list import-kind? import-path
/// import-kind:
/// ('type'|'typealias')
/// 'struct'
/// 'class'
/// 'enum'
/// 'protocol'
/// 'var'
/// 'func'
/// import-path:
/// any-identifier ('.' any-identifier)*
/// \endverbatim
ParserResult<ImportDecl> Parser::parseDeclImport(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc ImportLoc = consumeToken(tok::kw_import);
bool Exported = Attributes.isExported();
Attributes.clearAttribute(AK_exported);
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::import_attributes);
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ImportLoc, diag::decl_inner_scope);
return nullptr;
}
ImportKind Kind = ImportKind::Module;
SourceLoc KindLoc;
if (Tok.isKeyword()) {
switch (Tok.getKind()) {
case tok::kw_type:
case tok::kw_typealias:
Kind = ImportKind::Type;
break;
case tok::kw_struct:
Kind = ImportKind::Struct;
break;
case tok::kw_class:
Kind = ImportKind::Class;
break;
case tok::kw_enum:
Kind = ImportKind::Enum;
break;
case tok::kw_protocol:
Kind = ImportKind::Protocol;
break;
case tok::kw_var:
case tok::kw_let:
Kind = ImportKind::Var;
break;
case tok::kw_func:
Kind = ImportKind::Func;
break;
default:
diagnose(Tok, diag::expected_identifier_in_decl, "import");
return nullptr;
}
KindLoc = consumeToken();
}
SmallVector<std::pair<Identifier, SourceLoc>, 8> ImportPath;
do {
ImportPath.push_back(std::make_pair(Identifier(), Tok.getLoc()));
if (parseAnyIdentifier(ImportPath.back().first,
diag::expected_identifier_in_decl, "import"))
return nullptr;
} while (consumeIf(tok::period));
if (Kind != ImportKind::Module && ImportPath.size() == 1) {
diagnose(ImportPath.front().second, diag::decl_expected_module_name);
return nullptr;
}
return makeParserResult(ImportDecl::create(
Context, CurDeclContext, ImportLoc, Kind, KindLoc, Exported, ImportPath));
}
/// \brief Parse an inheritance clause.
///
/// \verbatim
/// inheritance:
/// ':' type-identifier (',' type-identifier)*
/// \endverbatim
ParserStatus Parser::parseInheritance(SmallVectorImpl<TypeLoc> &Inherited) {
consumeToken(tok::colon);
ParserStatus Status;
do {
// Parse the inherited type (which must be a protocol).
ParserResult<TypeRepr> Ty = parseTypeIdentifier();
Status |= Ty;
// Record the type.
if (Ty.isNonNull())
Inherited.push_back(Ty.get());
// Check for a ',', which indicates that there are more protocols coming.
} while (consumeIf(tok::comma));
return Status;
}
enum class TokenProperty {
None,
StartsWithLess,
};
static ParserStatus parseIdentifierDeclName(Parser &P, Identifier &Result,
SourceLoc &Loc, tok ResyncT1,
tok ResyncT2, tok ResyncT3,
tok ResyncT4,
TokenProperty ResyncP1,
const Diagnostic &D) {
switch (P.Tok.getKind()) {
case tok::identifier:
Result = P.Context.getIdentifier(P.Tok.getText());
Loc = P.Tok.getLoc();
P.consumeToken();
return makeParserSuccess();
default:
P.checkForInputIncomplete();
if (!D.is(diag::invalid_diagnostic))
P.diagnose(P.Tok, D);
if (P.Tok.isKeyword() &&
(P.peekToken().is(ResyncT1) || P.peekToken().is(ResyncT2) ||
P.peekToken().is(ResyncT3) || P.peekToken().is(ResyncT4) ||
(ResyncP1 != TokenProperty::None &&
P.startsWithLess(P.peekToken())))) {
llvm::SmallString<32> Name(P.Tok.getText());
// Append an invalid character so that nothing can resolve to this name.
Name += "#";
Result = P.Context.getIdentifier(Name.str());
Loc = P.Tok.getLoc();
P.consumeToken();
// Return success because we recovered.
return makeParserSuccess();
}
return makeParserError();
}
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, Diag<DiagArgTypes...> ID,
ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2,
tok::unknown, tok::unknown,
TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, tok ResyncT3,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3,
tok::unknown, TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, tok ResyncT3, tok ResyncT4,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, ResyncT3,
ResyncT4, TokenProperty::None,
Diagnostic(ID, Args...));
}
template <typename... DiagArgTypes, typename... ArgTypes>
static ParserStatus
parseIdentifierDeclName(Parser &P, Identifier &Result, SourceLoc &L,
tok ResyncT1, tok ResyncT2, TokenProperty ResyncP1,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseIdentifierDeclName(P, Result, L, ResyncT1, ResyncT2, tok::unknown,
tok::unknown,
ResyncP1, Diagnostic(ID, Args...));
}
/// \brief Parse an 'extension' declaration.
///
/// \verbatim
/// extension:
/// 'extension' attribute-list type-identifier inheritance? '{' decl* '}'
/// \endverbatim
ParserResult<ExtensionDecl>
Parser::parseDeclExtension(ParseDeclOptions Flags, DeclAttributes &Attributes) {
SourceLoc ExtensionLoc = consumeToken(tok::kw_extension);
ParserResult<TypeRepr> Ty = parseTypeIdentifierWithRecovery(
diag::expected_type, diag::expected_ident_type_in_extension);
if (Ty.hasCodeCompletion())
return makeParserCodeCompletionResult<ExtensionDecl>();
if (Ty.isNull() && Tok.isKeyword()) {
// We failed to parse the type, but we could try recovering by parsing a
// keyword if the lookahead token looks promising.
Identifier ExtensionName;
SourceLoc NameLoc;
if (parseIdentifierDeclName(*this, ExtensionName, NameLoc, tok::colon,
tok::l_brace,
diag::invalid_diagnostic).isError())
return nullptr;
Ty = makeParserErrorResult(
new (Context) SimpleIdentTypeRepr(NameLoc, ExtensionName));
}
if (Ty.isNull())
return nullptr;
ParserStatus Status;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (Tok.is(tok::colon))
Status |= parseInheritance(Inherited);
ExtensionDecl *ED
= new (Context) ExtensionDecl(ExtensionLoc, Ty.get(),
Context.AllocateCopy(Inherited),
CurDeclContext);
if (Attributes.shouldSaveInAST())
ED->getMutableAttrs() = Attributes;
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_extension)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, ED);
Scope S(this, ScopeKind::Extension);
ParserStatus BodyStatus =
parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true,
/*AllowSepAfterLast=*/false, diag::expected_rbrace_extension,
[&]() -> ParserStatus {
ParseDeclOptions Options(PD_HasContainerType |
PD_DisallowStoredInstanceVar |
PD_InExtension);
return parseDecl(MemberDecls, Options);
});
// Don't propagate the code completion bit from members: we can not help
// code completion inside a member decl, and our callers can not do
// anything about it either. But propagate the error bit.
if (BodyStatus.isError())
Status.setIsParseError();
}
if (MemberDecls.empty())
ED->setMembers({}, { LBLoc, RBLoc });
else
ED->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
if (!(Flags & PD_AllowTopLevel)) {
diagnose(ExtensionLoc, diag::decl_inner_scope);
Status.setIsParseError();
// Tell the type checker not to touch this extension.
ED->setInvalid();
}
return makeParserResult(Status, ED);
}
ParserResult<IfConfigDecl> Parser::parseDeclIfConfig(
SmallVectorImpl<Decl*> &Entries,
ParseDeclOptions Flags) {
SourceLoc IfLoc = consumeToken(tok::pound_if);
SourceLoc ElseLoc;
SourceLoc EndLoc;
StructureMarkerRAII ParsingDecl(*this, Tok.getLoc(),
StructureMarkerKind::IfConfig);
// Evaluate the condition.
ParserResult<Expr> Configuration = parseExprSequence(diag::expected_expr,
true,
true);
if (Configuration.isNull()) {
return makeParserError();
}
bool ifBlockIsActive = evaluateConfigConditionExpr(Configuration.get());
SmallVector<Decl*, 8> IfDecls;
SmallVector<Decl*, 8> ElseDecls;
ParserStatus Status;
while(Tok.isNot(tok::pound_else) && Tok.isNot(tok::pound_endif)) {
Status = parseDecl(IfDecls, Flags);
if (Status.isError()) {
diagnose(Tok, diag::expected_close_to_config_stmt);
skipUntilConfigBlockClose();
}
}
if (Tok.is(tok::pound_else)) {
ElseLoc = consumeToken(tok::pound_else);
while(Tok.isNot(tok::pound_endif)) {
Status = parseDecl(ElseDecls, Flags);
if (Status.isError()) {
skipUntilConfigBlockClose();
}
}
}
if (Tok.is(tok::pound_endif)) {
EndLoc = consumeToken(tok::pound_endif);
} else {
diagnose(Tok, diag::expected_close_to_config_stmt);
skipUntilConfigBlockClose();
}
IfConfigDecl *ICD = new (Context) IfConfigDecl(CurDeclContext,
IfLoc,
ElseLoc,
EndLoc,
Configuration.getPtrOrNull());
if (ifBlockIsActive) {
ICD->setActiveMembers(Context.AllocateCopy(IfDecls));
} else {
ICD->setInactiveMembers(Context.AllocateCopy(IfDecls));
ICD->setInactiveSourceRange(SourceRange(IfLoc, ElseLoc.isValid() ?
ElseLoc :
EndLoc));
}
if (ElseLoc.isValid()) {
if (ifBlockIsActive) {
ICD->setInactiveMembers(Context.AllocateCopy(ElseDecls));
ICD->setInactiveSourceRange(SourceRange(IfLoc, EndLoc));
} else {
ICD->setActiveMembers(Context.AllocateCopy(ElseDecls));
}
}
// Copy the active members into the entries list.
for (auto activeMember : ICD->getActiveMembers()) {
Entries.push_back(activeMember);
}
return makeParserResult(ICD);
}
/// \brief Parse a typealias decl.
///
/// \verbatim
/// decl-typealias:
/// 'typealias' identifier inheritance? '=' type
/// \endverbatim
ParserResult<TypeDecl> Parser::parseDeclTypeAlias(bool WantDefinition,
bool isAssociatedType,
DeclAttributes &Attributes) {
SourceLoc TypeAliasLoc = consumeToken(tok::kw_typealias);
Identifier Id;
SourceLoc IdLoc;
ParserStatus Status;
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::typealias_attributes);
Status |=
parseIdentifierDeclName(*this, Id, IdLoc, tok::colon, tok::equal,
diag::expected_identifier_in_decl, "typealias");
if (Status.isError())
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 2> Inherited;
if (isAssociatedType && Tok.is(tok::colon))
Status |= parseInheritance(Inherited);
ParserResult<TypeRepr> UnderlyingTy;
if (WantDefinition || Tok.is(tok::equal)) {
if (parseToken(tok::equal, diag::expected_equal_in_typealias)) {
Status.setIsParseError();
return Status;
}
UnderlyingTy = parseType(diag::expected_type_in_typealias);
Status |= UnderlyingTy;
if (UnderlyingTy.isNull())
return Status;
}
// If this is an associated type, build the AST for it.
if (isAssociatedType) {
auto assocType = new (Context) AssociatedTypeDecl(
CurDeclContext,
TypeAliasLoc, Id, IdLoc,
UnderlyingTy.getPtrOrNull());
if (Attributes.shouldSaveInAST())
assocType->getMutableAttrs() = Attributes;
if (!Inherited.empty())
assocType->setInherited(Context.AllocateCopy(Inherited));
addToScope(assocType);
return makeParserResult(Status, assocType);
}
// Otherwise, build a typealias.
TypeAliasDecl *TAD =
new (Context) TypeAliasDecl(TypeAliasLoc, Id, IdLoc,
UnderlyingTy.getPtrOrNull(),
CurDeclContext);
if (Attributes.shouldSaveInAST())
TAD->getMutableAttrs() = Attributes;
addToScope(TAD);
return makeParserResult(Status, TAD);
}
/// createGetterFunc - This function creates the getter function (with no body)
/// for a computed property or subscript.
static FuncDecl *createAccessorFunc(SourceLoc DeclLoc,
TypedPattern *NamePattern,
TypeLoc ElementTy,
Pattern *Indices, SourceLoc StaticLoc,
Parser::ParseDeclOptions Flags,
AccessorKind Kind, Parser *P) {
// First task, set up the value argument pattern. This is the NamePattern
// (for setters) followed by the index list (for subscripts). For
// non-subscript getters, this degenerates down to "()".
//
// We put the 'value' argument before the subscript index list as a
// micro-optimization for Objective-C thunk generation.
Pattern *ValueArg;
{
SmallVector<TuplePatternElt, 2> ValueArgElements;
SourceLoc StartLoc, EndLoc;
if (NamePattern) {
ValueArgElements.push_back(TuplePatternElt(NamePattern));
StartLoc = NamePattern->getStartLoc();
EndLoc = NamePattern->getEndLoc();
}
if (Indices) {
Indices = Indices->clone(P->Context, /*Implicit=*/true);
if (auto *PP = dyn_cast<ParenPattern>(Indices)) {
ValueArgElements.push_back(TuplePatternElt(PP->getSubPattern()));
} else {
auto *TP = cast<TuplePattern>(Indices);
ValueArgElements.append(TP->getFields().begin(), TP->getFields().end());
}
StartLoc = Indices->getStartLoc();
EndLoc = Indices->getEndLoc();
}
if (NamePattern && Indices) {
StartLoc = Indices->getStartLoc();
EndLoc = NamePattern->getEndLoc();
}
ValueArg = TuplePattern::create(P->Context, StartLoc,
ValueArgElements, EndLoc);
if (NamePattern && !NamePattern->isImplicit())
ValueArg->setImplicit();
}
// Create the parameter list(s) for the getter.
SmallVector<Pattern *, 4> Params;
// Add the implicit 'self' to Params, if needed.
if (Flags & Parser::PD_HasContainerType)
Params.push_back(buildImplicitSelfParameter(DeclLoc, P->CurDeclContext));
// Add the "(value)" and subscript indices parameter clause.
Params.push_back(ValueArg);
TypeLoc ReturnType;
if (Kind == AccessorKind::IsGetter) // Getters return something
ReturnType = ElementTy.clone(P->Context);
else // Nothing else does.
ReturnType = TypeLoc::withoutLoc(TupleType::getEmpty(P->Context));
// Start the function.
auto *D = FuncDecl::create(P->Context, StaticLoc, StaticSpellingKind::None,
/* FIXME*/DeclLoc, Identifier(),
DeclLoc, /*GenericParams=*/nullptr, Type(), Params,
Params, ReturnType, P->CurDeclContext);
// non-static set/willSet/didSet default to @mutating.
if (!D->isStatic() && Kind != AccessorKind::IsGetter)
D->setMutating();
return D;
}
/// Parse a "(value)" specifier for "set" or "willSet" if present. Create a
/// pattern to represent the spelled argument or the implicit one if it is
/// missing.
static TypedPattern *
parseOptionalAccessorArgument(SourceLoc SpecifierLoc, TypeLoc ElementTy,
Parser &P, AccessorKind Kind) {
// Only 'set' and 'willSet' have a (value) parameter. 'get' and 'didSet'
// always take a () parameter.
if (Kind != AccessorKind::IsSetter && Kind != AccessorKind::IsWillSet)
return nullptr;
SourceLoc StartLoc, NameLoc, EndLoc;
Identifier Name;
ASTContext &Context = P.Context;
// If the SpecifierLoc is invalid, then the caller just wants us to synthesize
// the default, not actually try to parse something.
if (SpecifierLoc.isValid() && P.Tok.is(tok::l_paren)) {
StartLoc = P.consumeToken(tok::l_paren);
if (P.Tok.isNot(tok::identifier)) {
P.diagnose(P.Tok, diag::expected_accessor_name,
Kind != AccessorKind::IsSetter);
P.skipUntil(tok::r_paren, tok::l_brace);
if (P.Tok.is(tok::r_paren))
P.consumeToken();
} else {
// We have a name.
Name = P.Context.getIdentifier(P.Tok.getText());
NameLoc = P.consumeToken();
// Look for the closing ')'.
P.parseMatchingToken(tok::r_paren, EndLoc,
Kind == AccessorKind::IsSetter
? diag::expected_rparen_set_name
: diag::expected_rparen_willSet_name, StartLoc);
}
}
bool IsNameImplicit = EndLoc.isInvalid();
// Add the parameter. If no name was specified, the name defaults to
// 'value'.
if (IsNameImplicit) {
Name = P.Context.getIdentifier("value");
NameLoc = SpecifierLoc;
StartLoc = SourceLoc();
}
VarDecl *Value = new (Context) VarDecl(/*static*/false, /*IsLet*/true,
NameLoc, Name,
Type(), P.CurDeclContext);
if (IsNameImplicit)
Value->setImplicit();
auto *namedPat = new (Context) NamedPattern(Value, IsNameImplicit);
return new (Context) TypedPattern(namedPat, ElementTy.clone(Context),
/*Implicit*/true);
}
static unsigned skipUntilMatchingRBrace(Parser &P) {
unsigned OpenBraces = 1;
while (OpenBraces != 0 && P.Tok.isNot(tok::eof)) {
if (P.consumeIf(tok::l_brace)) {
OpenBraces++;
continue;
}
if (OpenBraces == 1 && P.Tok.is(tok::r_brace))
break;
if (P.consumeIf(tok::r_brace)) {
OpenBraces--;
continue;
}
P.consumeToken();
}
return OpenBraces;
}
static unsigned skipBracedBlock(Parser &P) {
P.consumeToken(tok::l_brace);
unsigned OpenBraces = skipUntilMatchingRBrace(P);
if (P.consumeIf(tok::r_brace))
OpenBraces--;
return OpenBraces;
}
void Parser::consumeGetSetBody(AbstractFunctionDecl *AFD,
SourceLoc LBLoc) {
SourceLoc SavedPreviousLoc = PreviousLoc;
SourceRange BodyRange;
BodyRange.Start = Tok.getLoc();
// Skip until the next '}' at the correct nesting level.
unsigned OpenBraces = skipUntilMatchingRBrace(*this);
if (OpenBraces != 1) {
// FIXME: implement some error recovery?
}
BodyRange.End = PreviousLoc;
if (DelayedParseCB->shouldDelayFunctionBodyParsing(
*this, AFD, AFD->getAttrs(), BodyRange)) {
State->delayAccessorBodyParsing(AFD, BodyRange, SavedPreviousLoc, LBLoc);
AFD->setBodyDelayed(BodyRange);
} else {
AFD->setBodySkipped(BodyRange);
}
}
/// \brief Parse a get-set clause, optionally containing a getter, setter,
/// willSet, and/or didSet clauses. 'Indices' is a paren or tuple pattern,
/// specifying the index list for a subscript.
bool Parser::parseGetSetImpl(ParseDeclOptions Flags, Pattern *Indices,
TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set,
FuncDecl *&WillSet, FuncDecl *&DidSet,
SourceLoc &LastValidLoc, SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
Get = Set = WillSet = DidSet = nullptr;
// Properties in protocols use sufficiently limited syntax that we have a
// special parsing loop for them. SIL mode uses the same syntax.
if (Flags.contains(PD_InProtocol) || isInSILMode()) {
while (Tok.isNot(tok::r_brace)) {
if (Tok.is(tok::eof))
return true;
// Parse any leading attributes.
DeclAttributes Attributes;
parseDeclAttributeList(Attributes);
AccessorKind Kind;
FuncDecl **TheDeclPtr;
if (Tok.isContextualKeyword("get")) {
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
} else if (Tok.isContextualKeyword("set")) {
Kind = AccessorKind::IsSetter;
TheDeclPtr = &Set;
} else {
diagnose(Tok, diag::expected_getset_in_protocol);
return true;
}
FuncDecl *&TheDecl = *TheDeclPtr;
SourceLoc Loc = consumeToken();
// Have we already parsed this kind of clause?
if (TheDecl) {
diagnose(Loc, diag::duplicate_property_accessor, (unsigned)Kind);
diagnose(TheDecl->getLoc(), diag::previous_accessor, (unsigned)Kind);
TheDecl = nullptr; // Forget the previous decl.
}
// "set" could have a name associated with it. This isn't valid in a
// protocol, but we parse and then reject it, for better QoI.
if (Tok.is(tok::l_paren))
diagnose(Loc, diag::protocol_setter_name);
auto *ValueNamePattern
= parseOptionalAccessorArgument(Loc, ElementTy, *this, Kind);
// Set up a function declaration.
TheDecl = createAccessorFunc(Loc, ValueNamePattern, ElementTy, Indices,
StaticLoc, Flags, Kind, this);
if (Attributes.shouldSaveInAST())
TheDecl->getMutableAttrs() = Attributes;
Decls.push_back(TheDecl);
}
return false;
}
// Otherwise, we have a normal var or subscript declaration, parse the full
// complement of specifiers, along with their bodies.
// If the body is completely empty, reject it. This is at best a getter with
// an implicit fallthrough off the end.
if (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::computed_property_no_accessors);
return true;
}
bool IsFirstAccessor = true;
while (Tok.isNot(tok::r_brace)) {
if (Tok.is(tok::eof))
return true;
// If there are any attributes, we are going to parse them. Because these
// attributes might not be appertaining to the accessor, but to the first
// declaration inside the implicit getter, we need to save the parser
// position and restore it later.
ParserPosition BeginParserPosition;
if (Tok.is(tok::at_sign))
BeginParserPosition = getParserPosition();
// Parse any leading attributes.
DeclAttributes Attributes;
parseDeclAttributeList(Attributes);
bool isImplicitGet = false;
AccessorKind Kind;
FuncDecl **TheDeclPtr;
if (Tok.isContextualKeyword("get")) {
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
} else if (Tok.isContextualKeyword("set")) {
Kind = AccessorKind::IsSetter;
TheDeclPtr = &Set;
} else if (Tok.isContextualKeyword("willSet")) {
Kind = AccessorKind::IsWillSet;
TheDeclPtr = &WillSet;
} else if (Tok.isContextualKeyword("didSet")) {
Kind = AccessorKind::IsDidSet;
TheDeclPtr = &DidSet;
} else {
// This is an implicit getter. Might be not valid in this position,
// though. Anyway, go back to the beginning of the getter code to ensure
// that the diagnostics point to correct tokens.
if (BeginParserPosition.isValid()) {
backtrackToPosition(BeginParserPosition);
Attributes = DeclAttributes();
}
if (!IsFirstAccessor) {
// Can not have an implicit getter after other accessor.
diagnose(Tok, diag::expected_accessor_kw);
skipUntil(tok::r_brace);
// Don't signal an error since we recovered.
return false;
}
Kind = AccessorKind::IsGetter;
TheDeclPtr = &Get;
isImplicitGet = true;
}
IsFirstAccessor = false;
// Consume the contextual keyword, if present.
SourceLoc Loc = isImplicitGet ? Tok.getLoc() : consumeToken();
FuncDecl *&TheDecl = *TheDeclPtr;
// Have we already parsed this kind of clause?
if (TheDecl) {
diagnose(Loc, diag::duplicate_property_accessor, (unsigned)Kind);
diagnose(TheDecl->getLoc(), diag::previous_accessor, (unsigned)Kind);
// Forget the previous decl.
Decls.erase(std::find(Decls.begin(), Decls.end(), TheDecl));
TheDecl = nullptr;
}
// 'set' and 'willSet' can have an optional name.
//
// set-name ::= '(' identifier ')'
auto *ValueNamePattern =
parseOptionalAccessorArgument(Loc, ElementTy, *this, Kind);
SourceLoc LBLoc = Tok.getLoc();
// FIXME: Use outer '{' loc if isImplicitGet.
if (!isImplicitGet && !consumeIf(tok::l_brace)) {
diagnose(Tok, diag::expected_lbrace_accessor, (unsigned)Kind);
return true;
}
// Set up a function declaration.
TheDecl = createAccessorFunc(Loc, ValueNamePattern, ElementTy, Indices,
StaticLoc, Flags, Kind, this);
if (Attributes.shouldSaveInAST())
TheDecl->getMutableAttrs() = Attributes;
// Parse the body.
Scope S(this, ScopeKind::FunctionBody);
addPatternVariablesToScope(TheDecl->getBodyParamPatterns());
// Establish the new context.
ParseFunctionBody CC(*this, TheDecl);
// Parse the body.
SmallVector<ASTNode, 16> Entries;
if (!isDelayedParsingEnabled())
parseBraceItems(Entries);
else
consumeGetSetBody(TheDecl, LBLoc);
SourceLoc RBLoc = Tok.getLoc();
if (!isImplicitGet &&
parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc))
RBLoc = PreviousLoc;
if (!isDelayedParsingEnabled()) {
BraceStmt *Body = BraceStmt::create(Context, LBLoc, Entries, RBLoc);
TheDecl->setBody(Body);
}
Decls.push_back(TheDecl);
LastValidLoc = RBLoc;
}
return false;
}
bool Parser::parseGetSet(ParseDeclOptions Flags, Pattern *Indices,
TypeLoc ElementTy, FuncDecl *&Get, FuncDecl *&Set,
FuncDecl *&WillSet, FuncDecl *&DidSet,
SourceLoc &LBLoc, SourceLoc &RBLoc,
SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
LBLoc = consumeToken(tok::l_brace);
SourceLoc LastValidLoc = LBLoc;
bool Invalid = parseGetSetImpl(Flags, Indices, ElementTy, Get, Set, WillSet,
DidSet, LastValidLoc, StaticLoc, Decls);
// Parse the final '}'.
if (Invalid)
skipUntil(tok::r_brace);
if (parseMatchingToken(tok::r_brace, RBLoc, diag::expected_rbrace_in_getset,
LBLoc)) {
Invalid = true;
RBLoc = LastValidLoc;
}
return Invalid;
}
void Parser::parseAccessorBodyDelayed(AbstractFunctionDecl *AFD) {
assert(!AFD->getBody() && "function should not have a parsed body");
assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed &&
"function body should be delayed");
auto AccessorParserState = State->takeAccessorBodyState(AFD);
assert(AccessorParserState.get() && "should have a valid state");
auto BeginParserPosition = getParserPosition(AccessorParserState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc());
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to the first token of the accessor body.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, AccessorParserState->takeScope());
ParseFunctionBody CC(*this, AFD);
SmallVector<ASTNode, 16> Entries;
parseBraceItems(Entries);
BraceStmt *Body =
BraceStmt::create(Context, AccessorParserState->LBLoc, Entries,
Tok.getLoc());
AFD->setBody(Body);
}
/// \brief Parse the brace-enclosed getter and setter for a variable.
VarDecl *Parser::parseDeclVarGetSet(Pattern *pattern, ParseDeclOptions Flags,
SourceLoc StaticLoc,
SmallVectorImpl<Decl *> &Decls) {
bool Invalid = false;
// The grammar syntactically requires a simple identifier for the variable
// name. Complain if that isn't what we got.
VarDecl *PrimaryVar = nullptr;
{
Pattern *PrimaryPattern = pattern;
if (TypedPattern *Typed = dyn_cast<TypedPattern>(PrimaryPattern))
PrimaryPattern = Typed->getSubPattern();
if (NamedPattern *Named = dyn_cast<NamedPattern>(PrimaryPattern)) {
PrimaryVar = Named->getDecl();
}
}
if (!PrimaryVar) {
diagnose(pattern->getLoc(), diag::getset_nontrivial_pattern);
Invalid = true;
} else {
setLocalDiscriminator(PrimaryVar);
// Reject getters and setters for 'val's, but keep parsing them, for better
// recovery.
if (PrimaryVar->isLet()) {
diagnose(Tok, diag::let_cannot_be_computed_property);
Invalid = true;
}
}
// The grammar syntactically requires a type annotation. Complain if
// our pattern does not have one.
TypeLoc TyLoc;
if (TypedPattern *TP = dyn_cast<TypedPattern>(pattern)) {
TyLoc = TP->getTypeLoc();
} else {
if (PrimaryVar)
diagnose(pattern->getLoc(), diag::getset_missing_type);
TyLoc = TypeLoc::withoutLoc(ErrorType::get(Context));
}
// Parse getter and setter.
FuncDecl *Get = nullptr, *Set = nullptr;
FuncDecl *WillSet = nullptr, *DidSet = nullptr;
SourceLoc LBLoc;
SourceLoc RBLoc;
if (parseGetSet(Flags, /*Indices=*/0, TyLoc, Get, Set, WillSet, DidSet,
LBLoc, RBLoc, StaticLoc, Decls))
Invalid = true;
// If we have an invalid case, bail out now.
if (!PrimaryVar)
return nullptr;
// If this is a willSet/didSet observing property, record this and we're done.
if (WillSet || DidSet) {
if (Get || Set) {
diagnose(Get ? Get->getLoc() : Set->getLoc(),
diag::observingproperty_with_getset, bool(DidSet), bool(Set));
if (Get) {
Get->setType(ErrorType::get(Context));
Get->setInvalid(); Get = nullptr;
}
if (Set) {
Set->setType(ErrorType::get(Context));
Set->setInvalid(); Set = nullptr;
}
}
PrimaryVar->makeObserving(LBLoc, WillSet, DidSet, RBLoc);
// Observing properties will have getters and setters synthesized by sema.
// Create their prototypes now.
Get = createAccessorFunc(SourceLoc(), /*ArgPattern*/nullptr, TyLoc, nullptr,
StaticLoc, Flags, AccessorKind::IsGetter, this);
Get->setImplicit();
Decls.push_back(Get);
auto ArgPattern = parseOptionalAccessorArgument(SourceLoc(), TyLoc, *this,
AccessorKind::IsSetter);
Set = createAccessorFunc(SourceLoc(), ArgPattern, TyLoc, nullptr,
StaticLoc, Flags, AccessorKind::IsSetter, this);
Set->setImplicit();
Decls.push_back(Set);
PrimaryVar->setObservingAccessors(Get, Set);
return PrimaryVar;
}
// If this decl is invalid, mark any parsed accessors as invalid to avoid
// tripping up later invariants.
if (Invalid) {
if (Get) {
Get->setType(ErrorType::get(Context));
Get->setInvalid();
}
if (Set) {
Set->setType(ErrorType::get(Context));
Set->setInvalid();
}
}
// Otherwise, this must be a get/set property. The set is optional, but get
// is not.
if (!Invalid && Set && !Get) {
diagnose(Set->getLoc(), diag::var_set_without_get);
}
// Turn this into a computed variable.
if (Set || Get) {
PrimaryVar->makeComputed(LBLoc, Get, Set, RBLoc);
return PrimaryVar;
}
return nullptr;
}
/// \brief Parse a 'var' or 'val' declaration, doing no token skipping on error.
ParserStatus Parser::parseDeclVar(ParseDeclOptions Flags,
DeclAttributes &Attributes,
SmallVectorImpl<Decl *> &Decls,
SourceLoc StaticLoc,
StaticSpellingKind StaticSpelling) {
assert(StaticLoc.isInvalid() || StaticSpelling != StaticSpellingKind::None);
if (StaticLoc.isValid()) {
if (!Flags.contains(PD_HasContainerType)) {
diagnose(Tok, diag::static_var_decl_global_scope, StaticSpelling)
.fixItRemoveChars(StaticLoc, Tok.getLoc());
StaticLoc = SourceLoc();
} else if (Flags.contains(PD_InProtocol) || Flags.contains(PD_InClass)) {
if (StaticSpelling == StaticSpellingKind::KeywordStatic)
diagnose(Tok, diag::static_var_in_class)
.fixItReplace(StaticLoc, "class");
} else if (!Flags.contains(PD_InExtension)) {
if (StaticSpelling == StaticSpellingKind::KeywordClass)
diagnose(Tok, diag::class_var_in_struct)
.fixItReplace(StaticLoc, "static");
}
}
bool isLet = Tok.is(tok::kw_let);
assert(Tok.getKind() == tok::kw_let || Tok.getKind() == tok::kw_var);
SourceLoc VarLoc = consumeToken();
struct AllBindings {
Parser &P;
struct BindingInfo {
PatternBindingDecl *Binding;
TopLevelCodeDecl *TopLevelCode;
};
SmallVector<BindingInfo, 4> All;
AllBindings(Parser &P) : P(P) {}
~AllBindings() {
for (auto &info : All) {
if (!info.TopLevelCode) continue;
auto binding = info.Binding;
auto range = binding->getSourceRange();
info.TopLevelCode->setBody(BraceStmt::create(P.Context, range.Start,
ASTNode(binding), range.End));
}
}
} Bindings(*this);
bool HasGetSet = false;
bool hasStorage = true;
ParserStatus Status;
do {
ParserResult<Pattern> pattern;
{ // In our recursive parse, remember that we're in a var/let pattern.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, isLet ? IVOLP_InLet : IVOLP_InVar);
pattern = parsePattern(isLet);
}
if (pattern.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (pattern.isNull())
return makeParserError();
// If this is a var in the top-level of script/repl source file, wrap the
// PatternBindingDecl in a TopLevelCodeDecl, since it represents executable
// code. The VarDecl and any accessor decls (for computed properties) go in
// CurDeclContext.
//
// Note that, once we've built the TopLevelCodeDecl, we have to be
// really cautious not to escape this scope in a way that doesn't
// add it as a binding.
TopLevelCodeDecl *topLevelDecl = nullptr;
Optional<ContextChange> topLevelParser;
if (allowTopLevelCode() && CurDeclContext->isModuleScopeContext()) {
// The body of topLevelDecl will get set later.
topLevelDecl = new (Context) TopLevelCodeDecl(CurDeclContext);
topLevelParser.emplace(*this, topLevelDecl,
&State->getTopLevelContext());
}
// In the normal case, just add PatternBindingDecls to our DeclContext.
auto PBD = new (Context) PatternBindingDecl(
StaticLoc, StaticSpelling, VarLoc, pattern.get(), nullptr, hasStorage,
/*conditional*/ false, CurDeclContext);
Bindings.All.push_back({PBD, topLevelDecl});
// Parse an initializer if present.
if (Tok.is(tok::equal)) {
// Record the variables that we're trying to initialize.
SmallVector<VarDecl *, 4> Vars;
Vars.append(CurVars.second.begin(), CurVars.second.end());
pattern.get()->collectVariables(Vars);
using RestoreVarsRAII = llvm::SaveAndRestore<decltype(CurVars)>;
RestoreVarsRAII RestoreCurVars(CurVars, {CurDeclContext, Vars});
// Enter an initializer context if we're not in a local context.
PatternBindingInitializer *initContext = nullptr;
Optional<ParseFunctionBody> initParser;
if (!CurDeclContext->isLocalContext()) {
initContext = Context.createPatternBindingContext(PBD);
initParser.emplace(*this, initContext);
}
SourceLoc EqualLoc = consumeToken(tok::equal);
ParserResult<Expr> init = parseExpr(diag::expected_init_value);
// Leave the initializer context.
if (initContext) {
if (!initParser->hasClosures())
Context.destroyPatternBindingContext(initContext);
initParser.reset();
}
assert(!initParser.hasValue());
if (init.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (init.isNull())
return makeParserError();
if (Flags & PD_DisallowInit) {
diagnose(EqualLoc, diag::disallowed_init);
Status.setIsParseError();
init = nullptr;
}
PBD->setInit(init.getPtrOrNull(), false);
}
if (topLevelDecl) {
Decls.push_back(topLevelDecl);
} else {
Decls.push_back(PBD);
}
// We need to revert CurDeclContext before parsing accessors.
if (topLevelDecl)
topLevelParser.getValue().pop();
// If we syntactically match the second decl-var production, with a
// var-get-set clause, parse the var-get-set clause.
if (Tok.is(tok::l_brace)) {
if (auto *boundVar =
parseDeclVarGetSet(pattern.get(), Flags, StaticLoc, Decls)) {
hasStorage = boundVar->hasStorage();
if (PBD->getInit() && !boundVar->hasStorage()) {
diagnose(pattern.get()->getLoc(), diag::getset_init)
.highlight(PBD->getInit()->getSourceRange());
PBD->setInit(nullptr, false);
}
}
if (isLet)
return makeParserError();
HasGetSet = true;
}
PBD->setHasStorage(hasStorage);
// Add all parsed vardecls to this scope.
addPatternVariablesToScope(pattern.get());
// Configure them properly with attributes and 'static'.
pattern.get()->forEachVariable([&](VarDecl *VD) {
VD->setStatic(StaticLoc.isValid());
VD->setParentPattern(PBD);
if (Attributes.shouldSaveInAST())
VD->getMutableAttrs() = Attributes;
Decls.push_back(VD);
});
// Propagate back types for simple patterns, like "var A, B : T".
if (TypedPattern *TP = dyn_cast<TypedPattern>(PBD->getPattern())) {
if (isa<NamedPattern>(TP->getSubPattern()) && !PBD->hasInit()) {
for (unsigned i = Bindings.All.size() - 1; i != 0; --i) {
PatternBindingDecl *PrevPBD = Bindings.All[i-1].Binding;
Pattern *PrevPat = PrevPBD->getPattern();
if (!isa<NamedPattern>(PrevPat) || PrevPBD->hasInit())
break;
if (HasGetSet) {
// FIXME -- offer a fixit to explicitly specify the type
diagnose(PrevPat->getLoc(), diag::getset_cannot_be_implied);
Status.setIsParseError();
}
TypedPattern *NewTP = new (Context) TypedPattern(PrevPat,
TP->getTypeLoc());
PrevPBD->setPattern(NewTP);
}
}
}
} while (consumeIf(tok::comma));
if (HasGetSet) {
if (Bindings.All.size() > 1) {
diagnose(VarLoc, diag::disallowed_var_multiple_getset);
Status.setIsParseError();
}
} else if (!StaticLoc.isValid() && (Flags & PD_DisallowStoredInstanceVar)) {
diagnose(VarLoc, diag::disallowed_stored_var_decl);
Status.setIsParseError();
return Status;
}
return Status;
}
void Parser::consumeAbstractFunctionBody(AbstractFunctionDecl *AFD,
const DeclAttributes &Attrs) {
auto BeginParserPosition = getParserPosition();
SourceRange BodyRange;
BodyRange.Start = Tok.getLoc();
// Consume the '{', and find the matching '}'.
unsigned OpenBraces = skipBracedBlock(*this);
if (OpenBraces != 0 && Tok.isNot(tok::code_complete)) {
assert(Tok.is(tok::eof));
// We hit EOF, and not every brace has a pair. Recover by searching
// for the next decl except variable decls and cutting off before
// that point.
backtrackToPosition(BeginParserPosition);
consumeToken(tok::l_brace);
while (Tok.is(tok::kw_var) || Tok.is(tok::kw_let) ||
(Tok.isNot(tok::eof) && !isStartOfDecl(Tok, peekToken()))) {
consumeToken();
}
}
BodyRange.End = PreviousLoc;
if (DelayedParseCB->shouldDelayFunctionBodyParsing(*this, AFD, Attrs,
BodyRange)) {
State->delayFunctionBodyParsing(AFD, BodyRange,
BeginParserPosition.PreviousLoc);
AFD->setBodyDelayed(BodyRange);
} else {
AFD->setBodySkipped(BodyRange);
}
}
/// \brief Parse a 'func' declaration, returning null on error. The caller
/// handles this case and does recovery as appropriate.
///
/// \verbatim
/// decl-func:
/// ('static' | 'class')? 'mutating'? 'func' attribute-list
/// any-identifier generic-params? func-signature stmt-brace?
/// \endverbatim
///
/// \note The caller of this method must ensure that the next token is 'func'.
ParserResult<FuncDecl>
Parser::parseDeclFunc(SourceLoc StaticLoc, StaticSpellingKind StaticSpelling,
SourceLoc MutatingLoc,
ParseDeclOptions Flags, DeclAttributes &Attributes) {
assert((StaticLoc.isInvalid() || MutatingLoc.isInvalid()) &&
"Parser should only parse one of 'mutating' or 'class'/'static'");
assert(StaticLoc.isInvalid() || StaticSpelling != StaticSpellingKind::None);
bool HasContainerType = Flags.contains(PD_HasContainerType);
if (StaticLoc.isValid()) {
if (!HasContainerType) {
// Reject static functions at global scope.
diagnose(Tok, diag::static_func_decl_global_scope, StaticSpelling)
.fixItRemoveChars(StaticLoc, Tok.getLoc());
StaticLoc = SourceLoc();
} else if (Flags.contains(PD_InProtocol) || Flags.contains(PD_InClass)) {
if (StaticSpelling == StaticSpellingKind::KeywordStatic)
diagnose(Tok, diag::static_func_in_class)
.fixItReplace(StaticLoc, "class");
} else if (!Flags.contains(PD_InExtension)) {
if (StaticSpelling == StaticSpellingKind::KeywordClass)
diagnose(Tok, diag::class_func_in_struct)
.fixItReplace(StaticLoc, "static");
}
}
// If the 'mutating' modifier was applied to the func, model it as if the
// @mutating attribute were specified.
if (MutatingLoc.isValid()) {
if (!Attributes.AtLoc.isValid())
Attributes.AtLoc = MutatingLoc;
Attributes.setAttr(AK_mutating, MutatingLoc);
}
if (StaticLoc.isValid() && Attributes.hasMutating()) {
diagnose(Tok, diag::static_functions_not_mutating);
Attributes.clearAttribute(AK_mutating);
}
SourceLoc FuncLoc = consumeToken(tok::kw_func);
// Forgive the lexer
if (Tok.is(tok::amp_prefix)) {
Tok.setKind(tok::oper_prefix);
}
Identifier Name;
SourceLoc NameLoc = Tok.getLoc();
if (!(Flags & PD_AllowTopLevel) &&
!(Flags & PD_InProtocol) &&
Tok.isAnyOperator()) {
// FIXME: Recovery here is awful.
diagnose(Tok, diag::func_decl_nonglobal_operator);
return nullptr;
}
if (parseAnyIdentifier(Name, diag::expected_identifier_in_decl, "function")) {
ParserStatus NameStatus =
parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren, tok::arrow,
tok::l_brace, diag::invalid_diagnostic);
if (NameStatus.isError())
return nullptr;
}
// Parse the generic-params, if present.
Optional<Scope> GenericsScope;
GenericsScope.emplace(this, ScopeKind::Generics);
GenericParamList *GenericParams;
// If the name is an operator token that ends in '<' and the following token
// is an identifier, split the '<' off as a separate token. This allows things
// like 'func ==<T>(x:T, y:T) {}' to parse as '==' with generic type variable
// '<T>' as expected.
if (Name.str().size() > 1 && Name.str().back() == '<'
&& Tok.is(tok::identifier)) {
Name = Context.getIdentifier(Name.str().slice(0, Name.str().size() - 1));
SourceLoc LAngleLoc = NameLoc.getAdvancedLoc(Name.str().size());
GenericParams = parseGenericParameters(LAngleLoc);
} else {
GenericParams = maybeParseGenericParams();
}
SmallVector<Pattern*, 8> ArgParams;
SmallVector<Pattern*, 8> BodyParams;
// If we're within a container, add an implicit first pattern to match the
// container type as an element named 'self'.
//
// This turns an instance function "(int)->int" on FooTy into
// "(inout self: FooTy)->(int)->int", and a static function
// "(int)->int" on FooTy into "(inout self: FooTy.Type)->(int)->int".
// Note that we can't actually compute the type here until Sema.
if (HasContainerType) {
Pattern *SelfPattern = buildImplicitSelfParameter(NameLoc, CurDeclContext);
ArgParams.push_back(SelfPattern);
BodyParams.push_back(SelfPattern);
}
DefaultArgumentInfo DefaultArgs;
TypeRepr *FuncRetTy = nullptr;
bool HasSelectorStyleSignature;
ParserStatus SignatureStatus =
parseFunctionSignature(Name, ArgParams, BodyParams, DefaultArgs,
FuncRetTy, HasSelectorStyleSignature);
if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) {
// Trigger delayed parsing, no need to continue.
return SignatureStatus;
}
// Enter the arguments for the function into a new function-body scope. We
// need this even if there is no function body to detect argument name
// duplication.
FuncDecl *FD;
{
Scope S(this, ScopeKind::FunctionBody);
// Create the decl for the func and add it to the parent scope.
FD = FuncDecl::create(Context, StaticLoc, StaticSpelling,
FuncLoc, Name, NameLoc, GenericParams,
Type(), ArgParams, BodyParams, FuncRetTy,
CurDeclContext);
if (HasSelectorStyleSignature)
FD->setHasSelectorStyleSignature();
// Pass the function signature to code completion.
if (SignatureStatus.hasCodeCompletion())
CodeCompletion->setDelayedParsedDecl(FD);
DefaultArgs.setFunctionContext(FD);
addPatternVariablesToScope(FD->getBodyParamPatterns());
setLocalDiscriminator(FD);
// Establish the new context.
ParseFunctionBody CC(*this, FD);
// Check to see if we have a "{" to start a brace statement.
if (Tok.is(tok::l_brace)) {
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::func_decl_without_brace);
if (Body.isNull()) {
// FIXME: Should do some sort of error recovery here?
} else if (SignatureStatus.hasCodeCompletion()) {
// Code completion was inside the signature, don't attach the body.
FD->setBodySkipped(Body.get()->getSourceRange());
} else {
FD->setBody(Body.get());
}
} else {
consumeAbstractFunctionBody(FD, Attributes);
}
} else {
checkForInputIncomplete();
}
}
// Exit the scope introduced for the generic parameters.
GenericsScope.reset();
if (Attributes.shouldSaveInAST())
FD->getMutableAttrs() = Attributes;
addToScope(FD);
return makeParserResult(FD);
}
bool Parser::parseAbstractFunctionBodyDelayed(AbstractFunctionDecl *AFD) {
assert(!AFD->getBody() && "function should not have a parsed body");
assert(AFD->getBodyKind() == AbstractFunctionDecl::BodyKind::Unparsed &&
"function body should be delayed");
auto FunctionParserState = State->takeFunctionBodyState(AFD);
assert(FunctionParserState.get() && "should have a valid state");
auto BeginParserPosition = getParserPosition(FunctionParserState->BodyPos);
auto EndLexerState = L->getStateForEndOfTokenLoc(AFD->getEndLoc());
// ParserPositionRAII needs a primed parser to restore to.
if (Tok.is(tok::NUM_TOKENS))
consumeToken();
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
// Create a lexer that can not go past the end state.
Lexer LocalLex(*L, BeginParserPosition.LS, EndLexerState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Rewind to '{' of the function body.
restoreParserPosition(BeginParserPosition);
// Re-enter the lexical scope.
Scope S(this, FunctionParserState->takeScope());
ParseFunctionBody CC(*this, AFD);
ParserResult<BraceStmt> Body =
parseBraceItemList(diag::func_decl_without_brace);
if (Body.isNull()) {
// FIXME: Should do some sort of error recovery here?
return true;
} else {
AFD->setBody(Body.get());
}
return false;
}
/// \brief Parse a 'enum' declaration, returning true (and doing no token
/// skipping) on error.
///
/// \verbatim
/// decl-enum:
/// 'enum' attribute-list identifier generic-params? inheritance?
/// '{' decl-enum-body '}'
/// decl-enum-body:
/// decl*
/// \endverbatim
ParserResult<EnumDecl> Parser::parseDeclEnum(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc EnumLoc = consumeToken(tok::kw_enum);
Identifier EnumName;
SourceLoc EnumNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, EnumName, EnumNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "enum");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
EnumDecl *UD = new (Context) EnumDecl(EnumLoc, EnumName, EnumNameLoc,
{ }, GenericParams, CurDeclContext);
setLocalDiscriminator(UD);
if (Attributes.shouldSaveInAST())
UD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the enum.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, UD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
UD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_enum)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
ContextChange CC(*this, UD);
Scope S(this, ScopeKind::ClassBody);
ParseDeclOptions Options(PD_HasContainerType | PD_AllowEnumElement |
PD_DisallowStoredInstanceVar);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_enum,
Options))
Status.setIsParseError();
}
if (MemberDecls.empty())
UD->setMembers({}, { LBLoc, RBLoc });
else
UD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(UD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(EnumLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, UD);
}
/// \brief Parse a 'case' of an enum.
///
/// \verbatim
/// enum-case:
/// identifier type-tuple?
/// decl-enum-element:
/// 'case' attribute-list enum-case (',' enum-case)*
/// \endverbatim
ParserStatus Parser::parseDeclEnumCase(ParseDeclOptions Flags,
DeclAttributes &Attributes,
llvm::SmallVectorImpl<Decl *> &Decls) {
ParserStatus Status;
SourceLoc CaseLoc = consumeToken(tok::kw_case);
// Parse comma-separated enum elements.
SmallVector<EnumElementDecl*, 4> Elements;
SourceLoc CommaLoc;
for (;;) {
Identifier Name;
SourceLoc NameLoc;
const bool NameIsNotIdentifier = Tok.isNot(tok::identifier);
if (parseIdentifierDeclName(*this, Name, NameLoc, tok::l_paren,
tok::kw_case, tok::colon, tok::r_brace,
diag::invalid_diagnostic).isError()) {
NameLoc = CaseLoc;
// Handle the likely case someone typed 'case X, case Y'.
if (Tok.is(tok::kw_case) && CommaLoc.isValid()) {
diagnose(Tok, diag::expected_identifier_after_case_comma);
return Status;
}
// For recovery, see if the user typed something resembling a switch
// "case" label.
parseMatchingPattern();
}
if (NameIsNotIdentifier) {
if (consumeIf(tok::colon)) {
diagnose(CaseLoc, diag::case_outside_of_switch, "case");
Status.setIsParseError();
return Status;
}
if (CommaLoc.isValid()) {
diagnose(Tok, diag::expected_identifier_after_case_comma);
return Status;
}
diagnose(CaseLoc, diag::expected_identifier_in_decl, "enum case");
}
// See if there's a following argument type.
ParserResult<TypeRepr> ArgType;
if (Tok.isFollowingLParen()) {
ArgType = parseTypeTupleBody();
if (ArgType.hasCodeCompletion()) {
Status.setHasCodeCompletion();
return Status;
}
if (ArgType.isNull()) {
Status.setIsParseError();
return Status;
}
}
// See if there's a raw value expression.
SourceLoc EqualsLoc;
ParserResult<Expr> RawValueExpr;
LiteralExpr *LiteralRawValueExpr = nullptr;
if (Tok.is(tok::equal)) {
EqualsLoc = consumeToken();
{
CodeCompletionCallbacks::InEnumElementRawValueRAII
InEnumElementRawValue(CodeCompletion);
RawValueExpr = parseExpr(diag::expected_expr_enum_case_raw_value);
}
if (RawValueExpr.hasCodeCompletion()) {
Status.setHasCodeCompletion();
return Status;
}
if (RawValueExpr.isNull()) {
Status.setIsParseError();
return Status;
}
// The raw value must be syntactically a simple literal.
LiteralRawValueExpr = dyn_cast<LiteralExpr>(RawValueExpr.getPtrOrNull());
if (!LiteralRawValueExpr
|| isa<InterpolatedStringLiteralExpr>(LiteralRawValueExpr)) {
diagnose(RawValueExpr.getPtrOrNull()->getLoc(),
diag::nonliteral_enum_case_raw_value);
LiteralRawValueExpr = nullptr;
}
}
// For recovery, again make sure the the user didn't try to spell a switch
// case label:
// 'case Identifier:' or
// 'case Identifier where ...:'
if (Tok.is(tok::colon) || Tok.is(tok::kw_where)) {
diagnose(CaseLoc, diag::case_outside_of_switch, "case");
skipUntilDeclRBrace();
Status.setIsParseError();
return Status;
}
// Create the element.
auto *result = new (Context) EnumElementDecl(NameLoc, Name,
ArgType.getPtrOrNull(),
EqualsLoc,
LiteralRawValueExpr,
CurDeclContext);
result->getMutableAttrs() = Attributes;
Elements.push_back(result);
// Continue through the comma-separated list.
if (!Tok.is(tok::comma))
break;
CommaLoc = consumeToken(tok::comma);
}
if (!(Flags & PD_AllowEnumElement)) {
diagnose(CaseLoc, diag::disallowed_enum_element);
// Don't add the EnumElementDecls unless the current context
// is allowed to have EnumElementDecls.
Status.setIsParseError();
return Status;
}
// Create and insert the EnumCaseDecl containing all the elements.
auto TheCase = EnumCaseDecl::create(CaseLoc, Elements, CurDeclContext);
Decls.push_back(TheCase);
// Insert the element decls.
std::copy(Elements.begin(), Elements.end(), std::back_inserter(Decls));
return Status;
}
/// \brief Parse the members in a struct/class/protocol definition.
///
/// \verbatim
/// decl*
/// \endverbatim
bool Parser::parseNominalDeclMembers(SmallVectorImpl<Decl *> &memberDecls,
SourceLoc LBLoc, SourceLoc &RBLoc,
Diag<> ErrorDiag, ParseDeclOptions flags) {
bool previousHadSemi = true;
parseList(tok::r_brace, LBLoc, RBLoc, tok::semi, /*OptionalSep=*/true,
/*AllowSepAfterLast=*/false, ErrorDiag, [&]() -> ParserStatus {
// If the previous declaration didn't have a semicolon and this new
// declaration doesn't start a line, complain.
if (!previousHadSemi && !Tok.isAtStartOfLine()) {
SourceLoc endOfPrevious = getEndOfPreviousLoc();
diagnose(endOfPrevious, diag::declaration_same_line_without_semi)
.fixItInsert(endOfPrevious, ";");
// FIXME: Add semicolon to the AST?
}
previousHadSemi = false;
if (parseDecl(memberDecls, flags).isError())
return makeParserError();
// Check whether the previous declaration had a semicolon after it.
if (!memberDecls.empty() && memberDecls.back()->TrailingSemiLoc.isValid())
previousHadSemi = true;
return makeParserSuccess();
});
// If we found the closing brace, then the caller should not care if there
// were errors while parsing inner decls, because we recovered.
return !RBLoc.isValid();
}
/// \brief Parse a 'struct' declaration, returning true (and doing no token
/// skipping) on error.
///
/// \verbatim
/// decl-struct:
/// 'struct' attribute-list identifier generic-params? inheritance?
/// '{' decl-struct-body '}
/// decl-struct-body:
/// decl*
/// \endverbatim
ParserResult<StructDecl> Parser::parseDeclStruct(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc StructLoc = consumeToken(tok::kw_struct);
Identifier StructName;
SourceLoc StructNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, StructName, StructNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "struct");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
StructDecl *SD = new (Context) StructDecl(StructLoc, StructName,
StructNameLoc,
{ },
GenericParams,
CurDeclContext);
setLocalDiscriminator(SD);
if (Attributes.shouldSaveInAST())
SD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the struct.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, SD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
SD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_struct)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, SD);
Scope S(this, ScopeKind::StructBody);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_struct,
PD_HasContainerType))
Status.setIsParseError();
}
if (MemberDecls.empty())
SD->setMembers({}, { LBLoc, RBLoc });
else
SD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(SD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(StructLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, SD);
}
/// \brief Parse a 'class' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-class:
/// 'class' attribute-list identifier generic-params? inheritance?
/// '{' decl-class-body '}
/// decl-class-body:
/// decl*
/// \endverbatim
ParserResult<ClassDecl> Parser::parseDeclClass(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
SourceLoc ClassLoc = consumeToken(tok::kw_class);
Identifier ClassName;
SourceLoc ClassNameLoc;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, ClassName, ClassNameLoc, tok::colon,
tok::l_brace, TokenProperty::StartsWithLess,
diag::expected_identifier_in_decl, "class");
if (Status.isError())
return nullptr;
// Parse the generic-params, if present.
GenericParamList *GenericParams = nullptr;
{
Scope S(this, ScopeKind::Generics);
GenericParams = maybeParseGenericParams();
}
// Create the class.
ClassDecl *CD = new (Context) ClassDecl(ClassLoc, ClassName, ClassNameLoc,
{ }, GenericParams, CurDeclContext);
setLocalDiscriminator(CD);
// Attach attributes.
if (Attributes.shouldSaveInAST())
CD->getMutableAttrs() = Attributes;
// Parse optional inheritance clause within the context of the class.
if (Tok.is(tok::colon)) {
ContextChange CC(*this, CD);
SmallVector<TypeLoc, 2> Inherited;
Status |= parseInheritance(Inherited);
CD->setInherited(Context.AllocateCopy(Inherited));
}
SmallVector<Decl*, 8> MemberDecls;
SourceLoc LBLoc, RBLoc;
if (parseToken(tok::l_brace, LBLoc, diag::expected_lbrace_class)) {
LBLoc = Tok.getLoc();
RBLoc = LBLoc;
Status.setIsParseError();
} else {
// Parse the body.
ContextChange CC(*this, CD);
Scope S(this, ScopeKind::ClassBody);
ParseDeclOptions Options(PD_HasContainerType | PD_AllowDestructor |
PD_InClass);
if (parseNominalDeclMembers(MemberDecls, LBLoc, RBLoc,
diag::expected_rbrace_class,
Options))
Status.setIsParseError();
}
CD->setMembers(Context.AllocateCopy(MemberDecls), { LBLoc, RBLoc });
addToScope(CD);
if (Flags & PD_DisallowNominalTypes) {
diagnose(ClassLoc, diag::disallowed_type);
Status.setIsParseError();
}
return makeParserResult(Status, CD);
}
/// \brief Parse a 'protocol' declaration, doing no token skipping on error.
///
/// \verbatim
/// decl-protocol:
/// protocol-head '{' protocol-member* '}'
///
/// protocol-head:
/// 'protocol' attribute-list identifier inheritance?
///
/// protocol-member:
/// decl-func
/// decl-var-simple
/// decl-typealias
/// \endverbatim
ParserResult<ProtocolDecl> Parser::
parseDeclProtocol(ParseDeclOptions Flags, DeclAttributes &Attributes) {
SourceLoc ProtocolLoc = consumeToken(tok::kw_protocol);
SourceLoc NameLoc;
Identifier ProtocolName;
ParserStatus Status;
Status |=
parseIdentifierDeclName(*this, ProtocolName, NameLoc, tok::colon,
tok::l_brace, diag::expected_identifier_in_decl,
"protocol");
if (Status.isError())
return nullptr;
// Parse optional inheritance clause.
SmallVector<TypeLoc, 4> InheritedProtocols;
if (Tok.is(tok::colon))
Status |= parseInheritance(InheritedProtocols);
ProtocolDecl *Proto
= new (Context) ProtocolDecl(CurDeclContext, ProtocolLoc, NameLoc,
ProtocolName,
Context.AllocateCopy(InheritedProtocols));
// No need to setLocalDiscriminator: protocols can't appear in local contexts.
if (Attributes.shouldSaveInAST())
Proto->getMutableAttrs() = Attributes;
ContextChange CC(*this, Proto);
Scope ProtocolBodyScope(this, ScopeKind::ProtocolBody);
// Parse the body.
{
// The list of protocol elements.
SmallVector<Decl*, 8> Members;
SourceLoc LBraceLoc;
SourceLoc RBraceLoc;
if (parseToken(tok::l_brace, LBraceLoc, diag::expected_lbrace_protocol)) {
LBraceLoc = Tok.getLoc();
RBraceLoc = LBraceLoc;
Status.setIsParseError();
} else {
// Parse the members.
ParseDeclOptions Options(PD_HasContainerType |
PD_DisallowNominalTypes |
PD_DisallowInit | PD_DisallowTypeAliasDef |
PD_InProtocol);
if (parseNominalDeclMembers(Members, LBraceLoc, RBraceLoc,
diag::expected_rbrace_protocol,
Options))
Status.setIsParseError();
}
// Install the protocol elements.
Proto->setMembers(Context.AllocateCopy(Members), { LBraceLoc, RBraceLoc });
}
if (Flags & PD_DisallowNominalTypes) {
diagnose(ProtocolLoc, diag::disallowed_type);
Status.setIsParseError();
} else if (!(Flags & PD_AllowTopLevel)) {
diagnose(ProtocolLoc, diag::decl_inner_scope);
Status.setIsParseError();
}
return makeParserResult(Status, Proto);
}
/// \brief Parse a 'subscript' declaration.
///
/// \verbatim
/// decl-subscript:
/// subscript-head get-set
/// subscript-head
/// 'subscript' attribute-list pattern-tuple '->' type
/// \endverbatim
ParserStatus Parser::parseDeclSubscript(ParseDeclOptions Flags,
DeclAttributes &Attributes,
SmallVectorImpl<Decl *> &Decls) {
ParserStatus Status;
SourceLoc SubscriptLoc = consumeToken(tok::kw_subscript);
// pattern-tuple
if (Tok.isNot(tok::l_paren)) {
diagnose(Tok, diag::expected_lparen_subscript);
return makeParserError();
}
ParserResult<Pattern> Indices =
parsePatternTuple(/*IsLet*/true, /*IsArgList*/true,/*DefaultArgs=*/nullptr);
if (Indices.isNull() || Indices.hasCodeCompletion())
return Indices;
// '->'
if (!Tok.is(tok::arrow)) {
diagnose(Tok, diag::expected_arrow_subscript);
return makeParserError();
}
SourceLoc ArrowLoc = consumeToken();
// type
ParserResult<TypeRepr> ElementTy =
parseTypeAnnotation(diag::expected_type_subscript);
if (ElementTy.isNull() || ElementTy.hasCodeCompletion())
return ElementTy;
// Build an AST for the subscript declaration.
auto *Subscript = new (Context) SubscriptDecl(Context.Id_subscript,
SubscriptLoc, Indices.get(),
ArrowLoc, ElementTy.get(),
CurDeclContext);
if (Attributes.shouldSaveInAST())
Subscript->getMutableAttrs() = Attributes;
Decls.push_back(Subscript);
// '{'
// Parse getter and setter.
SourceRange DefRange = SourceRange();
FuncDecl *Get = nullptr;
FuncDecl *Set = nullptr;
if (Tok.isNot(tok::l_brace)) {
// Subscript declarations must always have at least a getter, so they need
// to be followed by a {.
diagnose(Tok, diag::expected_lbrace_subscript);
Status.setIsParseError();
} else {
FuncDecl *WillSet = nullptr, *DidSet = nullptr;
SourceLoc LBLoc;
SourceLoc RBLoc;
if (parseGetSet(Flags, Indices.get(), ElementTy.get(),
Get, Set, WillSet, DidSet, LBLoc, RBLoc,
/*StaticLoc=*/SourceLoc(), Decls))
Status.setIsParseError();
if (Status.isSuccess()) {
if (!Get)
diagnose(SubscriptLoc, diag::subscript_without_get);
if (WillSet || DidSet)
diagnose(DidSet ? DidSet->getLoc() : WillSet->getLoc(),
diag::observingproperty_in_subscript, bool(DidSet));
}
DefRange = SourceRange(LBLoc, RBLoc);
}
bool Invalid = false;
// Reject 'subscript' functions outside of type decls
if (!(Flags & PD_HasContainerType)) {
diagnose(SubscriptLoc, diag::subscript_decl_wrong_scope);
Invalid = true;
}
// If we had no getter (e.g., because we're in SIL mode or because the
// program isn't valid) create a stub here.
if (!Get) {
Get = createAccessorFunc(SubscriptLoc, /*ArgPattern*/ nullptr,
ElementTy.get(), Indices.get(),
/*StaticLoc*/ SourceLoc(), Flags,
AccessorKind::IsGetter, this);
Get->setInvalid();
Get->setType(ErrorType::get(Context));
Decls.push_back(Get);
}
Subscript->setAccessors(DefRange, Get, Set);
if (Invalid) {
Subscript->setType(ErrorType::get(Context));
Subscript->setInvalid();
}
// No need to setLocalDiscriminator because subscripts cannot
// validly appear outside of type decls.
return Status;
}
ParserResult<ConstructorDecl>
Parser::parseDeclConstructor(ParseDeclOptions Flags,
DeclAttributes &Attributes) {
assert(Tok.is(tok::kw_init));
SourceLoc ConstructorLoc = consumeToken();
const bool ConstructorsNotAllowed = !(Flags & PD_HasContainerType);
// Reject constructors outside of types.
if (ConstructorsNotAllowed) {
diagnose(Tok, diag::initializer_decl_wrong_scope);
}
// Parse the generic-params, if present.
Scope S(this, ScopeKind::Generics);
GenericParamList *GenericParams = maybeParseGenericParams();
// Parse the parameters.
// FIXME: handle code completion in Arguments.
DefaultArgumentInfo DefaultArgs;
Pattern *ArgPattern;
Pattern *BodyPattern;
bool HasSelectorStyleSignature;
ParserStatus SignatureStatus =
parseConstructorArguments(ArgPattern, BodyPattern, DefaultArgs,
HasSelectorStyleSignature);
if (SignatureStatus.hasCodeCompletion() && !CodeCompletion) {
// Trigger delayed parsing, no need to continue.
return SignatureStatus;
}
VarDecl *SelfDecl;
auto *SelfPattern = buildImplicitSelfParameter(ConstructorLoc,
CurDeclContext, &SelfDecl);
Scope S2(this, ScopeKind::ConstructorBody);
auto *CD = new (Context) ConstructorDecl(Context.Id_init, ConstructorLoc,
SelfPattern, ArgPattern,
SelfPattern, BodyPattern,
GenericParams, CurDeclContext);
// No need to setLocalDiscriminator.
if (HasSelectorStyleSignature)
CD->setHasSelectorStyleSignature();
DefaultArgs.setFunctionContext(CD);
// Pass the function signature to code completion.
if (SignatureStatus.hasCodeCompletion())
CodeCompletion->setDelayedParsedDecl(CD);
if (ConstructorsNotAllowed || SignatureStatus.isError()) {
// Tell the type checker not to touch this constructor.
CD->setInvalid();
}
addPatternVariablesToScope(ArrayRef<Pattern*>{SelfPattern, BodyPattern} );
// '{'
if (Tok.is(tok::l_brace)) {
// Parse the body.
ParseFunctionBody CC(*this, CD);
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body = parseBraceItemList(diag::invalid_diagnostic);
if (!Body.isNull())
CD->setBody(Body.get());
} else {
consumeAbstractFunctionBody(CD, Attributes);
}
}
if (Attributes.shouldSaveInAST())
CD->getMutableAttrs() = Attributes;
return makeParserResult(CD);
}
ParserResult<DestructorDecl> Parser::
parseDeclDestructor(ParseDeclOptions Flags, DeclAttributes &Attributes) {
assert(Tok.is(tok::kw_deinit) || Tok.is(tok::kw_destructor));
bool hasDestructorKeyword = Tok.is(tok::kw_destructor);
SourceLoc DestructorLoc = consumeToken();
// Parse extraneous parentheses.
SourceRange ParenRange;
if (Tok.is(tok::l_paren)) {
SourceLoc LParenLoc = consumeToken();
SourceLoc RParenLoc;
skipUntil(tok::r_paren);
if (Tok.is(tok::r_paren)) {
SourceLoc RParenLoc = consumeToken();
ParenRange = SourceRange(LParenLoc, RParenLoc);
} else {
diagnose(Tok, diag::opened_destructor_expected_rparen);
diagnose(LParenLoc, diag::opening_paren);
}
}
// If we have 'destructor', replace it (and any extraneous parentheses) with
// 'deinit'.
if (hasDestructorKeyword) {
SourceLoc StartLoc = DestructorLoc;
SourceLoc EndLoc = ParenRange.isValid()? ParenRange.End : DestructorLoc;
EndLoc = Lexer::getLocForEndOfToken(Context.SourceMgr, EndLoc);
diagnose(Tok, diag::destructor_is_deinit)
.fixItReplaceChars(StartLoc, EndLoc, "deinit");
} else if (ParenRange.isValid()) {
diagnose(ParenRange.Start, diag::destructor_params)
.fixItRemoveChars(Lexer::getLocForEndOfToken(Context.SourceMgr,
DestructorLoc),
Lexer::getLocForEndOfToken(Context.SourceMgr,
ParenRange.End));
}
// '{'
if (!Tok.is(tok::l_brace)) {
if (!Tok.is(tok::l_brace) && !isInSILMode()) {
diagnose(Tok, diag::expected_lbrace_destructor);
return nullptr;
}
}
VarDecl *SelfDecl;
auto *SelfPattern = buildImplicitSelfParameter(DestructorLoc,
CurDeclContext, &SelfDecl);
Scope S(this, ScopeKind::DestructorBody);
auto *DD = new (Context) DestructorDecl(Context.Id_deinit, DestructorLoc,
SelfPattern, CurDeclContext);
// No need to setLocalDiscriminator.
addToScope(SelfDecl);
// Parse the body.
if (Tok.is(tok::l_brace)) {
ParseFunctionBody CC(*this, DD);
if (!isDelayedParsingEnabled()) {
ParserResult<BraceStmt> Body = parseBraceItemList(diag::invalid_diagnostic);
if (!Body.isNull())
DD->setBody(Body.get());
} else {
consumeAbstractFunctionBody(DD, Attributes);
}
}
if (Attributes.shouldSaveInAST())
DD->getMutableAttrs() = Attributes;
// Reject 'destructor' functions outside of classes
if (!(Flags & PD_AllowDestructor)) {
diagnose(DestructorLoc, diag::destructor_decl_outside_class);
// Tell the type checker not to touch this destructor.
DD->setInvalid();
}
return makeParserResult(DD);
}
ParserResult<OperatorDecl> Parser::parseDeclOperator(bool AllowTopLevel,
DeclAttributes &Attributes) {
assert(Tok.isContextualKeyword("operator") &&
"no 'operator' at start of operator decl?!");
SourceLoc OperatorLoc = consumeToken(tok::identifier);
if (Attributes.hasNonVirtualAttributes())
diagnose(Attributes.AtLoc, diag::operator_attributes);
auto kind = llvm::StringSwitch<Optional<DeclKind>>(Tok.getText())
.Case("prefix", DeclKind::PrefixOperator)
.Case("postfix", DeclKind::PostfixOperator)
.Case("infix", DeclKind::InfixOperator)
.Default(Nothing);
assert(kind && "no fixity after 'operator'?!");
SourceLoc KindLoc = consumeToken(tok::identifier);
if (!Tok.isAnyOperator() && !Tok.is(tok::exclaim_postfix)) {
diagnose(Tok, diag::expected_operator_name_after_operator);
return nullptr;
}
Identifier Name = Context.getIdentifier(Tok.getText());
SourceLoc NameLoc = consumeToken();
// Postfix operator '!' is reserved.
if (*kind == DeclKind::PostfixOperator &&Name.str().equals("!")) {
diagnose(NameLoc, diag::custom_operator_postfix_exclaim);
}
if (!Tok.is(tok::l_brace)) {
diagnose(Tok, diag::expected_lbrace_after_operator);
return nullptr;
}
ParserResult<OperatorDecl> Result;
switch (*kind) {
case DeclKind::PrefixOperator:
Result = parseDeclPrefixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
case DeclKind::PostfixOperator:
Result = parseDeclPostfixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
case DeclKind::InfixOperator:
Result = parseDeclInfixOperator(OperatorLoc, KindLoc, Name, NameLoc);
break;
default:
llvm_unreachable("impossible");
}
if (Tok.is(tok::r_brace))
consumeToken();
if (!AllowTopLevel) {
diagnose(OperatorLoc, diag::operator_decl_inner_scope);
return nullptr;
}
return Result;
}
ParserResult<OperatorDecl>
Parser::parseDeclPrefixOperator(SourceLoc OperatorLoc, SourceLoc PrefixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
while (!Tok.is(tok::r_brace)) {
// Currently there are no operator attributes for prefix operators.
if (Tok.is(tok::identifier))
diagnose(Tok, diag::unknown_prefix_operator_attribute, Tok.getText());
else
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(
new (Context) PrefixOperatorDecl(CurDeclContext, OperatorLoc, PrefixLoc,
Name, NameLoc, LBraceLoc, RBraceLoc));
}
ParserResult<OperatorDecl>
Parser::parseDeclPostfixOperator(SourceLoc OperatorLoc, SourceLoc PostfixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
while (!Tok.is(tok::r_brace)) {
// Currently there are no operator attributes for postfix operators.
if (Tok.is(tok::identifier))
diagnose(Tok, diag::unknown_postfix_operator_attribute, Tok.getText());
else
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(
new (Context) PostfixOperatorDecl(CurDeclContext, OperatorLoc,
PostfixLoc, Name, NameLoc, LBraceLoc,
RBraceLoc));
}
ParserResult<OperatorDecl>
Parser::parseDeclInfixOperator(SourceLoc OperatorLoc, SourceLoc InfixLoc,
Identifier Name, SourceLoc NameLoc) {
SourceLoc LBraceLoc = consumeToken(tok::l_brace);
// Initialize InfixData with default attributes:
// precedence 100, associativity none
unsigned char precedence = 100;
Associativity associativity = Associativity::None;
SourceLoc AssociativityLoc, AssociativityValueLoc,
PrecedenceLoc, PrecedenceValueLoc;
while (!Tok.is(tok::r_brace)) {
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_operator_attribute);
skipUntilDeclRBrace();
return nullptr;
}
if (Tok.getText().equals("associativity")) {
if (AssociativityLoc.isValid()) {
diagnose(Tok, diag::operator_associativity_redeclared);
skipUntilDeclRBrace();
return nullptr;
}
AssociativityLoc = consumeToken();
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_infix_operator_associativity);
skipUntilDeclRBrace();
return nullptr;
}
auto parsedAssociativity
= llvm::StringSwitch<Optional<Associativity>>(Tok.getText())
.Case("none", Associativity::None)
.Case("left", Associativity::Left)
.Case("right", Associativity::Right)
.Default(Nothing);
if (!parsedAssociativity) {
diagnose(Tok, diag::unknown_infix_operator_associativity, Tok.getText());
skipUntilDeclRBrace();
return nullptr;
}
associativity = *parsedAssociativity;
AssociativityValueLoc = consumeToken();
continue;
}
if (Tok.getText().equals("precedence")) {
if (PrecedenceLoc.isValid()) {
diagnose(Tok, diag::operator_precedence_redeclared);
skipUntilDeclRBrace();
return nullptr;
}
PrecedenceLoc = consumeToken();
if (!Tok.is(tok::integer_literal)) {
diagnose(Tok, diag::expected_infix_operator_precedence);
skipUntilDeclRBrace();
return nullptr;
}
if (Tok.getText().getAsInteger(0, precedence)) {
diagnose(Tok, diag::invalid_infix_operator_precedence);
precedence = 255;
}
PrecedenceValueLoc = consumeToken();
continue;
}
diagnose(Tok, diag::unknown_infix_operator_attribute, Tok.getText());
skipUntilDeclRBrace();
return nullptr;
}
SourceLoc RBraceLoc = Tok.getLoc();
return makeParserResult(new (Context) InfixOperatorDecl(
CurDeclContext, OperatorLoc, InfixLoc, Name, NameLoc, LBraceLoc,
AssociativityLoc, AssociativityValueLoc, PrecedenceLoc,
PrecedenceValueLoc, RBraceLoc, InfixData(precedence, associativity)));
}