mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Provide ASTWalker with a customization point to specify whether to check macro arguments (which are type checked but never emitted), the macro expansion (which is the result of applying the macro and is actually emitted into the source), or both. Provide answers for the ~115 different ASTWalker visitors throughout the code base. Fixes rdar://104042945, which concerns checking of effects in macro arguments---which we shouldn't do.
1284 lines
43 KiB
C++
1284 lines
43 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTPrinter.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Effects.h"
|
|
#include "swift/AST/NameLookup.h"
|
|
#include "swift/AST/ASTDemangler.h"
|
|
#include "swift/Basic/SourceManager.h"
|
|
#include "swift/Frontend/Frontend.h"
|
|
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
|
|
#include "swift/IDE/CommentConversion.h"
|
|
#include "swift/IDE/Utils.h"
|
|
#include "swift/Sema/IDETypeChecking.h"
|
|
#include "swift/Markup/XMLUtils.h"
|
|
#include "swift/Subsystems.h"
|
|
#include "swift/IDE/IDERequests.h"
|
|
|
|
using namespace swift;
|
|
using namespace swift::ide;
|
|
|
|
namespace swift {
|
|
// Implement the IDE type zone.
|
|
#define SWIFT_TYPEID_ZONE IDE
|
|
#define SWIFT_TYPEID_HEADER "swift/IDE/IDERequestIDZone.def"
|
|
#include "swift/Basic/ImplementTypeIDZone.h"
|
|
#undef SWIFT_TYPEID_ZONE
|
|
#undef SWIFT_TYPEID_HEADER
|
|
}
|
|
|
|
// Define request evaluation functions for each of the IDE requests.
|
|
static AbstractRequestFunction *ideRequestFunctions[] = {
|
|
#define SWIFT_REQUEST(Zone, Name, Sig, Caching, LocOptions) \
|
|
reinterpret_cast<AbstractRequestFunction *>(&Name::evaluateRequest),
|
|
#include "swift/IDE/IDERequestIDZone.def"
|
|
#undef SWIFT_REQUEST
|
|
};
|
|
|
|
void swift::registerIDERequestFunctions(Evaluator &evaluator) {
|
|
evaluator.registerRequestFunctions(Zone::IDE,
|
|
ideRequestFunctions);
|
|
registerIDETypeCheckRequestFunctions(evaluator);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Cusor info resolver
|
|
//----------------------------------------------------------------------------//
|
|
|
|
class CursorInfoResolver : public SourceEntityWalker {
|
|
SourceFile &SrcFile;
|
|
SourceLoc LocToResolve;
|
|
ResolvedCursorInfoPtr CursorInfo;
|
|
Type ContainerType;
|
|
Expr *OutermostCursorExpr;
|
|
llvm::SmallVector<Expr*, 8> ExprStack;
|
|
/// If a decl shadows another decl using shorthand syntax (`[foo]` or
|
|
/// `if let foo {`), this maps the re-declared variable to the one that is
|
|
/// being shadowed. Ordered from innermost to outermost shadows.
|
|
///
|
|
/// The transitive closure of shorthand shadowed decls should be reported as
|
|
/// additional results in cursor info.
|
|
llvm::DenseMap<ValueDecl *, ValueDecl *> ShorthandShadowedDecls;
|
|
|
|
public:
|
|
explicit CursorInfoResolver(SourceFile &SrcFile)
|
|
: SrcFile(SrcFile), CursorInfo(new ResolvedCursorInfo(&SrcFile)),
|
|
OutermostCursorExpr(nullptr) {}
|
|
ResolvedCursorInfoPtr resolve(SourceLoc Loc);
|
|
SourceManager &getSourceMgr() const;
|
|
private:
|
|
bool walkToExprPre(Expr *E) override;
|
|
bool walkToExprPost(Expr *E) override;
|
|
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
|
|
bool walkToDeclPost(Decl *D) override;
|
|
bool walkToStmtPre(Stmt *S) override;
|
|
bool walkToStmtPost(Stmt *S) override;
|
|
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
|
|
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
|
|
ReferenceMetaData Data) override;
|
|
bool visitCallArgName(Identifier Name, CharSourceRange Range,
|
|
ValueDecl *D) override;
|
|
bool visitDeclarationArgumentName(Identifier Name, SourceLoc StartLoc,
|
|
ValueDecl *D) override;
|
|
bool visitModuleReference(ModuleEntity Mod, CharSourceRange Range) override;
|
|
bool rangeContainsLoc(SourceRange Range) const;
|
|
bool rangeContainsLoc(CharSourceRange Range) const;
|
|
bool isDone() const { return CursorInfo->isValid(); }
|
|
bool tryResolve(ValueDecl *D, TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef,
|
|
SourceLoc Loc, bool IsRef, Type Ty = Type(),
|
|
Optional<ReferenceMetaData> Data = None);
|
|
bool tryResolve(ModuleEntity Mod, SourceLoc Loc);
|
|
bool tryResolve(Stmt *St);
|
|
bool visitSubscriptReference(ValueDecl *D, CharSourceRange Range,
|
|
ReferenceMetaData Data,
|
|
bool IsOpenBracket) override;
|
|
};
|
|
|
|
SourceManager &CursorInfoResolver::getSourceMgr() const
|
|
{
|
|
return SrcFile.getASTContext().SourceMgr;
|
|
}
|
|
|
|
bool CursorInfoResolver::tryResolve(ValueDecl *D, TypeDecl *CtorTyRef,
|
|
ExtensionDecl *ExtTyRef, SourceLoc Loc,
|
|
bool IsRef, Type Ty,
|
|
Optional<ReferenceMetaData> Data) {
|
|
if (!D->hasName())
|
|
return false;
|
|
|
|
if (Loc != LocToResolve)
|
|
return false;
|
|
|
|
if (auto *VD = dyn_cast<VarDecl>(D)) {
|
|
// Handle references to the implicitly generated vars in case statements
|
|
// matching multiple patterns
|
|
if (VD->isImplicit()) {
|
|
if (auto *Parent = VD->getParentVarDecl()) {
|
|
D = Parent;
|
|
}
|
|
}
|
|
}
|
|
|
|
SmallVector<NominalTypeDecl *> ReceiverTypes;
|
|
bool IsDynamic = false;
|
|
Optional<std::pair<const CustomAttr *, Decl *>> CustomAttrRef = None;
|
|
if (Expr *BaseE = getBase(ExprStack)) {
|
|
if (isDynamicRef(BaseE, D)) {
|
|
IsDynamic = true;
|
|
ide::getReceiverType(BaseE, ReceiverTypes);
|
|
}
|
|
}
|
|
|
|
if (Data)
|
|
CustomAttrRef = Data->CustomAttrRef;
|
|
|
|
CursorInfo = new ResolvedValueRefCursorInfo(
|
|
CursorInfo->getSourceFile(), CursorInfo->getLoc(), D, CtorTyRef, ExtTyRef,
|
|
IsRef, Ty, ContainerType, CustomAttrRef,
|
|
/*IsKeywordArgument=*/false, IsDynamic, ReceiverTypes,
|
|
/*ShorthandShadowedDecls=*/{});
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::tryResolve(ModuleEntity Mod, SourceLoc Loc) {
|
|
if (Loc == LocToResolve) {
|
|
CursorInfo = new ResolvedModuleRefCursorInfo(CursorInfo->getSourceFile(),
|
|
CursorInfo->getLoc(), Mod);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CursorInfoResolver::tryResolve(Stmt *St) {
|
|
if (auto *LST = dyn_cast<LabeledStmt>(St)) {
|
|
if (LST->getStartLoc() == LocToResolve) {
|
|
CursorInfo = new ResolvedStmtStartCursorInfo(CursorInfo->getSourceFile(),
|
|
CursorInfo->getLoc(), St);
|
|
return true;
|
|
}
|
|
}
|
|
if (auto *CS = dyn_cast<CaseStmt>(St)) {
|
|
if (CS->getStartLoc() == LocToResolve) {
|
|
CursorInfo = new ResolvedStmtStartCursorInfo(CursorInfo->getSourceFile(),
|
|
CursorInfo->getLoc(), St);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CursorInfoResolver::visitSubscriptReference(ValueDecl *D,
|
|
CharSourceRange Range,
|
|
ReferenceMetaData Data,
|
|
bool IsOpenBracket) {
|
|
// We should treat both open and close brackets equally
|
|
return visitDeclReference(D, Range, nullptr, nullptr, Type(), Data);
|
|
}
|
|
|
|
ResolvedCursorInfoPtr CursorInfoResolver::resolve(SourceLoc Loc) {
|
|
assert(Loc.isValid());
|
|
LocToResolve = Loc;
|
|
CursorInfo->setLoc(Loc);
|
|
|
|
walk(SrcFile);
|
|
|
|
if (auto ValueRefInfo = dyn_cast<ResolvedValueRefCursorInfo>(CursorInfo)) {
|
|
SmallVector<ValueDecl *> ShadowedDecls;
|
|
auto ShorthandShadowedDecl =
|
|
ShorthandShadowedDecls[ValueRefInfo->getValueD()];
|
|
while (ShorthandShadowedDecl) {
|
|
ShadowedDecls.push_back(ShorthandShadowedDecl);
|
|
ShorthandShadowedDecl = ShorthandShadowedDecls[ShorthandShadowedDecl];
|
|
}
|
|
ValueRefInfo->setShorthandShadowedDecls(ShadowedDecls);
|
|
}
|
|
|
|
return CursorInfo;
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToDeclPre(Decl *D, CharSourceRange Range) {
|
|
if (!rangeContainsLoc(D->getSourceRangeIncludingAttrs()))
|
|
return false;
|
|
|
|
if (isa<ExtensionDecl>(D))
|
|
return true;
|
|
|
|
if (auto *VD = dyn_cast<ValueDecl>(D))
|
|
return !tryResolve(VD, /*CtorTyRef=*/nullptr, /*ExtTyRef=*/nullptr,
|
|
Range.getStart(), /*IsRef=*/false);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToDeclPost(Decl *D) {
|
|
if (isDone())
|
|
return false;
|
|
if (getSourceMgr().isBeforeInBuffer(LocToResolve, D->getStartLoc()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToStmtPre(Stmt *S) {
|
|
// Getting the character range for the statement, to account for interpolation
|
|
// strings. The token range for the interpolation string is the whole string,
|
|
// with begin/end locations pointing at the beginning of the string, so if
|
|
// there is a token location inside the string, it will seem as if it is out
|
|
// of the source range, unless we convert to character range.
|
|
|
|
if (auto CondStmt = dyn_cast<LabeledConditionalStmt>(S)) {
|
|
for (auto ShorthandShadow : getShorthandShadows(CondStmt)) {
|
|
assert(ShorthandShadowedDecls.count(ShorthandShadow.first) == 0);
|
|
ShorthandShadowedDecls[ShorthandShadow.first] =
|
|
ShorthandShadow.second;
|
|
}
|
|
}
|
|
|
|
// FIXME: Even implicit Stmts should have proper ranges that include any
|
|
// non-implicit Stmts (fix Stmts created for lazy vars).
|
|
if (!S->isImplicit() &&
|
|
!rangeContainsLoc(Lexer::getCharSourceRangeFromSourceRange(
|
|
getSourceMgr(), S->getSourceRange())))
|
|
return false;
|
|
return !tryResolve(S);
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToStmtPost(Stmt *S) {
|
|
if (isDone())
|
|
return false;
|
|
// FIXME: Even implicit Stmts should have proper ranges that include any
|
|
// non-implicit Stmts (fix Stmts created for lazy vars).
|
|
if (!S->isImplicit() && getSourceMgr().isBeforeInBuffer(LocToResolve,
|
|
S->getStartLoc()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::visitDeclReference(ValueDecl *D,
|
|
CharSourceRange Range,
|
|
TypeDecl *CtorTyRef,
|
|
ExtensionDecl *ExtTyRef, Type T,
|
|
ReferenceMetaData Data) {
|
|
if (isDone())
|
|
return false;
|
|
if (Data.isImplicit || !Range.isValid())
|
|
return true;
|
|
return !tryResolve(D, CtorTyRef, ExtTyRef, Range.getStart(), /*IsRef=*/true, T, Data);
|
|
}
|
|
|
|
static bool isCursorOn(Expr *E, SourceLoc Loc) {
|
|
if (E->isImplicit())
|
|
return false;
|
|
|
|
bool IsCursorOnLoc = E->getStartLoc() == Loc;
|
|
// Handle cursor placement after `try` in (ForceTry|OptionalTry)Expr
|
|
if (auto *FTE = dyn_cast<ForceTryExpr>(E)) {
|
|
IsCursorOnLoc |= FTE->getExclaimLoc() == Loc;
|
|
}
|
|
if (auto *OTE = dyn_cast<OptionalTryExpr>(E)) {
|
|
IsCursorOnLoc |= OTE->getQuestionLoc() == Loc;
|
|
}
|
|
return IsCursorOnLoc;
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToExprPre(Expr *E) {
|
|
if (isDone())
|
|
return true;
|
|
|
|
if (auto CaptureList = dyn_cast<CaptureListExpr>(E)) {
|
|
for (auto ShorthandShadows : getShorthandShadows(CaptureList)) {
|
|
assert(ShorthandShadowedDecls.count(ShorthandShadows.first) == 0);
|
|
ShorthandShadowedDecls[ShorthandShadows.first] =
|
|
ShorthandShadows.second;
|
|
}
|
|
}
|
|
|
|
if (auto SAE = dyn_cast<SelfApplyExpr>(E)) {
|
|
if (SAE->getFn()->getStartLoc() == LocToResolve) {
|
|
ContainerType = SAE->getBase()->getType();
|
|
}
|
|
} else if (auto ME = dyn_cast<MemberRefExpr>(E)) {
|
|
SourceLoc MemberLoc = ME->getNameLoc().getBaseNameLoc();
|
|
if (MemberLoc.isValid() && MemberLoc == LocToResolve) {
|
|
ContainerType = ME->getBase()->getType();
|
|
}
|
|
}
|
|
|
|
if (!OutermostCursorExpr && isCursorOn(E, LocToResolve))
|
|
OutermostCursorExpr = E;
|
|
|
|
ExprStack.push_back(E);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::walkToExprPost(Expr *E) {
|
|
if (isDone())
|
|
return false;
|
|
|
|
if (OutermostCursorExpr && isCursorOn(E, LocToResolve)) {
|
|
CursorInfo = new ResolvedExprStartCursorInfo(
|
|
CursorInfo->getSourceFile(), CursorInfo->getLoc(), OutermostCursorExpr);
|
|
return false;
|
|
}
|
|
|
|
ExprStack.pop_back();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CursorInfoResolver::visitCallArgName(Identifier Name,
|
|
CharSourceRange Range,
|
|
ValueDecl *D) {
|
|
if (isDone())
|
|
return false;
|
|
|
|
// Handle invalid code where the called decl isn't actually callable, so this
|
|
// argument label doesn't really refer to it.
|
|
if (isa<ModuleDecl>(D))
|
|
return true;
|
|
|
|
bool Found = tryResolve(D, nullptr, nullptr, Range.getStart(), /*IsRef=*/true);
|
|
if (Found) {
|
|
cast<ResolvedValueRefCursorInfo>(CursorInfo)->setIsKeywordArgument(true);
|
|
}
|
|
return !Found;
|
|
}
|
|
|
|
bool CursorInfoResolver::
|
|
visitDeclarationArgumentName(Identifier Name, SourceLoc StartLoc, ValueDecl *D) {
|
|
if (isDone())
|
|
return false;
|
|
return !tryResolve(D, nullptr, nullptr, StartLoc, /*IsRef=*/false);
|
|
}
|
|
|
|
bool CursorInfoResolver::visitModuleReference(ModuleEntity Mod,
|
|
CharSourceRange Range) {
|
|
if (isDone())
|
|
return false;
|
|
if (Mod.isBuiltinModule())
|
|
return true; // Ignore.
|
|
return !tryResolve(Mod, Range.getStart());
|
|
}
|
|
|
|
bool CursorInfoResolver::rangeContainsLoc(SourceRange Range) const {
|
|
return getSourceMgr().rangeContainsTokenLoc(Range, LocToResolve);
|
|
}
|
|
|
|
bool CursorInfoResolver::rangeContainsLoc(CharSourceRange Range) const {
|
|
return Range.contains(LocToResolve);
|
|
}
|
|
|
|
ide::ResolvedCursorInfoPtr
|
|
CursorInfoRequest::evaluate(Evaluator &eval, CursorInfoOwner CI) const {
|
|
if (!CI.isValid())
|
|
return new ResolvedCursorInfo();
|
|
CursorInfoResolver Resolver(*CI.File);
|
|
return Resolver.resolve(CI.Loc);
|
|
}
|
|
|
|
SourceLoc CursorInfoRequest::getNearestLoc() const {
|
|
return std::get<0>(getStorage()).Loc;
|
|
}
|
|
|
|
void swift::simple_display(llvm::raw_ostream &out, const CursorInfoOwner &owner) {
|
|
if (!owner.isValid())
|
|
return;
|
|
auto &SM = owner.File->getASTContext().SourceMgr;
|
|
out << SM.getIdentifierForBuffer(*owner.File->getBufferID());
|
|
auto LC = SM.getLineAndColumnInBuffer(owner.Loc);
|
|
out << ":" << LC.first << ":" << LC.second;
|
|
}
|
|
|
|
void swift::ide::simple_display(llvm::raw_ostream &out,
|
|
ide::ResolvedCursorInfoPtr info) {
|
|
if (info->isInvalid())
|
|
return;
|
|
out << "Resolved cursor info at ";
|
|
auto &SM = info->getSourceFile()->getASTContext().SourceMgr;
|
|
out << SM.getIdentifierForBuffer(*info->getSourceFile()->getBufferID());
|
|
auto LC = SM.getLineAndColumnInBuffer(info->getLoc());
|
|
out << ":" << LC.first << ":" << LC.second;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// Range info resolver
|
|
//----------------------------------------------------------------------------//
|
|
class RangeResolver : public SourceEntityWalker {
|
|
struct Implementation;
|
|
std::unique_ptr<Implementation> Impl;
|
|
bool walkToExprPre(Expr *E) override;
|
|
bool walkToExprPost(Expr *E) override;
|
|
bool walkToStmtPre(Stmt *S) override;
|
|
bool walkToStmtPost(Stmt *S) override;
|
|
bool walkToDeclPre(Decl *D, CharSourceRange Range) override;
|
|
bool walkToDeclPost(Decl *D) override;
|
|
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
|
|
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
|
|
ReferenceMetaData Data) override;
|
|
ResolvedRangeInfo moveArrayToASTContext(ResolvedRangeInfo Info);
|
|
public:
|
|
RangeResolver(SourceFile &File, SourceLoc Start, SourceLoc End);
|
|
~RangeResolver();
|
|
ResolvedRangeInfo resolve();
|
|
};
|
|
|
|
static PossibleEffects getUnhandledEffects(ArrayRef<ASTNode> Nodes) {
|
|
class EffectsAnalyzer : public SourceEntityWalker {
|
|
PossibleEffects Effects;
|
|
public:
|
|
bool walkToStmtPre(Stmt *S) override {
|
|
if (auto DCS = dyn_cast<DoCatchStmt>(S)) {
|
|
if (DCS->isSyntacticallyExhaustive())
|
|
return false;
|
|
Effects |= EffectKind::Throws;
|
|
} else if (isa<ThrowStmt>(S)) {
|
|
Effects |= EffectKind::Throws;
|
|
}
|
|
return true;
|
|
}
|
|
bool walkToExprPre(Expr *E) override {
|
|
// Don't walk into closures, they only produce effects when called.
|
|
if (isa<ClosureExpr>(E))
|
|
return false;
|
|
|
|
if (isa<TryExpr>(E))
|
|
Effects |= EffectKind::Throws;
|
|
if (isa<AwaitExpr>(E))
|
|
Effects |= EffectKind::Async;
|
|
|
|
return true;
|
|
}
|
|
bool walkToDeclPre(Decl *D, CharSourceRange Range) override {
|
|
return false;
|
|
}
|
|
PossibleEffects getEffects() const { return Effects; }
|
|
};
|
|
|
|
PossibleEffects Effects;
|
|
for (auto N : Nodes) {
|
|
EffectsAnalyzer Analyzer;
|
|
Analyzer.walk(N);
|
|
Effects |= Analyzer.getEffects();
|
|
}
|
|
return Effects;
|
|
}
|
|
|
|
struct RangeResolver::Implementation {
|
|
SourceFile &File;
|
|
ASTContext &Ctx;
|
|
SourceManager &SM;
|
|
private:
|
|
enum class RangeMatchKind : int8_t {
|
|
NoneMatch,
|
|
StartMatch,
|
|
EndMatch,
|
|
RangeMatch,
|
|
};
|
|
|
|
struct ContextInfo {
|
|
ASTNode Parent;
|
|
|
|
// Whether the context is entirely contained in the given range under
|
|
// scrutiny.
|
|
bool ContainedInRange;
|
|
std::vector<ASTNode> StartMatches;
|
|
std::vector<ASTNode> EndMatches;
|
|
ContextInfo(ASTNode Parent, bool ContainedInRange) : Parent(Parent),
|
|
ContainedInRange(ContainedInRange) {}
|
|
|
|
bool isMultiStatement() {
|
|
if (StartMatches.empty() || EndMatches.empty())
|
|
return false;
|
|
|
|
// Multi-statement should have a common parent of brace statement, this
|
|
// can be implicit brace statement, e.g. in case statement.
|
|
if (Parent.isStmt(StmtKind::Brace))
|
|
return true;
|
|
|
|
// Explicitly allow the selection of multiple case statements.
|
|
auto IsCase = [](ASTNode N) { return N.isStmt(StmtKind::Case); };
|
|
return llvm::any_of(StartMatches, IsCase) &&
|
|
llvm::any_of(EndMatches, IsCase);
|
|
}
|
|
|
|
bool isMultiTypeMemberDecl() {
|
|
if (StartMatches.empty() || EndMatches.empty())
|
|
return false;
|
|
|
|
// Multi-decls should have the same nominal type as a common parent
|
|
if (auto ParentDecl = Parent.dyn_cast<Decl *>())
|
|
return isa<NominalTypeDecl>(ParentDecl);
|
|
|
|
return false;
|
|
}
|
|
};
|
|
|
|
|
|
ArrayRef<Token> TokensInRange;
|
|
SourceLoc Start;
|
|
SourceLoc End;
|
|
|
|
Optional<ResolvedRangeInfo> Result;
|
|
std::vector<ContextInfo> ContextStack;
|
|
ContextInfo &getCurrentDC() {
|
|
assert(!ContextStack.empty());
|
|
return ContextStack.back();
|
|
}
|
|
|
|
std::vector<DeclaredDecl> DeclaredDecls;
|
|
std::vector<ReferencedDecl> ReferencedDecls;
|
|
|
|
// Keep track of the AST nodes contained in the range under question.
|
|
std::vector<ASTNode> ContainedASTNodes;
|
|
|
|
/// Collect the type that an ASTNode should be evaluated to.
|
|
ReturnInfo resolveNodeType(ASTNode N, RangeKind Kind) {
|
|
auto *VoidTy = Ctx.getVoidDecl()->getDeclaredInterfaceType().getPointer();
|
|
if (N.isNull())
|
|
return {VoidTy, ExitState::Negative};
|
|
switch(Kind) {
|
|
case RangeKind::Invalid:
|
|
case RangeKind::SingleDecl:
|
|
case RangeKind::MultiTypeMemberDecl:
|
|
case RangeKind::PartOfExpression:
|
|
llvm_unreachable("cannot get type.");
|
|
|
|
// For a single expression, its type is apparent.
|
|
case RangeKind::SingleExpression:
|
|
return {N.get<Expr*>()->getType().getPointer(), ExitState::Negative};
|
|
|
|
// For statements, we either resolve to the returning type or Void.
|
|
case RangeKind::SingleStatement:
|
|
case RangeKind::MultiStatement: {
|
|
if (N.is<Stmt*>()) {
|
|
if (auto RS = dyn_cast<ReturnStmt>(N.get<Stmt*>())) {
|
|
return {
|
|
resolveNodeType(RS->hasResult() ? RS->getResult() : nullptr,
|
|
RangeKind::SingleExpression).ReturnType,
|
|
ExitState::Positive };
|
|
}
|
|
|
|
// Unbox the brace statement to find its type.
|
|
if (auto BS = dyn_cast<BraceStmt>(N.get<Stmt*>())) {
|
|
if (!BS->getElements().empty()) {
|
|
return resolveNodeType(BS->getLastElement(),
|
|
RangeKind::SingleStatement);
|
|
}
|
|
}
|
|
|
|
// Unbox the if statement to find its type.
|
|
if (auto *IS = dyn_cast<IfStmt>(N.get<Stmt*>())) {
|
|
llvm::SmallVector<ReturnInfo, 2> Branches;
|
|
Branches.push_back(resolveNodeType(IS->getThenStmt(),
|
|
RangeKind::SingleStatement));
|
|
Branches.push_back(resolveNodeType(IS->getElseStmt(),
|
|
RangeKind::SingleStatement));
|
|
return {Ctx, Branches};
|
|
}
|
|
|
|
// Unbox switch statement to find return information.
|
|
if (auto *SWS = dyn_cast<SwitchStmt>(N.get<Stmt*>())) {
|
|
llvm::SmallVector<ReturnInfo, 4> Branches;
|
|
for (auto *CS : SWS->getCases()) {
|
|
Branches.push_back(resolveNodeType(CS->getBody(),
|
|
RangeKind::SingleStatement));
|
|
}
|
|
return {Ctx, Branches};
|
|
}
|
|
}
|
|
// For other statements, the type should be void.
|
|
return {VoidTy, ExitState::Negative};
|
|
}
|
|
}
|
|
llvm_unreachable("unhandled kind");
|
|
}
|
|
|
|
ResolvedRangeInfo getSingleNodeKind(ASTNode Node) {
|
|
assert(!Node.isNull());
|
|
assert(ContainedASTNodes.size() == 1);
|
|
// Single node implies single entry point, or is it?
|
|
bool SingleEntry = true;
|
|
auto UnhandledEffects = getUnhandledEffects({Node});
|
|
OrphanKind Kind = getOrphanKind(ContainedASTNodes);
|
|
if (Node.is<Expr*>())
|
|
return ResolvedRangeInfo(RangeKind::SingleExpression,
|
|
resolveNodeType(Node, RangeKind::SingleExpression),
|
|
TokensInRange,
|
|
getImmediateContext(),
|
|
/*Common Parent Expr*/nullptr,
|
|
SingleEntry,
|
|
UnhandledEffects, Kind,
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls));
|
|
else if (Node.is<Stmt*>())
|
|
return ResolvedRangeInfo(RangeKind::SingleStatement,
|
|
resolveNodeType(Node, RangeKind::SingleStatement),
|
|
TokensInRange,
|
|
getImmediateContext(),
|
|
/*Common Parent Expr*/nullptr,
|
|
SingleEntry,
|
|
UnhandledEffects, Kind,
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls));
|
|
else {
|
|
assert(Node.is<Decl*>());
|
|
return ResolvedRangeInfo(RangeKind::SingleDecl,
|
|
ReturnInfo(),
|
|
TokensInRange,
|
|
getImmediateContext(),
|
|
/*Common Parent Expr*/nullptr,
|
|
SingleEntry,
|
|
UnhandledEffects, Kind,
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls));
|
|
}
|
|
}
|
|
|
|
bool isContainedInSelection(CharSourceRange Range) {
|
|
if (SM.isBeforeInBuffer(Range.getStart(), Start))
|
|
return false;
|
|
if (SM.isBeforeInBuffer(End, Range.getEnd()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
DeclContext *getImmediateContext() {
|
|
for (auto It = ContextStack.rbegin(); It != ContextStack.rend(); ++It) {
|
|
if (auto *DC = It->Parent.getAsDeclContext())
|
|
return DC;
|
|
}
|
|
return static_cast<DeclContext*>(&File);
|
|
}
|
|
|
|
Implementation(SourceFile &File, ArrayRef<Token> TokensInRange) :
|
|
File(File), Ctx(File.getASTContext()), SM(Ctx.SourceMgr),
|
|
TokensInRange(TokensInRange),
|
|
Start(TokensInRange.front().getLoc()),
|
|
End(TokensInRange.back().getLoc()) {
|
|
assert(Start.isValid() && End.isValid());
|
|
}
|
|
|
|
public:
|
|
bool hasResult() { return Result.has_value(); }
|
|
|
|
void enter(ASTNode Node) {
|
|
bool ContainedInRange;
|
|
if (!Node.getOpaqueValue()) {
|
|
// If the node is the root, it's not contained for sure.
|
|
ContainedInRange = false;
|
|
} else if (ContextStack.back().ContainedInRange) {
|
|
// If the node's parent is contained in the range, so is the node.
|
|
ContainedInRange = true;
|
|
} else {
|
|
// If the node's parent is not contained in the range, check if this node is.
|
|
ContainedInRange = isContainedInSelection(CharSourceRange(SM,
|
|
Node.getStartLoc(),
|
|
Node.getEndLoc()));
|
|
}
|
|
ContextStack.emplace_back(Node, ContainedInRange);
|
|
}
|
|
|
|
void leave(ASTNode Node) {
|
|
if (!hasResult() && !Node.isImplicit() && nodeContainSelection(Node)) {
|
|
if (auto Parent = Node.is<Expr*>() ? Node.get<Expr*>() : nullptr) {
|
|
Result = {
|
|
RangeKind::PartOfExpression,
|
|
ReturnInfo(),
|
|
TokensInRange,
|
|
getImmediateContext(),
|
|
Parent,
|
|
hasSingleEntryPoint(ContainedASTNodes),
|
|
getUnhandledEffects(ContainedASTNodes),
|
|
getOrphanKind(ContainedASTNodes),
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls)
|
|
};
|
|
}
|
|
}
|
|
|
|
assert(ContextStack.back().Parent.getOpaqueValue() == Node.getOpaqueValue());
|
|
ContextStack.pop_back();
|
|
}
|
|
|
|
static std::unique_ptr<Implementation>
|
|
createInstance(SourceFile &File, SourceLoc Start, SourceLoc End) {
|
|
if (Start.isInvalid() || End.isInvalid())
|
|
return nullptr;
|
|
auto AllTokens = File.getAllTokens();
|
|
// This points to the first token after or on the start loc.
|
|
auto StartIt = token_lower_bound(AllTokens, Start);
|
|
|
|
// Skip all the comments.
|
|
while(StartIt != AllTokens.end()) {
|
|
if (StartIt->getKind() != tok::comment)
|
|
break;
|
|
++StartIt;
|
|
}
|
|
|
|
// Erroneous case.
|
|
if (StartIt == AllTokens.end())
|
|
return nullptr;
|
|
|
|
// This points to the first token after or on the end loc;
|
|
auto EndIt = token_lower_bound(AllTokens, End);
|
|
|
|
// Adjust end token to skip comments.
|
|
while (EndIt != AllTokens.begin()) {
|
|
EndIt --;
|
|
if (EndIt->getKind() != tok::comment)
|
|
break;
|
|
}
|
|
|
|
// Erroneous case.
|
|
if (EndIt < StartIt)
|
|
return nullptr;
|
|
unsigned StartIdx = StartIt - AllTokens.begin();
|
|
return std::unique_ptr<Implementation>(new Implementation(File,
|
|
AllTokens.slice(StartIdx, EndIt - StartIt + 1)));
|
|
}
|
|
|
|
void analyzeDecl(Decl *D) {
|
|
// Collect declared decls in the range.
|
|
if (auto *VD = dyn_cast_or_null<ValueDecl>(D)) {
|
|
if (isContainedInSelection(CharSourceRange(SM, VD->getStartLoc(),
|
|
VD->getEndLoc())))
|
|
if (std::find(DeclaredDecls.begin(), DeclaredDecls.end(),
|
|
DeclaredDecl(VD)) == DeclaredDecls.end())
|
|
DeclaredDecls.push_back(VD);
|
|
}
|
|
}
|
|
|
|
class CompleteWalker : public SourceEntityWalker {
|
|
Implementation *Impl;
|
|
bool walkToDeclPre(Decl *D, CharSourceRange Range) override {
|
|
if (D->isImplicit())
|
|
return false;
|
|
Impl->analyzeDecl(D);
|
|
return true;
|
|
}
|
|
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
|
|
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
|
|
ReferenceMetaData Data) override {
|
|
Impl->analyzeDeclRef(D, Range.getStart(), T, Data);
|
|
return true;
|
|
}
|
|
public:
|
|
CompleteWalker(Implementation *Impl) : Impl(Impl) {}
|
|
};
|
|
|
|
/// This walker walk the current decl context and analyze whether declared
|
|
/// decls in the range is referenced after it.
|
|
class FurtherReferenceWalker : public SourceEntityWalker {
|
|
Implementation *Impl;
|
|
bool visitDeclReference(ValueDecl *D, CharSourceRange Range,
|
|
TypeDecl *CtorTyRef, ExtensionDecl *ExtTyRef, Type T,
|
|
ReferenceMetaData Data) override {
|
|
// If the reference is after the given range, continue logic.
|
|
if (!Impl->SM.isBeforeInBuffer(Impl->End, Range.getStart()))
|
|
return true;
|
|
|
|
// If the referenced decl is declared in the range, than the declared decl
|
|
// is referenced out of scope/range.
|
|
auto It = std::find(Impl->DeclaredDecls.begin(),
|
|
Impl->DeclaredDecls.end(), D);
|
|
if (It != Impl->DeclaredDecls.end()) {
|
|
It->ReferredAfterRange = true;
|
|
}
|
|
return true;
|
|
}
|
|
public:
|
|
FurtherReferenceWalker(Implementation *Impl) : Impl(Impl) {}
|
|
};
|
|
|
|
void postAnalysis(ASTNode EndNode) {
|
|
// Visit the content of this node thoroughly, because the walker may
|
|
// abort early.
|
|
CompleteWalker(this).walk(EndNode);
|
|
|
|
// Analyze whether declared decls in the range is referenced outside of it.
|
|
FurtherReferenceWalker(this).walk(getImmediateContext());
|
|
}
|
|
|
|
bool hasSingleEntryPoint(ArrayRef<ASTNode> Nodes) {
|
|
unsigned CaseCount = 0;
|
|
// Count the number of case/default statements.
|
|
for (auto N : Nodes) {
|
|
if (Stmt *S = N.is<Stmt*>() ? N.get<Stmt*>() : nullptr) {
|
|
if (S->getKind() == StmtKind::Case)
|
|
++CaseCount;
|
|
}
|
|
}
|
|
// If there are more than one case/default statements, there are more than
|
|
// one entry point.
|
|
return CaseCount == 0;
|
|
}
|
|
|
|
OrphanKind getOrphanKind(ArrayRef<ASTNode> Nodes) {
|
|
if (Nodes.empty())
|
|
return OrphanKind::None;
|
|
|
|
// Prepare the entire range.
|
|
SourceRange WholeRange(Nodes.front().getStartLoc(),
|
|
Nodes.back().getEndLoc());
|
|
struct ControlFlowStmtSelector : public SourceEntityWalker {
|
|
std::vector<std::pair<SourceRange, OrphanKind>> Ranges;
|
|
bool walkToStmtPre(Stmt *S) override {
|
|
// For each continue/break statement, record its target's range and the
|
|
// orphan kind.
|
|
if (auto *CS = dyn_cast<ContinueStmt>(S)) {
|
|
if (auto *Target = CS->getTarget()) {
|
|
Ranges.emplace_back(Target->getSourceRange(), OrphanKind::Continue);
|
|
}
|
|
} else if (auto *BS = dyn_cast<BreakStmt>(S)) {
|
|
if (auto *Target = BS->getTarget()) {
|
|
Ranges.emplace_back(Target->getSourceRange(), OrphanKind::Break);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
for (auto N : Nodes) {
|
|
ControlFlowStmtSelector TheWalker;
|
|
TheWalker.walk(N);
|
|
for (auto Pair : TheWalker.Ranges) {
|
|
|
|
// If the entire range does not include the target's range, we find
|
|
// an orphan.
|
|
if (!SM.rangeContains(WholeRange, Pair.first))
|
|
return Pair.second;
|
|
}
|
|
}
|
|
|
|
// We find no orphan.
|
|
return OrphanKind::None;
|
|
}
|
|
|
|
void analyze(ASTNode Node) {
|
|
if (!shouldAnalyze(Node))
|
|
return;
|
|
Decl *D = Node.is<Decl*>() ? Node.get<Decl*>() : nullptr;
|
|
analyzeDecl(D);
|
|
auto &DCInfo = getCurrentDC();
|
|
|
|
// Widen the node's source range to include all attributes to get a range
|
|
// match if a function with its attributes has been selected.
|
|
auto getSourceRangeIncludingAttrs = [](ASTNode N) -> SourceRange {
|
|
if (auto D = N.dyn_cast<Decl *>()) {
|
|
return D->getSourceRangeIncludingAttrs();
|
|
} else {
|
|
return N.getSourceRange();
|
|
}
|
|
};
|
|
|
|
auto NodeRange = getSourceRangeIncludingAttrs(Node);
|
|
|
|
// SemaAnnotator walks the AST in source order, but considers source order
|
|
// for declarations to be defined by their range *excluding* attributes.
|
|
// In RangeResolver, we attributes as belonging to their decl (see comment
|
|
// on getSourceRAngeIncludingAttrs above).
|
|
// Thus, for the purpose RangeResolver, we need to assume that SemaAnnotator
|
|
// hands us the nodes in arbitrary order.
|
|
//
|
|
// Remove any nodes that are contained by the newly added one.
|
|
auto removeIterator = std::remove_if(
|
|
ContainedASTNodes.begin(), ContainedASTNodes.end(),
|
|
[&](ASTNode ContainedNode) {
|
|
return SM.rangeContains(NodeRange,
|
|
getSourceRangeIncludingAttrs(ContainedNode));
|
|
});
|
|
ContainedASTNodes.erase(removeIterator, ContainedASTNodes.end());
|
|
|
|
switch (getRangeMatchKind(NodeRange)) {
|
|
case RangeMatchKind::NoneMatch: {
|
|
// PatternBindingDecl is not visited; we need to explicitly analyze here.
|
|
if (auto *VA = dyn_cast_or_null<VarDecl>(D))
|
|
if (auto PBD = VA->getParentPatternBinding())
|
|
analyze(PBD);
|
|
break;
|
|
}
|
|
case RangeMatchKind::RangeMatch: {
|
|
postAnalysis(Node);
|
|
|
|
// The node is contained in the given range.
|
|
ContainedASTNodes.push_back(Node);
|
|
Result = getSingleNodeKind(Node);
|
|
return;
|
|
}
|
|
case RangeMatchKind::StartMatch:
|
|
DCInfo.StartMatches.emplace_back(Node);
|
|
break;
|
|
case RangeMatchKind::EndMatch:
|
|
DCInfo.EndMatches.emplace_back(Node);
|
|
break;
|
|
}
|
|
|
|
// If no parent is considered as a contained node; this node should be
|
|
// a top-level contained node.
|
|
// If a node that contains this one is later discovered, this node will be
|
|
// removed from ContainedASTNodes again.
|
|
if (std::none_of(ContainedASTNodes.begin(), ContainedASTNodes.end(),
|
|
[&](ASTNode ContainedNode) {
|
|
return SM.rangeContains(
|
|
getSourceRangeIncludingAttrs(ContainedNode),
|
|
NodeRange);
|
|
})) {
|
|
ContainedASTNodes.push_back(Node);
|
|
}
|
|
|
|
if (DCInfo.isMultiStatement()) {
|
|
postAnalysis(DCInfo.EndMatches.back());
|
|
Result = {RangeKind::MultiStatement,
|
|
/* Last node has the type */
|
|
resolveNodeType(DCInfo.EndMatches.back(),
|
|
RangeKind::MultiStatement),
|
|
TokensInRange,
|
|
getImmediateContext(), nullptr,
|
|
hasSingleEntryPoint(ContainedASTNodes),
|
|
getUnhandledEffects(ContainedASTNodes),
|
|
getOrphanKind(ContainedASTNodes),
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls)};
|
|
}
|
|
|
|
if (DCInfo.isMultiTypeMemberDecl()) {
|
|
postAnalysis(DCInfo.EndMatches.back());
|
|
Result = {RangeKind::MultiTypeMemberDecl,
|
|
ReturnInfo(),
|
|
TokensInRange,
|
|
getImmediateContext(),
|
|
/*Common Parent Expr*/ nullptr,
|
|
/*SinleEntry*/ true,
|
|
getUnhandledEffects(ContainedASTNodes),
|
|
getOrphanKind(ContainedASTNodes),
|
|
llvm::makeArrayRef(ContainedASTNodes),
|
|
llvm::makeArrayRef(DeclaredDecls),
|
|
llvm::makeArrayRef(ReferencedDecls)};
|
|
}
|
|
}
|
|
|
|
bool shouldEnter(ASTNode Node) {
|
|
if (hasResult())
|
|
return false;
|
|
if (SM.isBeforeInBuffer(End, Node.getSourceRange().Start))
|
|
return false;
|
|
if (SM.isBeforeInBuffer(Node.getSourceRange().End, Start))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool nodeContainSelection(ASTNode Node) {
|
|
// If the selection starts before the node, return false.
|
|
if (SM.isBeforeInBuffer(Start, Node.getStartLoc()))
|
|
return false;
|
|
// If the node ends before the selection, return false.
|
|
if (SM.isBeforeInBuffer(Lexer::getLocForEndOfToken(SM, Node.getEndLoc()),
|
|
End))
|
|
return false;
|
|
// Contained.
|
|
return true;
|
|
}
|
|
|
|
bool shouldAnalyze(ASTNode Node) {
|
|
// Avoid analyzing implicit nodes.
|
|
if (Node.isImplicit())
|
|
return false;
|
|
// Avoid analyzing nodes that are not enclosed.
|
|
if (SM.isBeforeInBuffer(End, Node.getEndLoc()))
|
|
return false;
|
|
if (SM.isBeforeInBuffer(Node.getStartLoc(), Start))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
ResolvedRangeInfo getResult() {
|
|
if (Result.has_value())
|
|
return Result.value();
|
|
return ResolvedRangeInfo(TokensInRange);
|
|
}
|
|
|
|
void analyzeDeclRef(ValueDecl *VD, SourceLoc Start, Type Ty,
|
|
ReferenceMetaData Data) {
|
|
// Add defensive check in case the given type is null.
|
|
// FIXME: we should receive error type instead of null type.
|
|
if (Ty.isNull())
|
|
return;
|
|
|
|
// Only collect decl ref.
|
|
if (Data.Kind != SemaReferenceKind::DeclRef)
|
|
return;
|
|
|
|
if (Data.isImplicit || !isContainedInSelection(CharSourceRange(Start, 0)))
|
|
return;
|
|
|
|
// If the VD is declared outside of current file, exclude such decl.
|
|
if (VD->getDeclContext()->getParentSourceFile() != &File)
|
|
return;
|
|
|
|
// Down-grade LValue type to RValue type if it's read-only.
|
|
if (auto Access = Data.AccKind) {
|
|
switch (Access.value()) {
|
|
case AccessKind::Read:
|
|
Ty = Ty->getRValueType();
|
|
break;
|
|
case AccessKind::Write:
|
|
case AccessKind::ReadWrite:
|
|
break;
|
|
}
|
|
}
|
|
|
|
auto It = llvm::find_if(ReferencedDecls,
|
|
[&](ReferencedDecl D) { return D.VD == VD; });
|
|
if (It == ReferencedDecls.end()) {
|
|
ReferencedDecls.emplace_back(VD, Ty);
|
|
} else {
|
|
// LValue type should take precedence.
|
|
if (!It->Ty->hasLValueType() && Ty->hasLValueType()) {
|
|
It->Ty = Ty;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
RangeMatchKind getRangeMatchKind(SourceRange Input) {
|
|
bool StartMatch = Input.Start == Start;
|
|
bool EndMatch = Input.End == End;
|
|
if (StartMatch && EndMatch)
|
|
return RangeMatchKind::RangeMatch;
|
|
else if (StartMatch)
|
|
return RangeMatchKind::StartMatch;
|
|
else if (EndMatch)
|
|
return RangeMatchKind::EndMatch;
|
|
else
|
|
return RangeMatchKind::NoneMatch;
|
|
}
|
|
};
|
|
|
|
RangeResolver::RangeResolver(SourceFile &File, SourceLoc Start, SourceLoc End):
|
|
Impl(Implementation::createInstance(File, Start, End)) {}
|
|
|
|
RangeResolver::~RangeResolver() = default;
|
|
|
|
bool RangeResolver::walkToExprPre(Expr *E) {
|
|
if (!Impl->shouldEnter(E))
|
|
return false;
|
|
Impl->analyze(E);
|
|
Impl->enter(E);
|
|
return true;
|
|
}
|
|
|
|
bool RangeResolver::walkToStmtPre(Stmt *S) {
|
|
if (!Impl->shouldEnter(S))
|
|
return false;
|
|
Impl->analyze(S);
|
|
Impl->enter(S);
|
|
return true;
|
|
}
|
|
|
|
bool RangeResolver::walkToDeclPre(Decl *D, CharSourceRange Range) {
|
|
if (D->isImplicit())
|
|
return false;
|
|
if (!Impl->shouldEnter(D))
|
|
return false;
|
|
Impl->analyze(D);
|
|
Impl->enter(D);
|
|
return true;
|
|
}
|
|
|
|
bool RangeResolver::walkToExprPost(Expr *E) {
|
|
Impl->leave(E);
|
|
return !Impl->hasResult();
|
|
}
|
|
|
|
bool RangeResolver::walkToStmtPost(Stmt *S) {
|
|
Impl->leave(S);
|
|
return !Impl->hasResult();
|
|
}
|
|
|
|
bool RangeResolver::walkToDeclPost(Decl *D) {
|
|
Impl->leave(D);
|
|
return !Impl->hasResult();
|
|
}
|
|
|
|
|
|
bool RangeResolver::
|
|
visitDeclReference(ValueDecl *D, CharSourceRange Range, TypeDecl *CtorTyRef,
|
|
ExtensionDecl *ExtTyRef, Type T, ReferenceMetaData Data) {
|
|
Impl->analyzeDeclRef(D, Range.getStart(), T, Data);
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
static ArrayRef<T> copyToContext(ASTContext &Ctx, ArrayRef<T> Arr) {
|
|
unsigned n = Arr.size();
|
|
auto buffer = Ctx.Allocate<T>(n);
|
|
for (unsigned i = 0; i != n; ++i) {
|
|
buffer[i] = Arr[i];
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
ResolvedRangeInfo
|
|
RangeResolver::moveArrayToASTContext(ResolvedRangeInfo Info) {
|
|
auto &Ctx = Impl->Ctx;
|
|
#define COPY(NAME) Info.NAME = copyToContext(Ctx, Info.NAME);
|
|
COPY(ContainedNodes)
|
|
COPY(DeclaredDecls)
|
|
COPY(ReferencedDecls)
|
|
#undef COPY
|
|
return Info;
|
|
}
|
|
|
|
ResolvedRangeInfo RangeResolver::resolve() {
|
|
if (!Impl)
|
|
return ResolvedRangeInfo();
|
|
Impl->enter(ASTNode());
|
|
walk(Impl->File);
|
|
return moveArrayToASTContext(Impl->getResult());
|
|
}
|
|
|
|
void swift::simple_display(llvm::raw_ostream &out,
|
|
const RangeInfoOwner &owner) {
|
|
if (!owner.isValid())
|
|
return;
|
|
auto &SM = owner.File->getASTContext().SourceMgr;
|
|
out << SM.getIdentifierForBuffer(*owner.File->getBufferID());
|
|
auto SLC = SM.getLineAndColumnInBuffer(owner.StartLoc);
|
|
auto ELC = SM.getLineAndColumnInBuffer(owner.EndLoc);
|
|
out << ": (" << SLC.first << ":" << SLC.second << ", "
|
|
<< ELC.first << ":" << ELC.second << ")";
|
|
}
|
|
|
|
RangeInfoOwner::RangeInfoOwner(SourceFile *File, unsigned Offset,
|
|
unsigned Length): File(File) {
|
|
SourceManager &SM = File->getASTContext().SourceMgr;
|
|
unsigned BufferId = File->getBufferID().value();
|
|
StartLoc = SM.getLocForOffset(BufferId, Offset);
|
|
EndLoc = SM.getLocForOffset(BufferId, Offset + Length);
|
|
}
|
|
|
|
ide::ResolvedRangeInfo
|
|
RangeInfoRequest::evaluate(Evaluator &eval, RangeInfoOwner CI) const {
|
|
if (!CI.isValid())
|
|
return ResolvedRangeInfo();
|
|
return RangeResolver(*CI.File, CI.StartLoc, CI.EndLoc).resolve();
|
|
}
|
|
|
|
SourceLoc RangeInfoRequest::getNearestLoc() const {
|
|
return std::get<0>(getStorage()).StartLoc;
|
|
}
|
|
|
|
void
|
|
swift::ide::simple_display(llvm::raw_ostream &out, const ResolvedRangeInfo &info) {
|
|
info.print(out);
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// ProvideDefaultImplForRequest
|
|
//----------------------------------------------------------------------------//
|
|
static Type getContextFreeInterfaceType(ValueDecl *VD) {
|
|
if (auto AFD = dyn_cast<AbstractFunctionDecl>(VD)) {
|
|
return AFD->getMethodInterfaceType();
|
|
}
|
|
return VD->getInterfaceType();
|
|
}
|
|
|
|
ArrayRef<ValueDecl *>
|
|
ProvideDefaultImplForRequest::evaluate(Evaluator &eval, ValueDecl* VD) const {
|
|
// Skip decls that don't have valid names.
|
|
if (!VD->getName())
|
|
return ArrayRef<ValueDecl*>();
|
|
|
|
// Check if VD is from a protocol extension.
|
|
auto P = VD->getDeclContext()->getExtendedProtocolDecl();
|
|
if (!P)
|
|
return ArrayRef<ValueDecl*>();
|
|
SmallVector<ValueDecl*, 8> Results;
|
|
// Look up all decls in the protocol's inheritance chain for the ones with
|
|
// the same name with VD.
|
|
ResolvedMemberResult LookupResult =
|
|
resolveValueMember(*P->getInnermostDeclContext(),
|
|
P->getDeclaredInterfaceType(), VD->getName());
|
|
|
|
auto VDType = getContextFreeInterfaceType(VD);
|
|
for (auto Mem : LookupResult.getMemberDecls(InterestedMemberKind::All)) {
|
|
if (isa<ProtocolDecl>(Mem->getDeclContext())) {
|
|
if (Mem->isProtocolRequirement() &&
|
|
getContextFreeInterfaceType(Mem)->isEqual(VDType)) {
|
|
// We find a protocol requirement VD can provide default
|
|
// implementation for.
|
|
Results.push_back(Mem);
|
|
}
|
|
}
|
|
}
|
|
return copyToContext(VD->getASTContext(), llvm::makeArrayRef(Results));
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// CollectOverriddenDeclsRequest
|
|
//----------------------------------------------------------------------------//
|
|
ArrayRef<ValueDecl *>
|
|
CollectOverriddenDeclsRequest::evaluate(Evaluator &evaluator,
|
|
OverridenDeclsOwner Owner) const {
|
|
std::vector<ValueDecl*> results;
|
|
auto *VD = Owner.VD;
|
|
if (auto Overridden = VD->getOverriddenDecl()) {
|
|
results.push_back(Overridden);
|
|
while (Owner.Transitive && (Overridden = Overridden->getOverriddenDecl()))
|
|
results.push_back(Overridden);
|
|
}
|
|
|
|
for (auto Req : evaluateOrDefault(evaluator, ProvideDefaultImplForRequest(VD),
|
|
ArrayRef<ValueDecl*>())) {
|
|
results.push_back(Req);
|
|
}
|
|
|
|
if (Owner.IncludeProtocolRequirements) {
|
|
for (auto Satisfied : VD->getSatisfiedProtocolRequirements()) {
|
|
results.push_back(Satisfied);
|
|
}
|
|
}
|
|
|
|
return copyToContext(VD->getASTContext(), llvm::makeArrayRef(results));
|
|
}
|
|
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// ResolveProtocolNameRequest
|
|
//----------------------------------------------------------------------------//
|
|
ProtocolDecl *
|
|
ResolveProtocolNameRequest::evaluate(Evaluator &evaluator,
|
|
ProtocolNameOwner Input) const {
|
|
auto &ctx = Input.DC->getASTContext();
|
|
auto name = Input.Name;
|
|
// First try to solve by usr
|
|
ProtocolDecl *pd = dyn_cast_or_null<ProtocolDecl>(Demangle::
|
|
getTypeDeclForUSR(ctx, name));
|
|
if (!pd) {
|
|
// Second try to solve by mangled symbol name
|
|
pd = dyn_cast_or_null<ProtocolDecl>(Demangle::getTypeDeclForMangling(ctx, name));
|
|
}
|
|
if (!pd) {
|
|
// Thirdly try to solve by mangled type name
|
|
if (auto ty = Demangle::getTypeForMangling(ctx, name)) {
|
|
pd = dyn_cast_or_null<ProtocolDecl>(ty->getAnyGeneric());
|
|
}
|
|
}
|
|
return pd;
|
|
}
|