Files
swift-mirror/lib/Sema/CSSolver.cpp
Doug Gregor 200f2340d9 [Macros] Be deliberate about walking macro arguments vs. expansions
Provide ASTWalker with a customization point to specify whether to
check macro arguments (which are type checked but never emitted), the
macro expansion (which is the result of applying the macro and is
actually emitted into the source), or both. Provide answers for the
~115 different ASTWalker visitors throughout the code base.

Fixes rdar://104042945, which concerns checking of effects in
macro arguments---which we shouldn't do.
2023-02-28 17:48:23 -08:00

2525 lines
86 KiB
C++

//===--- CSSolver.cpp - Constraint Solver ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the constraint solver used in the type checker.
//
//===----------------------------------------------------------------------===//
#include "CSStep.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Defer.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/SolutionResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
#include <tuple>
using namespace swift;
using namespace constraints;
//===----------------------------------------------------------------------===//
// Constraint solver statistics
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "Constraint solver overall"
#define JOIN2(X,Y) X##Y
STATISTIC(NumSolutionAttempts, "# of solution attempts");
STATISTIC(TotalNumTypeVariables, "# of type variables created");
#define CS_STATISTIC(Name, Description) \
STATISTIC(Overall##Name, Description);
#include "swift/Sema/ConstraintSolverStats.def"
#undef DEBUG_TYPE
#define DEBUG_TYPE "Constraint solver largest system"
#define CS_STATISTIC(Name, Description) \
STATISTIC(Largest##Name, Description);
#include "swift/Sema/ConstraintSolverStats.def"
STATISTIC(LargestSolutionAttemptNumber, "# of the largest solution attempt");
TypeVariableType *ConstraintSystem::createTypeVariable(
ConstraintLocator *locator,
unsigned options) {
++TotalNumTypeVariables;
auto tv = TypeVariableType::getNew(getASTContext(), assignTypeVariableID(),
locator, options);
addTypeVariable(tv);
return tv;
}
Solution ConstraintSystem::finalize() {
assert(solverState);
// Create the solution.
Solution solution(*this, CurrentScore);
// Update the best score we've seen so far.
auto &ctx = getASTContext();
assert(ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks ||
!solverState->BestScore || CurrentScore <= *solverState->BestScore);
if (!solverState->BestScore || CurrentScore <= *solverState->BestScore) {
solverState->BestScore = CurrentScore;
}
for (auto tv : getTypeVariables()) {
if (getFixedType(tv))
continue;
switch (solverState->AllowFreeTypeVariables) {
case FreeTypeVariableBinding::Disallow:
llvm_unreachable("Solver left free type variables");
case FreeTypeVariableBinding::Allow:
break;
case FreeTypeVariableBinding::UnresolvedType:
assignFixedType(tv, ctx.TheUnresolvedType);
break;
}
}
// For each of the type variables, get its fixed type.
for (auto tv : getTypeVariables()) {
// This type variable has no binding. Allowed only
// when `FreeTypeVariableBinding::Allow` is set,
// which is checked above.
if (!getFixedType(tv))
continue;
solution.typeBindings[tv] = simplifyType(tv)->reconstituteSugar(false);
}
// Copy over the resolved overloads.
solution.overloadChoices.insert(ResolvedOverloads.begin(),
ResolvedOverloads.end());
// For each of the constraint restrictions, record it with simplified,
// canonical types.
if (solverState) {
for (const auto &entry : ConstraintRestrictions) {
const auto &types = entry.first;
auto restriction = entry.second;
CanType first = simplifyType(types.first)->getCanonicalType();
CanType second = simplifyType(types.second)->getCanonicalType();
solution.ConstraintRestrictions[{first, second}] = restriction;
}
}
// For each of the fixes, record it as an operation on the affected
// expression.
unsigned firstFixIndex = 0;
if (solverState && solverState->PartialSolutionScope) {
firstFixIndex = solverState->PartialSolutionScope->numFixes;
}
solution.Fixes.append(Fixes.begin() + firstFixIndex, Fixes.end());
// Remember all the disjunction choices we made.
for (auto &choice : DisjunctionChoices) {
solution.DisjunctionChoices.insert(choice);
}
// Remember all of the argument/parameter matching choices we made.
for (auto &argumentMatch : argumentMatchingChoices) {
auto inserted = solution.argumentMatchingChoices.insert(argumentMatch);
assert(inserted.second || inserted.first->second == argumentMatch.second);
(void)inserted;
}
// Remember the opened types.
for (const auto &opened : OpenedTypes) {
// We shouldn't ever register opened types multiple times,
// but saving and re-applying solutions can cause us to get
// multiple entries. We should use an optimized PartialSolution
// structure for that use case, which would optimize a lot of
// stuff here.
#if false
assert((solution.OpenedTypes.count(opened.first) == 0 ||
solution.OpenedTypes[opened.first] == opened.second)
&& "Already recorded");
#endif
solution.OpenedTypes.insert(opened);
}
// Remember the opened existential types.
for (const auto &openedExistential : OpenedExistentialTypes) {
assert(solution.OpenedExistentialTypes.count(openedExistential.first) == 0||
solution.OpenedExistentialTypes[openedExistential.first]
== openedExistential.second &&
"Already recorded");
solution.OpenedExistentialTypes.insert(openedExistential);
}
// Remember the defaulted type variables.
solution.DefaultedConstraints.insert(DefaultedConstraints.begin(),
DefaultedConstraints.end());
for (auto &nodeType : NodeTypes) {
solution.nodeTypes.insert(nodeType);
}
for (auto &keyPathComponentType : KeyPathComponentTypes) {
solution.keyPathComponentTypes.insert(keyPathComponentType);
}
// Remember contextual types.
for (auto &entry : contextualTypes) {
solution.contextualTypes.push_back({entry.first, entry.second.first});
}
solution.solutionApplicationTargets = solutionApplicationTargets;
solution.caseLabelItems = caseLabelItems;
solution.isolatedParams.append(isolatedParams.begin(), isolatedParams.end());
solution.preconcurrencyClosures.append(preconcurrencyClosures.begin(),
preconcurrencyClosures.end());
for (const auto &transformed : resultBuilderTransformed) {
solution.resultBuilderTransformed.insert(transformed);
}
for (const auto &appliedWrapper : appliedPropertyWrappers) {
solution.appliedPropertyWrappers.insert(appliedWrapper);
}
// Remember implicit value conversions.
for (const auto &valueConversion : ImplicitValueConversions) {
solution.ImplicitValueConversions.push_back(valueConversion);
}
// Remember argument lists.
for (const auto &argListMapping : ArgumentLists) {
solution.argumentLists.insert(argListMapping);
}
for (const auto &implicitRoot : ImplicitCallAsFunctionRoots) {
solution.ImplicitCallAsFunctionRoots.insert(implicitRoot);
}
return solution;
}
void ConstraintSystem::applySolution(const Solution &solution) {
// Update the score.
CurrentScore += solution.getFixedScore();
// Assign fixed types to the type variables solved by this solution.
for (auto binding : solution.typeBindings) {
// If we haven't seen this type variable before, record it now.
addTypeVariable(binding.first);
// If we don't already have a fixed type for this type variable,
// assign the fixed type from the solution.
if (getFixedType(binding.first))
continue;
assignFixedType(binding.first, binding.second, /*updateState=*/false);
}
// Register overload choices.
// FIXME: Copy these directly into some kind of partial solution?
for (auto overload : solution.overloadChoices)
ResolvedOverloads.insert(overload);
// Register constraint restrictions.
// FIXME: Copy these directly into some kind of partial solution?
for ( auto &restriction : solution.ConstraintRestrictions) {
auto *type1 = restriction.first.first.getPointer();
auto *type2 = restriction.first.second.getPointer();
ConstraintRestrictions.insert({{type1, type2}, restriction.second});
}
// Register the solution's disjunction choices.
for (auto &choice : solution.DisjunctionChoices) {
DisjunctionChoices.insert(choice);
}
// Remember all of the argument/parameter matching choices we made.
for (auto &argumentMatch : solution.argumentMatchingChoices) {
argumentMatchingChoices.insert(argumentMatch);
}
// Register the solution's opened types.
for (const auto &opened : solution.OpenedTypes) {
OpenedTypes.insert(opened);
}
// Register the solution's opened existential types.
for (const auto &openedExistential : solution.OpenedExistentialTypes) {
OpenedExistentialTypes.insert(openedExistential);
}
// Register the solutions's pack expansion environments.
for (const auto &expansion : solution.PackExpansionEnvironments) {
PackExpansionEnvironments.insert(expansion);
}
// Register the defaulted type variables.
DefaultedConstraints.insert(solution.DefaultedConstraints.begin(),
solution.DefaultedConstraints.end());
// Add the node types back.
for (auto &nodeType : solution.nodeTypes) {
setType(nodeType.first, nodeType.second);
}
for (auto &nodeType : solution.keyPathComponentTypes) {
setType(nodeType.getFirst().first, nodeType.getFirst().second,
nodeType.getSecond());
}
// Add the contextual types.
for (const auto &contextualType : solution.contextualTypes) {
if (!getContextualTypeInfo(contextualType.first)) {
setContextualType(contextualType.first, contextualType.second.typeLoc,
contextualType.second.purpose);
}
}
// Register the statement condition targets.
for (const auto &target : solution.solutionApplicationTargets) {
if (!getSolutionApplicationTarget(target.first))
setSolutionApplicationTarget(target.first, target.second);
}
// Register the statement condition targets.
for (const auto &info : solution.caseLabelItems) {
if (!getCaseLabelItemInfo(info.first))
setCaseLabelItemInfo(info.first, info.second);
}
for (auto param : solution.isolatedParams) {
isolatedParams.insert(param);
}
for (auto closure : solution.preconcurrencyClosures) {
preconcurrencyClosures.insert(closure);
}
for (const auto &transformed : solution.resultBuilderTransformed) {
resultBuilderTransformed.insert(transformed);
}
for (const auto &appliedWrapper : solution.appliedPropertyWrappers) {
appliedPropertyWrappers.insert(appliedWrapper);
}
for (auto &valueConversion : solution.ImplicitValueConversions) {
ImplicitValueConversions.insert(valueConversion);
}
// Register the argument lists.
for (auto &argListMapping : solution.argumentLists) {
ArgumentLists.insert(argListMapping);
}
for (auto &implicitRoot : solution.ImplicitCallAsFunctionRoots) {
ImplicitCallAsFunctionRoots.insert(implicitRoot);
}
// Register any fixes produced along this path.
Fixes.insert(solution.Fixes.begin(), solution.Fixes.end());
}
/// Restore the type variable bindings to what they were before
/// we attempted to solve this constraint system.
void ConstraintSystem::restoreTypeVariableBindings(unsigned numBindings) {
auto &savedBindings = *getSavedBindings();
std::for_each(savedBindings.rbegin(), savedBindings.rbegin() + numBindings,
[](SavedTypeVariableBinding &saved) {
saved.restore();
});
savedBindings.erase(savedBindings.end() - numBindings,
savedBindings.end());
}
bool ConstraintSystem::simplify() {
// While we have a constraint in the worklist, process it.
while (!ActiveConstraints.empty()) {
// Grab the next constraint from the worklist.
auto *constraint = &ActiveConstraints.front();
deactivateConstraint(constraint);
auto isSimplifiable =
constraint->getKind() != ConstraintKind::Disjunction &&
constraint->getKind() != ConstraintKind::Conjunction;
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState->getCurrentIndent());
log << "(considering -> ";
constraint->print(log, &getASTContext().SourceMgr,
solverState->getCurrentIndent());
log << "\n";
// {Dis, Con}junction are returned unsolved in \c simplifyConstraint() and
// handled separately by solver steps.
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2)
<< "(simplification result:\n";
}
}
// Simplify this constraint.
switch (simplifyConstraint(*constraint)) {
case SolutionKind::Error:
retireFailedConstraint(constraint);
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2) << "(outcome: error)\n";
}
break;
case SolutionKind::Solved:
if (solverState)
++solverState->NumSimplifiedConstraints;
retireConstraint(constraint);
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2)
<< "(outcome: simplified)\n";
}
break;
case SolutionKind::Unsolved:
if (solverState)
++solverState->NumUnsimplifiedConstraints;
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2)
<< "(outcome: unsolved)\n";
}
break;
}
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState->getCurrentIndent()) << ")\n";
}
// Check whether a constraint failed. If so, we're done.
if (failedConstraint) {
return true;
}
// If the current score is worse than the best score we've seen so far,
// there's no point in continuing. So don't.
if (worseThanBestSolution()) {
return true;
}
}
return false;
}
namespace {
template<typename T>
void truncate(std::vector<T> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
vec.erase(vec.begin() + newSize, vec.end());
}
/// Truncate the given small vector to the given new size.
template<typename T>
void truncate(SmallVectorImpl<T> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
vec.erase(vec.begin() + newSize, vec.end());
}
template<typename T, unsigned N>
void truncate(llvm::SmallSetVector<T, N> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
for (unsigned i = 0, n = vec.size() - newSize; i != n; ++i)
vec.pop_back();
}
template <typename K, typename V>
void truncate(llvm::MapVector<K, V> &map, unsigned newSize) {
assert(newSize <= map.size() && "Not a truncation!");
for (unsigned i = 0, n = map.size() - newSize; i != n; ++i)
map.pop_back();
}
template <typename K, typename V, unsigned N>
void truncate(llvm::SmallMapVector<K, V, N> &map, unsigned newSize) {
assert(newSize <= map.size() && "Not a truncation!");
for (unsigned i = 0, n = map.size() - newSize; i != n; ++i)
map.pop_back();
}
template <typename V>
void truncate(llvm::SetVector<V> &vector, unsigned newSize) {
while (vector.size() > newSize)
vector.pop_back();
}
} // end anonymous namespace
ConstraintSystem::SolverState::SolverState(
ConstraintSystem &cs, FreeTypeVariableBinding allowFreeTypeVariables)
: CS(cs), AllowFreeTypeVariables(allowFreeTypeVariables) {
assert(!CS.solverState &&
"Constraint system should not already have solver state!");
CS.solverState = this;
++NumSolutionAttempts;
SolutionAttempt = NumSolutionAttempts;
// Record active constraints for re-activation at the end of lifetime.
for (auto &constraint : cs.ActiveConstraints)
activeConstraints.push_back(&constraint);
// If we're supposed to debug a specific constraint solver attempt,
// turn on debugging now.
ASTContext &ctx = CS.getASTContext();
const auto &tyOpts = ctx.TypeCheckerOpts;
if (tyOpts.DebugConstraintSolverAttempt &&
tyOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
CS.Options |= ConstraintSystemFlags::DebugConstraints;
llvm::errs().indent(CS.solverState->getCurrentIndent())
<< "---Constraint system #" << SolutionAttempt << "---\n";
CS.print(llvm::errs());
}
}
ConstraintSystem::SolverState::~SolverState() {
assert((CS.solverState == this) &&
"Expected constraint system to have this solver state!");
CS.solverState = nullptr;
// If constraint system ended up being in an invalid state
// let's just drop the state without attempting to rollback.
if (CS.inInvalidState())
return;
// Make sure that all of the retired constraints have been returned
// to constraint system.
assert(!hasRetiredConstraints());
// Make sure that all of the generated constraints have been handled.
assert(generatedConstraints.empty());
// Re-activate constraints which were initially marked as "active"
// to restore original state of the constraint system.
for (auto *constraint : activeConstraints) {
// If the constraint is already active we can just move on.
if (constraint->isActive())
continue;
#ifndef NDEBUG
// Make sure that constraint is present in the "inactive" set
// before transferring it to "active".
auto existing = llvm::find_if(CS.InactiveConstraints,
[&constraint](const Constraint &inactive) {
return &inactive == constraint;
});
assert(existing != CS.InactiveConstraints.end() &&
"All constraints should be present in 'inactive' list");
#endif
// Transfer the constraint to "active" set.
CS.activateConstraint(constraint);
}
// If global constraint debugging is off and we are finished logging the
// current solution attempt, switch debugging back off.
const auto &tyOpts = CS.getASTContext().TypeCheckerOpts;
if (!tyOpts.DebugConstraintSolver &&
tyOpts.DebugConstraintSolverAttempt &&
tyOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
CS.Options -= ConstraintSystemFlags::DebugConstraints;
}
// Write our local statistics back to the overall statistics.
#define CS_STATISTIC(Name, Description) JOIN2(Overall,Name) += Name;
#include "swift/Sema/ConstraintSolverStats.def"
#if LLVM_ENABLE_STATS
// Update the "largest" statistics if this system is larger than the
// previous one.
// FIXME: This is not at all thread-safe.
if (NumStatesExplored > LargestNumStatesExplored.getValue()) {
LargestSolutionAttemptNumber = SolutionAttempt-1;
++LargestSolutionAttemptNumber;
#define CS_STATISTIC(Name, Description) \
JOIN2(Largest,Name) = Name-1; \
++JOIN2(Largest,Name);
#include "swift/Sema/ConstraintSolverStats.def"
}
#endif
}
ConstraintSystem::SolverScope::SolverScope(ConstraintSystem &cs)
: cs(cs), CGScope(cs.CG)
{
numTypeVariables = cs.TypeVariables.size();
numSavedBindings = cs.solverState->savedBindings.size();
numConstraintRestrictions = cs.ConstraintRestrictions.size();
numFixes = cs.Fixes.size();
numFixedRequirements = cs.FixedRequirements.size();
numDisjunctionChoices = cs.DisjunctionChoices.size();
numAppliedDisjunctions = cs.AppliedDisjunctions.size();
numArgumentMatchingChoices = cs.argumentMatchingChoices.size();
numOpenedTypes = cs.OpenedTypes.size();
numOpenedExistentialTypes = cs.OpenedExistentialTypes.size();
numPackExpansionEnvironments = cs.PackExpansionEnvironments.size();
numDefaultedConstraints = cs.DefaultedConstraints.size();
numAddedNodeTypes = cs.addedNodeTypes.size();
numAddedKeyPathComponentTypes = cs.addedKeyPathComponentTypes.size();
numDisabledConstraints = cs.solverState->getNumDisabledConstraints();
numFavoredConstraints = cs.solverState->getNumFavoredConstraints();
numResultBuilderTransformed = cs.resultBuilderTransformed.size();
numAppliedPropertyWrappers = cs.appliedPropertyWrappers.size();
numResolvedOverloads = cs.ResolvedOverloads.size();
numInferredClosureTypes = cs.ClosureTypes.size();
numContextualTypes = cs.contextualTypes.size();
numSolutionApplicationTargets = cs.solutionApplicationTargets.size();
numCaseLabelItems = cs.caseLabelItems.size();
numIsolatedParams = cs.isolatedParams.size();
numPreconcurrencyClosures = cs.preconcurrencyClosures.size();
numImplicitValueConversions = cs.ImplicitValueConversions.size();
numArgumentLists = cs.ArgumentLists.size();
numImplicitCallAsFunctionRoots = cs.ImplicitCallAsFunctionRoots.size();
PreviousScore = cs.CurrentScore;
cs.solverState->registerScope(this);
assert(!cs.failedConstraint && "Unexpected failed constraint!");
}
ConstraintSystem::SolverScope::~SolverScope() {
// Don't attempt to rollback from an incorrect state.
if (cs.inInvalidState())
return;
// Erase the end of various lists.
truncate(cs.TypeVariables, numTypeVariables);
truncate(cs.ResolvedOverloads, numResolvedOverloads);
// Restore bindings.
cs.restoreTypeVariableBindings(cs.solverState->savedBindings.size() -
numSavedBindings);
// Move any remaining active constraints into the inactive list.
if (!cs.ActiveConstraints.empty()) {
for (auto &constraint : cs.ActiveConstraints) {
constraint.setActive(false);
}
cs.InactiveConstraints.splice(cs.InactiveConstraints.end(),
cs.ActiveConstraints);
}
// Rollback all of the changes done to constraints by the current scope,
// e.g. add retired constraints back to the circulation and remove generated
// constraints introduced by the current scope.
cs.solverState->rollback(this);
// Remove any constraint restrictions.
truncate(cs.ConstraintRestrictions, numConstraintRestrictions);
// Remove any fixes.
truncate(cs.Fixes, numFixes);
// Remove any disjunction choices.
truncate(cs.DisjunctionChoices, numDisjunctionChoices);
// Remove any applied disjunctions.
truncate(cs.AppliedDisjunctions, numAppliedDisjunctions);
// Remove any argument matching choices;
truncate(cs.argumentMatchingChoices, numArgumentMatchingChoices);
// Remove any opened types.
truncate(cs.OpenedTypes, numOpenedTypes);
// Remove any conformances solver had to fix along
// the current path.
truncate(cs.FixedRequirements, numFixedRequirements);
// Remove any opened existential types.
truncate(cs.OpenedExistentialTypes, numOpenedExistentialTypes);
// Remove any pack expansion environments.
truncate(cs.PackExpansionEnvironments, numPackExpansionEnvironments);
// Remove any defaulted type variables.
truncate(cs.DefaultedConstraints, numDefaultedConstraints);
// Remove any node types we registered.
for (unsigned i :
reverse(range(numAddedNodeTypes, cs.addedNodeTypes.size()))) {
auto node = cs.addedNodeTypes[i].first;
if (Type oldType = cs.addedNodeTypes[i].second)
cs.NodeTypes[node] = oldType;
else
cs.NodeTypes.erase(node);
}
truncate(cs.addedNodeTypes, numAddedNodeTypes);
// Remove any node types we registered.
for (unsigned i : reverse(range(numAddedKeyPathComponentTypes,
cs.addedKeyPathComponentTypes.size()))) {
auto KeyPath = std::get<0>(cs.addedKeyPathComponentTypes[i]);
auto KeyPathIndex = std::get<1>(cs.addedKeyPathComponentTypes[i]);
if (Type oldType = std::get<2>(cs.addedKeyPathComponentTypes[i])) {
cs.KeyPathComponentTypes[{KeyPath, KeyPathIndex}] = oldType;
} else {
cs.KeyPathComponentTypes.erase({KeyPath, KeyPathIndex});
}
}
truncate(cs.addedKeyPathComponentTypes, numAddedKeyPathComponentTypes);
/// Remove any builder transformed closures.
truncate(cs.resultBuilderTransformed, numResultBuilderTransformed);
// Remove any applied property wrappers.
truncate(cs.appliedPropertyWrappers, numAppliedPropertyWrappers);
// Remove any inferred closure types (e.g. used in result builder body).
truncate(cs.ClosureTypes, numInferredClosureTypes);
// Remove any contextual types.
truncate(cs.contextualTypes, numContextualTypes);
// Remove any solution application targets.
truncate(cs.solutionApplicationTargets, numSolutionApplicationTargets);
// Remove any case label item infos.
truncate(cs.caseLabelItems, numCaseLabelItems);
// Remove any isolated parameters.
truncate(cs.isolatedParams, numIsolatedParams);
// Remove any preconcurrency closures.
truncate(cs.preconcurrencyClosures, numPreconcurrencyClosures);
// Remove any implicit value conversions.
truncate(cs.ImplicitValueConversions, numImplicitValueConversions);
// Remove any argument lists no longer in scope.
truncate(cs.ArgumentLists, numArgumentLists);
// Remove any implicitly generated root expressions for `.callAsFunction`
// which are no longer in scope.
truncate(cs.ImplicitCallAsFunctionRoots, numImplicitCallAsFunctionRoots);
// Reset the previous score.
cs.CurrentScore = PreviousScore;
// Clear out other "failed" state.
cs.failedConstraint = nullptr;
}
/// Solve the system of constraints.
///
/// \param allowFreeTypeVariables How to bind free type variables in
/// the solution.
///
/// \returns a solution if a single unambiguous one could be found, or None if
/// ambiguous or unsolvable.
Optional<Solution>
ConstraintSystem::solveSingle(FreeTypeVariableBinding allowFreeTypeVariables,
bool allowFixes) {
SolverState state(*this, allowFreeTypeVariables);
state.recordFixes = allowFixes;
SmallVector<Solution, 4> solutions;
solveImpl(solutions);
filterSolutions(solutions);
if (solutions.size() != 1)
return Optional<Solution>();
return std::move(solutions[0]);
}
bool ConstraintSystem::Candidate::solve(
llvm::SmallSetVector<OverloadSetRefExpr *, 4> &shrunkExprs) {
// Don't attempt to solve candidate if there is closure
// expression involved, because it's handled specially
// by parent constraint system (e.g. parameter lists).
bool containsClosure = false;
E->forEachChildExpr([&](Expr *childExpr) -> Expr * {
if (isa<ClosureExpr>(childExpr)) {
containsClosure = true;
return nullptr;
}
return childExpr;
});
if (containsClosure)
return false;
auto cleanupImplicitExprs = [&](Expr *expr) {
expr->forEachChildExpr([&](Expr *childExpr) -> Expr * {
Type type = childExpr->getType();
if (childExpr->isImplicit() && type && type->hasTypeVariable())
childExpr->setType(Type());
return childExpr;
});
};
// Allocate new constraint system for sub-expression.
ConstraintSystem cs(DC, None);
// Set up expression type checker timer for the candidate.
cs.Timer.emplace(E, cs);
// Generate constraints for the new system.
if (auto generatedExpr = cs.generateConstraints(E, DC)) {
E = generatedExpr;
} else {
// Failure to generate constraint system for sub-expression
// means we can't continue solving sub-expressions.
cleanupImplicitExprs(E);
return true;
}
// If this candidate is too complex given the number
// of the domains we have reduced so far, let's bail out early.
if (isTooComplexGiven(&cs, shrunkExprs))
return false;
auto &ctx = cs.getASTContext();
if (cs.isDebugMode()) {
auto &log = llvm::errs();
auto indent = cs.solverState ? cs.solverState->getCurrentIndent() : 0;
log.indent(indent) << "--- Solving candidate for shrinking at ";
auto R = E->getSourceRange();
if (R.isValid()) {
R.print(log, ctx.SourceMgr, /*PrintText=*/ false);
} else {
log << "<invalid range>";
}
log << " ---\n";
E->dump(log, indent);
log << '\n';
cs.print(log);
}
// If there is contextual type present, add an explicit "conversion"
// constraint to the system.
if (!CT.isNull()) {
auto constraintKind = ConstraintKind::Conversion;
if (CTP == CTP_CallArgument)
constraintKind = ConstraintKind::ArgumentConversion;
cs.addConstraint(constraintKind, cs.getType(E), CT,
cs.getConstraintLocator(E), /*isFavored=*/true);
}
// Try to solve the system and record all available solutions.
llvm::SmallVector<Solution, 2> solutions;
{
SolverState state(cs, FreeTypeVariableBinding::Allow);
// Use solve which doesn't try to filter solution list.
// Because we want the whole set of possible domain choices.
cs.solveImpl(solutions);
}
if (cs.isDebugMode()) {
auto &log = llvm::errs();
auto indent = cs.solverState ? cs.solverState->getCurrentIndent() : 0;
if (solutions.empty()) {
log << "\n";
log.indent(indent) << "--- No Solutions ---\n";
} else {
log << "\n";
log.indent(indent) << "--- Solutions ---\n";
for (unsigned i = 0, n = solutions.size(); i != n; ++i) {
auto &solution = solutions[i];
log << "\n";
log.indent(indent) << "--- Solution #" << i << " ---\n";
solution.dump(log, indent);
}
}
}
// Record found solutions as suggestions.
this->applySolutions(solutions, shrunkExprs);
// Let's double-check if we have any implicit expressions
// with type variables and nullify their types.
cleanupImplicitExprs(E);
// No solutions for the sub-expression means that either main expression
// needs salvaging or it's inconsistent (read: doesn't have solutions).
return solutions.empty();
}
void ConstraintSystem::Candidate::applySolutions(
llvm::SmallVectorImpl<Solution> &solutions,
llvm::SmallSetVector<OverloadSetRefExpr *, 4> &shrunkExprs) const {
// A collection of OSRs with their newly reduced domains,
// it's domains are sets because multiple solutions can have the same
// choice for one of the type variables, and we want no duplication.
llvm::SmallDenseMap<OverloadSetRefExpr *, llvm::SmallSetVector<ValueDecl *, 2>>
domains;
for (auto &solution : solutions) {
auto &score = solution.getFixedScore();
// Avoid any solutions with implicit value conversions
// because they might get reverted later when more context
// becomes available.
if (score.Data[SK_ImplicitValueConversion] > 0)
continue;
for (auto choice : solution.overloadChoices) {
// Some of the choices might not have locators.
if (!choice.getFirst())
continue;
auto anchor = choice.getFirst()->getAnchor();
auto *OSR = getAsExpr<OverloadSetRefExpr>(anchor);
// Anchor is not available or expression is not an overload set.
if (!OSR)
continue;
auto overload = choice.getSecond().choice;
auto type = overload.getDecl()->getInterfaceType();
// One of the solutions has polymorphic type associated with one of its
// type variables. Such functions can only be properly resolved
// via complete expression, so we'll have to forget solutions
// we have already recorded. They might not include all viable overload
// choices.
if (type->is<GenericFunctionType>()) {
return;
}
domains[OSR].insert(overload.getDecl());
}
}
// Reduce the domains.
for (auto &domain : domains) {
auto OSR = domain.getFirst();
auto &choices = domain.getSecond();
// If the domain wasn't reduced, skip it.
if (OSR->getDecls().size() == choices.size()) continue;
// Update the expression with the reduced domain.
MutableArrayRef<ValueDecl *> decls(
Allocator.Allocate<ValueDecl *>(choices.size()),
choices.size());
std::uninitialized_copy(choices.begin(), choices.end(), decls.begin());
OSR->setDecls(decls);
// Record successfully shrunk expression.
shrunkExprs.insert(OSR);
}
}
void ConstraintSystem::shrink(Expr *expr) {
if (getASTContext().TypeCheckerOpts.SolverDisableShrink)
return;
using DomainMap = llvm::SmallDenseMap<Expr *, ArrayRef<ValueDecl *>>;
// A collection of original domains of all of the expressions,
// so they can be restored in case of failure.
DomainMap domains;
struct ExprCollector : public ASTWalker {
Expr *PrimaryExpr;
// The primary constraint system.
ConstraintSystem &CS;
// All of the sub-expressions which are suitable to be solved
// separately from the main system e.g. binary expressions, collections,
// function calls, coercions etc.
llvm::SmallVector<Candidate, 4> Candidates;
// Counts the number of overload sets present in the tree so far.
// Note that the traversal is depth-first.
llvm::SmallVector<std::pair<Expr *, unsigned>, 4> ApplyExprs;
// A collection of original domains of all of the expressions,
// so they can be restored in case of failure.
DomainMap &Domains;
ExprCollector(Expr *expr, ConstraintSystem &cs, DomainMap &domains)
: PrimaryExpr(expr), CS(cs), Domains(domains) {}
MacroWalking getMacroWalkingBehavior() const override {
return MacroWalking::Arguments;
}
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
// A dictionary expression is just a set of tuples; try to solve ones
// that have overload sets.
if (auto collectionExpr = dyn_cast<CollectionExpr>(expr)) {
visitCollectionExpr(collectionExpr,
CS.getContextualType(expr, /*forConstraint=*/false),
CS.getContextualTypePurpose(expr));
// Don't try to walk into the dictionary.
return Action::SkipChildren(expr);
}
// Let's not attempt to type-check closures or expressions
// which constrain closures, because they require special handling
// when dealing with context and parameters declarations.
if (isa<ClosureExpr>(expr)) {
return Action::SkipChildren(expr);
}
// Similar to 'ClosureExpr', 'TapExpr' has a 'VarDecl' the type of which
// is determined by type checking the parent interpolated string literal.
if (isa<TapExpr>(expr)) {
return Action::SkipChildren(expr);
}
// Same as TapExpr and ClosureExpr, we'll handle SingleValueStmtExprs
// separately.
if (isa<SingleValueStmtExpr>(expr))
return Action::SkipChildren(expr);
if (auto coerceExpr = dyn_cast<CoerceExpr>(expr)) {
if (coerceExpr->isLiteralInit())
ApplyExprs.push_back({coerceExpr, 1});
visitCoerceExpr(coerceExpr);
return Action::SkipChildren(expr);
}
if (auto OSR = dyn_cast<OverloadSetRefExpr>(expr)) {
Domains[OSR] = OSR->getDecls();
}
if (auto applyExpr = dyn_cast<ApplyExpr>(expr)) {
auto func = applyExpr->getFn();
// Let's record this function application for post-processing
// as well as if it contains overload set, see walkToExprPost.
ApplyExprs.push_back(
{applyExpr, isa<OverloadSetRefExpr>(func) || isa<TypeExpr>(func)});
}
return Action::Continue(expr);
}
/// Determine whether this is an arithmetic expression comprised entirely
/// of literals.
static bool isArithmeticExprOfLiterals(Expr *expr) {
expr = expr->getSemanticsProvidingExpr();
if (auto prefix = dyn_cast<PrefixUnaryExpr>(expr))
return isArithmeticExprOfLiterals(prefix->getOperand());
if (auto postfix = dyn_cast<PostfixUnaryExpr>(expr))
return isArithmeticExprOfLiterals(postfix->getOperand());
if (auto binary = dyn_cast<BinaryExpr>(expr))
return isArithmeticExprOfLiterals(binary->getLHS()) &&
isArithmeticExprOfLiterals(binary->getRHS());
return isa<IntegerLiteralExpr>(expr) || isa<FloatLiteralExpr>(expr);
}
PostWalkResult<Expr *> walkToExprPost(Expr *expr) override {
auto isSrcOfPrimaryAssignment = [&](Expr *expr) -> bool {
if (auto *AE = dyn_cast<AssignExpr>(PrimaryExpr))
return expr == AE->getSrc();
return false;
};
if (expr == PrimaryExpr || isSrcOfPrimaryAssignment(expr)) {
// If this is primary expression and there are no candidates
// to be solved, let's not record it, because it's going to be
// solved regardless.
if (Candidates.empty())
return Action::Continue(expr);
auto contextualType = CS.getContextualType(expr,
/*forConstraint=*/false);
// If there is a contextual type set for this expression.
if (!contextualType.isNull()) {
Candidates.push_back(Candidate(CS, PrimaryExpr, contextualType,
CS.getContextualTypePurpose(expr)));
return Action::Continue(expr);
}
// Or it's a function application or assignment with other candidates
// present. Assignment should be easy to solve because we'd get a
// contextual type from the destination expression, otherwise shrink
// might produce incorrect results without considering aforementioned
// destination type.
if (isa<ApplyExpr>(expr) || isa<AssignExpr>(expr)) {
Candidates.push_back(Candidate(CS, PrimaryExpr));
return Action::Continue(expr);
}
}
if (!isa<ApplyExpr>(expr))
return Action::Continue(expr);
unsigned numOverloadSets = 0;
// Let's count how many overload sets do we have.
while (!ApplyExprs.empty()) {
auto &application = ApplyExprs.back();
auto applyExpr = application.first;
// Add overload sets tracked by current expression.
numOverloadSets += application.second;
ApplyExprs.pop_back();
// We've found the current expression, so record the number of
// overloads.
if (expr == applyExpr) {
ApplyExprs.push_back({applyExpr, numOverloadSets});
break;
}
}
// If there are fewer than two overloads in the chain
// there is no point of solving this expression,
// because we won't be able to reduce its domain.
if (numOverloadSets > 1 && !isArithmeticExprOfLiterals(expr))
Candidates.push_back(Candidate(CS, expr));
return Action::Continue(expr);
}
private:
/// Extract type of the element from given collection type.
///
/// \param collection The type of the collection container.
///
/// \returns Null type, ErrorType or UnresolvedType on failure,
/// properly constructed type otherwise.
Type extractElementType(Type collection) {
auto &ctx = CS.getASTContext();
if (!collection || collection->hasError())
return collection;
auto base = collection.getPointer();
auto isInvalidType = [](Type type) -> bool {
return type.isNull() || type->hasUnresolvedType() ||
type->hasError();
};
// Array type.
if (auto array = dyn_cast<ArraySliceType>(base)) {
auto elementType = array->getBaseType();
// If base type is invalid let's return error type.
return elementType;
}
// Map or Set or any other associated collection type.
if (auto boundGeneric = dyn_cast<BoundGenericType>(base)) {
if (boundGeneric->hasUnresolvedType())
return boundGeneric;
llvm::SmallVector<TupleTypeElt, 2> params;
for (auto &type : boundGeneric->getGenericArgs()) {
// One of the generic arguments in invalid or unresolved.
if (isInvalidType(type))
return type;
params.push_back(type);
}
// If there is just one parameter, let's return it directly.
if (params.size() == 1)
return params[0].getType();
return TupleType::get(params, ctx);
}
return Type();
}
bool isSuitableCollection(TypeRepr *collectionTypeRepr) {
// Only generic identifier, array or dictionary.
switch (collectionTypeRepr->getKind()) {
case TypeReprKind::GenericIdent:
case TypeReprKind::Array:
case TypeReprKind::Dictionary:
return true;
default:
return false;
}
}
void visitCoerceExpr(CoerceExpr *coerceExpr) {
auto subExpr = coerceExpr->getSubExpr();
// Coerce expression is valid only if it has sub-expression.
if (!subExpr) return;
unsigned numOverloadSets = 0;
subExpr->forEachChildExpr([&](Expr *childExpr) -> Expr * {
if (isa<OverloadSetRefExpr>(childExpr)) {
++numOverloadSets;
return childExpr;
}
if (auto nestedCoerceExpr = dyn_cast<CoerceExpr>(childExpr)) {
visitCoerceExpr(nestedCoerceExpr);
// Don't walk inside of nested coercion expression directly,
// that is be done by recursive call to visitCoerceExpr.
return nullptr;
}
// If sub-expression we are trying to coerce to type is a collection,
// let's allow collector discover it with assigned contextual type
// of coercion, which allows collections to be solved in parts.
if (auto collectionExpr = dyn_cast<CollectionExpr>(childExpr)) {
auto *const typeRepr = coerceExpr->getCastTypeRepr();
if (typeRepr && isSuitableCollection(typeRepr)) {
const auto coercionType = TypeResolution::resolveContextualType(
typeRepr, CS.DC, None,
// FIXME: Should we really be unconditionally complaining
// about unbound generics and placeholders here? For
// example:
// let foo: [Array<Float>] = [[0], [1], [2]] as [Array]
// let foo: [Array<Float>] = [[0], [1], [2]] as [Array<_>]
/*unboundTyOpener*/ nullptr, /*placeholderHandler*/ nullptr,
/*packElementOpener*/ nullptr);
// Looks like coercion type is invalid, let's skip this sub-tree.
if (coercionType->hasError())
return nullptr;
// Visit collection expression inline.
visitCollectionExpr(collectionExpr, coercionType,
CTP_CoerceOperand);
}
}
return childExpr;
});
// It's going to be inefficient to try and solve
// coercion in parts, so let's just make it a candidate directly,
// if it contains at least a single overload set.
if (numOverloadSets > 0)
Candidates.push_back(Candidate(CS, coerceExpr));
}
void visitCollectionExpr(CollectionExpr *collectionExpr,
Type contextualType = Type(),
ContextualTypePurpose CTP = CTP_Unused) {
// If there is a contextual type set for this collection,
// let's propagate it to the candidate.
if (!contextualType.isNull()) {
auto elementType = extractElementType(contextualType);
// If we couldn't deduce element type for the collection, let's
// not attempt to solve it.
if (!elementType ||
elementType->hasError() ||
elementType->hasUnresolvedType())
return;
contextualType = elementType;
}
for (auto element : collectionExpr->getElements()) {
unsigned numOverloads = 0;
element->walk(OverloadSetCounter(numOverloads));
// There are no overload sets in the element; skip it.
if (numOverloads == 0)
continue;
// Record each of the collection elements, which passed
// number of overload sets rule, as a candidate for solving
// with contextual type of the collection.
Candidates.push_back(Candidate(CS, element, contextualType, CTP));
}
}
};
ExprCollector collector(expr, *this, domains);
// Collect all of the binary/unary and call sub-expressions
// so we can start solving them separately.
expr->walk(collector);
llvm::SmallSetVector<OverloadSetRefExpr *, 4> shrunkExprs;
for (auto &candidate : collector.Candidates) {
// If there are no results, let's forget everything we know about the
// system so far. This actually is ok, because some of the expressions
// might require manual salvaging.
if (candidate.solve(shrunkExprs)) {
// Let's restore all of the original OSR domains for this sub-expression,
// this means that we can still make forward progress with solving of the
// top sub-expressions.
candidate.getExpr()->forEachChildExpr([&](Expr *childExpr) -> Expr * {
if (auto OSR = dyn_cast<OverloadSetRefExpr>(childExpr)) {
auto domain = domains.find(OSR);
if (domain == domains.end())
return childExpr;
OSR->setDecls(domain->getSecond());
shrunkExprs.remove(OSR);
}
return childExpr;
});
}
}
// Once "shrinking" is done let's re-allocate final version of
// the candidate list to the permanent arena, so it could
// survive even after primary constraint system is destroyed.
for (auto &OSR : shrunkExprs) {
auto choices = OSR->getDecls();
auto decls =
getASTContext().AllocateUninitialized<ValueDecl *>(choices.size());
std::uninitialized_copy(choices.begin(), choices.end(), decls.begin());
OSR->setDecls(decls);
}
}
static bool debugConstraintSolverForTarget(
ASTContext &C, SolutionApplicationTarget target) {
if (C.TypeCheckerOpts.DebugConstraintSolver)
return true;
if (C.TypeCheckerOpts.DebugConstraintSolverOnLines.empty())
// No need to compute the line number to find out it's not present.
return false;
// Get the lines on which the target starts and ends.
unsigned startLine = 0, endLine = 0;
SourceRange range = target.getSourceRange();
if (range.isValid()) {
auto charRange = Lexer::getCharSourceRangeFromSourceRange(C.SourceMgr, range);
startLine =
C.SourceMgr.getLineAndColumnInBuffer(charRange.getStart()).first;
endLine = C.SourceMgr.getLineAndColumnInBuffer(charRange.getEnd()).first;
}
assert(startLine <= endLine && "expr ends before it starts?");
auto &lines = C.TypeCheckerOpts.DebugConstraintSolverOnLines;
assert(std::is_sorted(lines.begin(), lines.end()) &&
"DebugConstraintSolverOnLines sorting invariant violated");
// Check if `lines` contains at least one line `L` where
// `startLine <= L <= endLine`. If it does, `lower_bound(startLine)` and
// `upper_bound(endLine)` will be different.
auto startBound = llvm::lower_bound(lines, startLine);
auto endBound = std::upper_bound(startBound, lines.end(), endLine);
return startBound != endBound;
}
Optional<std::vector<Solution>> ConstraintSystem::solve(
SolutionApplicationTarget &target,
FreeTypeVariableBinding allowFreeTypeVariables
) {
llvm::SaveAndRestore<ConstraintSystemOptions> debugForExpr(Options);
if (debugConstraintSolverForTarget(getASTContext(), target)) {
Options |= ConstraintSystemFlags::DebugConstraints;
}
/// Dump solutions for debugging purposes.
auto dumpSolutions = [&](const SolutionResult &result) {
// Debug-print the set of solutions.
if (isDebugMode()) {
auto &log = llvm::errs();
auto indent = solverState ? solverState->getCurrentIndent() : 0;
if (result.getKind() == SolutionResult::Success) {
log << "\n";
log.indent(indent) << "---Solution---\n";
result.getSolution().dump(llvm::errs(), indent);
} else if (result.getKind() == SolutionResult::Ambiguous) {
auto solutions = result.getAmbiguousSolutions();
for (unsigned i : indices(solutions)) {
log << "\n";
log.indent(indent) << "--- Solution #" << i << " ---\n";
solutions[i].dump(llvm::errs(), indent);
}
}
}
};
auto reportSolutionsToSolutionCallback = [&](const SolutionResult &result) {
if (!getASTContext().SolutionCallback) {
return;
}
switch (result.getKind()) {
case SolutionResult::Success:
getASTContext().SolutionCallback->sawSolution(result.getSolution());
break;
case SolutionResult::Ambiguous:
for (auto &solution : result.getAmbiguousSolutions()) {
getASTContext().SolutionCallback->sawSolution(solution);
}
break;
default:
break;
}
};
// Take up to two attempts at solving the system. The first attempts to
// solve a system that is expected to be well-formed, the second kicks in
// when there is an error and attempts to salvage an ill-formed program.
for (unsigned stage = 0; stage != 2; ++stage) {
auto solution = (stage == 0)
? solveImpl(target, allowFreeTypeVariables)
: salvage();
switch (solution.getKind()) {
case SolutionResult::Success: {
// Return the successful solution.
dumpSolutions(solution);
reportSolutionsToSolutionCallback(solution);
std::vector<Solution> result;
result.push_back(std::move(solution).takeSolution());
return std::move(result);
}
case SolutionResult::Error:
maybeProduceFallbackDiagnostic(target);
return None;
case SolutionResult::TooComplex: {
auto affectedRange = solution.getTooComplexAt();
// If affected range is unknown, let's use whole
// target.
if (!affectedRange)
affectedRange = target.getSourceRange();
getASTContext()
.Diags.diagnose(affectedRange->Start, diag::expression_too_complex)
.highlight(*affectedRange);
solution.markAsDiagnosed();
return None;
}
case SolutionResult::Ambiguous:
// If salvaging produced an ambiguous result, it has already been
// diagnosed.
if (stage == 1) {
reportSolutionsToSolutionCallback(solution);
solution.markAsDiagnosed();
return None;
}
if (Options.contains(
ConstraintSystemFlags::AllowUnresolvedTypeVariables)) {
dumpSolutions(solution);
auto ambiguousSolutions = std::move(solution).takeAmbiguousSolutions();
std::vector<Solution> result(
std::make_move_iterator(ambiguousSolutions.begin()),
std::make_move_iterator(ambiguousSolutions.end()));
return std::move(result);
}
LLVM_FALLTHROUGH;
case SolutionResult::UndiagnosedError:
if (shouldSuppressDiagnostics()) {
reportSolutionsToSolutionCallback(solution);
solution.markAsDiagnosed();
return None;
}
if (stage == 1) {
diagnoseFailureFor(target);
reportSolutionsToSolutionCallback(solution);
solution.markAsDiagnosed();
return None;
}
// Loop again to try to salvage.
solution.markAsDiagnosed();
continue;
}
}
llvm_unreachable("Loop always returns");
}
SolutionResult
ConstraintSystem::solveImpl(SolutionApplicationTarget &target,
FreeTypeVariableBinding allowFreeTypeVariables) {
if (isDebugMode()) {
auto &log = llvm::errs();
log << "---Constraint solving at ";
auto R = target.getSourceRange();
if (R.isValid()) {
R.print(log, getASTContext().SourceMgr, /*PrintText=*/ false);
} else {
log << "<invalid range>";
}
log << "---\n";
}
assert(!solverState && "cannot be used directly");
// Set up the expression type checker timer.
if (Expr *expr = target.getAsExpr())
Timer.emplace(expr, *this);
if (generateConstraints(target, allowFreeTypeVariables))
return SolutionResult::forError();;
// Try to solve the constraint system using computed suggestions.
SmallVector<Solution, 4> solutions;
solve(solutions, allowFreeTypeVariables);
if (isTooComplex(solutions))
return SolutionResult::forTooComplex(getTooComplexRange());
switch (solutions.size()) {
case 0:
return SolutionResult::forUndiagnosedError();
case 1:
return SolutionResult::forSolved(std::move(solutions.front()));
default:
return SolutionResult::forAmbiguous(solutions);
}
}
bool ConstraintSystem::solve(SmallVectorImpl<Solution> &solutions,
FreeTypeVariableBinding allowFreeTypeVariables) {
// Set up solver state.
SolverState state(*this, allowFreeTypeVariables);
// Solve the system.
solveImpl(solutions);
if (isDebugMode()) {
auto &log = llvm::errs();
log << "\n---Solver statistics---\n";
log << "Total number of scopes explored: " << solverState->NumStatesExplored << "\n";
log << "Maximum depth reached while exploring solutions: " << solverState->maxDepth << "\n";
if (Timer) {
auto timeInMillis =
1000 * Timer->getElapsedProcessTimeInFractionalSeconds();
log << "Time: " << timeInMillis << "ms\n";
}
}
// Filter deduced solutions, try to figure out if there is
// a single best solution to use, if not explicitly disabled
// by constraint system options.
filterSolutions(solutions);
// We fail if there is no solution or the expression was too complex.
return solutions.empty() || isTooComplex(solutions);
}
void ConstraintSystem::solveImpl(SmallVectorImpl<Solution> &solutions) {
assert(solverState);
setPhase(ConstraintSystemPhase::Solving);
SWIFT_DEFER { setPhase(ConstraintSystemPhase::Finalization); };
// If constraint system failed while trying to
// genenerate constraints, let's stop right here.
if (failedConstraint)
return;
// Attempt to solve a constraint system already in an invalid
// state should be immediately aborted.
if (inInvalidState()) {
solutions.clear();
return;
}
// Allocate new solver scope, so constraint system
// could be restored to its original state afterwards.
// Otherwise there is a risk that some of the constraints
// are not going to be re-introduced to the system.
SolverScope scope(*this);
SmallVector<std::unique_ptr<SolverStep>, 16> workList;
// First step is always wraps whole constraint system.
workList.push_back(std::make_unique<SplitterStep>(*this, solutions));
// Indicate whether previous step in the stack has failed
// (returned StepResult::Kind = Error), this is useful to
// propagate failures when unsolved steps are re-taken.
bool prevFailed = false;
// Advance the solver by taking a given step, which might involve
// a preliminary "setup", if this is the first time this step is taken.
auto advance = [](SolverStep *step, bool prevFailed) -> StepResult {
auto currentState = step->getState();
if (currentState == StepState::Setup) {
step->setup();
step->transitionTo(StepState::Ready);
}
currentState = step->getState();
step->transitionTo(StepState::Running);
return currentState == StepState::Ready ? step->take(prevFailed)
: step->resume(prevFailed);
};
// Execute steps in LIFO order, which means that
// each individual step would either end up producing
// a solution, or producing another set of mergeable
// steps to take before arriving to solution.
while (!workList.empty()) {
auto &step = workList.back();
// Now let's try to advance to the next step or re-take previous,
// which should produce another steps to follow,
// or error, which means that current path is inconsistent.
{
auto result = advance(step.get(), prevFailed);
// If execution of this step let constraint system in an
// invalid state, let's drop all of the solutions and abort.
if (inInvalidState()) {
solutions.clear();
return;
}
switch (result.getKind()) {
// It was impossible to solve this step, let's note that
// for followup steps, to propagate the error.
case SolutionKind::Error:
LLVM_FALLTHROUGH;
// Step has been solved successfully by either
// producing a partial solution, or more steps
// toward that solution.
case SolutionKind::Solved: {
workList.pop_back();
break;
}
// Keep this step in the work list to return to it
// once all other steps are done, this could be a
// disjunction which has to peek a new choice until
// it completely runs out of choices, or type variable
// binding.
case SolutionKind::Unsolved:
break;
}
prevFailed = result.getKind() == SolutionKind::Error;
result.transfer(workList);
}
}
}
void ConstraintSystem::solveForCodeCompletion(
SmallVectorImpl<Solution> &solutions) {
{
SolverState state(*this, FreeTypeVariableBinding::Disallow);
// Enable "diagnostic mode" by default, this means that
// solver would produce "fixed" solutions alongside valid
// ones, which helps code completion to rank choices.
state.recordFixes = true;
solveImpl(solutions);
}
if (isDebugMode()) {
auto &log = llvm::errs();
auto indent = solverState ? solverState->getCurrentIndent() : 0;
log.indent(indent) << "--- Discovered " << solutions.size()
<< " solutions ---\n";
for (const auto &solution : solutions) {
log.indent(indent) << "--- Solution ---\n";
solution.dump(log, indent);
}
}
return;
}
bool ConstraintSystem::solveForCodeCompletion(
SolutionApplicationTarget &target, SmallVectorImpl<Solution> &solutions) {
if (auto *expr = target.getAsExpr()) {
// Tell the constraint system what the contextual type is.
setContextualType(expr, target.getExprContextualTypeLoc(),
target.getExprContextualTypePurpose());
// Set up the expression type checker timer.
Timer.emplace(expr, *this);
shrink(expr);
}
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState ? solverState->getCurrentIndent() : 0)
<< "--- Code Completion ---\n";
}
if (generateConstraints(target))
return false;
solveForCodeCompletion(solutions);
return true;
}
void ConstraintSystem::collectDisjunctions(
SmallVectorImpl<Constraint *> &disjunctions) {
for (auto &constraint : InactiveConstraints) {
if (constraint.getKind() == ConstraintKind::Disjunction)
disjunctions.push_back(&constraint);
}
}
ConstraintSystem::SolutionKind
ConstraintSystem::filterDisjunction(
Constraint *disjunction, bool restoreOnFail,
llvm::function_ref<bool(Constraint *)> pred) {
assert(disjunction->getKind() == ConstraintKind::Disjunction);
SmallVector<Constraint *, 4> constraintsToRestoreOnFail;
unsigned choiceIdx = 0;
unsigned numEnabledTerms = 0;
ASTContext &ctx = getASTContext();
for (unsigned constraintIdx : indices(disjunction->getNestedConstraints())) {
auto constraint = disjunction->getNestedConstraints()[constraintIdx];
// Skip already-disabled constraints. Let's treat disabled
// choices which have a fix as "enabled" ones here, so we can
// potentially infer some type information from them.
if (constraint->isDisabled() && !constraint->getFix())
continue;
if (pred(constraint)) {
++numEnabledTerms;
choiceIdx = constraintIdx;
continue;
}
if (isDebugMode()) {
auto indent = (solverState ? solverState->getCurrentIndent() : 0) + 4;
llvm::errs().indent(indent) << "(disabled disjunction term ";
constraint->print(llvm::errs(), &ctx.SourceMgr, indent);
llvm::errs().indent(indent) << ")\n";
}
if (restoreOnFail)
constraintsToRestoreOnFail.push_back(constraint);
if (solverState)
solverState->disableConstraint(constraint);
else
constraint->setDisabled();
}
switch (numEnabledTerms) {
case 0:
for (auto constraint : constraintsToRestoreOnFail) {
constraint->setEnabled();
}
return SolutionKind::Error;
case 1: {
// Only a single constraint remains. Retire the disjunction and make
// the remaining constraint active.
auto choice = disjunction->getNestedConstraints()[choiceIdx];
// This can only happen when subscript syntax is used to lookup
// something which doesn't exist in type marked with
// `@dynamicMemberLookup`.
// Since filtering currently runs as part of the `applicable function`
// constraint processing, "keypath dynamic member lookup" choice can't
// be attempted in-place because that would also try to operate on that
// constraint, so instead let's keep the disjunction, but disable all
// unviable choices.
if (choice->getOverloadChoice().isKeyPathDynamicMemberLookup()) {
// Early simplification of the "keypath dynamic member lookup" choice
// is impossible because it requires constraints associated with
// subscript index expression to be present.
if (Phase == ConstraintSystemPhase::ConstraintGeneration)
return SolutionKind::Unsolved;
for (auto *currentChoice : disjunction->getNestedConstraints()) {
if (currentChoice != choice)
solverState->disableConstraint(currentChoice);
}
return SolutionKind::Solved;
}
// Retire the disjunction. It's been solved.
retireConstraint(disjunction);
// Note the choice we made and simplify it. This introduces the
// new constraint into the system.
if (disjunction->shouldRememberChoice()) {
recordDisjunctionChoice(disjunction->getLocator(), choiceIdx);
}
if (isDebugMode()) {
auto indent = (solverState ? solverState->getCurrentIndent() : 0) + 4;
llvm::errs().indent(indent)
<< "(introducing single enabled disjunction term ";
choice->print(llvm::errs(), &ctx.SourceMgr, indent);
llvm::errs().indent(indent) << ")\n";
}
simplifyDisjunctionChoice(choice);
return failedConstraint ? SolutionKind::Unsolved : SolutionKind::Solved;
}
default:
return SolutionKind::Unsolved;
}
}
// Attempt to find a disjunction of bind constraints where all options
// in the disjunction are binding the same type variable.
//
// Prefer disjunctions where the bound type variable is also the
// right-hand side of a conversion constraint, since having a concrete
// type that we're converting to can make it possible to split the
// constraint system into multiple ones.
static Constraint *selectBestBindingDisjunction(
ConstraintSystem &cs, SmallVectorImpl<Constraint *> &disjunctions) {
if (disjunctions.empty())
return nullptr;
auto getAsTypeVar = [&cs](Type type) {
return cs.simplifyType(type)->getRValueType()->getAs<TypeVariableType>();
};
Constraint *firstBindDisjunction = nullptr;
for (auto *disjunction : disjunctions) {
auto choices = disjunction->getNestedConstraints();
assert(!choices.empty());
auto *choice = choices.front();
if (choice->getKind() != ConstraintKind::Bind)
continue;
// We can judge disjunction based on the single choice
// because all of choices (of bind overload set) should
// have the same left-hand side.
// Only do this for simple type variable bindings, not for
// bindings like: ($T1) -> $T2 bind String -> Int
auto *typeVar = getAsTypeVar(choice->getFirstType());
if (!typeVar)
continue;
if (!firstBindDisjunction)
firstBindDisjunction = disjunction;
auto constraints = cs.getConstraintGraph().gatherConstraints(
typeVar, ConstraintGraph::GatheringKind::EquivalenceClass,
[](Constraint *constraint) {
return constraint->getKind() == ConstraintKind::Conversion;
});
for (auto *constraint : constraints) {
if (typeVar == getAsTypeVar(constraint->getSecondType()))
return disjunction;
}
}
// If we had any binding disjunctions, return the first of
// those. These ensure that we attempt to bind types earlier than
// trying the elements of other disjunctions, which can often mean
// we fail faster.
return firstBindDisjunction;
}
Optional<std::pair<Constraint *, unsigned>>
ConstraintSystem::findConstraintThroughOptionals(
TypeVariableType *typeVar, OptionalWrappingDirection optionalDirection,
llvm::function_ref<bool(Constraint *, TypeVariableType *)> predicate) {
unsigned numOptionals = 0;
auto *rep = getRepresentative(typeVar);
SmallPtrSet<TypeVariableType *, 4> visitedVars;
while (visitedVars.insert(rep).second) {
// Look for a disjunction that binds this type variable to an overload set.
TypeVariableType *optionalObjectTypeVar = nullptr;
auto constraints = getConstraintGraph().gatherConstraints(
rep, ConstraintGraph::GatheringKind::EquivalenceClass,
[&](Constraint *match) {
// If we have an "optional object of" constraint, we may need to
// look through it to find the constraint we're looking for.
if (match->getKind() != ConstraintKind::OptionalObject)
return predicate(match, rep);
switch (optionalDirection) {
case OptionalWrappingDirection::Promote: {
// We want to go from T to T?, so check if we're on the RHS, and
// move over to the LHS if we can.
auto rhsTypeVar = match->getSecondType()->getAs<TypeVariableType>();
if (rhsTypeVar && getRepresentative(rhsTypeVar) == rep) {
optionalObjectTypeVar =
match->getFirstType()->getAs<TypeVariableType>();
}
break;
}
case OptionalWrappingDirection::Unwrap: {
// We want to go from T? to T, so check if we're on the LHS, and
// move over to the RHS if we can.
auto lhsTypeVar = match->getFirstType()->getAs<TypeVariableType>();
if (lhsTypeVar && getRepresentative(lhsTypeVar) == rep) {
optionalObjectTypeVar =
match->getSecondType()->getAs<TypeVariableType>();
}
break;
}
}
// Don't include the optional constraint in the results.
return false;
});
// If we found a result, return it.
if (!constraints.empty())
return std::make_pair(constraints[0], numOptionals);
// If we found an "optional object of" constraint, follow it.
if (optionalObjectTypeVar && !getFixedType(optionalObjectTypeVar)) {
numOptionals += 1;
rep = getRepresentative(optionalObjectTypeVar);
continue;
}
// Otherwise we're done.
return None;
}
return None;
}
Constraint *ConstraintSystem::getUnboundBindOverloadDisjunction(
TypeVariableType *tyvar, unsigned *numOptionalUnwraps) {
assert(!getFixedType(tyvar));
auto result = findConstraintThroughOptionals(
tyvar, OptionalWrappingDirection::Promote,
[&](Constraint *match, TypeVariableType *currentRep) {
// Check to see if we have a bind overload disjunction that binds the
// type var we need.
if (match->getKind() != ConstraintKind::Disjunction ||
match->getNestedConstraints().front()->getKind() !=
ConstraintKind::BindOverload)
return false;
auto lhsTy = match->getNestedConstraints().front()->getFirstType();
auto *lhsTyVar = lhsTy->getAs<TypeVariableType>();
return lhsTyVar && currentRep == getRepresentative(lhsTyVar);
});
if (!result)
return nullptr;
if (numOptionalUnwraps)
*numOptionalUnwraps = result->second;
return result->first;
}
// Performance hack: if there are two generic overloads, and one is
// more specialized than the other, prefer the more-specialized one.
static Constraint *tryOptimizeGenericDisjunction(
DeclContext *dc,
ArrayRef<Constraint *> constraints) {
llvm::SmallVector<Constraint *, 4> choices;
for (auto *choice : constraints) {
if (choices.size() > 2)
return nullptr;
if (!choice->isDisabled())
choices.push_back(choice);
}
if (choices.size() != 2)
return nullptr;
if (choices[0]->getKind() != ConstraintKind::BindOverload ||
choices[1]->getKind() != ConstraintKind::BindOverload ||
choices[0]->isFavored() ||
choices[1]->isFavored())
return nullptr;
OverloadChoice choiceA = choices[0]->getOverloadChoice();
OverloadChoice choiceB = choices[1]->getOverloadChoice();
if (!choiceA.isDecl() || !choiceB.isDecl())
return nullptr;
auto isViable = [](ValueDecl *decl) -> bool {
assert(decl);
auto *AFD = dyn_cast<AbstractFunctionDecl>(decl);
if (!AFD || !AFD->isGeneric())
return false;
if (AFD->getAttrs().hasAttribute<DisfavoredOverloadAttr>())
return false;
auto funcType = AFD->getInterfaceType();
auto hasAnyOrOptional = funcType.findIf([](Type type) -> bool {
if (type->getOptionalObjectType())
return true;
return type->isAny();
});
// If function declaration references `Any` or an optional type,
// let's not attempt it, because it's unclear
// without solving which overload is going to be better.
return !hasAnyOrOptional;
};
auto *declA = choiceA.getDecl();
auto *declB = choiceB.getDecl();
if (!isViable(declA) || !isViable(declB))
return nullptr;
switch (TypeChecker::compareDeclarations(dc, declA, declB)) {
case Comparison::Better:
return choices[0];
case Comparison::Worse:
return choices[1];
case Comparison::Unordered:
return nullptr;
}
llvm_unreachable("covered switch");
}
/// Populates the \c found vector with the indices of the given constraints
/// that have a matching type to an existing operator binding elsewhere in
/// the expression.
///
/// Operator bindings that have a matching type to an existing binding
/// are attempted first by the solver because it's very common to chain
/// operators of the same type together.
static void existingOperatorBindingsForDisjunction(ConstraintSystem &CS,
ArrayRef<Constraint *> constraints,
SmallVectorImpl<unsigned> &found) {
auto *choice = constraints.front();
if (choice->getKind() != ConstraintKind::BindOverload)
return;
auto overload = choice->getOverloadChoice();
if (!overload.isDecl())
return;
auto decl = overload.getDecl();
if (!decl->isOperator())
return;
// For concrete operators, consider overloads that have the same type as
// an existing binding, because it's very common to write mixed operator
// expressions where all operands have the same type, e.g. `(x + 10) / 2`.
// For generic operators, only favor an exact overload that has already
// been bound, because mixed operator expressions are far less common, and
// computing generic canonical types is expensive.
SmallSet<CanType, 4> concreteTypesFound;
SmallSet<ValueDecl *, 4> genericDeclsFound;
for (auto overload : CS.getResolvedOverloads()) {
auto resolved = overload.second;
if (!resolved.choice.isDecl())
continue;
auto representativeDecl = resolved.choice.getDecl();
if (!representativeDecl->isOperator())
continue;
auto interfaceType = representativeDecl->getInterfaceType();
if (interfaceType->is<GenericFunctionType>()) {
genericDeclsFound.insert(representativeDecl);
} else {
concreteTypesFound.insert(interfaceType->getCanonicalType());
}
}
for (auto index : indices(constraints)) {
auto *constraint = constraints[index];
if (constraint->isFavored())
continue;
auto *decl = constraint->getOverloadChoice().getDecl();
auto interfaceType = decl->getInterfaceType();
bool isGeneric = interfaceType->is<GenericFunctionType>();
if ((isGeneric && genericDeclsFound.count(decl)) ||
(!isGeneric && concreteTypesFound.count(interfaceType->getCanonicalType())))
found.push_back(index);
}
}
void DisjunctionChoiceProducer::partitionGenericOperators(
SmallVectorImpl<unsigned>::iterator first,
SmallVectorImpl<unsigned>::iterator last) {
auto *argFnType = CS.getAppliedDisjunctionArgumentFunction(Disjunction);
if (!isOperatorDisjunction(Disjunction) || !argFnType)
return;
auto operatorName = Choices[0]->getOverloadChoice().getName();
if (!operatorName.getBaseIdentifier().isArithmeticOperator())
return;
SmallVector<unsigned, 4> concreteOverloads;
SmallVector<unsigned, 4> numericOverloads;
SmallVector<unsigned, 4> sequenceOverloads;
SmallVector<unsigned, 4> simdOverloads;
SmallVector<unsigned, 4> otherGenericOverloads;
auto refinesOrConformsTo = [&](NominalTypeDecl *nominal, KnownProtocolKind kind) -> bool {
if (!nominal)
return false;
auto *protocol =
TypeChecker::getProtocol(CS.getASTContext(), SourceLoc(), kind);
if (auto *refined = dyn_cast<ProtocolDecl>(nominal))
return refined->inheritsFrom(protocol);
return (bool)TypeChecker::conformsToProtocol(nominal->getDeclaredType(), protocol,
CS.DC->getParentModule());
};
// Gather Numeric and Sequence overloads into separate buckets.
for (auto iter = first; iter != last; ++iter) {
unsigned index = *iter;
auto *decl = Choices[index]->getOverloadChoice().getDecl();
auto *nominal = decl->getDeclContext()->getSelfNominalTypeDecl();
if (isSIMDOperator(decl)) {
simdOverloads.push_back(index);
} else if (!decl->getInterfaceType()->is<GenericFunctionType>()) {
concreteOverloads.push_back(index);
} else if (refinesOrConformsTo(nominal, KnownProtocolKind::AdditiveArithmetic)) {
numericOverloads.push_back(index);
} else if (refinesOrConformsTo(nominal, KnownProtocolKind::Sequence)) {
sequenceOverloads.push_back(index);
} else {
otherGenericOverloads.push_back(index);
}
}
auto sortPartition = [&](SmallVectorImpl<unsigned> &partition) {
llvm::sort(partition, [&](unsigned lhs, unsigned rhs) -> bool {
auto *declA =
dyn_cast<ValueDecl>(Choices[lhs]->getOverloadChoice().getDecl());
auto *declB =
dyn_cast<ValueDecl>(Choices[rhs]->getOverloadChoice().getDecl());
return TypeChecker::isDeclRefinementOf(declA, declB);
});
};
// Sort sequence overloads so that refinements are attempted first.
// If the solver finds a solution with an overload, it can then skip
// subsequent choices that the successful choice is a refinement of.
sortPartition(sequenceOverloads);
// Attempt concrete overloads first.
first = std::copy(concreteOverloads.begin(), concreteOverloads.end(), first);
// Check if any of the known argument types conform to one of the standard
// arithmetic protocols. If so, the solver should attempt the corresponding
// overload choices first.
for (auto arg : argFnType->getParams()) {
auto argType = arg.getPlainType();
argType = CS.getFixedTypeRecursive(argType, /*wantRValue=*/true);
if (argType->isTypeVariableOrMember())
continue;
if (TypeChecker::conformsToKnownProtocol(
argType, KnownProtocolKind::AdditiveArithmetic,
CS.DC->getParentModule())) {
first =
std::copy(numericOverloads.begin(), numericOverloads.end(), first);
numericOverloads.clear();
break;
}
if (TypeChecker::conformsToKnownProtocol(
argType, KnownProtocolKind::Sequence,
CS.DC->getParentModule())) {
first =
std::copy(sequenceOverloads.begin(), sequenceOverloads.end(), first);
sequenceOverloads.clear();
break;
}
if (TypeChecker::conformsToKnownProtocol(
argType, KnownProtocolKind::SIMD,
CS.DC->getParentModule())) {
first = std::copy(simdOverloads.begin(), simdOverloads.end(), first);
simdOverloads.clear();
break;
}
}
first = std::copy(otherGenericOverloads.begin(), otherGenericOverloads.end(), first);
first = std::copy(numericOverloads.begin(), numericOverloads.end(), first);
first = std::copy(sequenceOverloads.begin(), sequenceOverloads.end(), first);
first = std::copy(simdOverloads.begin(), simdOverloads.end(), first);
}
void DisjunctionChoiceProducer::partitionDisjunction(
SmallVectorImpl<unsigned> &Ordering,
SmallVectorImpl<unsigned> &PartitionBeginning) {
// Apply a special-case rule for favoring one generic function over
// another.
if (auto favored = tryOptimizeGenericDisjunction(CS.DC, Choices)) {
CS.favorConstraint(favored);
}
SmallSet<Constraint *, 16> taken;
using ConstraintMatcher = std::function<bool(unsigned index, Constraint *)>;
using ConstraintMatchLoop =
std::function<void(ArrayRef<Constraint *>, ConstraintMatcher)>;
using PartitionAppendCallback =
std::function<void(SmallVectorImpl<unsigned> & options)>;
// Local function used to iterate over the untaken choices from the
// disjunction and use a higher-order function to determine if they
// should be part of a partition.
ConstraintMatchLoop forEachChoice =
[&](ArrayRef<Constraint *>,
std::function<bool(unsigned index, Constraint *)> fn) {
for (auto index : indices(Choices)) {
auto *constraint = Choices[index];
if (taken.count(constraint))
continue;
if (fn(index, constraint))
taken.insert(constraint);
}
};
// First collect some things that we'll generally put near the beginning or
// end of the partitioning.
SmallVector<unsigned, 4> favored;
SmallVector<unsigned, 4> everythingElse;
SmallVector<unsigned, 4> simdOperators;
SmallVector<unsigned, 4> disabled;
SmallVector<unsigned, 4> unavailable;
// Add existing operator bindings to the main partition first. This often
// helps the solver find a solution fast.
existingOperatorBindingsForDisjunction(CS, Choices, everythingElse);
for (auto index : everythingElse)
taken.insert(Choices[index]);
// First collect disabled and favored constraints.
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (constraint->isDisabled()) {
disabled.push_back(index);
return true;
}
if (constraint->isFavored()) {
favored.push_back(index);
return true;
}
return false;
});
// Then unavailable constraints if we're skipping them.
if (!CS.shouldAttemptFixes()) {
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (constraint->getKind() != ConstraintKind::BindOverload)
return false;
auto *decl = constraint->getOverloadChoice().getDeclOrNull();
auto *funcDecl = dyn_cast_or_null<FuncDecl>(decl);
if (!funcDecl)
return false;
if (!CS.isDeclUnavailable(funcDecl, constraint->getLocator()))
return false;
unavailable.push_back(index);
return true;
});
}
// Partition SIMD operators.
if (isOperatorDisjunction(Disjunction) &&
!Choices[0]->getOverloadChoice().getName().getBaseIdentifier().isArithmeticOperator()) {
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (isSIMDOperator(constraint->getOverloadChoice().getDecl())) {
simdOperators.push_back(index);
return true;
}
return false;
});
}
// Gather the remaining options.
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
everythingElse.push_back(index);
return true;
});
// Local function to create the next partition based on the options
// passed in.
PartitionAppendCallback appendPartition =
[&](SmallVectorImpl<unsigned> &options) {
if (options.size()) {
PartitionBeginning.push_back(Ordering.size());
Ordering.insert(Ordering.end(), options.begin(), options.end());
}
};
appendPartition(favored);
appendPartition(everythingElse);
appendPartition(simdOperators);
appendPartition(unavailable);
appendPartition(disabled);
assert(Ordering.size() == Choices.size());
}
Constraint *ConstraintSystem::selectDisjunction() {
SmallVector<Constraint *, 4> disjunctions;
collectDisjunctions(disjunctions);
if (disjunctions.empty())
return nullptr;
if (auto *disjunction = selectBestBindingDisjunction(*this, disjunctions))
return disjunction;
// Pick the disjunction with the smallest number of favored, then active choices.
auto cs = this;
auto minDisjunction = std::min_element(disjunctions.begin(), disjunctions.end(),
[&](Constraint *first, Constraint *second) -> bool {
unsigned firstActive = first->countActiveNestedConstraints();
unsigned secondActive = second->countActiveNestedConstraints();
unsigned firstFavored = first->countFavoredNestedConstraints();
unsigned secondFavored = second->countFavoredNestedConstraints();
if (!isOperatorDisjunction(first) || !isOperatorDisjunction(second))
return firstActive < secondActive;
if (firstFavored == secondFavored) {
// Look for additional choices that are "favored"
SmallVector<unsigned, 4> firstExisting;
SmallVector<unsigned, 4> secondExisting;
existingOperatorBindingsForDisjunction(*cs, first->getNestedConstraints(), firstExisting);
firstFavored += firstExisting.size();
existingOperatorBindingsForDisjunction(*cs, second->getNestedConstraints(), secondExisting);
secondFavored += secondExisting.size();
}
// Everything else equal, choose the disjunction with the greatest
// number of resolved argument types. The number of resolved argument
// types is always zero for disjunctions that don't represent applied
// overloads.
if (firstFavored == secondFavored) {
if (firstActive != secondActive)
return firstActive < secondActive;
return (first->countResolvedArgumentTypes(*this) > second->countResolvedArgumentTypes(*this));
}
firstFavored = firstFavored ? firstFavored : firstActive;
secondFavored = secondFavored ? secondFavored : secondActive;
return firstFavored < secondFavored;
});
if (minDisjunction != disjunctions.end())
return *minDisjunction;
return nullptr;
}
Constraint *ConstraintSystem::selectConjunction() {
SmallVector<Constraint *, 4> conjunctions;
for (auto &constraint : InactiveConstraints) {
if (constraint.isDisabled())
continue;
if (constraint.getKind() == ConstraintKind::Conjunction)
conjunctions.push_back(&constraint);
}
if (conjunctions.empty())
return nullptr;
auto &SM = getASTContext().SourceMgr;
// All of the multi-statement closures should be solved in order of their
// apperance in the source.
llvm::sort(
conjunctions, [&](Constraint *conjunctionA, Constraint *conjunctionB) {
auto *locA = conjunctionA->getLocator();
auto *locB = conjunctionB->getLocator();
if (!(locA && locB))
return false;
auto *closureA = getAsExpr<ClosureExpr>(locA->getAnchor());
auto *closureB = getAsExpr<ClosureExpr>(locB->getAnchor());
return closureA && closureB
? SM.isBeforeInBuffer(closureA->getLoc(), closureB->getLoc())
: false;
});
return conjunctions.front();
}
bool DisjunctionChoice::attempt(ConstraintSystem &cs) const {
cs.simplifyDisjunctionChoice(Choice);
if (ExplicitConversion)
propagateConversionInfo(cs);
// Attempt to simplify current choice might result in
// immediate failure, which is recorded in constraint system.
return !cs.failedConstraint && !cs.simplify();
}
bool DisjunctionChoice::isGenericOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto interfaceType = decl->getInterfaceType();
return interfaceType->is<GenericFunctionType>();
}
bool DisjunctionChoice::isSymmetricOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto func = dyn_cast<FuncDecl>(decl);
auto paramList = func->getParameters();
if (paramList->size() != 2)
return true;
auto firstType = paramList->get(0)->getInterfaceType();
auto secondType = paramList->get(1)->getInterfaceType();
return firstType->isEqual(secondType);
}
bool DisjunctionChoice::isUnaryOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto func = cast<FuncDecl>(decl);
return func->getParameters()->size() == 1;
}
void DisjunctionChoice::propagateConversionInfo(ConstraintSystem &cs) const {
assert(ExplicitConversion);
auto LHS = Choice->getFirstType();
auto typeVar = LHS->getAs<TypeVariableType>();
if (!typeVar)
return;
// Use the representative (if any) to lookup constraints
// and potentially bind the coercion type to.
typeVar = typeVar->getImpl().getRepresentative(nullptr);
// If the representative already has a type assigned to it
// we can't really do anything here.
if (typeVar->getImpl().getFixedType(nullptr))
return;
auto bindings = cs.getBindingsFor(typeVar);
auto numBindings =
bindings.Bindings.size() + bindings.getNumViableLiteralBindings();
if (bindings.isHole() || bindings.involvesTypeVariables() || numBindings != 1)
return;
Type conversionType;
// There is either a single direct/transitive binding, or
// a single literal default.
if (!bindings.Bindings.empty()) {
conversionType = bindings.Bindings[0].BindingType;
} else {
for (const auto &literal : bindings.Literals) {
if (literal.second.viableAsBinding()) {
conversionType = literal.second.getDefaultType();
break;
}
}
}
auto constraints = cs.CG.gatherConstraints(
typeVar,
ConstraintGraph::GatheringKind::EquivalenceClass,
[](Constraint *constraint) -> bool {
switch (constraint->getKind()) {
case ConstraintKind::Conversion:
case ConstraintKind::Defaultable:
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::TransitivelyConformsTo:
return false;
default:
return true;
}
});
if (constraints.empty())
cs.addConstraint(ConstraintKind::Bind, typeVar, conversionType,
Choice->getLocator());
}
bool ConjunctionElement::attempt(ConstraintSystem &cs) const {
// First, let's bring all referenced variables into scope.
{
llvm::SmallPtrSet<TypeVariableType *, 4> referencedVars;
findReferencedVariables(cs, referencedVars);
for (auto *typeVar : referencedVars)
cs.addTypeVariable(typeVar);
}
auto result = cs.simplifyConstraint(*Element);
return result != ConstraintSystem::SolutionKind::Error;
}