Files
swift-mirror/lib/Sema/CSSolver.cpp
Slava Pestov 2230c3a17e Sema: Split up gatherConstraints() into gatherAllConstraints() and gatherNearbyConstraints()
The two GatherKinds no longer share any implementation, so there's
no point keeping the logic together. Doing this also allows removing
the acceptConstraintFn from gatherAllConstraints(), which further
simplifies depthFirstSearch().
2025-01-27 10:27:00 -05:00

1966 lines
65 KiB
C++

//===--- CSSolver.cpp - Constraint Solver ---------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the constraint solver used in the type checker.
//
//===----------------------------------------------------------------------===//
#include "CSStep.h"
#include "TypeCheckType.h"
#include "TypeChecker.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeWalker.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/SolutionResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <memory>
#include <tuple>
using namespace swift;
using namespace constraints;
//===----------------------------------------------------------------------===//
// Constraint solver statistics
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "Constraint solver overall"
#define JOIN2(X,Y) X##Y
STATISTIC(NumSolutionAttempts, "# of solution attempts");
STATISTIC(TotalNumTypeVariables, "# of type variables created");
#define CS_STATISTIC(Name, Description) \
STATISTIC(Overall##Name, Description);
#include "swift/Sema/ConstraintSolverStats.def"
#undef DEBUG_TYPE
#define DEBUG_TYPE "Constraint solver largest system"
#define CS_STATISTIC(Name, Description) \
STATISTIC(Largest##Name, Description);
#include "swift/Sema/ConstraintSolverStats.def"
STATISTIC(LargestSolutionAttemptNumber, "# of the largest solution attempt");
TypeVariableType *ConstraintSystem::createTypeVariable(
ConstraintLocator *locator,
unsigned options) {
++TotalNumTypeVariables;
auto tv = TypeVariableType::getNew(getASTContext(), assignTypeVariableID(),
locator, options);
addTypeVariable(tv);
return tv;
}
Solution ConstraintSystem::finalize() {
assert(solverState);
// Create the solution.
Solution solution(*this, CurrentScore);
// Update the best score we've seen so far.
auto &ctx = getASTContext();
assert(ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks ||
!solverState->BestScore || CurrentScore <= *solverState->BestScore);
if (!solverState->BestScore || CurrentScore <= *solverState->BestScore) {
solverState->BestScore = CurrentScore;
}
for (auto tv : getTypeVariables()) {
if (getFixedType(tv))
continue;
switch (solverState->AllowFreeTypeVariables) {
case FreeTypeVariableBinding::Disallow:
llvm_unreachable("Solver left free type variables");
case FreeTypeVariableBinding::Allow:
break;
case FreeTypeVariableBinding::UnresolvedType:
assignFixedType(tv, ctx.TheUnresolvedType);
break;
}
}
// For each of the type variables, get its fixed type.
for (auto tv : getTypeVariables()) {
// This type variable has no binding. Allowed only
// when `FreeTypeVariableBinding::Allow` is set,
// which is checked above.
if (!getFixedType(tv)) {
solution.typeBindings[tv] = Type();
continue;
}
solution.typeBindings[tv] = simplifyType(tv)->reconstituteSugar(false);
}
// Copy over the resolved overloads.
solution.overloadChoices.insert(ResolvedOverloads.begin(),
ResolvedOverloads.end());
// For each of the constraint restrictions, record it with simplified,
// canonical types.
if (solverState) {
for (const auto &entry : ConstraintRestrictions) {
const auto &types = entry.first;
auto restriction = entry.second;
CanType first = simplifyType(types.first)->getCanonicalType();
CanType second = simplifyType(types.second)->getCanonicalType();
solution.ConstraintRestrictions[{first, second}] = restriction;
}
}
// For each of the fixes, record it as an operation on the affected
// expression.
unsigned firstFixIndex =
(solverState ? solverState->numPartialSolutionFixes : 0);
for (const auto &fix :
llvm::make_range(Fixes.begin() + firstFixIndex, Fixes.end()))
solution.Fixes.push_back(fix);
for (const auto &fix : FixedRequirements) {
solution.FixedRequirements.push_back(fix);
}
// Remember all the disjunction choices we made.
for (auto &choice : DisjunctionChoices) {
solution.DisjunctionChoices.insert(choice);
}
// Remember all the applied disjunctions.
for (auto &choice : AppliedDisjunctions) {
solution.AppliedDisjunctions.insert(choice);
}
// Remember all of the argument/parameter matching choices we made.
for (auto &argumentMatch : argumentMatchingChoices) {
auto inserted = solution.argumentMatchingChoices.insert(argumentMatch);
assert(inserted.second || inserted.first->second == argumentMatch.second);
(void)inserted;
}
// Remember implied results.
for (auto impliedResult : ImpliedResults)
solution.ImpliedResults.insert(impliedResult);
// Remember the opened types.
for (const auto &opened : OpenedTypes) {
// We shouldn't ever register opened types multiple times,
// but saving and re-applying solutions can cause us to get
// multiple entries. We should use an optimized PartialSolution
// structure for that use case, which would optimize a lot of
// stuff here.
#if false
assert((solution.OpenedTypes.count(opened.first) == 0 ||
solution.OpenedTypes[opened.first] == opened.second)
&& "Already recorded");
#endif
solution.OpenedTypes.insert(opened);
}
// Remember the opened existential types.
for (auto &openedExistential : OpenedExistentialTypes) {
openedExistential.second = simplifyType(openedExistential.second)
->castTo<OpenedArchetypeType>();
assert(solution.OpenedExistentialTypes.count(openedExistential.first) == 0||
solution.OpenedExistentialTypes[openedExistential.first]
== openedExistential.second &&
"Already recorded");
solution.OpenedExistentialTypes.insert(openedExistential);
}
for (const auto &expansion : OpenedPackExpansionTypes) {
assert(solution.OpenedPackExpansionTypes.count(expansion.first) == 0 ||
solution.OpenedPackExpansionTypes[expansion.first] ==
expansion.second &&
"Already recorded");
solution.OpenedPackExpansionTypes.insert(expansion);
}
// Remember the defaulted type variables.
solution.DefaultedConstraints.insert(DefaultedConstraints.begin(),
DefaultedConstraints.end());
for (auto &nodeType : NodeTypes) {
solution.nodeTypes.insert(nodeType);
}
for (auto &keyPathComponentType : KeyPathComponentTypes) {
solution.keyPathComponentTypes.insert(keyPathComponentType);
}
// Remember key paths.
for (const auto &keyPaths : KeyPaths) {
solution.KeyPaths.insert(keyPaths);
}
// Remember contextual types.
for (auto &entry : contextualTypes) {
solution.contextualTypes.push_back({entry.first, entry.second.first});
}
for (auto &target : targets)
solution.targets.insert(target);
for (const auto &item : caseLabelItems)
solution.caseLabelItems.insert(item);
for (const auto &throwSite : potentialThrowSites)
solution.potentialThrowSites.push_back(throwSite);
for (const auto &pattern : exprPatterns)
solution.exprPatterns.insert(pattern);
for (const auto &param : isolatedParams)
solution.isolatedParams.insert(param);
for (auto closure : preconcurrencyClosures)
solution.preconcurrencyClosures.insert(closure);
for (const auto &transformed : resultBuilderTransformed) {
solution.resultBuilderTransformed.insert(transformed);
}
for (const auto &appliedWrapper : appliedPropertyWrappers) {
solution.appliedPropertyWrappers.insert(appliedWrapper);
}
// Remember implicit value conversions.
for (const auto &valueConversion : ImplicitValueConversions) {
solution.ImplicitValueConversions.push_back(valueConversion);
}
// Remember argument lists.
for (const auto &argListMapping : ArgumentLists) {
solution.argumentLists.insert(argListMapping);
}
for (const auto &implicitRoot : ImplicitCallAsFunctionRoots) {
solution.ImplicitCallAsFunctionRoots.insert(implicitRoot);
}
for (const auto &env : PackExpansionEnvironments) {
solution.PackExpansionEnvironments.insert(env);
}
for (const auto &packEnv : PackEnvironments)
solution.PackEnvironments.insert(packEnv);
for (const auto &synthesized : SynthesizedConformances) {
solution.SynthesizedConformances.insert(synthesized);
}
return solution;
}
void ConstraintSystem::replaySolution(const Solution &solution,
bool shouldIncreaseScore) {
if (shouldIncreaseScore)
replayScore(solution.getFixedScore());
for (auto binding : solution.typeBindings) {
// If we haven't seen this type variable before, record it now.
addTypeVariable(binding.first);
}
// Assign fixed types to the type variables solved by this solution.
for (auto binding : solution.typeBindings) {
if (!binding.second)
continue;
// If we don't already have a fixed type for this type variable,
// assign the fixed type from the solution.
if (getFixedType(binding.first))
continue;
assignFixedType(binding.first, binding.second, /*updateState=*/false);
}
// Register overload choices.
// FIXME: Copy these directly into some kind of partial solution?
for (auto overload : solution.overloadChoices) {
if (!ResolvedOverloads.count(overload.first))
recordResolvedOverload(overload.first, overload.second);
}
// Register constraint restrictions.
// FIXME: Copy these directly into some kind of partial solution?
for ( auto &restriction : solution.ConstraintRestrictions) {
auto type1 = restriction.first.first;
auto type2 = restriction.first.second;
addConversionRestriction(type1, type2, restriction.second);
}
// Register the solution's disjunction choices.
for (auto &choice : solution.DisjunctionChoices) {
if (DisjunctionChoices.count(choice.first) == 0)
recordDisjunctionChoice(choice.first, choice.second);
}
// Register the solution's applied disjunctions.
for (auto &choice : solution.AppliedDisjunctions) {
if (AppliedDisjunctions.count(choice.first) == 0)
recordAppliedDisjunction(choice.first, choice.second);
}
// Remember all of the argument/parameter matching choices we made.
for (auto &argumentMatch : solution.argumentMatchingChoices) {
if (argumentMatchingChoices.count(argumentMatch.first) == 0)
recordMatchCallArgumentResult(argumentMatch.first, argumentMatch.second);
}
// Remember implied results.
for (auto impliedResult : solution.ImpliedResults) {
if (ImpliedResults.count(impliedResult.first) == 0)
recordImpliedResult(impliedResult.first, impliedResult.second);
}
// Register the solution's opened types.
for (const auto &opened : solution.OpenedTypes) {
if (OpenedTypes.count(opened.first) == 0)
recordOpenedType(opened.first, opened.second);
}
// Register the solution's opened existential types.
for (const auto &openedExistential : solution.OpenedExistentialTypes) {
if (OpenedExistentialTypes.count(openedExistential.first) == 0) {
recordOpenedExistentialType(openedExistential.first,
openedExistential.second);
}
}
// Register the solution's opened pack expansion types.
for (const auto &expansion : solution.OpenedPackExpansionTypes) {
if (OpenedPackExpansionTypes.count(expansion.first) == 0)
recordOpenedPackExpansionType(expansion.first, expansion.second);
}
// Register the solutions's pack expansion environments.
for (const auto &expansion : solution.PackExpansionEnvironments) {
if (PackExpansionEnvironments.count(expansion.first) == 0)
recordPackExpansionEnvironment(expansion.first, expansion.second);
}
// Register the solutions's pack environments.
for (auto &packEnvironment : solution.PackEnvironments) {
if (PackEnvironments.count(packEnvironment.first) == 0)
addPackEnvironment(packEnvironment.first, packEnvironment.second);
}
// Register the defaulted type variables.
for (auto *locator : solution.DefaultedConstraints) {
recordDefaultedConstraint(locator);
}
// Add the node types back.
for (auto &nodeType : solution.nodeTypes) {
setType(nodeType.first, nodeType.second);
}
for (auto &nodeType : solution.keyPathComponentTypes) {
setType(nodeType.getFirst().first, nodeType.getFirst().second,
nodeType.getSecond());
}
// Add key paths.
for (const auto &keypath : solution.KeyPaths) {
if (KeyPaths.count(keypath.first) == 0) {
recordKeyPath(keypath.first,
std::get<0>(keypath.second),
std::get<1>(keypath.second),
std::get<2>(keypath.second));
}
}
// Add the contextual types.
for (const auto &contextualType : solution.contextualTypes) {
if (!getContextualTypeInfo(contextualType.first))
setContextualInfo(contextualType.first, contextualType.second);
}
// Register the statement condition targets.
for (const auto &target : solution.targets) {
if (!getTargetFor(target.first))
setTargetFor(target.first, target.second);
}
// Register the statement condition targets.
for (const auto &info : solution.caseLabelItems) {
if (!getCaseLabelItemInfo(info.first))
setCaseLabelItemInfo(info.first, info.second);
}
auto sites = ArrayRef(solution.potentialThrowSites);
ASSERT(sites.size() >= potentialThrowSites.size());
for (const auto &site : sites.slice(potentialThrowSites.size())) {
potentialThrowSites.push_back(site);
}
for (auto param : solution.isolatedParams) {
if (isolatedParams.count(param) == 0)
recordIsolatedParam(param);
}
for (auto &pair : solution.exprPatterns) {
if (exprPatterns.count(pair.first) == 0)
setExprPatternFor(pair.first, pair.second);
}
for (auto closure : solution.preconcurrencyClosures) {
if (preconcurrencyClosures.count(closure) == 0)
recordPreconcurrencyClosure(closure);
}
for (const auto &transformed : solution.resultBuilderTransformed) {
if (resultBuilderTransformed.count(transformed.first) == 0)
recordResultBuilderTransform(transformed.first, transformed.second);
}
for (const auto &appliedWrapper : solution.appliedPropertyWrappers) {
auto found = appliedPropertyWrappers.find(appliedWrapper.first);
if (found == appliedPropertyWrappers.end()) {
for (auto applied : appliedWrapper.second)
applyPropertyWrapper(getAsExpr(appliedWrapper.first), applied);
} else {
ASSERT(found->second.size() == appliedWrapper.second.size());
}
}
for (auto &valueConversion : solution.ImplicitValueConversions) {
if (ImplicitValueConversions.count(valueConversion.first) == 0) {
recordImplicitValueConversion(valueConversion.first,
valueConversion.second);
}
}
// Register the argument lists.
for (auto &argListMapping : solution.argumentLists) {
if (ArgumentLists.count(argListMapping.first) == 0)
recordArgumentList(argListMapping.first, argListMapping.second);
}
for (auto &implicitRoot : solution.ImplicitCallAsFunctionRoots) {
if (ImplicitCallAsFunctionRoots.count(implicitRoot.first) == 0)
recordImplicitCallAsFunctionRoot(implicitRoot.first, implicitRoot.second);
}
for (auto &synthesized : solution.SynthesizedConformances) {
if (SynthesizedConformances.count(synthesized.first) == 0)
recordSynthesizedConformance(synthesized.first, synthesized.second);
}
// Register any fixes produced along this path.
for (auto *fix : solution.Fixes) {
if (Fixes.count(fix) == 0)
addFix(fix);
}
// Register fixed requirements.
for (auto fix : solution.FixedRequirements) {
recordFixedRequirement(std::get<0>(fix),
std::get<1>(fix),
std::get<2>(fix));
}
}
bool ConstraintSystem::simplify() {
// While we have a constraint in the worklist, process it.
while (!ActiveConstraints.empty()) {
// Grab the next constraint from the worklist.
auto *constraint = &ActiveConstraints.front();
deactivateConstraint(constraint);
auto isSimplifiable =
constraint->getKind() != ConstraintKind::Disjunction &&
constraint->getKind() != ConstraintKind::Conjunction;
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState->getCurrentIndent());
log << "(considering: ";
constraint->print(log, &getASTContext().SourceMgr,
solverState->getCurrentIndent());
log << "\n";
// {Dis, Con}junction are returned unsolved in \c simplifyConstraint() and
// handled separately by solver steps.
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2)
<< "(simplification result:\n";
}
}
// Simplify this constraint.
switch (simplifyConstraint(*constraint)) {
case SolutionKind::Error:
retireFailedConstraint(constraint);
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2) << "(outcome: error)\n";
}
break;
case SolutionKind::Solved:
if (solverState)
++solverState->NumSimplifiedConstraints;
retireConstraint(constraint);
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2)
<< "(outcome: simplified)\n";
}
break;
case SolutionKind::Unsolved:
if (solverState)
++solverState->NumUnsimplifiedConstraints;
if (isDebugMode()) {
auto &log = llvm::errs();
if (isSimplifiable) {
log.indent(solverState->getCurrentIndent() + 2) << ")\n";
}
log.indent(solverState->getCurrentIndent() + 2)
<< "(outcome: unsolved)\n";
}
break;
}
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState->getCurrentIndent()) << ")\n";
}
// Check whether a constraint failed. If so, we're done.
if (failedConstraint) {
return true;
}
// If the current score is worse than the best score we've seen so far,
// there's no point in continuing. So don't.
if (worseThanBestSolution()) {
return true;
}
}
return false;
}
namespace {
template<typename T>
void truncate(std::vector<T> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
vec.erase(vec.begin() + newSize, vec.end());
}
/// Truncate the given small vector to the given new size.
template<typename T>
void truncate(SmallVectorImpl<T> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
vec.erase(vec.begin() + newSize, vec.end());
}
template<typename T, unsigned N>
void truncate(llvm::SmallSetVector<T, N> &vec, unsigned newSize) {
assert(newSize <= vec.size() && "Not a truncation!");
for (unsigned i = 0, n = vec.size() - newSize; i != n; ++i)
vec.pop_back();
}
template <typename K, typename V>
void truncate(llvm::MapVector<K, V> &map, unsigned newSize) {
assert(newSize <= map.size() && "Not a truncation!");
for (unsigned i = 0, n = map.size() - newSize; i != n; ++i)
map.pop_back();
}
template <typename K, typename V, unsigned N>
void truncate(llvm::SmallMapVector<K, V, N> &map, unsigned newSize) {
assert(newSize <= map.size() && "Not a truncation!");
for (unsigned i = 0, n = map.size() - newSize; i != n; ++i)
map.pop_back();
}
template <typename V>
void truncate(llvm::SetVector<V> &vector, unsigned newSize) {
while (vector.size() > newSize)
vector.pop_back();
}
} // end anonymous namespace
ConstraintSystem::SolverState::SolverState(
ConstraintSystem &cs, FreeTypeVariableBinding allowFreeTypeVariables)
: CS(cs), AllowFreeTypeVariables(allowFreeTypeVariables), Trail(cs) {
assert(!CS.solverState &&
"Constraint system should not already have solver state!");
CS.solverState = this;
++NumSolutionAttempts;
SolutionAttempt = NumSolutionAttempts;
// Record active constraints for re-activation at the end of lifetime.
for (auto &constraint : cs.ActiveConstraints)
activeConstraints.push_back(&constraint);
// If we're supposed to debug a specific constraint solver attempt,
// turn on debugging now.
ASTContext &ctx = CS.getASTContext();
const auto &tyOpts = ctx.TypeCheckerOpts;
if (tyOpts.DebugConstraintSolverAttempt &&
tyOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
CS.Options |= ConstraintSystemFlags::DebugConstraints;
llvm::errs().indent(CS.solverState->getCurrentIndent())
<< "---Constraint system #" << SolutionAttempt << "---\n";
CS.print(llvm::errs());
}
}
ConstraintSystem::SolverState::~SolverState() {
assert((CS.solverState == this) &&
"Expected constraint system to have this solver state!");
CS.solverState = nullptr;
// If constraint system ended up being in an invalid state
// let's just drop the state without attempting to rollback.
if (CS.inInvalidState())
return;
// Re-activate constraints which were initially marked as "active"
// to restore original state of the constraint system.
for (auto *constraint : activeConstraints) {
// If the constraint is already active we can just move on.
if (constraint->isActive())
continue;
#ifndef NDEBUG
// Make sure that constraint is present in the "inactive" set
// before transferring it to "active".
auto existing = llvm::find_if(CS.InactiveConstraints,
[&constraint](const Constraint &inactive) {
return &inactive == constraint;
});
assert(existing != CS.InactiveConstraints.end() &&
"All constraints should be present in 'inactive' list");
#endif
// Transfer the constraint to "active" set.
CS.activateConstraint(constraint);
}
// If global constraint debugging is off and we are finished logging the
// current solution attempt, switch debugging back off.
const auto &tyOpts = CS.getASTContext().TypeCheckerOpts;
if (!tyOpts.DebugConstraintSolver &&
tyOpts.DebugConstraintSolverAttempt &&
tyOpts.DebugConstraintSolverAttempt == SolutionAttempt) {
CS.Options -= ConstraintSystemFlags::DebugConstraints;
}
// Write our local statistics back to the overall statistics.
#define CS_STATISTIC(Name, Description) JOIN2(Overall,Name) += Name;
#include "swift/Sema/ConstraintSolverStats.def"
#if LLVM_ENABLE_STATS
// Update the "largest" statistics if this system is larger than the
// previous one.
// FIXME: This is not at all thread-safe.
if (NumSolverScopes > LargestNumSolverScopes.getValue()) {
LargestSolutionAttemptNumber = SolutionAttempt-1;
++LargestSolutionAttemptNumber;
#define CS_STATISTIC(Name, Description) \
JOIN2(Largest,Name) = Name-1; \
++JOIN2(Largest,Name);
#include "swift/Sema/ConstraintSolverStats.def"
}
#endif
}
ConstraintSystem::SolverScope::SolverScope(ConstraintSystem &cs)
: cs(cs),
startTypeVariables(cs.TypeVariables.size()),
startTrailSteps(cs.solverState->Trail.size()),
scopeNumber(cs.solverState->beginScope()),
moved(0) {
ASSERT(!cs.failedConstraint && "Unexpected failed constraint!");
}
ConstraintSystem::SolverScope::SolverScope(SolverScope &&other)
: cs(other.cs),
startTypeVariables(other.startTypeVariables),
startTrailSteps(other.startTrailSteps),
scopeNumber(other.scopeNumber),
moved(0) {
other.moved = 1;
}
ConstraintSystem::SolverScope::~SolverScope() {
if (moved)
return;
// Don't attempt to rollback from an incorrect state.
if (cs.inInvalidState())
return;
// Roll back introduced type variables.
truncate(cs.TypeVariables, startTypeVariables);
// Move any remaining active constraints into the inactive list.
if (!cs.ActiveConstraints.empty()) {
for (auto &constraint : cs.ActiveConstraints) {
constraint.setActive(false);
}
cs.InactiveConstraints.splice(cs.InactiveConstraints.end(),
cs.ActiveConstraints);
}
uint64_t endTrailSteps = cs.solverState->Trail.size();
// Roll back changes to the constraint system.
cs.solverState->Trail.undo(startTrailSteps);
// Update statistics.
cs.solverState->endScope(scopeNumber,
startTrailSteps,
endTrailSteps);
// Clear out other "failed" state.
cs.failedConstraint = nullptr;
}
unsigned ConstraintSystem::SolverState::beginScope() {
++depth;
maxDepth = std::max(maxDepth, depth);
CS.incrementScopeCounter();
return NumSolverScopes++;
}
/// Update statistics when a scope ends.
void ConstraintSystem::SolverState::endScope(unsigned scopeNumber,
uint64_t startTrailSteps,
uint64_t endTrailSteps) {
ASSERT(depth > 0);
--depth;
NumTrailSteps += (endTrailSteps - startTrailSteps);
unsigned countSolverScopes = NumSolverScopes - scopeNumber;
if (countSolverScopes == 1)
CS.incrementLeafScopes();
}
/// Solve the system of constraints.
///
/// \param allowFreeTypeVariables How to bind free type variables in
/// the solution.
///
/// \returns a solution if a single unambiguous one could be found, or None if
/// ambiguous or unsolvable.
std::optional<Solution>
ConstraintSystem::solveSingle(FreeTypeVariableBinding allowFreeTypeVariables,
bool allowFixes) {
SolverState state(*this, allowFreeTypeVariables);
state.recordFixes = allowFixes;
SmallVector<Solution, 4> solutions;
solveImpl(solutions);
filterSolutions(solutions);
if (solutions.size() != 1)
return std::optional<Solution>();
return std::move(solutions[0]);
}
static bool debugConstraintSolverForTarget(ASTContext &C,
SyntacticElementTarget target) {
if (C.TypeCheckerOpts.DebugConstraintSolver)
return true;
if (C.TypeCheckerOpts.DebugConstraintSolverOnLines.empty())
// No need to compute the line number to find out it's not present.
return false;
// Get the lines on which the target starts and ends.
unsigned startLine = 0, endLine = 0;
SourceRange range = target.getSourceRange();
if (range.isValid()) {
auto charRange = Lexer::getCharSourceRangeFromSourceRange(C.SourceMgr, range);
startLine =
C.SourceMgr.getLineAndColumnInBuffer(charRange.getStart()).first;
endLine = C.SourceMgr.getLineAndColumnInBuffer(charRange.getEnd()).first;
}
assert(startLine <= endLine && "expr ends before it starts?");
auto &lines = C.TypeCheckerOpts.DebugConstraintSolverOnLines;
assert(std::is_sorted(lines.begin(), lines.end()) &&
"DebugConstraintSolverOnLines sorting invariant violated");
// Check if `lines` contains at least one line `L` where
// `startLine <= L <= endLine`. If it does, `lower_bound(startLine)` and
// `upper_bound(endLine)` will be different.
auto startBound = llvm::lower_bound(lines, startLine);
auto endBound = std::upper_bound(startBound, lines.end(), endLine);
return startBound != endBound;
}
std::optional<std::vector<Solution>>
ConstraintSystem::solve(SyntacticElementTarget &target,
FreeTypeVariableBinding allowFreeTypeVariables) {
llvm::SaveAndRestore<ConstraintSystemOptions> debugForExpr(Options);
if (debugConstraintSolverForTarget(getASTContext(), target)) {
Options |= ConstraintSystemFlags::DebugConstraints;
}
/// Dump solutions for debugging purposes.
auto dumpSolutions = [&](const SolutionResult &result) {
// Debug-print the set of solutions.
if (isDebugMode()) {
auto &log = llvm::errs();
auto indent = solverState ? solverState->getCurrentIndent() : 0;
if (result.getKind() == SolutionResult::Success) {
log << "\n";
log.indent(indent) << "---Solution---\n";
result.getSolution().dump(llvm::errs(), indent);
} else if (result.getKind() == SolutionResult::Ambiguous) {
auto solutions = result.getAmbiguousSolutions();
for (unsigned i : indices(solutions)) {
log << "\n";
log.indent(indent) << "--- Solution #" << i << " ---\n";
solutions[i].dump(llvm::errs(), indent);
}
}
}
};
auto reportSolutionsToSolutionCallback = [&](const SolutionResult &result) {
if (!getASTContext().SolutionCallback) {
return;
}
switch (result.getKind()) {
case SolutionResult::Success:
getASTContext().SolutionCallback->sawSolution(result.getSolution());
break;
case SolutionResult::Ambiguous:
for (auto &solution : result.getAmbiguousSolutions()) {
getASTContext().SolutionCallback->sawSolution(solution);
}
break;
default:
break;
}
};
// Take up to two attempts at solving the system. The first attempts to
// solve a system that is expected to be well-formed, the second kicks in
// when there is an error and attempts to salvage an ill-formed program.
for (unsigned stage = 0; stage != 2; ++stage) {
auto solution = (stage == 0)
? solveImpl(target, allowFreeTypeVariables)
: salvage();
switch (solution.getKind()) {
case SolutionResult::Success: {
// Return the successful solution.
dumpSolutions(solution);
reportSolutionsToSolutionCallback(solution);
std::vector<Solution> result;
result.push_back(std::move(solution).takeSolution());
return std::move(result);
}
case SolutionResult::Error:
maybeProduceFallbackDiagnostic(target);
return std::nullopt;
case SolutionResult::TooComplex: {
auto affectedRange = solution.getTooComplexAt();
// If affected range is unknown, let's use whole
// target.
if (!affectedRange)
affectedRange = target.getSourceRange();
getASTContext()
.Diags.diagnose(affectedRange->Start, diag::expression_too_complex)
.highlight(*affectedRange);
solution.markAsDiagnosed();
return std::nullopt;
}
case SolutionResult::Ambiguous:
// If salvaging produced an ambiguous result, it has already been
// diagnosed.
// If we have found an ambiguous solution in the first stage, salvaging
// won't produce more solutions, so we can inform the solution callback
// about the current ambiguous solutions straight away.
if (stage == 1 || Context.SolutionCallback) {
reportSolutionsToSolutionCallback(solution);
solution.markAsDiagnosed();
return std::nullopt;
}
if (Options.contains(
ConstraintSystemFlags::AllowUnresolvedTypeVariables)) {
dumpSolutions(solution);
auto ambiguousSolutions = std::move(solution).takeAmbiguousSolutions();
std::vector<Solution> result(
std::make_move_iterator(ambiguousSolutions.begin()),
std::make_move_iterator(ambiguousSolutions.end()));
return std::move(result);
}
LLVM_FALLTHROUGH;
case SolutionResult::UndiagnosedError:
if (stage == 1) {
diagnoseFailureFor(target);
reportSolutionsToSolutionCallback(solution);
solution.markAsDiagnosed();
return std::nullopt;
}
// Loop again to try to salvage.
solution.markAsDiagnosed();
continue;
}
}
llvm_unreachable("Loop always returns");
}
SolutionResult
ConstraintSystem::solveImpl(SyntacticElementTarget &target,
FreeTypeVariableBinding allowFreeTypeVariables) {
if (isDebugMode()) {
auto &log = llvm::errs();
log << "\n---Constraint solving at ";
auto R = target.getSourceRange();
if (R.isValid()) {
R.print(log, getASTContext().SourceMgr, /*PrintText=*/ false);
} else {
log << "<invalid range>";
}
log << "---\n";
}
assert(!solverState && "cannot be used directly");
// Set up the expression type checker timer.
if (Expr *expr = target.getAsExpr())
startExpressionTimer(expr);
if (generateConstraints(target, allowFreeTypeVariables))
return SolutionResult::forError();
// Try to solve the constraint system using computed suggestions.
SmallVector<Solution, 4> solutions;
solve(solutions, allowFreeTypeVariables);
if (isTooComplex(solutions))
return SolutionResult::forTooComplex(getTooComplexRange());
switch (solutions.size()) {
case 0:
return SolutionResult::forUndiagnosedError();
case 1:
return SolutionResult::forSolved(std::move(solutions.front()));
default:
return SolutionResult::forAmbiguous(solutions);
}
}
bool ConstraintSystem::solve(SmallVectorImpl<Solution> &solutions,
FreeTypeVariableBinding allowFreeTypeVariables) {
// Set up solver state.
SolverState state(*this, allowFreeTypeVariables);
// Solve the system.
solveImpl(solutions);
if (isDebugMode()) {
auto &log = llvm::errs();
log << "\n---Solver statistics---\n";
log << "Total number of scopes explored: " << solverState->NumSolverScopes << "\n";
log << "Total number of trail steps: " << solverState->NumTrailSteps << "\n";
log << "Maximum depth reached while exploring solutions: " << solverState->maxDepth << "\n";
if (Timer) {
auto timeInMillis =
1000 * Timer->getElapsedProcessTimeInFractionalSeconds();
log << "Time: " << timeInMillis << "ms\n";
}
}
// Filter deduced solutions, try to figure out if there is
// a single best solution to use, if not explicitly disabled
// by constraint system options.
filterSolutions(solutions);
// We fail if there is no solution or the expression was too complex.
return solutions.empty() || isTooComplex(solutions);
}
void ConstraintSystem::solveImpl(SmallVectorImpl<Solution> &solutions) {
assert(solverState);
setPhase(ConstraintSystemPhase::Solving);
SWIFT_DEFER { setPhase(ConstraintSystemPhase::Finalization); };
// If constraint system failed while trying to
// genenerate constraints, let's stop right here.
if (failedConstraint)
return;
// Attempt to solve a constraint system already in an invalid
// state should be immediately aborted.
if (inInvalidState()) {
solutions.clear();
return;
}
// Allocate new solver scope, so constraint system
// could be restored to its original state afterwards.
// Otherwise there is a risk that some of the constraints
// are not going to be re-introduced to the system.
SolverScope scope(*this);
SmallVector<std::unique_ptr<SolverStep>, 16> workList;
// First step is always wraps whole constraint system.
workList.push_back(std::make_unique<SplitterStep>(*this, solutions));
// Indicate whether previous step in the stack has failed
// (returned StepResult::Kind = Error), this is useful to
// propagate failures when unsolved steps are re-taken.
bool prevFailed = false;
// Advance the solver by taking a given step, which might involve
// a preliminary "setup", if this is the first time this step is taken.
auto advance = [](SolverStep *step, bool prevFailed) -> StepResult {
auto currentState = step->getState();
if (currentState == StepState::Setup) {
step->setup();
step->transitionTo(StepState::Ready);
}
currentState = step->getState();
step->transitionTo(StepState::Running);
return currentState == StepState::Ready ? step->take(prevFailed)
: step->resume(prevFailed);
};
// Execute steps in LIFO order, which means that
// each individual step would either end up producing
// a solution, or producing another set of mergeable
// steps to take before arriving to solution.
while (!workList.empty()) {
auto &step = workList.back();
// Now let's try to advance to the next step or re-take previous,
// which should produce another steps to follow,
// or error, which means that current path is inconsistent.
{
auto result = advance(step.get(), prevFailed);
// If execution of this step let constraint system in an
// invalid state, let's drop all of the solutions and abort.
if (inInvalidState()) {
solutions.clear();
return;
}
switch (result.getKind()) {
// It was impossible to solve this step, let's note that
// for followup steps, to propagate the error.
case SolutionKind::Error:
LLVM_FALLTHROUGH;
// Step has been solved successfully by either
// producing a partial solution, or more steps
// toward that solution.
case SolutionKind::Solved: {
workList.pop_back();
break;
}
// Keep this step in the work list to return to it
// once all other steps are done, this could be a
// disjunction which has to peek a new choice until
// it completely runs out of choices, or type variable
// binding.
case SolutionKind::Unsolved:
break;
}
prevFailed = result.getKind() == SolutionKind::Error;
result.transfer(workList);
}
}
}
void ConstraintSystem::solveForCodeCompletion(
SmallVectorImpl<Solution> &solutions) {
{
SolverState state(*this, FreeTypeVariableBinding::Disallow);
// Enable "diagnostic mode" by default, this means that
// solver would produce "fixed" solutions alongside valid
// ones, which helps code completion to rank choices.
state.recordFixes = true;
solveImpl(solutions);
}
if (isDebugMode()) {
auto &log = llvm::errs();
auto indent = solverState ? solverState->getCurrentIndent() : 0;
log.indent(indent) << "--- Discovered " << solutions.size()
<< " solutions ---\n";
for (const auto &solution : solutions) {
log.indent(indent) << "--- Solution ---\n";
solution.dump(log, indent);
}
}
return;
}
bool ConstraintSystem::solveForCodeCompletion(
SyntacticElementTarget &target, SmallVectorImpl<Solution> &solutions) {
if (auto *expr = target.getAsExpr()) {
// Tell the constraint system what the contextual type is.
setContextualInfo(expr, target.getExprContextualTypeInfo());
// Set up the expression type checker timer.
startExpressionTimer(expr);
}
if (isDebugMode()) {
auto &log = llvm::errs();
log.indent(solverState ? solverState->getCurrentIndent() : 0)
<< "--- Code Completion ---\n";
}
if (generateConstraints(target))
return false;
solveForCodeCompletion(solutions);
return true;
}
void ConstraintSystem::collectDisjunctions(
SmallVectorImpl<Constraint *> &disjunctions) {
for (auto &constraint : InactiveConstraints) {
if (constraint.getKind() == ConstraintKind::Disjunction)
disjunctions.push_back(&constraint);
}
}
ConstraintSystem::SolutionKind
ConstraintSystem::filterDisjunction(
Constraint *disjunction, bool restoreOnFail,
llvm::function_ref<bool(Constraint *)> pred) {
assert(disjunction->getKind() == ConstraintKind::Disjunction);
SmallVector<Constraint *, 4> constraintsToRestoreOnFail;
unsigned choiceIdx = 0;
unsigned numEnabledTerms = 0;
ASTContext &ctx = getASTContext();
for (unsigned constraintIdx : indices(disjunction->getNestedConstraints())) {
auto constraint = disjunction->getNestedConstraints()[constraintIdx];
// Skip already-disabled constraints. Let's treat disabled
// choices which have a fix as "enabled" ones here, so we can
// potentially infer some type information from them.
if (constraint->isDisabled() && !constraint->getFix())
continue;
if (pred(constraint)) {
++numEnabledTerms;
choiceIdx = constraintIdx;
continue;
}
if (isDebugMode()) {
auto indent = (solverState ? solverState->getCurrentIndent() : 0) + 4;
llvm::errs().indent(indent) << "(disabled disjunction term ";
constraint->print(llvm::errs(), &ctx.SourceMgr, indent);
llvm::errs().indent(indent) << ")\n";
}
if (!constraint->isDisabled()) {
if (restoreOnFail)
constraintsToRestoreOnFail.push_back(constraint);
else if (solverState)
solverState->disableConstraint(constraint);
else
constraint->setDisabled();
}
}
if (numEnabledTerms == 0)
return SolutionKind::Error;
if (restoreOnFail) {
for (auto constraint : constraintsToRestoreOnFail) {
if (solverState)
solverState->disableConstraint(constraint);
else
constraint->setDisabled();
}
}
if (numEnabledTerms == 1) {
// Only a single constraint remains. Retire the disjunction and make
// the remaining constraint active.
auto choice = disjunction->getNestedConstraints()[choiceIdx];
// This can only happen when subscript syntax is used to lookup
// something which doesn't exist in type marked with
// `@dynamicMemberLookup`.
// Since filtering currently runs as part of the `applicable function`
// constraint processing, "keypath dynamic member lookup" choice can't
// be attempted in-place because that would also try to operate on that
// constraint, so instead let's keep the disjunction, but disable all
// unviable choices.
if (choice->getOverloadChoice().isKeyPathDynamicMemberLookup()) {
// Early simplification of the "keypath dynamic member lookup" choice
// is impossible because it requires constraints associated with
// subscript index expression to be present.
if (Phase == ConstraintSystemPhase::ConstraintGeneration)
return SolutionKind::Unsolved;
for (auto *currentChoice : disjunction->getNestedConstraints()) {
if (currentChoice->isDisabled())
continue;
if (currentChoice != choice)
solverState->disableConstraint(currentChoice);
}
return SolutionKind::Solved;
}
// Retire the disjunction. It's been solved.
retireConstraint(disjunction);
// Note the choice we made and simplify it. This introduces the
// new constraint into the system.
if (disjunction->shouldRememberChoice()) {
recordDisjunctionChoice(disjunction->getLocator(), choiceIdx);
}
if (isDebugMode()) {
auto indent = (solverState ? solverState->getCurrentIndent() : 0) + 4;
llvm::errs().indent(indent)
<< "(introducing single enabled disjunction term ";
choice->print(llvm::errs(), &ctx.SourceMgr, indent);
llvm::errs().indent(indent) << ")\n";
}
simplifyDisjunctionChoice(choice);
return failedConstraint ? SolutionKind::Unsolved : SolutionKind::Solved;
}
return SolutionKind::Unsolved;
}
std::optional<std::pair<Constraint *, unsigned>>
ConstraintSystem::findConstraintThroughOptionals(
TypeVariableType *typeVar, OptionalWrappingDirection optionalDirection,
llvm::function_ref<bool(Constraint *, TypeVariableType *)> predicate) {
unsigned numOptionals = 0;
auto *rep = getRepresentative(typeVar);
SmallPtrSet<TypeVariableType *, 4> visitedVars;
while (visitedVars.insert(rep).second) {
// Look for a disjunction that binds this type variable to an overload set.
TypeVariableType *optionalObjectTypeVar = nullptr;
auto constraints = getConstraintGraph().gatherNearbyConstraints(
rep,
[&](Constraint *match) {
// If we have an "optional object of" constraint, we may need to
// look through it to find the constraint we're looking for.
if (match->getKind() != ConstraintKind::OptionalObject)
return predicate(match, rep);
switch (optionalDirection) {
case OptionalWrappingDirection::Promote: {
// We want to go from T to T?, so check if we're on the RHS, and
// move over to the LHS if we can.
auto rhsTypeVar = match->getSecondType()->getAs<TypeVariableType>();
if (rhsTypeVar && getRepresentative(rhsTypeVar) == rep) {
optionalObjectTypeVar =
match->getFirstType()->getAs<TypeVariableType>();
}
break;
}
case OptionalWrappingDirection::Unwrap: {
// We want to go from T? to T, so check if we're on the LHS, and
// move over to the RHS if we can.
auto lhsTypeVar = match->getFirstType()->getAs<TypeVariableType>();
if (lhsTypeVar && getRepresentative(lhsTypeVar) == rep) {
optionalObjectTypeVar =
match->getSecondType()->getAs<TypeVariableType>();
}
break;
}
}
// Don't include the optional constraint in the results.
return false;
});
// If we found a result, return it.
if (!constraints.empty())
return std::make_pair(constraints[0], numOptionals);
// If we found an "optional object of" constraint, follow it.
if (optionalObjectTypeVar && !getFixedType(optionalObjectTypeVar)) {
numOptionals += 1;
rep = getRepresentative(optionalObjectTypeVar);
continue;
}
// Otherwise we're done.
return std::nullopt;
}
return std::nullopt;
}
Constraint *ConstraintSystem::getUnboundBindOverloadDisjunction(
TypeVariableType *tyvar, unsigned *numOptionalUnwraps) {
assert(!getFixedType(tyvar));
auto result = findConstraintThroughOptionals(
tyvar, OptionalWrappingDirection::Promote,
[&](Constraint *match, TypeVariableType *currentRep) {
// Check to see if we have a bind overload disjunction that binds the
// type var we need.
if (match->getKind() != ConstraintKind::Disjunction ||
match->getNestedConstraints().front()->getKind() !=
ConstraintKind::BindOverload)
return false;
auto lhsTy = match->getNestedConstraints().front()->getFirstType();
auto *lhsTyVar = lhsTy->getAs<TypeVariableType>();
return lhsTyVar && currentRep == getRepresentative(lhsTyVar);
});
if (!result)
return nullptr;
if (numOptionalUnwraps)
*numOptionalUnwraps = result->second;
return result->first;
}
// Performance hack: if there are two generic overloads, and one is
// more specialized than the other, prefer the more-specialized one.
static Constraint *
tryOptimizeGenericDisjunction(ConstraintSystem &cs, Constraint *disjunction,
ArrayRef<Constraint *> constraints) {
auto *dc = cs.DC;
// If we're solving for code completion, and have a child completion token,
// skip this optimization since the completion token being a placeholder can
// allow us to prefer an unhelpful disjunction choice.
if (cs.isForCodeCompletion()) {
auto anchor = disjunction->getLocator()->getAnchor();
if (cs.containsIDEInspectionTarget(cs.includingParentApply(anchor)))
return nullptr;
}
// Don't attempt this optimization if call has number literals.
// This is intended to narrowly fix situations like:
//
// func test<T: FloatingPoint>(_: T) { ... }
// func test<T: Numeric>(_: T) { ... }
//
// test(42)
//
// The call should use `<T: Numeric>` overload even though the
// `<T: FloatingPoint>` is a more specialized version because
// selecting `<T: Numeric>` doesn't introduce non-default literal
// types.
if (auto *argFnType = cs.getAppliedDisjunctionArgumentFunction(disjunction)) {
if (llvm::any_of(
argFnType->getParams(), [](const AnyFunctionType::Param &param) {
auto *typeVar = param.getPlainType()->getAs<TypeVariableType>();
return typeVar && typeVar->getImpl().isNumberLiteralType();
}))
return nullptr;
}
llvm::SmallVector<Constraint *, 4> choices;
for (auto *choice : constraints) {
if (choices.size() > 2)
return nullptr;
if (!choice->isDisabled())
choices.push_back(choice);
}
if (choices.size() != 2)
return nullptr;
if (choices[0]->getKind() != ConstraintKind::BindOverload ||
choices[1]->getKind() != ConstraintKind::BindOverload ||
choices[0]->isFavored() ||
choices[1]->isFavored())
return nullptr;
OverloadChoice choiceA = choices[0]->getOverloadChoice();
OverloadChoice choiceB = choices[1]->getOverloadChoice();
if (!choiceA.isDecl() || !choiceB.isDecl())
return nullptr;
auto isViable = [](ValueDecl *decl) -> bool {
assert(decl);
auto *AFD = dyn_cast<AbstractFunctionDecl>(decl);
if (!AFD || !AFD->isGeneric())
return false;
if (AFD->getAttrs().hasAttribute<DisfavoredOverloadAttr>())
return false;
auto funcType = AFD->getInterfaceType();
auto hasAnyOrOptional = funcType.findIf([](Type type) -> bool {
if (type->getOptionalObjectType())
return true;
return type->isAny();
});
// If function declaration references `Any` or an optional type,
// let's not attempt it, because it's unclear
// without solving which overload is going to be better.
return !hasAnyOrOptional;
};
auto *declA = choiceA.getDecl();
auto *declB = choiceB.getDecl();
if (!isViable(declA) || !isViable(declB))
return nullptr;
switch (TypeChecker::compareDeclarations(dc, declA, declB)) {
case Comparison::Better:
return choices[0];
case Comparison::Worse:
return choices[1];
case Comparison::Unordered:
return nullptr;
}
llvm_unreachable("covered switch");
}
/// Populates the \c found vector with the indices of the given constraints
/// that have a matching type to an existing operator binding elsewhere in
/// the expression.
///
/// Operator bindings that have a matching type to an existing binding
/// are attempted first by the solver because it's very common to chain
/// operators of the same type together.
static void existingOperatorBindingsForDisjunction(ConstraintSystem &CS,
ArrayRef<Constraint *> constraints,
SmallVectorImpl<unsigned> &found) {
auto *choice = constraints.front();
if (choice->getKind() != ConstraintKind::BindOverload)
return;
auto overload = choice->getOverloadChoice();
if (!overload.isDecl())
return;
auto decl = overload.getDecl();
if (!decl->isOperator())
return;
// For concrete operators, consider overloads that have the same type as
// an existing binding, because it's very common to write mixed operator
// expressions where all operands have the same type, e.g. `(x + 10) / 2`.
// For generic operators, only favor an exact overload that has already
// been bound, because mixed operator expressions are far less common, and
// computing generic canonical types is expensive.
SmallSet<CanType, 4> concreteTypesFound;
SmallSet<ValueDecl *, 4> genericDeclsFound;
for (auto overload : CS.getResolvedOverloads()) {
auto resolved = overload.second;
if (!resolved.choice.isDecl())
continue;
auto representativeDecl = resolved.choice.getDecl();
if (!representativeDecl->isOperator())
continue;
auto interfaceType = representativeDecl->getInterfaceType();
if (interfaceType->is<GenericFunctionType>()) {
genericDeclsFound.insert(representativeDecl);
} else {
concreteTypesFound.insert(interfaceType->getCanonicalType());
}
}
for (auto index : indices(constraints)) {
auto *constraint = constraints[index];
if (constraint->isFavored())
continue;
auto *decl = constraint->getOverloadChoice().getDecl();
auto interfaceType = decl->getInterfaceType();
bool isGeneric = interfaceType->is<GenericFunctionType>();
if ((isGeneric && genericDeclsFound.count(decl)) ||
(!isGeneric && concreteTypesFound.count(interfaceType->getCanonicalType())))
found.push_back(index);
}
}
void DisjunctionChoiceProducer::partitionGenericOperators(
SmallVectorImpl<unsigned>::iterator first,
SmallVectorImpl<unsigned>::iterator last) {
auto *argFnType = CS.getAppliedDisjunctionArgumentFunction(Disjunction);
if (!isOperatorDisjunction(Disjunction) || !argFnType)
return;
auto operatorName = Choices[0]->getOverloadChoice().getName();
if (!operatorName.getBaseIdentifier().isArithmeticOperator())
return;
SmallVector<unsigned, 4> concreteOverloads;
SmallVector<unsigned, 4> numericOverloads;
SmallVector<unsigned, 4> sequenceOverloads;
SmallVector<unsigned, 4> simdOverloads;
SmallVector<unsigned, 4> otherGenericOverloads;
auto &ctx = CS.getASTContext();
auto *additiveArithmeticProto = ctx.getProtocol(KnownProtocolKind::AdditiveArithmetic);
auto *sequenceProto = ctx.getProtocol(KnownProtocolKind::Sequence);
auto *simdProto = ctx.getProtocol(KnownProtocolKind::SIMD);
auto conformsTo = [&](Type type, ProtocolDecl *protocol) -> bool {
return protocol && bool(CS.lookupConformance(type, protocol));
};
auto refinesOrConformsTo = [&](NominalTypeDecl *nominal, ProtocolDecl *protocol) -> bool {
if (!nominal || !protocol)
return false;
if (auto *refined = dyn_cast<ProtocolDecl>(nominal))
return refined->inheritsFrom(protocol);
return conformsTo(nominal->getDeclaredInterfaceType(), protocol);
};
// Gather Numeric and Sequence overloads into separate buckets.
for (auto iter = first; iter != last; ++iter) {
unsigned index = *iter;
auto *decl = Choices[index]->getOverloadChoice().getDecl();
auto *nominal = decl->getDeclContext()->getSelfNominalTypeDecl();
if (isSIMDOperator(decl)) {
simdOverloads.push_back(index);
} else if (!decl->getInterfaceType()->is<GenericFunctionType>()) {
concreteOverloads.push_back(index);
} else if (refinesOrConformsTo(nominal, additiveArithmeticProto)) {
numericOverloads.push_back(index);
} else if (refinesOrConformsTo(nominal, sequenceProto)) {
sequenceOverloads.push_back(index);
} else {
otherGenericOverloads.push_back(index);
}
}
auto sortPartition = [&](SmallVectorImpl<unsigned> &partition) {
llvm::sort(partition, [&](unsigned lhs, unsigned rhs) -> bool {
auto *declA =
dyn_cast<ValueDecl>(Choices[lhs]->getOverloadChoice().getDecl());
auto *declB =
dyn_cast<ValueDecl>(Choices[rhs]->getOverloadChoice().getDecl());
return TypeChecker::isDeclRefinementOf(declA, declB);
});
};
// Sort sequence overloads so that refinements are attempted first.
// If the solver finds a solution with an overload, it can then skip
// subsequent choices that the successful choice is a refinement of.
sortPartition(sequenceOverloads);
// Attempt concrete overloads first.
first = std::copy(concreteOverloads.begin(), concreteOverloads.end(), first);
// Check if any of the known argument types conform to one of the standard
// arithmetic protocols. If so, the solver should attempt the corresponding
// overload choices first.
for (auto arg : argFnType->getParams()) {
auto argType = arg.getPlainType();
argType = CS.getFixedTypeRecursive(argType, /*wantRValue=*/true);
if (argType->isTypeVariableOrMember())
continue;
if (conformsTo(argType, additiveArithmeticProto)) {
first =
std::copy(numericOverloads.begin(), numericOverloads.end(), first);
numericOverloads.clear();
break;
}
if (conformsTo(argType, sequenceProto)) {
first =
std::copy(sequenceOverloads.begin(), sequenceOverloads.end(), first);
sequenceOverloads.clear();
break;
}
if (conformsTo(argType, simdProto)) {
first = std::copy(simdOverloads.begin(), simdOverloads.end(), first);
simdOverloads.clear();
break;
}
}
first = std::copy(otherGenericOverloads.begin(), otherGenericOverloads.end(), first);
first = std::copy(numericOverloads.begin(), numericOverloads.end(), first);
first = std::copy(sequenceOverloads.begin(), sequenceOverloads.end(), first);
first = std::copy(simdOverloads.begin(), simdOverloads.end(), first);
}
void DisjunctionChoiceProducer::partitionDisjunction(
SmallVectorImpl<unsigned> &Ordering,
SmallVectorImpl<unsigned> &PartitionBeginning) {
// Apply a special-case rule for favoring one generic function over
// another.
if (auto favored = tryOptimizeGenericDisjunction(CS, Disjunction, Choices)) {
CS.favorConstraint(favored);
}
SmallSet<Constraint *, 16> taken;
using ConstraintMatcher = std::function<bool(unsigned index, Constraint *)>;
using ConstraintMatchLoop =
std::function<void(ArrayRef<Constraint *>, ConstraintMatcher)>;
using PartitionAppendCallback =
std::function<void(SmallVectorImpl<unsigned> & options)>;
// Local function used to iterate over the untaken choices from the
// disjunction and use a higher-order function to determine if they
// should be part of a partition.
ConstraintMatchLoop forEachChoice =
[&](ArrayRef<Constraint *>,
std::function<bool(unsigned index, Constraint *)> fn) {
for (auto index : indices(Choices)) {
auto *constraint = Choices[index];
if (taken.count(constraint))
continue;
if (fn(index, constraint))
taken.insert(constraint);
}
};
// First collect some things that we'll generally put near the beginning or
// end of the partitioning.
SmallVector<unsigned, 4> favored;
SmallVector<unsigned, 4> everythingElse;
SmallVector<unsigned, 4> simdOperators;
SmallVector<unsigned, 4> disabled;
SmallVector<unsigned, 4> unavailable;
// Add existing operator bindings to the main partition first. This often
// helps the solver find a solution fast.
existingOperatorBindingsForDisjunction(CS, Choices, everythingElse);
for (auto index : everythingElse)
taken.insert(Choices[index]);
// First collect disabled and favored constraints.
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (constraint->isDisabled()) {
disabled.push_back(index);
return true;
}
if (constraint->isFavored()) {
favored.push_back(index);
return true;
}
// Order VarDecls before other kinds of declarations because they are
// effectively favored over functions when the two are in the same
// overload set. This disjunction order allows SK_UnappliedFunction
// to prune later overload choices that are functions when a solution
// has already been found with a property.
if (auto *decl = getOverloadChoiceDecl(constraint)) {
if (isa<VarDecl>(decl)) {
everythingElse.push_back(index);
return true;
}
}
return false;
});
// Then unavailable constraints if we're skipping them.
if (!CS.shouldAttemptFixes()) {
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (constraint->getKind() != ConstraintKind::BindOverload)
return false;
auto *decl = constraint->getOverloadChoice().getDeclOrNull();
auto *funcDecl = dyn_cast_or_null<FuncDecl>(decl);
if (!funcDecl)
return false;
if (!CS.isDeclUnavailable(funcDecl, constraint->getLocator()))
return false;
unavailable.push_back(index);
return true;
});
}
// Partition SIMD operators.
if (isOperatorDisjunction(Disjunction) &&
!Choices[0]->getOverloadChoice().getName().getBaseIdentifier().isArithmeticOperator()) {
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
if (isSIMDOperator(constraint->getOverloadChoice().getDecl())) {
simdOperators.push_back(index);
return true;
}
return false;
});
}
// Gather the remaining options.
forEachChoice(Choices, [&](unsigned index, Constraint *constraint) -> bool {
everythingElse.push_back(index);
return true;
});
// Local function to create the next partition based on the options
// passed in.
PartitionAppendCallback appendPartition =
[&](SmallVectorImpl<unsigned> &options) {
if (options.size()) {
PartitionBeginning.push_back(Ordering.size());
Ordering.insert(Ordering.end(), options.begin(), options.end());
}
};
appendPartition(favored);
appendPartition(everythingElse);
appendPartition(simdOperators);
appendPartition(unavailable);
appendPartition(disabled);
assert(Ordering.size() == Choices.size());
}
Constraint *ConstraintSystem::selectConjunction() {
SmallVector<Constraint *, 4> conjunctions;
for (auto &constraint : InactiveConstraints) {
if (constraint.isDisabled())
continue;
if (constraint.getKind() == ConstraintKind::Conjunction)
conjunctions.push_back(&constraint);
}
if (conjunctions.empty())
return nullptr;
auto &SM = getASTContext().SourceMgr;
// Conjunctions should be solved in order of their apperance in the source.
// This is important because once a conjunction is solved, we don't re-visit
// it, so we need to make sure we don't solve it before another conjuntion
// that could provide it with necessary type information. Source order
// provides an easy to reason about and quick way of establishing this.
return *std::min_element(
conjunctions.begin(), conjunctions.end(),
[&](Constraint *conjunctionA, Constraint *conjunctionB) {
auto *locA = conjunctionA->getLocator();
auto *locB = conjunctionB->getLocator();
if (!(locA && locB))
return false;
auto anchorA = locA->getAnchor();
auto anchorB = locB->getAnchor();
if (!(anchorA && anchorB))
return false;
auto slocA = anchorA.getStartLoc();
auto slocB = anchorB.getStartLoc();
if (!(slocA.isValid() && slocB.isValid()))
return false;
return SM.isBeforeInBuffer(slocA, slocB);
});
}
bool DisjunctionChoice::attempt(ConstraintSystem &cs) const {
cs.simplifyDisjunctionChoice(Choice);
if (ExplicitConversion)
propagateConversionInfo(cs);
// Attempt to simplify current choice might result in
// immediate failure, which is recorded in constraint system.
return !cs.failedConstraint && !cs.simplify();
}
bool DisjunctionChoice::isGenericOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto interfaceType = decl->getInterfaceType();
return interfaceType->is<GenericFunctionType>();
}
bool DisjunctionChoice::isSymmetricOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto func = dyn_cast<FuncDecl>(decl);
auto paramList = func->getParameters();
if (paramList->size() != 2)
return true;
auto firstType = paramList->get(0)->getInterfaceType();
auto secondType = paramList->get(1)->getInterfaceType();
return firstType->isEqual(secondType);
}
bool DisjunctionChoice::isUnaryOperator() const {
auto *decl = getOperatorDecl(Choice);
if (!decl)
return false;
auto func = cast<FuncDecl>(decl);
return func->getParameters()->size() == 1;
}
void DisjunctionChoice::propagateConversionInfo(ConstraintSystem &cs) const {
assert(ExplicitConversion);
auto LHS = Choice->getFirstType();
auto typeVar = LHS->getAs<TypeVariableType>();
if (!typeVar)
return;
// Use the representative (if any) to lookup constraints
// and potentially bind the coercion type to.
typeVar = typeVar->getImpl().getRepresentative(nullptr);
// If the representative already has a type assigned to it
// we can't really do anything here.
if (typeVar->getImpl().getFixedType(nullptr))
return;
auto bindings = cs.getBindingsFor(typeVar);
auto numBindings =
bindings.Bindings.size() + bindings.getNumViableLiteralBindings();
if (bindings.isHole() || bindings.involvesTypeVariables() || numBindings != 1)
return;
Type conversionType;
// There is either a single direct/transitive binding, or
// a single literal default.
if (!bindings.Bindings.empty()) {
conversionType = bindings.Bindings[0].BindingType;
} else {
for (const auto &literal : bindings.Literals) {
if (literal.second.viableAsBinding()) {
conversionType = literal.second.getDefaultType();
break;
}
}
}
auto constraints = cs.CG.gatherNearbyConstraints(
typeVar,
[](Constraint *constraint) -> bool {
switch (constraint->getKind()) {
case ConstraintKind::Conversion:
case ConstraintKind::Defaultable:
case ConstraintKind::ConformsTo:
case ConstraintKind::LiteralConformsTo:
case ConstraintKind::TransitivelyConformsTo:
return false;
default:
return true;
}
});
if (constraints.empty())
cs.addConstraint(ConstraintKind::Bind, typeVar, conversionType,
Choice->getLocator());
}
bool ConjunctionElement::attempt(ConstraintSystem &cs) const {
// First, let's bring all referenced variables into scope.
{
llvm::SmallPtrSet<TypeVariableType *, 4> referencedVars;
findReferencedVariables(cs, referencedVars);
if (cs.isDebugMode()) {
auto indent = cs.solverState->getCurrentIndent();
auto &log = llvm::errs().indent(indent);
log << "(Element type variables in scope: ";
interleave(
referencedVars,
[&](TypeVariableType *typeVar) { log << "$T" << typeVar->getID(); },
[&] { log << ", "; });
log << ")\n";
}
for (auto *typeVar : referencedVars)
cs.addTypeVariable(typeVar);
}
auto result = cs.simplifyConstraint(*Element);
return result != ConstraintSystem::SolutionKind::Error;
}