Files
swift-mirror/lib/AST/Module.cpp
2013-10-10 14:51:38 +00:00

1140 lines
40 KiB
C++

//===--- Module.cpp - Swift Language Module Implementation ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Diagnostics.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/PrintOptions.h"
#include "swift/Basic/SourceManager.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Builtin Module Name lookup
//===----------------------------------------------------------------------===//
namespace {
/// BuiltinModuleCache - This is the type of the cache for the BuiltinModule.
/// This is lazily created on its first use an hangs off
/// Module::LookupCachePimpl.
class BuiltinModuleCache {
/// The cache of identifiers we've already looked up. We use a
/// single hashtable for both types and values as a minor
/// optimization; this prevents us from having both a builtin type
/// and a builtin value with the same name, but that's okay.
llvm::DenseMap<Identifier, ValueDecl*> Cache;
public:
void lookupValue(Identifier Name, NLKind LookupKind, BuiltinModule &M,
SmallVectorImpl<ValueDecl*> &Result);
};
} // end anonymous namespace.
static BuiltinModuleCache &getBuiltinCachePimpl(void *&Ptr) {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (Ptr == 0)
Ptr = new BuiltinModuleCache();
return *(BuiltinModuleCache*)Ptr;
}
void BuiltinModuleCache::lookupValue(Identifier Name, NLKind LookupKind,
BuiltinModule &M,
SmallVectorImpl<ValueDecl*> &Result) {
// Only qualified lookup ever finds anything in the builtin module.
if (LookupKind != NLKind::QualifiedLookup) return;
ValueDecl *&Entry = Cache[Name];
if (Entry == 0)
if (Type Ty = getBuiltinType(M.Ctx, Name.str()))
Entry = new (M.Ctx) TypeAliasDecl(SourceLoc(), Name, SourceLoc(),
TypeLoc::withoutLoc(Ty),
M.Ctx.TheBuiltinModule,
MutableArrayRef<TypeLoc>());
if (Entry == 0)
Entry = getBuiltinValue(M.Ctx, Name);
if (Entry)
Result.push_back(Entry);
}
//===----------------------------------------------------------------------===//
// Normal Module Name Lookup
//===----------------------------------------------------------------------===//
namespace {
/// This is the type of the cache for the TranslationUnit.
///
/// This is lazily created on its first use and hangs off
/// Module::LookupCachePimpl.
class TUModuleCache {
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> TopLevelValues;
llvm::DenseMap<Identifier, TinyPtrVector<ValueDecl*>> ClassMembers;
bool MemberCachePopulated = false;
void doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators);
void addToMemberCache(ArrayRef<Decl*> decls);
void populateMemberCache(const TranslationUnit &TU);
public:
typedef Module::AccessPathTy AccessPathTy;
TUModuleCache(const TranslationUnit &TU);
void lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind, TranslationUnit &TU,
SmallVectorImpl<ValueDecl*> &Result);
void lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind,
const TranslationUnit &TU);
void lookupClassMembers(AccessPathTy AccessPath,
VisibleDeclConsumer &consumer,
const TranslationUnit &TU);
void lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results,
const TranslationUnit &TU);
SmallVector<ValueDecl *, 0> AllVisibleValues;
};
} // end anonymous namespace.
static TUModuleCache &getTUCachePimpl(void *&Ptr, const TranslationUnit &TU) {
// FIXME: This leaks. Sticking this into ASTContext isn't enough because then
// the DenseMap will leak.
if (Ptr == 0)
Ptr = new TUModuleCache(TU);
return *(TUModuleCache*)Ptr;
}
static void freeTUCachePimpl(void *&Ptr) {
delete (TUModuleCache*)Ptr;
Ptr = 0;
}
void TUModuleCache::doPopulateCache(ArrayRef<Decl*> decls, bool onlyOperators) {
for (Decl *D : decls) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
if (onlyOperators ? VD->getName().isOperator() : !VD->getName().empty())
TopLevelValues[VD->getName()].push_back(VD);
if (NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D))
doPopulateCache(NTD->getMembers(), true);
if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D))
doPopulateCache(ED->getMembers(), true);
}
}
void TUModuleCache::populateMemberCache(const TranslationUnit &TU) {
for (const Decl *D : TU.MainSourceFile->Decls) {
if (const NominalTypeDecl *NTD = dyn_cast<NominalTypeDecl>(D)) {
addToMemberCache(NTD->getMembers());
} else if (const ExtensionDecl *ED = dyn_cast<ExtensionDecl>(D)) {
addToMemberCache(ED->getMembers());
}
}
}
void TUModuleCache::addToMemberCache(ArrayRef<Decl*> decls) {
for (Decl *D : decls) {
auto VD = dyn_cast<ValueDecl>(D);
if (!VD)
continue;
if (auto NTD = dyn_cast<NominalTypeDecl>(VD)) {
assert(!VD->canBeAccessedByDynamicLookup() &&
"inner types cannot be accessed by dynamic lookup");
addToMemberCache(NTD->getMembers());
} else if (VD->canBeAccessedByDynamicLookup()) {
ClassMembers[VD->getName()].push_back(VD);
}
}
}
/// Populate our cache on the first name lookup.
TUModuleCache::TUModuleCache(const TranslationUnit &TU) {
doPopulateCache(TU.MainSourceFile->Decls, false);
}
void TUModuleCache::lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind, TranslationUnit &TU,
SmallVectorImpl<ValueDecl*> &Result) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
// If this import is specific to some named type or decl ("import swift.int")
// then filter out any lookups that don't match.
if (AccessPath.size() == 1 && AccessPath.front().first != Name)
return;
auto I = TopLevelValues.find(Name);
if (I == TopLevelValues.end()) return;
Result.reserve(I->second.size());
for (ValueDecl *Elt : I->second)
Result.push_back(Elt);
}
void TUModuleCache::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind,
const TranslationUnit &TU) {
assert(AccessPath.size() <= 1 && "can only refer to top-level decls");
if (!AccessPath.empty()) {
auto I = TopLevelValues.find(AccessPath.front().first);
if (I == TopLevelValues.end()) return;
for (auto vd : I->second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
return;
}
for (auto &tlv : TopLevelValues) {
for (ValueDecl *vd : tlv.second)
Consumer.foundDecl(vd, DeclVisibilityKind::VisibleAtTopLevel);
}
}
void TUModuleCache::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
const TranslationUnit &TU) {
if (!MemberCachePopulated)
populateMemberCache(TU);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!accessPath.empty()) {
for (auto &member : ClassMembers) {
for (ValueDecl *vd : member.second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
return;
}
for (auto &member : ClassMembers) {
for (ValueDecl *vd : member.second)
consumer.foundDecl(vd, DeclVisibilityKind::DynamicLookup);
}
}
void TUModuleCache::lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results,
const TranslationUnit &TU) {
if (!MemberCachePopulated)
populateMemberCache(TU);
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
auto iter = ClassMembers.find(name);
if (iter == ClassMembers.end())
return;
if (!accessPath.empty()) {
for (ValueDecl *vd : iter->second) {
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
results.push_back(vd);
}
return;
}
results.append(iter->second.begin(), iter->second.end());
}
//===----------------------------------------------------------------------===//
// Module Implementation
//===----------------------------------------------------------------------===//
void Module::lookupValue(AccessPathTy AccessPath, Identifier Name,
NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) {
if (BuiltinModule *BM = dyn_cast<BuiltinModule>(this)) {
assert(AccessPath.empty() && "builtin module's access path always empty!");
return getBuiltinCachePimpl(LookupCachePimpl)
.lookupValue(Name, LookupKind, *BM, Result);
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
// Look in the translation unit.
return getTUCachePimpl(LookupCachePimpl, *TU)
.lookupValue(AccessPath, Name, LookupKind, *TU, Result);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupValue(this, AccessPath, Name, LookupKind, Result);
}
void Module::lookupVisibleDecls(AccessPathTy AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const {
if (auto BM = dyn_cast<BuiltinModule>(this)) {
// TODO Look through the Builtin module.
(void)BM;
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(LookupCachePimpl, *TU)
.lookupVisibleDecls(AccessPath, Consumer, LookupKind, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupVisibleDecls(this, AccessPath, Consumer, LookupKind);
}
void Module::lookupClassMembers(AccessPathTy accessPath,
VisibleDeclConsumer &consumer) const {
if (isa<BuiltinModule>(this)) {
// The Builtin module defines no classes.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(LookupCachePimpl, *TU)
.lookupClassMembers(accessPath, consumer, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupClassMembers(this, accessPath, consumer);
}
void Module::lookupClassMember(AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results) const {
if (isa<BuiltinModule>(this)) {
// The Builtin module defines no classes.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
return getTUCachePimpl(LookupCachePimpl, *TU)
.lookupClassMember(accessPath, name, results, *TU);
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.lookupClassMember(this, accessPath, name, results);
}
void Module::getTopLevelDecls(SmallVectorImpl<Decl*> &Results) {
if (isa<BuiltinModule>(this)) {
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
Results.append(TU->MainSourceFile->Decls.begin(),
TU->MainSourceFile->Decls.end());
return;
}
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
return Owner.getTopLevelDecls(this, Results);
}
ArrayRef<Substitution> BoundGenericType::getSubstitutions(
Module *module,
LazyResolver *resolver) {
// FIXME: If there is no module, infer one. This is a hack for callers that
// don't have access to the module. It will have to go away once we're
// properly differentiating bound generic types based on the protocol
// conformances visible from a given module.
if (!module) {
module = getDecl()->getParentModule();
}
// If we already have a cached copy of the substitutions, return them.
auto *canon = getCanonicalType()->castTo<BoundGenericType>();
const ASTContext &ctx = canon->getASTContext();
if (auto known = ctx.getSubstitutions(canon))
return *known;
// Compute the set of substitutions.
llvm::SmallPtrSet<ArchetypeType *, 8> knownArchetypes;
SmallVector<ArchetypeType *, 8> archetypeStack;
TypeSubstitutionMap substitutions;
auto genericParams = canon->getDecl()->getGenericParams();
unsigned index = 0;
for (Type arg : canon->getGenericArgs()) {
auto gp = genericParams->getParams()[index++];
auto archetype = gp.getAsTypeParam()->getArchetype();
substitutions[archetype] = arg;
}
// Collect all of the archetypes.
SmallVector<ArchetypeType *, 2> allArchetypesList;
ArrayRef<ArchetypeType *> allArchetypes = genericParams->getAllArchetypes();
if (genericParams->getOuterParameters()) {
SmallVector<const GenericParamList *, 2> allGenericParams;
unsigned numArchetypes = 0;
for (; genericParams; genericParams = genericParams->getOuterParameters()) {
allGenericParams.push_back(genericParams);
numArchetypes += genericParams->getAllArchetypes().size();
}
allArchetypesList.reserve(numArchetypes);
for (auto gp = allGenericParams.rbegin(), gpEnd = allGenericParams.rend();
gp != gpEnd; ++gp) {
allArchetypesList.append((*gp)->getAllArchetypes().begin(),
(*gp)->getAllArchetypes().end());
}
allArchetypes = allArchetypesList;
}
// For each of the archetypes, compute the substitution.
bool hasTypeVariables = canon->hasTypeVariable();
SmallVector<Substitution, 4> resultSubstitutions;
resultSubstitutions.resize(allArchetypes.size());
index = 0;
for (auto archetype : allArchetypes) {
// Substitute into the type.
auto type = Type(archetype).subst(module, substitutions,
/*ignoreMissing=*/hasTypeVariables,
resolver);
assert(type && "Unable to perform type substitution");
SmallVector<ProtocolConformance *, 4> conformances;
if (type->hasTypeVariable()) {
// If the type involves a type variable, just fill in null conformances.
// FIXME: It seems like we should record these as requirements (?).
conformances.assign(archetype->getConformsTo().size(), nullptr);
} else {
// Find the conformances.
for (auto proto : archetype->getConformsTo()) {
auto conforms = module->lookupConformance(type, proto, resolver);
switch (conforms.getInt()) {
case ConformanceKind::Conforms:
conformances.push_back(conforms.getPointer());
break;
case ConformanceKind::DoesNotConform:
case ConformanceKind::UncheckedConforms:
llvm_unreachable("Couldn't find conformance");
}
}
}
// Record this substitution.
resultSubstitutions[index].Archetype = archetype;
resultSubstitutions[index].Replacement = type;
resultSubstitutions[index].Conformance = ctx.AllocateCopy(conformances);
++index;
}
// Copy and record the substitutions.
auto permanentSubs = ctx.AllocateCopy(resultSubstitutions,
hasTypeVariables
? AllocationArena::ConstraintSolver
: AllocationArena::Permanent);
ctx.setSubstitutions(canon, permanentSubs);
return permanentSubs;
}
/// Gather the set of substitutions required to map from the generic form of
/// the given type to the specialized form.
static ArrayRef<Substitution> gatherSubstitutions(Module *module, Type type,
LazyResolver *resolver) {
assert(type->isSpecialized() && "Type is not specialized");
SmallVector<ArrayRef<Substitution>, 2> allSubstitutions;
while (type) {
// Record the substitutions in a bound generic type.
if (auto boundGeneric = type->getAs<BoundGenericType>()) {
allSubstitutions.push_back(boundGeneric->getSubstitutions(module,
resolver));
type = boundGeneric->getParent();
continue;
}
// Skip to the parent of a nominal type.
if (auto nominal = type->getAs<NominalType>()) {
type = nominal->getParent();
continue;
}
llvm_unreachable("Not a nominal or bound generic type");
}
assert(!allSubstitutions.empty() && "No substitutions?");
// If there is only one list of substitutions, return it. There's no
// need to copy it.
if (allSubstitutions.size() == 1)
return allSubstitutions.front();
SmallVector<Substitution, 4> flatSubstitutions;
for (auto substitutions : allSubstitutions)
flatSubstitutions.append(substitutions.begin(), substitutions.end());
auto &ctx = module->getASTContext();
return ctx.AllocateCopy(flatSubstitutions);
}
/// Given a type witness map and a set of substitutions, produce the specialized
/// type witness map by applying the substitutions to each type witness.
static TypeWitnessMap
specializeTypeWitnesses(ASTContext &ctx,
Module *module,
const TypeWitnessMap &witnesses,
ArrayRef<Substitution> substitutions,
LazyResolver *resolver) {
// Compute the substitution map, which is needed for substType().
TypeSubstitutionMap substitutionMap;
for (const auto &substitution : substitutions) {
substitutionMap[substitution.Archetype] = substitution.Replacement;
}
// Substitute into each of the type witnesses.
TypeWitnessMap result;
for (const auto &genericWitness : witnesses) {
// Substitute into the type witness to produce the type witness for
// the specialized type.
auto specializedType
= genericWitness.second.Replacement.subst(module, substitutionMap,
/*ignoreMissing=*/false,
resolver);
// If the type witness was unchanged, just copy it directly.
if (specializedType.getPointer() ==
genericWitness.second.Replacement.getPointer()) {
result.insert(genericWitness);
continue;
}
// Gather the conformances for the type witness. These should never fail.
SmallVector<ProtocolConformance *, 4> conformances;
auto archetype = genericWitness.second.Archetype;
for (auto proto : archetype->getConformsTo()) {
auto conforms = module->lookupConformance(specializedType, proto,
resolver);
switch (conforms.getInt()) {
case ConformanceKind::Conforms:
conformances.push_back(conforms.getPointer());
break;
case ConformanceKind::DoesNotConform:
case ConformanceKind::UncheckedConforms:
// FIXME: Signal errors in a more sane way.
return TypeWitnessMap();
}
}
result[genericWitness.first]
= Substitution{archetype, specializedType,
ctx.AllocateCopy(conformances)};
}
return result;
}
/// Retrieve the explicit conformance of the given nominal type declaration
/// to the given protocol.
static std::tuple<NominalTypeDecl *, Decl *, ProtocolConformance *>
findExplicitConformance(NominalTypeDecl *nominal, ProtocolDecl *protocol,
LazyResolver *resolver) {
// FIXME: Introduce a cache/lazy lookup structure to make this more efficient?
// Walk the nominal type, its extensions, superclasses, and so on.
llvm::SmallPtrSet<ProtocolDecl *, 4> visitedProtocols;
SmallVector<std::tuple<NominalTypeDecl *, NominalTypeDecl *, Decl *>,4> stack;
NominalTypeDecl *owningNominal = nullptr;
Decl *declaresConformance = nullptr;
ProtocolConformance *nominalConformance = nullptr;
// Local function that checks for our protocol in the given array of
// protocols.
auto isProtocolInList
= [&](NominalTypeDecl *currentNominal,
Decl *currentOwner,
ArrayRef<ProtocolDecl *> protocols,
ArrayRef<ProtocolConformance *> conformances) -> bool {
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
auto testProto = protocols[i];
if (testProto == protocol) {
owningNominal = currentNominal;
declaresConformance = currentOwner;
if (i < conformances.size())
nominalConformance = conformances[i];
return true;
}
if (visitedProtocols.insert(testProto))
stack.push_back({testProto, currentNominal, currentOwner});
}
return false;
};
resolver->resolveDeclSignature(nominal);
// Walk the stack of types to find a conformance.
stack.push_back({nominal, nominal, nominal});
while (!stack.empty()) {
NominalTypeDecl *current;
NominalTypeDecl *currentNominal;
Decl *currentOwner;
std::tie(current, currentNominal, currentOwner) = stack.back();
stack.pop_back();
// Visit the superclass of a class.
if (auto classDecl = dyn_cast<ClassDecl>(current)) {
if (auto superclassTy = classDecl->getSuperclass()) {
auto nominal = superclassTy->getAnyNominal();
stack.push_back({nominal, nominal, nominal});
}
}
// Visit the protocols this type conforms to directly.
if (isProtocolInList(currentNominal, currentOwner,
current->getProtocols(),
current->getConformances()))
break;
// Visit the extensions of this type.
for (auto ext : current->getExtensions()) {
if (isProtocolInList(currentNominal, ext, ext->getProtocols(),
ext->getConformances()))
break;
}
}
// If we didn't find the protocol, we don't conform. Cache the negative result
// and return.
if (!owningNominal) {
return { nullptr, nullptr, nullptr };
}
// If we don't have a nominal conformance, but we do have a resolver, try
// to resolve the nominal conformance now.
if (!nominalConformance && resolver) {
nominalConformance = resolver->resolveConformance(
owningNominal,
protocol,
dyn_cast<ExtensionDecl>(declaresConformance));
}
// If we have a nominal conformance, we're done.
if (nominalConformance) {
return { owningNominal, declaresConformance, nominalConformance };
}
return { nullptr, nullptr, nullptr };
}
LookupConformanceResult Module::lookupConformance(Type type,
ProtocolDecl *protocol,
LazyResolver *resolver) {
ASTContext &ctx = getASTContext();
// An archetype conforms to a protocol if the protocol is listed in the
// archetype's list of conformances.
if (auto archetype = type->getAs<ArchetypeType>()) {
for (auto ap : archetype->getConformsTo()) {
if (ap == protocol || ap->inheritsFrom(protocol))
return { nullptr, ConformanceKind::Conforms };
}
return { nullptr, ConformanceKind::DoesNotConform };
}
// An archetype conforms to a protocol if the protocol is listed in the
// existential's list of conformances and the existential conforms to
// itself.
if (type->isExistentialType()) {
// If the protocol doesn't conform to itself, there's no point in looking
// further.
auto known = protocol->existentialConformsToSelf();
if (!known && resolver) {
resolver->resolveExistentialConformsToItself(protocol);
known = protocol->existentialConformsToSelf();
}
// If we know that protocol doesn't conform to itself, we're done.
if (known && !*known)
return { nullptr, ConformanceKind::DoesNotConform };
// Look for this protocol within the existential's list of conformances.
SmallVector<ProtocolDecl *, 4> protocols;
type->isExistentialType(protocols);
for (auto ap : protocols) {
if (ap == protocol || ap->inheritsFrom(protocol)) {
return { nullptr,
known? ConformanceKind::Conforms
: ConformanceKind::UncheckedConforms };
}
}
// We didn't find our protocol in the existential's list; it doesn't
// conform.
return { nullptr, ConformanceKind::DoesNotConform };
}
// Check whether we have already cached an answer to this query.
ASTContext::ConformsToMap::key_type key(type->getCanonicalType(), protocol);
auto known = ctx.ConformsTo.find(key);
if (known != ctx.ConformsTo.end()) {
// If we conform, return the conformance.
if (known->second.getInt()) {
return { known->second.getPointer(), ConformanceKind::Conforms };
}
// We don't conform.
return { nullptr, ConformanceKind::DoesNotConform };
}
auto nominal = type->getAnyNominal();
// If we don't have a nominal type, there are no conformances.
// FIXME: We may have implicit conformances for some cases. Handle those
// here.
if (!nominal) {
return { nullptr, ConformanceKind::DoesNotConform };
}
// Find the explicit conformance.
NominalTypeDecl *owningNominal = nullptr;
Decl *declaresConformance = nullptr;
ProtocolConformance *nominalConformance = nullptr;
std::tie(owningNominal, declaresConformance, nominalConformance)
= findExplicitConformance(nominal, protocol, resolver);
// If we didn't find an owning nominal, we don't conform. Cache the negative
// result and return.
if (!owningNominal) {
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
return { nullptr, ConformanceKind::DoesNotConform };
}
// If we found an owning nominal but didn't have a conformance, this is
// an unchecked conformance.
if (!nominalConformance) {
return { nullptr, ConformanceKind::UncheckedConforms };
}
// If the nominal type in which we found the conformance is not the same
// as the type we asked for, it's an inherited type.
if (owningNominal != nominal) {
// Find the superclass type
Type superclassTy = type->getSuperclass(resolver);
while (superclassTy->getAnyNominal() != owningNominal)
superclassTy = superclassTy->getSuperclass(resolver);
// Compute the conformance for the inherited type.
auto inheritedConformance = lookupConformance(superclassTy, protocol,
resolver);
switch (inheritedConformance.getInt()) {
case ConformanceKind::DoesNotConform:
llvm_unreachable("We already found the inherited conformance");
case ConformanceKind::UncheckedConforms:
return inheritedConformance;
case ConformanceKind::Conforms:
// Create inherited conformance below.
break;
}
// Create the inherited conformance entry.
auto result
= ctx.getInheritedConformance(type, inheritedConformance.getPointer());
ctx.ConformsTo[key] = ConformanceEntry(result, true);
return { result, ConformanceKind::Conforms };
}
// If the type is specialized, find the conformance for the generic type.
if (type->isSpecialized()) {
// Figure out the type that's explicitly conforming to this protocol.
Type explicitConformanceType;
if (auto nominal = dyn_cast<NominalTypeDecl>(declaresConformance)) {
explicitConformanceType = nominal->getDeclaredTypeInContext();
} else {
explicitConformanceType = cast<ExtensionDecl>(declaresConformance)
->getDeclaredTypeInContext();
}
// If the explicit conformance is associated with a type that is different
// from the type we're checking, retrieve generic conformance.
if (!explicitConformanceType->isEqual(type)) {
// Gather the substitutions we need to map the generic conformance to
// the specialized conformance.
auto substitutions = gatherSubstitutions(this, type, resolver);
// The type witnesses for the specialized conformance.
TypeWitnessMap typeWitnesses
= specializeTypeWitnesses(ctx, this,
nominalConformance->getTypeWitnesses(),
substitutions,
resolver);
// Create the specialized conformance entry.
ctx.ConformsTo[key] = ConformanceEntry(nullptr, false);
auto result = ctx.getSpecializedConformance(type, nominalConformance,
substitutions,
std::move(typeWitnesses));
ctx.ConformsTo[key] = ConformanceEntry(result, true);
return { result, ConformanceKind::Conforms };
}
}
// Record and return the simple conformance.
ctx.ConformsTo[key] = ConformanceEntry(nominalConformance, true);
return { nominalConformance, ConformanceKind::Conforms };
}
void Module::getDisplayDecls(SmallVectorImpl<Decl*> &results) {
if (isa<BuiltinModule>(this)) {
// FIXME: The Builtin module isn't usually visible, but it would be nice
// to have the option to display its decls. Unfortunately those decls are
// lazily generated.
return;
}
if (auto TU = dyn_cast<TranslationUnit>(this)) {
results.append(TU->MainSourceFile->Decls.begin(),
TU->MainSourceFile->Decls.end());
return;
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.getDisplayDecls(this, results);
}
namespace {
template <typename T>
using IdentifierMap = SourceFile::IdentifierMap<T>;
// Returns Nothing on error, Optional(nullptr) if no operator decl found, or
// Optional(decl) if decl was found.
template<typename OP_DECL>
Optional<OP_DECL *> lookupOperatorDeclForName(Module *M,
SourceLoc Loc,
Identifier Name,
IdentifierMap<OP_DECL *> SourceFile::*OP_MAP)
{
if (auto loadedModule = dyn_cast<LoadedModule>(M))
return loadedModule->lookupOperator<OP_DECL>(Name);
auto *TU = dyn_cast<TranslationUnit>(M);
if (!TU)
return Nothing;
// Look for an operator declaration in the current module.
auto found = (TU->MainSourceFile->*OP_MAP).find(Name);
if (found != (TU->MainSourceFile->*OP_MAP).end())
return found->second ? Optional<OP_DECL *>(found->second) : Nothing;
// Look for imported operator decls.
llvm::DenseSet<OP_DECL*> importedOperators;
for (auto &imported : TU->MainSourceFile->getImports()) {
Optional<OP_DECL *> maybeOp
= lookupOperatorDeclForName(imported.first.second, Loc, Name, OP_MAP);
if (!maybeOp)
return Nothing;
if (OP_DECL *op = *maybeOp)
importedOperators.insert(op);
}
// If we found a single import, use it.
if (importedOperators.empty()) {
// Cache the mapping so we don't need to troll imports next time.
(TU->MainSourceFile->*OP_MAP)[Name] = nullptr;
return Nothing;
}
if (importedOperators.size() == 1) {
// Cache the mapping so we don't need to troll imports next time.
OP_DECL *result = *importedOperators.begin();
(TU->MainSourceFile->*OP_MAP)[Name] = result;
return result;
}
// Otherwise, check for conflicts.
auto i = importedOperators.begin(), end = importedOperators.end();
OP_DECL *first = *i;
for (++i; i != end; ++i) {
if ((*i)->conflictsWith(first)) {
if (Loc.isValid()) {
ASTContext &C = M->getASTContext();
C.Diags.diagnose(Loc, diag::ambiguous_operator_decls);
C.Diags.diagnose(first->getLoc(), diag::found_this_operator_decl);
C.Diags.diagnose((*i)->getLoc(), diag::found_this_operator_decl);
}
return Nothing;
}
}
// Cache the mapping so we don't need to troll imports next time.
(TU->MainSourceFile->*OP_MAP)[Name] = first;
return first;
}
} // end anonymous namespace
Optional<PrefixOperatorDecl *> Module::lookupPrefixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::PrefixOperators);
}
Optional<PostfixOperatorDecl *> Module::lookupPostfixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::PostfixOperators);
}
Optional<InfixOperatorDecl *> Module::lookupInfixOperator(Identifier name,
SourceLoc diagLoc) {
return lookupOperatorDeclForName(this, diagLoc, name,
&SourceFile::InfixOperators);
}
void
Module::getImportedModules(SmallVectorImpl<ImportedModule> &modules,
bool includePrivate) const {
if (isa<BuiltinModule>(this))
return;
if (auto TU = dyn_cast<TranslationUnit>(this)) {
for (auto importPair : TU->MainSourceFile->getImports())
if (includePrivate || importPair.second)
modules.push_back(importPair.first);
return;
}
ModuleLoader &owner = cast<LoadedModule>(this)->getOwner();
return owner.getImportedModules(this, modules, includePrivate);
}
namespace {
/// Arbitrarily orders ImportedModule records, for inclusion in sets and such.
class OrderImportedModules {
using ImportedModule = Module::ImportedModule;
using AccessPathTy = Module::AccessPathTy;
public:
bool operator()(const ImportedModule &lhs, const ImportedModule &rhs) {
if (lhs.second != rhs.second)
return std::less<const Module *>()(lhs.second, rhs.second);
if (lhs.first.data() != rhs.first.data())
return std::less<AccessPathTy::iterator>()(lhs.first.begin(),
rhs.first.begin());
return lhs.first.size() < rhs.first.size();
}
};
}
bool Module::isSameAccessPath(AccessPathTy lhs, AccessPathTy rhs) {
using AccessPathElem = std::pair<Identifier, SourceLoc>;
if (lhs.size() != rhs.size())
return false;
auto iters = std::mismatch(lhs.begin(), lhs.end(), rhs.begin(),
[](const AccessPathElem &lElem,
const AccessPathElem &rElem) {
return lElem.first == rElem.first;
});
return iters.first == lhs.end();
}
StringRef Module::getModuleFilename() const {
if (isa<BuiltinModule>(this))
return StringRef();
if (auto TU = dyn_cast<TranslationUnit>(this)) {
if (auto ID = TU->MainSourceFile->getImportBufferID())
return Ctx.SourceMgr->getMemoryBuffer(*ID)->getBufferIdentifier();
return StringRef();
}
ModuleLoader &Owner = cast<LoadedModule>(this)->getOwner();
return Owner.getModuleFilename(this);
}
bool Module::isStdlibModule() const {
return !getParent() && Name == Ctx.StdlibModuleName;
}
template<bool respectVisibility, typename Callback>
static void forAllImportedModules(Module *topLevel,
Optional<Module::AccessPathTy> thisPath,
const Callback &fn) {
using ImportedModule = Module::ImportedModule;
using AccessPathTy = Module::AccessPathTy;
llvm::SmallSet<ImportedModule, 32, OrderImportedModules> visited;
SmallVector<ImportedModule, 32> queue;
AccessPathTy overridingPath;
if (thisPath.hasValue()) {
if (respectVisibility)
overridingPath = thisPath.getValue();
queue.push_back(ImportedModule(overridingPath, topLevel));
} else {
visited.insert(ImportedModule({}, topLevel));
}
// Even if we're processing the top-level module like any other, we still want
// to include non-exported modules.
topLevel->getImportedModules(queue, true);
while (!queue.empty()) {
auto next = queue.pop_back_val();
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
if (next.first.empty() || !respectVisibility)
next.first = overridingPath;
else if (!overridingPath.empty() &&
!Module::isSameAccessPath(next.first, overridingPath)) {
// If we ever allow importing non-top-level decls, it's possible the rule
// above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
}
if (!visited.insert(next))
continue;
if (!fn(next))
break;
next.second->getImportedModules(queue, !respectVisibility);
}
}
void Module::forAllVisibleModules(Optional<AccessPathTy> thisPath,
std::function<bool(ImportedModule)> fn) {
forAllImportedModules<true>(this, thisPath, fn);
}
void Module::collectLinkLibraries(LinkLibraryCallback callback) {
forAllImportedModules<false>(this, AccessPathTy(),
[=](ImportedModule import) -> bool {
Module *module = import.second;
if (isa<BuiltinModule>(module)) {
// The Builtin module requires no libraries.
return true;
}
if (auto TU = dyn_cast<TranslationUnit>(module)) {
for (auto lib : TU->getLinkLibraries())
callback(lib);
return true;
}
ModuleLoader &owner = cast<LoadedModule>(module)->getOwner();
owner.getLinkLibraries(module, callback);
return true;
});
}
//===----------------------------------------------------------------------===//
// TranslationUnit Implementation
//===----------------------------------------------------------------------===//
void TranslationUnit::print(raw_ostream &os) {
print(os, PrintOptions::printEverything());
}
void TranslationUnit::print(raw_ostream &os, const PrintOptions &options) {
for (auto decl : MainSourceFile->Decls) {
if (!decl->shouldPrintInContext())
continue;
decl->print(os, options);
os << "\n";
}
}
void TranslationUnit::clearLookupCache() {
freeTUCachePimpl(LookupCachePimpl);
}
void
TranslationUnit::cacheVisibleDecls(SmallVectorImpl<ValueDecl*> &&globals) const{
auto &cached = getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues;
static_cast<SmallVectorImpl<ValueDecl*>&>(cached) = std::move(globals);
}
const SmallVectorImpl<ValueDecl *> &
TranslationUnit::getCachedVisibleDecls() const {
return getTUCachePimpl(LookupCachePimpl, *this).AllVisibleValues;
}
bool TranslationUnit::walk(ASTWalker &Walker) {
return MainSourceFile->walk(Walker);
}
bool SourceFile::walk(ASTWalker &walker) {
llvm::SaveAndRestore<ASTWalker::ParentTy> SAR(walker.Parent, &TU);
for (Decl *D : Decls) {
if (D->walk(walker))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// LoadedModule Implementation
//===----------------------------------------------------------------------===//
OperatorDecl *LoadedModule::lookupOperator(Identifier name, DeclKind fixity) {
return getOwner().lookupOperator(this, name, fixity);
}
template<>
PrefixOperatorDecl *
LoadedModule::lookupOperator<PrefixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::PrefixOperator);
return cast_or_null<PrefixOperatorDecl>(result);
}
template<>
PostfixOperatorDecl *
LoadedModule::lookupOperator<PostfixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::PostfixOperator);
return cast_or_null<PostfixOperatorDecl>(result);
}
template<>
InfixOperatorDecl *
LoadedModule::lookupOperator<InfixOperatorDecl>(Identifier name) {
auto result = lookupOperator(name, DeclKind::InfixOperator);
return cast_or_null<InfixOperatorDecl>(result);
}
//===----------------------------------------------------------------------===//
// ModuleLoader Implementation
//===----------------------------------------------------------------------===//
ModuleLoader::~ModuleLoader() {}