Files
swift-mirror/lib/ClangImporter/ClangAdapter.cpp
Devin Coughlin 8b14600372 [ClangImporter] Refactor availability attribute importing logic. NFC.
Refactor the PlatformAvailability logic for determining
which Clang availability attributes are relevant when importing. The goal
is to separate the logic for attribute relevance for a given platform from
the logic to determine whether a deprecated attribute should be imported as
unavailable in Swift.

This also makes it possible for the "deprecated-as-unavailable" logic to
refer to the underlying Clang declaration, which is functionality that will
be used in a later commit.

This commit has no intended functional change.

Part of rdar://problem/48348822
2019-03-03 14:29:50 -08:00

762 lines
25 KiB
C++

//===--- ClangAdapter.cpp - Interfaces with Clang entities ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides convenient and canonical interfaces with Clang entities,
// serving as both a useful place to put utility functions and a canonical
// interface that can abstract nitty gritty Clang internal details.
//
//===----------------------------------------------------------------------===//
#include "CFTypeInfo.h"
#include "ClangAdapter.h"
#include "ImportName.h"
#include "ImporterImpl.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Lex/Lexer.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
using namespace swift;
using namespace importer;
/// Get a bit vector indicating which arguments are non-null for a
/// given function or method.
SmallBitVector
importer::getNonNullArgs(const clang::Decl *decl,
ArrayRef<const clang::ParmVarDecl *> params) {
SmallBitVector result;
if (!decl)
return result;
for (const auto *nonnull : decl->specific_attrs<clang::NonNullAttr>()) {
if (!nonnull->args_size()) {
// Easy case: all pointer arguments are non-null.
if (result.empty())
result.resize(params.size(), true);
else
result.set(0, params.size());
return result;
}
// Mark each of the listed parameters as non-null.
if (result.empty())
result.resize(params.size(), false);
for (auto paramIdx : nonnull->args()) {
unsigned idx = paramIdx.getASTIndex();
if (idx < result.size())
result.set(idx);
}
}
return result;
}
Optional<const clang::Decl *>
importer::getDefinitionForClangTypeDecl(const clang::Decl *D) {
if (auto OID = dyn_cast<clang::ObjCInterfaceDecl>(D))
return OID->getDefinition();
if (auto TD = dyn_cast<clang::TagDecl>(D))
return TD->getDefinition();
if (auto OPD = dyn_cast<clang::ObjCProtocolDecl>(D))
return OPD->getDefinition();
return None;
}
Optional<clang::Module *>
importer::getClangSubmoduleForDecl(const clang::Decl *D,
bool allowForwardDeclaration) {
const clang::Decl *actual = nullptr;
// Put an Objective-C class into the module that contains the @interface
// definition, not just some @class forward declaration.
if (auto maybeDefinition = getDefinitionForClangTypeDecl(D)) {
actual = maybeDefinition.getValue();
if (!actual && !allowForwardDeclaration)
return None;
}
if (!actual)
actual = D->getCanonicalDecl();
return actual->getImportedOwningModule();
}
/// Retrieve the instance type of the given Clang declaration context.
clang::QualType
importer::getClangDeclContextType(const clang::DeclContext *dc) {
auto &ctx = dc->getParentASTContext();
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc))
return ctx.getObjCObjectPointerType(ctx.getObjCInterfaceType(objcClass));
if (auto objcCategory = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
if (objcCategory->isInvalidDecl())
return clang::QualType();
return ctx.getObjCObjectPointerType(
ctx.getObjCInterfaceType(objcCategory->getClassInterface()));
}
if (auto constProto = dyn_cast<clang::ObjCProtocolDecl>(dc)) {
auto proto = const_cast<clang::ObjCProtocolDecl *>(constProto);
auto type = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {proto}, false);
return ctx.getObjCObjectPointerType(type);
}
if (auto tag = dyn_cast<clang::TagDecl>(dc)) {
return ctx.getTagDeclType(tag);
}
return clang::QualType();
}
/// Determine whether this is the name of a collection with a single
/// element type.
static bool isCollectionName(StringRef typeName) {
auto lastWord = camel_case::getLastWord(typeName);
return lastWord == "Array" || lastWord == "Set";
}
/// Retrieve the name of the given Clang type for use when omitting
/// needless words.
OmissionTypeName importer::getClangTypeNameForOmission(clang::ASTContext &ctx,
clang::QualType type) {
if (type.isNull())
return OmissionTypeName();
// Dig through the type, looking for a typedef-name and stripping
// references along the way.
StringRef lastTypedefName;
do {
// The name of a typedef-name.
auto typePtr = type.getTypePtr();
if (auto typedefType = dyn_cast<clang::TypedefType>(typePtr)) {
auto name = typedefType->getDecl()->getName();
// Objective-C selector type.
if (ctx.hasSameUnqualifiedType(type, ctx.getObjCSelType()) &&
name == "SEL")
return "Selector";
// Objective-C "id" type.
if (type->isObjCIdType() && name == "id")
return "Object";
// Objective-C "Class" type.
if (type->isObjCClassType() && name == "Class")
return "Class";
// Objective-C "BOOL" type.
if (name == "BOOL")
return OmissionTypeName("Bool", OmissionTypeFlags::Boolean);
// If this is an imported CF type, use that name.
StringRef CFName = getCFTypeName(typedefType->getDecl());
if (!CFName.empty())
return CFName;
// If we have NS(U)Integer or CGFloat, return it.
if (name == "NSInteger" || name == "NSUInteger" || name == "CGFloat")
return name;
// If it's a collection name and of pointer type, call it an
// array of the pointee type.
if (isCollectionName(name)) {
if (auto ptrType = type->getAs<clang::PointerType>()) {
return OmissionTypeName(
name, None,
getClangTypeNameForOmission(ctx, ptrType->getPointeeType()).Name);
}
}
// Otherwise, desugar one level...
lastTypedefName = name;
type = typedefType->getDecl()->getUnderlyingType();
continue;
}
// For array types, convert the element type and treat this an as array.
if (auto arrayType = dyn_cast<clang::ArrayType>(typePtr)) {
return OmissionTypeName(
"Array", None,
getClangTypeNameForOmission(ctx, arrayType->getElementType()).Name);
}
// Look through reference types.
if (auto refType = dyn_cast<clang::ReferenceType>(typePtr)) {
type = refType->getPointeeTypeAsWritten();
continue;
}
// Look through pointer types.
if (auto ptrType = dyn_cast<clang::PointerType>(typePtr)) {
type = ptrType->getPointeeType();
continue;
}
// Try to desugar one level...
clang::QualType desugared = type.getSingleStepDesugaredType(ctx);
if (desugared.getTypePtr() == type.getTypePtr())
break;
type = desugared;
} while (true);
// Objective-C object pointers.
if (auto objcObjectPtr = type->getAs<clang::ObjCObjectPointerType>()) {
auto objcClass = objcObjectPtr->getInterfaceDecl();
// For id<Proto> or NSObject<Proto>, retrieve the name of "Proto".
if (objcObjectPtr->getNumProtocols() == 1 &&
(!objcClass || objcClass->getName() == "NSObject"))
return (*objcObjectPtr->qual_begin())->getName();
// If there is a class, use it.
if (objcClass) {
// If this isn't the name of an Objective-C collection, we're done.
auto className = objcClass->getName();
if (!isCollectionName(className))
return className;
// If we don't have type parameters, use the prefix of the type
// name as the collection element type.
if (objcClass && !objcClass->getTypeParamList()) {
unsigned lastWordSize = camel_case::getLastWord(className).size();
StringRef elementName =
className.substr(0, className.size() - lastWordSize);
return OmissionTypeName(className, None, elementName);
}
// If we don't have type arguments, the collection element type
// is "Object".
auto typeArgs = objcObjectPtr->getTypeArgs();
if (typeArgs.empty())
return OmissionTypeName(className, None, "Object");
return OmissionTypeName(
className, None, getClangTypeNameForOmission(ctx, typeArgs[0]).Name);
}
// Objective-C "id" type.
if (objcObjectPtr->isObjCIdType())
return "Object";
// Objective-C "Class" type.
if (objcObjectPtr->isObjCClassType())
return "Class";
return StringRef();
}
// Handle builtin types by importing them and getting the Swift name.
if (auto builtinTy = type->getAs<clang::BuiltinType>()) {
// Names of integer types.
static const char *intTypeNames[] = {"UInt8", "UInt16", "UInt32", "UInt64",
"UInt128"};
/// Retrieve the name for an integer type based on its size.
auto getIntTypeName = [&](bool isSigned) -> StringRef {
switch (ctx.getTypeSize(builtinTy)) {
case 8:
return StringRef(intTypeNames[0]).substr(isSigned ? 1 : 0);
case 16:
return StringRef(intTypeNames[1]).substr(isSigned ? 1 : 0);
case 32:
return StringRef(intTypeNames[2]).substr(isSigned ? 1 : 0);
case 64:
return StringRef(intTypeNames[3]).substr(isSigned ? 1 : 0);
case 128:
return StringRef(intTypeNames[4]).substr(isSigned ? 1 : 0);
default:
llvm_unreachable("bad integer type size");
}
};
switch (builtinTy->getKind()) {
case clang::BuiltinType::Void:
return "Void";
case clang::BuiltinType::Bool:
return OmissionTypeName("Bool", OmissionTypeFlags::Boolean);
case clang::BuiltinType::Float:
return "Float";
case clang::BuiltinType::Double:
return "Double";
case clang::BuiltinType::Char8:
return "UInt8";
case clang::BuiltinType::Char16:
return "UInt16";
case clang::BuiltinType::Char32:
return "UnicodeScalar";
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::WChar_U:
return getIntTypeName(false);
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::WChar_S:
return getIntTypeName(true);
// Types that cannot be mapped into Swift, and probably won't ever be.
case clang::BuiltinType::Dependent:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::Overload:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::UnknownAny:
return OmissionTypeName();
// FIXME: Types that can be mapped, but aren't yet.
case clang::BuiltinType::ShortAccum:
case clang::BuiltinType::Accum:
case clang::BuiltinType::LongAccum:
case clang::BuiltinType::UShortAccum:
case clang::BuiltinType::UAccum:
case clang::BuiltinType::ULongAccum:
case clang::BuiltinType::ShortFract:
case clang::BuiltinType::Fract:
case clang::BuiltinType::LongFract:
case clang::BuiltinType::UShortFract:
case clang::BuiltinType::UFract:
case clang::BuiltinType::ULongFract:
case clang::BuiltinType::SatShortAccum:
case clang::BuiltinType::SatAccum:
case clang::BuiltinType::SatLongAccum:
case clang::BuiltinType::SatUShortAccum:
case clang::BuiltinType::SatUAccum:
case clang::BuiltinType::SatULongAccum:
case clang::BuiltinType::SatShortFract:
case clang::BuiltinType::SatFract:
case clang::BuiltinType::SatLongFract:
case clang::BuiltinType::SatUShortFract:
case clang::BuiltinType::SatUFract:
case clang::BuiltinType::SatULongFract:
case clang::BuiltinType::Half:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Float16:
case clang::BuiltinType::Float128:
case clang::BuiltinType::NullPtr:
return OmissionTypeName();
// Objective-C types that aren't mapped directly; rather, pointers to
// these types will be mapped.
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCSel:
return OmissionTypeName();
// OpenCL types that don't have Swift equivalents.
case clang::BuiltinType::OCLImage1dRO:
case clang::BuiltinType::OCLImage1dRW:
case clang::BuiltinType::OCLImage1dWO:
case clang::BuiltinType::OCLImage1dArrayRO:
case clang::BuiltinType::OCLImage1dArrayRW:
case clang::BuiltinType::OCLImage1dArrayWO:
case clang::BuiltinType::OCLImage1dBufferRO:
case clang::BuiltinType::OCLImage1dBufferRW:
case clang::BuiltinType::OCLImage1dBufferWO:
case clang::BuiltinType::OCLImage2dRO:
case clang::BuiltinType::OCLImage2dRW:
case clang::BuiltinType::OCLImage2dWO:
case clang::BuiltinType::OCLImage2dArrayRO:
case clang::BuiltinType::OCLImage2dArrayRW:
case clang::BuiltinType::OCLImage2dArrayWO:
case clang::BuiltinType::OCLImage2dDepthRO:
case clang::BuiltinType::OCLImage2dDepthRW:
case clang::BuiltinType::OCLImage2dDepthWO:
case clang::BuiltinType::OCLImage2dArrayDepthRO:
case clang::BuiltinType::OCLImage2dArrayDepthRW:
case clang::BuiltinType::OCLImage2dArrayDepthWO:
case clang::BuiltinType::OCLImage2dMSAARO:
case clang::BuiltinType::OCLImage2dMSAARW:
case clang::BuiltinType::OCLImage2dMSAAWO:
case clang::BuiltinType::OCLImage2dArrayMSAARO:
case clang::BuiltinType::OCLImage2dArrayMSAARW:
case clang::BuiltinType::OCLImage2dArrayMSAAWO:
case clang::BuiltinType::OCLImage2dMSAADepthRO:
case clang::BuiltinType::OCLImage2dMSAADepthRW:
case clang::BuiltinType::OCLImage2dMSAADepthWO:
case clang::BuiltinType::OCLImage2dArrayMSAADepthRO:
case clang::BuiltinType::OCLImage2dArrayMSAADepthRW:
case clang::BuiltinType::OCLImage2dArrayMSAADepthWO:
case clang::BuiltinType::OCLImage3dRO:
case clang::BuiltinType::OCLImage3dRW:
case clang::BuiltinType::OCLImage3dWO:
case clang::BuiltinType::OCLSampler:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLClkEvent:
case clang::BuiltinType::OCLQueue:
case clang::BuiltinType::OCLReserveID:
case clang::BuiltinType::OCLIntelSubgroupAVCMcePayload:
case clang::BuiltinType::OCLIntelSubgroupAVCImePayload:
case clang::BuiltinType::OCLIntelSubgroupAVCRefPayload:
case clang::BuiltinType::OCLIntelSubgroupAVCSicPayload:
case clang::BuiltinType::OCLIntelSubgroupAVCMceResult:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResult:
case clang::BuiltinType::OCLIntelSubgroupAVCRefResult:
case clang::BuiltinType::OCLIntelSubgroupAVCSicResult:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResultSingleRefStreamout:
case clang::BuiltinType::OCLIntelSubgroupAVCImeResultDualRefStreamout:
case clang::BuiltinType::OCLIntelSubgroupAVCImeSingleRefStreamin:
case clang::BuiltinType::OCLIntelSubgroupAVCImeDualRefStreamin:
return OmissionTypeName();
// OpenMP types that don't have Swift equivalents.
case clang::BuiltinType::OMPArraySection:
return OmissionTypeName();
}
}
// Tag types.
if (auto tagType = type->getAs<clang::TagType>()) {
if (tagType->getDecl()->getName().empty())
return lastTypedefName;
return tagType->getDecl()->getName();
}
// Block pointers.
if (type->getAs<clang::BlockPointerType>())
return OmissionTypeName("Block", OmissionTypeFlags::Function);
// Function pointers.
if (type->isFunctionType())
return OmissionTypeName("Function", OmissionTypeFlags::Function);
return StringRef();
}
static clang::SwiftNewtypeAttr *
retrieveNewTypeAttr(const clang::TypedefNameDecl *decl) {
// Retrieve the attribute.
auto attr = decl->getAttr<clang::SwiftNewtypeAttr>();
if (!attr)
return nullptr;
// FIXME: CFErrorDomain is marked as CF_EXTENSIBLE_STRING_ENUM, but it turned
// out to be more disruptive than not to leave it that way.
auto name = decl->getName();
if (name == "CFErrorDomain")
return nullptr;
return attr;
}
clang::SwiftNewtypeAttr *
importer::getSwiftNewtypeAttr(const clang::TypedefNameDecl *decl,
ImportNameVersion version) {
// Newtype was introduced in Swift 3
if (version <= ImportNameVersion::swift2())
return nullptr;
return retrieveNewTypeAttr(decl);
}
// If this decl is associated with a swift_newtype typedef, return it, otherwise
// null
clang::TypedefNameDecl *importer::findSwiftNewtype(const clang::NamedDecl *decl,
clang::Sema &clangSema,
ImportNameVersion version) {
// Newtype was introduced in Swift 3
if (version <= ImportNameVersion::swift2())
return nullptr;
auto varDecl = dyn_cast<clang::VarDecl>(decl);
if (!varDecl)
return nullptr;
if (auto typedefTy = varDecl->getType()->getAs<clang::TypedefType>())
if (retrieveNewTypeAttr(typedefTy->getDecl()))
return typedefTy->getDecl();
// Special case: "extern NSString * fooNotification" adopts
// NSNotificationName type, and is a member of NSNotificationName
if (isNSNotificationGlobal(decl)) {
clang::IdentifierInfo *notificationName =
&clangSema.getASTContext().Idents.get("NSNotificationName");
clang::LookupResult lookupResult(clangSema, notificationName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (!clangSema.LookupName(lookupResult, nullptr))
return nullptr;
auto nsDecl = lookupResult.getAsSingle<clang::TypedefNameDecl>();
if (!nsDecl)
return nullptr;
// Make sure it also has a newtype decl on it
if (retrieveNewTypeAttr(nsDecl))
return nsDecl;
return nullptr;
}
return nullptr;
}
bool importer::isNSString(const clang::Type *type) {
if (auto ptrType = type->getAs<clang::ObjCObjectPointerType>())
if (auto interfaceType = ptrType->getInterfaceType())
if (interfaceType->getDecl()->getName() == "NSString")
return true;
return false;
}
bool importer::isNSString(clang::QualType qt) {
return qt.getTypePtrOrNull() && isNSString(qt.getTypePtrOrNull());
}
bool importer::isNSNotificationGlobal(const clang::NamedDecl *decl) {
// Looking for: extern NSString *fooNotification;
// Must be extern global variable
auto vDecl = dyn_cast<clang::VarDecl>(decl);
if (!vDecl || !vDecl->hasExternalFormalLinkage())
return false;
// No explicit swift_name
if (decl->getAttr<clang::SwiftNameAttr>())
return false;
// Must end in Notification
if (!vDecl->getDeclName().isIdentifier())
return false;
if (stripNotification(vDecl->getName()).empty())
return false;
// Must be NSString *
if (!isNSString(vDecl->getType()))
return false;
// We're a match!
return true;
}
bool importer::hasNativeSwiftDecl(const clang::Decl *decl) {
for (auto annotation : decl->specific_attrs<clang::AnnotateAttr>()) {
if (annotation->getAnnotation() == SWIFT_NATIVE_ANNOTATION_STRING) {
return true;
}
}
if (auto *category = dyn_cast<clang::ObjCCategoryDecl>(decl)) {
clang::SourceLocation categoryNameLoc = category->getCategoryNameLoc();
if (categoryNameLoc.isMacroID()) {
// Climb up to the top-most macro invocation.
clang::ASTContext &clangCtx = category->getASTContext();
clang::SourceManager &SM = clangCtx.getSourceManager();
clang::SourceLocation macroCaller =
SM.getImmediateMacroCallerLoc(categoryNameLoc);
while (macroCaller.isMacroID()) {
categoryNameLoc = macroCaller;
macroCaller = SM.getImmediateMacroCallerLoc(categoryNameLoc);
}
StringRef macroName = clang::Lexer::getImmediateMacroName(
categoryNameLoc, SM, clangCtx.getLangOpts());
if (macroName == "SWIFT_EXTENSION")
return true;
}
}
return false;
}
/// Translate the "nullability" notion from API notes into an optional type
/// kind.
OptionalTypeKind importer::translateNullability(clang::NullabilityKind kind) {
switch (kind) {
case clang::NullabilityKind::NonNull:
return OptionalTypeKind::OTK_None;
case clang::NullabilityKind::Nullable:
return OptionalTypeKind::OTK_Optional;
case clang::NullabilityKind::Unspecified:
return OptionalTypeKind::OTK_ImplicitlyUnwrappedOptional;
}
llvm_unreachable("Invalid NullabilityKind.");
}
bool importer::hasDesignatedInitializers(
const clang::ObjCInterfaceDecl *classDecl) {
if (classDecl->hasDesignatedInitializers())
return true;
return false;
}
bool importer::isDesignatedInitializer(
const clang::ObjCInterfaceDecl *classDecl,
const clang::ObjCMethodDecl *method) {
// If the information is on the AST, use it.
if (classDecl->hasDesignatedInitializers()) {
auto *methodParent = method->getClassInterface();
if (!methodParent ||
methodParent->getCanonicalDecl() == classDecl->getCanonicalDecl()) {
return method->hasAttr<clang::ObjCDesignatedInitializerAttr>();
}
}
return false;
}
bool importer::isRequiredInitializer(const clang::ObjCMethodDecl *method) {
// FIXME: No way to express this in Objective-C.
return false;
}
/// Check if this method is declared in the context that conforms to
/// NSAccessibility.
static bool isAccessibilityConformingContext(const clang::DeclContext *ctx) {
const clang::ObjCProtocolList *protocols = nullptr;
if (auto protocol = dyn_cast<clang::ObjCProtocolDecl>(ctx)) {
if (protocol->getName() == "NSAccessibility")
return true;
return false;
} else if (auto interface = dyn_cast<clang::ObjCInterfaceDecl>(ctx))
protocols = &interface->getReferencedProtocols();
else if (auto category = dyn_cast<clang::ObjCCategoryDecl>(ctx))
protocols = &category->getReferencedProtocols();
else
return false;
for (auto pi : *protocols) {
if (pi->getName() == "NSAccessibility")
return true;
}
return false;
}
bool
importer::shouldImportPropertyAsAccessors(const clang::ObjCPropertyDecl *prop) {
if (prop->hasAttr<clang::SwiftImportPropertyAsAccessorsAttr>())
return true;
// Check if the property is one of the specially handled accessibility APIs.
//
// These appear as both properties and methods in ObjC and should be
// imported as methods into Swift, as a sort of least-common-denominator
// compromise.
if (!prop->getName().startswith("accessibility"))
return false;
if (isAccessibilityConformingContext(prop->getDeclContext()))
return true;
return false;
}
bool importer::isInitMethod(const clang::ObjCMethodDecl *method) {
// init methods are always instance methods.
if (!method->isInstanceMethod())
return false;
// init methods must be classified as such by Clang.
if (method->getMethodFamily() != clang::OMF_init)
return false;
// Swift restriction: init methods must start with the word "init".
auto selector = method->getSelector();
return camel_case::getFirstWord(selector.getNameForSlot(0)) == "init";
}
bool importer::isObjCId(const clang::Decl *decl) {
auto typedefDecl = dyn_cast<clang::TypedefNameDecl>(decl);
if (!typedefDecl)
return false;
if (!typedefDecl->getDeclContext()->getRedeclContext()->isTranslationUnit())
return false;
return typedefDecl->getName() == "id";
}
bool importer::isUnavailableInSwift(
const clang::Decl *decl, const PlatformAvailability &platformAvailability,
bool enableObjCInterop) {
// 'id' is always unavailable in Swift.
if (enableObjCInterop && isObjCId(decl))
return true;
if (decl->isUnavailable())
return true;
for (auto *attr : decl->specific_attrs<clang::AvailabilityAttr>()) {
if (attr->getPlatform()->getName() == "swift")
return true;
if (!platformAvailability.isPlatformRelevant(
attr->getPlatform()->getName())) {
continue;
}
llvm::VersionTuple version = attr->getDeprecated();
if (version.empty())
continue;
if (platformAvailability.treatDeprecatedAsUnavailable(decl, version)) {
return true;
}
}
return false;
}
OptionalTypeKind importer::getParamOptionality(version::Version swiftVersion,
const clang::ParmVarDecl *param,
bool knownNonNull) {
auto &clangCtx = param->getASTContext();
// If nullability is available on the type, use it.
clang::QualType paramTy = param->getType();
if (auto nullability = paramTy->getNullability(clangCtx)) {
return translateNullability(*nullability);
}
// If it's known non-null, use that.
if (knownNonNull || param->hasAttr<clang::NonNullAttr>())
return OTK_None;
// Check for the 'static' annotation on C arrays.
if (const auto *DT = dyn_cast<clang::DecayedType>(paramTy))
if (const auto *AT = DT->getOriginalType()->getAsArrayTypeUnsafe())
if (AT->getSizeModifier() == clang::ArrayType::Static)
return OTK_None;
// Default to implicitly unwrapped optionals.
return OTK_ImplicitlyUnwrappedOptional;
}