Files
swift-mirror/lib/LLVMPasses/LLVMARCContract.cpp
Mike Ash 46309d9794 [Runtime] Rename swift_unknown* functions to swift_unknownObject*.
These functions don't accept local variable heap memory, although the names make it sound like they work on anything. When you try, they mistakenly identify such things as ObjC objects, call through to the equivalent objc_* function, and crash confusingly. This adds Object to the name of each one to make it more clear what they accept.

rdar://problem/37285743
2018-08-15 17:48:23 -04:00

407 lines
14 KiB
C++

//===--- LLVMARCContract.cpp ----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "swift-arc-contract"
#include "swift/LLVMPasses/Passes.h"
#include "ARCEntryPointBuilder.h"
#include "LLVMARCOpts.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
using namespace swift;
using swift::SwiftARCContract;
STATISTIC(NumNoopDeleted,
"Number of no-op swift calls eliminated");
STATISTIC(NumRetainReleasesEliminatedByMergingIntoRetainReleaseN,
"Number of retain/release eliminated by merging into "
"retain_n/release_n");
STATISTIC(NumUnknownObjectRetainReleasesEliminatedByMergingIntoRetainReleaseN,
"Number of retain/release eliminated by merging into "
"unknownObjectRetain_n/unknownObjectRelease_n");
STATISTIC(NumBridgeRetainReleasesEliminatedByMergingIntoRetainReleaseN,
"Number of bridge retain/release eliminated by merging into "
"bridgeRetain_n/bridgeRelease_n");
/// Pimpl implementation of SwiftARCContractPass.
namespace {
struct LocalState {
TinyPtrVector<CallInst *> RetainList;
TinyPtrVector<CallInst *> ReleaseList;
TinyPtrVector<CallInst *> UnknownObjectRetainList;
TinyPtrVector<CallInst *> UnknownObjectReleaseList;
TinyPtrVector<CallInst *> BridgeRetainList;
TinyPtrVector<CallInst *> BridgeReleaseList;
};
/// This implements the very late (just before code generation) lowering
/// processes that we do to expose low level performance optimizations and take
/// advantage of special features of the ABI. These expansion steps can foil
/// the general mid-level optimizer, so they are done very, very, late.
///
/// Optimizations include:
///
/// - Merging together retain and release calls into retain_n, release_n
/// - calls.
///
/// Coming into this function, we assume that the code is in canonical form:
/// none of these calls have any uses of their return values.
class SwiftARCContractImpl {
/// Was a change made while running the optimization.
bool Changed;
/// Swift RC Identity.
SwiftRCIdentity *RC;
/// The function that we are processing.
Function &F;
/// The entry point builder that is used to construct ARC entry points.
ARCEntryPointBuilder B;
public:
SwiftARCContractImpl(Function &InF, SwiftRCIdentity *InRC)
: Changed(false), RC(InRC), F(InF), B(F) {}
// The top level run routine of the pass.
bool run();
private:
/// Perform the RRN Optimization given the current state that we are
/// tracking. This is called at the end of BBs and if we run into an unknown
/// call.
void
performRRNOptimization(DenseMap<Value *, LocalState> &PtrToLocalStateMap);
};
} // end anonymous namespace
// FIXME: This method is pretty long since it is actually several smaller
// optimizations that have been copied/pasted over time. This should be split
// into those smaller (currently inline) functions.
void SwiftARCContractImpl::
performRRNOptimization(DenseMap<Value *, LocalState> &PtrToLocalStateMap) {
// Go through all of our pointers and merge all of the retains with the
// first retain we saw and all of the releases with the last release we saw.
llvm::Value *O = nullptr;
for (auto &P : PtrToLocalStateMap) {
auto &RetainList = P.second.RetainList;
if (RetainList.size() > 1) {
// Create the retainN call right by the first retain.
B.setInsertPoint(RetainList[0]);
O = RetainList[0]->getArgOperand(0);
auto *RI = RetainList[0];
for (auto R : RetainList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
B.createRetainN(RC->getSwiftRCIdentityRoot(O), RetainList.size(), RI);
// Replace all uses of the retain instructions with our new retainN and
// then delete them.
for (auto *Inst : RetainList) {
Inst->eraseFromParent();
NumRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
RetainList.clear();
auto &ReleaseList = P.second.ReleaseList;
if (ReleaseList.size() > 1) {
// Create the releaseN call right by the last release.
auto *OldCI = ReleaseList[ReleaseList.size() - 1];
B.setInsertPoint(OldCI);
O = OldCI->getArgOperand(0);
auto *RI = OldCI;
for (auto R : ReleaseList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
B.createReleaseN(RC->getSwiftRCIdentityRoot(O), ReleaseList.size(), RI);
// Remove all old release instructions.
for (auto *Inst : ReleaseList) {
Inst->eraseFromParent();
NumRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
ReleaseList.clear();
auto &UnknownObjectRetainList = P.second.UnknownObjectRetainList;
if (UnknownObjectRetainList.size() > 1) {
// Create the retainN call right by the first retain.
B.setInsertPoint(UnknownObjectRetainList[0]);
O = UnknownObjectRetainList[0]->getArgOperand(0);
auto *RI = UnknownObjectRetainList[0];
for (auto R : UnknownObjectRetainList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
B.createUnknownObjectRetainN(RC->getSwiftRCIdentityRoot(O),
UnknownObjectRetainList.size(), RI);
// Replace all uses of the retain instructions with our new retainN and
// then delete them.
for (auto *Inst : UnknownObjectRetainList) {
Inst->eraseFromParent();
NumUnknownObjectRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumUnknownObjectRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
UnknownObjectRetainList.clear();
auto &UnknownObjectReleaseList = P.second.UnknownObjectReleaseList;
if (UnknownObjectReleaseList.size() > 1) {
// Create the releaseN call right by the last release.
auto *OldCI =
UnknownObjectReleaseList[UnknownObjectReleaseList.size() - 1];
B.setInsertPoint(OldCI);
O = OldCI->getArgOperand(0);
auto *RI = OldCI;
for (auto R : UnknownObjectReleaseList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
B.createUnknownObjectReleaseN(RC->getSwiftRCIdentityRoot(O),
UnknownObjectReleaseList.size(), RI);
// Remove all old release instructions.
for (auto *Inst : UnknownObjectReleaseList) {
Inst->eraseFromParent();
NumUnknownObjectRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumUnknownObjectRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
UnknownObjectReleaseList.clear();
auto &BridgeRetainList = P.second.BridgeRetainList;
if (BridgeRetainList.size() > 1) {
// Create the releaseN call right by the first retain.
auto *OldCI = BridgeRetainList[0];
B.setInsertPoint(OldCI);
O = OldCI->getArgOperand(0);
auto *RI = OldCI;
for (auto R : BridgeRetainList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
// Bridge retain may modify the input reference before forwarding it.
auto *I = B.createBridgeRetainN(RC->getSwiftRCIdentityRoot(O),
BridgeRetainList.size(), RI);
// Remove all old retain instructions.
for (auto *Inst : BridgeRetainList) {
// We may need to perform a pointer cast here to ensure that the output
// type of the retainN matches the output type. This can come up in
// cases where types have been obfuscated in some way. In such a case,
// we need the inert point to be at the retain location.
B.setInsertPoint(Inst);
Inst->replaceAllUsesWith(B.maybeCast(I, Inst->getType()));
Inst->eraseFromParent();
NumBridgeRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumBridgeRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
BridgeRetainList.clear();
auto &BridgeReleaseList = P.second.BridgeReleaseList;
if (BridgeReleaseList.size() > 1) {
// Create the releaseN call right by the last release.
auto *OldCI = BridgeReleaseList[BridgeReleaseList.size() - 1];
B.setInsertPoint(OldCI);
O = OldCI->getArgOperand(0);
auto *RI = OldCI;
for (auto R : BridgeReleaseList) {
if (B.isAtomic(R)) {
RI = R;
break;
}
}
B.createBridgeReleaseN(RC->getSwiftRCIdentityRoot(O),
BridgeReleaseList.size(), RI);
// Remove all old release instructions.
for (auto *Inst : BridgeReleaseList) {
Inst->eraseFromParent();
NumBridgeRetainReleasesEliminatedByMergingIntoRetainReleaseN++;
}
NumBridgeRetainReleasesEliminatedByMergingIntoRetainReleaseN--;
}
BridgeReleaseList.clear();
}
}
bool SwiftARCContractImpl::run() {
// intra-BB retain/release merging.
DenseMap<Value *, LocalState> PtrToLocalStateMap;
for (BasicBlock &BB : F) {
for (auto II = BB.begin(), IE = BB.end(); II != IE; ) {
// Preincrement iterator to avoid iteration issues in the loop.
Instruction &Inst = *II++;
auto Kind = classifyInstruction(Inst);
switch (Kind) {
// These instructions should not reach here based on the pass ordering.
// i.e. LLVMARCOpt -> LLVMContractOpt.
case RT_RetainN:
case RT_UnknownObjectRetainN:
case RT_BridgeRetainN:
case RT_ReleaseN:
case RT_UnknownObjectReleaseN:
case RT_BridgeReleaseN:
llvm_unreachable("These are only created by LLVMARCContract !");
// Delete all fix lifetime and end borrow instructions. After llvm-ir they
// have no use and show up as calls in the final binary.
case RT_FixLifetime:
case RT_EndBorrow:
Inst.eraseFromParent();
++NumNoopDeleted;
continue;
case RT_Retain: {
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.RetainList.push_back(CI);
continue;
}
case RT_UnknownObjectRetain: {
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.UnknownObjectRetainList.push_back(CI);
continue;
}
case RT_Release: {
// Stash any releases that we see.
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.ReleaseList.push_back(CI);
continue;
}
case RT_UnknownObjectRelease: {
// Stash any releases that we see.
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.UnknownObjectReleaseList.push_back(CI);
continue;
}
case RT_BridgeRetain: {
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.BridgeRetainList.push_back(CI);
continue;
}
case RT_BridgeRelease: {
auto *CI = cast<CallInst>(&Inst);
auto *ArgVal = RC->getSwiftRCIdentityRoot(CI->getArgOperand(0));
LocalState &LocalEntry = PtrToLocalStateMap[ArgVal];
LocalEntry.BridgeReleaseList.push_back(CI);
continue;
}
case RT_Unknown:
case RT_AllocObject:
case RT_NoMemoryAccessed:
case RT_RetainUnowned:
case RT_CheckUnowned:
case RT_ObjCRelease:
case RT_ObjCRetain:
break;
}
if (Kind != RT_Unknown)
continue;
// If we have an unknown call, we need to create any retainN calls we
// have seen. The reason why is that we do not want to move retains,
// releases over isUniquelyReferenced calls. Specifically imagine this:
//
// retain(x); unknown(x); release(x); isUniquelyReferenced(x); retain(x);
//
// In this case we would with this optimization merge the last retain
// with the first. This would then create an additional copy. The
// release side of this is:
//
// retain(x); unknown(x); release(x); isUniquelyReferenced(x); release(x);
//
// Again in such a case by merging the first release with the second
// release, we would be introducing an additional copy.
//
// Thus if we see an unknown call we merge together all retains and
// releases before. This could be made more aggressive through
// appropriate alias analysis and usage of LLVM's function attributes to
// determine that a function does not touch globals.
performRRNOptimization(PtrToLocalStateMap);
}
// Perform the RRNOptimization.
performRRNOptimization(PtrToLocalStateMap);
PtrToLocalStateMap.clear();
}
return Changed;
}
bool SwiftARCContract::runOnFunction(Function &F) {
RC = &getAnalysis<SwiftRCIdentity>();
return SwiftARCContractImpl(F, RC).run();
}
char SwiftARCContract::ID = 0;
INITIALIZE_PASS_BEGIN(SwiftARCContract,
"swift-arc-contract", "Swift ARC contraction",
false, false)
INITIALIZE_PASS_DEPENDENCY(SwiftRCIdentity)
INITIALIZE_PASS_END(SwiftARCContract,
"swift-arc-contract", "Swift ARC contraction",
false, false)
llvm::FunctionPass *swift::createSwiftARCContractPass() {
initializeSwiftARCContractPass(*llvm::PassRegistry::getPassRegistry());
return new SwiftARCContract();
}
void SwiftARCContract::getAnalysisUsage(llvm::AnalysisUsage &AU) const {
AU.addRequired<SwiftRCIdentity>();
AU.setPreservesCFG();
}