mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
5330 lines
222 KiB
C++
5330 lines
222 KiB
C++
//===--- Verifier.cpp - Verification of Swift SIL Code --------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-verifier"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/AnyFunctionRef.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/ExistentialLayout.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Range.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
#include "swift/SIL/ApplySite.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/DynamicCasts.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/PostOrder.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILDebugScope.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILOpenedArchetypesTracker.h"
|
|
#include "swift/SIL/SILVTable.h"
|
|
#include "swift/SIL/SILVTableVisitor.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
using Lowering::AbstractionPattern;
|
|
|
|
// This flag is used only to check that sil-combine can properly
|
|
// remove any code after unreachable, thus bringing SIL into
|
|
// its canonical form which may get temporarily broken during
|
|
// intermediate transformations.
|
|
static llvm::cl::opt<bool> SkipUnreachableMustBeLastErrors(
|
|
"verify-skip-unreachable-must-be-last",
|
|
llvm::cl::init(false));
|
|
|
|
// This flag controls the default behaviour when hitting a verification
|
|
// failure (abort/exit).
|
|
static llvm::cl::opt<bool> AbortOnFailure(
|
|
"verify-abort-on-failure",
|
|
llvm::cl::init(true));
|
|
|
|
static llvm::cl::opt<bool> VerifyDIHoles(
|
|
"verify-di-holes",
|
|
llvm::cl::init(true));
|
|
|
|
static llvm::cl::opt<bool> SkipConvertEscapeToNoescapeAttributes(
|
|
"verify-skip-convert-escape-to-noescape-attributes", llvm::cl::init(false));
|
|
|
|
// The verifier is basically all assertions, so don't compile it with NDEBUG to
|
|
// prevent release builds from triggering spurious unused variable warnings.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SILVerifier
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if A is an opened existential type or is equal to an
|
|
/// archetype from F's generic context.
|
|
static bool isArchetypeValidInFunction(ArchetypeType *A, const SILFunction *F) {
|
|
auto root = dyn_cast<PrimaryArchetypeType>(A->getRoot());
|
|
if (!root)
|
|
return true;
|
|
if (isa<OpenedArchetypeType>(A->getRoot()))
|
|
return true;
|
|
if (isa<OpaqueTypeArchetypeType>(A->getRoot()))
|
|
return true;
|
|
|
|
// Ok, we have a primary archetype, make sure it is in the nested generic
|
|
// environment of our caller.
|
|
if (auto *genericEnv = F->getGenericEnvironment())
|
|
if (root->getGenericEnvironment() == genericEnv)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Metaprogramming-friendly base class.
|
|
template <class Impl>
|
|
class SILVerifierBase : public SILInstructionVisitor<Impl> {
|
|
public:
|
|
// visitCLASS calls visitPARENT and checkCLASS.
|
|
// checkCLASS does nothing by default.
|
|
#define INST(CLASS, PARENT) \
|
|
void visit##CLASS(CLASS *I) { \
|
|
static_cast<Impl*>(this)->visit##PARENT(I); \
|
|
static_cast<Impl*>(this)->check##CLASS(I); \
|
|
} \
|
|
void check##CLASS(CLASS *I) {}
|
|
#include "swift/SIL/SILNodes.def"
|
|
|
|
void visitSILInstruction(SILInstruction *I) {
|
|
static_cast<Impl*>(this)->checkSILInstruction(I);
|
|
}
|
|
void checkSILInstruction(SILInstruction *I) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
|
|
/// Verify invariants on a key path component.
|
|
void verifyKeyPathComponent(SILModule &M,
|
|
ResilienceExpansion expansion,
|
|
llvm::function_ref<void(bool, StringRef)> require,
|
|
CanType &baseTy,
|
|
CanType leafTy,
|
|
const KeyPathPatternComponent &component,
|
|
ArrayRef<Operand> operands,
|
|
CanGenericSignature patternSig,
|
|
SubstitutionMap patternSubs,
|
|
bool forPropertyDescriptor,
|
|
bool hasIndices) {
|
|
auto &C = M.getASTContext();
|
|
|
|
auto opaque = AbstractionPattern::getOpaque();
|
|
auto loweredBaseTy =
|
|
M.Types.getLoweredType(opaque, baseTy, expansion);
|
|
auto componentTy = component.getComponentType().subst(patternSubs)
|
|
->getCanonicalType();
|
|
auto loweredComponentTy =
|
|
M.Types.getLoweredType(opaque, componentTy, expansion);
|
|
|
|
auto checkIndexEqualsAndHash = [&]{
|
|
if (!component.getSubscriptIndices().empty()) {
|
|
// Equals should be
|
|
// <Sig...> @convention(thin) (RawPointer, RawPointer) -> Bool
|
|
{
|
|
auto equals = component.getSubscriptIndexEquals();
|
|
require(equals, "key path pattern with indexes must have equals "
|
|
"operator");
|
|
|
|
auto substEqualsType = equals->getLoweredFunctionType()
|
|
->substGenericArgs(M, patternSubs);
|
|
|
|
require(substEqualsType->getParameters().size() == 2,
|
|
"must have two arguments");
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
auto param = substEqualsType->getParameters()[i];
|
|
require(param.getConvention()
|
|
== ParameterConvention::Direct_Unowned,
|
|
"indices pointer should be trivial");
|
|
require(param.getType()->getAnyNominal()
|
|
== C.getUnsafeRawPointerDecl(),
|
|
"indices pointer should be an UnsafeRawPointer");
|
|
}
|
|
|
|
require(substEqualsType->getResults().size() == 1,
|
|
"must have one result");
|
|
|
|
require(substEqualsType->getResults()[0].getConvention()
|
|
== ResultConvention::Unowned,
|
|
"result should be unowned");
|
|
require(substEqualsType->getResults()[0].getType()->getAnyNominal()
|
|
== C.getBoolDecl(),
|
|
"result should be Bool");
|
|
}
|
|
{
|
|
// Hash should be
|
|
// <Sig...> @convention(thin) (RawPointer) -> Int
|
|
auto hash = component.getSubscriptIndexHash();
|
|
require(hash, "key path pattern with indexes must have hash "
|
|
"operator");
|
|
|
|
auto substHashType = hash->getLoweredFunctionType()
|
|
->substGenericArgs(M, patternSubs);
|
|
|
|
require(substHashType->getParameters().size() == 1,
|
|
"must have two arguments");
|
|
auto param = substHashType->getParameters()[0];
|
|
require(param.getConvention()
|
|
== ParameterConvention::Direct_Unowned,
|
|
"indices pointer should be trivial");
|
|
require(param.getType()->getAnyNominal()
|
|
== C.getUnsafeRawPointerDecl(),
|
|
"indices pointer should be an UnsafeRawPointer");
|
|
|
|
require(substHashType->getResults().size() == 1,
|
|
"must have one result");
|
|
|
|
require(substHashType->getResults()[0].getConvention()
|
|
== ResultConvention::Unowned,
|
|
"result should be unowned");
|
|
require(substHashType->getResults()[0].getType()->getAnyNominal()
|
|
== C.getIntDecl(),
|
|
"result should be Int");
|
|
}
|
|
} else {
|
|
require(!component.getSubscriptIndexEquals()
|
|
&& !component.getSubscriptIndexHash(),
|
|
"component without indexes must not have equals/hash");
|
|
}
|
|
};
|
|
|
|
switch (auto kind = component.getKind()) {
|
|
case KeyPathPatternComponent::Kind::StoredProperty: {
|
|
auto property = component.getStoredPropertyDecl();
|
|
if (expansion == ResilienceExpansion::Minimal) {
|
|
require(property->getEffectiveAccess() >= AccessLevel::Public,
|
|
"Key path in serialized function cannot reference non-public "
|
|
"property");
|
|
}
|
|
|
|
auto fieldTy = baseTy->getTypeOfMember(M.getSwiftModule(), property)
|
|
->getReferenceStorageReferent()
|
|
->getCanonicalType();
|
|
require(fieldTy == componentTy,
|
|
"property decl should be a member of the base with the same type "
|
|
"as the component");
|
|
require(property->hasStorage(), "property must be stored");
|
|
require(!property->isResilient(M.getSwiftModule(), expansion),
|
|
"cannot access storage of resilient property");
|
|
auto propertyTy = loweredBaseTy.getFieldType(property, M);
|
|
require(propertyTy.getObjectType()
|
|
== loweredComponentTy.getObjectType(),
|
|
"component type should match the maximal abstraction of the "
|
|
"formal type");
|
|
break;
|
|
}
|
|
|
|
case KeyPathPatternComponent::Kind::GettableProperty:
|
|
case KeyPathPatternComponent::Kind::SettableProperty: {
|
|
if (forPropertyDescriptor) {
|
|
require(component.getSubscriptIndices().empty()
|
|
&& !component.getSubscriptIndexEquals()
|
|
&& !component.getSubscriptIndexHash(),
|
|
"property descriptor should not have index information");
|
|
|
|
require(component.getExternalDecl() == nullptr
|
|
&& component.getExternalSubstitutions().empty(),
|
|
"property descriptor should not refer to another external decl");
|
|
} else {
|
|
require(hasIndices == !component.getSubscriptIndices().empty(),
|
|
"component for subscript should have indices");
|
|
}
|
|
|
|
auto normalArgConvention = ParameterConvention::Indirect_In_Guaranteed;
|
|
|
|
// Getter should be <Sig...> @convention(thin) (@in_guaranteed Base) -> @out Result
|
|
{
|
|
auto getter = component.getComputedPropertyGetter();
|
|
if (expansion == ResilienceExpansion::Minimal) {
|
|
require(getter->hasValidLinkageForFragileRef(),
|
|
"Key path in serialized function should not reference "
|
|
"less visible getters");
|
|
}
|
|
|
|
auto substGetterType = getter->getLoweredFunctionType()
|
|
->substGenericArgs(M, patternSubs);
|
|
require(substGetterType->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thin,
|
|
"getter should be a thin function");
|
|
|
|
require(substGetterType->getNumParameters() == 1 + hasIndices,
|
|
"getter should have one parameter");
|
|
auto baseParam = substGetterType->getParameters()[0];
|
|
require(baseParam.getConvention() == normalArgConvention,
|
|
"getter base parameter should have normal arg convention");
|
|
require(baseParam.getType() == loweredBaseTy.getASTType(),
|
|
"getter base parameter should match base of component");
|
|
|
|
if (hasIndices) {
|
|
auto indicesParam = substGetterType->getParameters()[1];
|
|
require(indicesParam.getConvention()
|
|
== ParameterConvention::Direct_Unowned,
|
|
"indices pointer should be trivial");
|
|
require(indicesParam.getType()->getAnyNominal()
|
|
== C.getUnsafeRawPointerDecl(),
|
|
"indices pointer should be an UnsafeRawPointer");
|
|
}
|
|
|
|
require(substGetterType->getNumResults() == 1,
|
|
"getter should have one result");
|
|
auto result = substGetterType->getResults()[0];
|
|
require(result.getConvention() == ResultConvention::Indirect,
|
|
"getter result should be @out");
|
|
require(result.getType() == loweredComponentTy.getASTType(),
|
|
"getter result should match the maximal abstraction of the "
|
|
"formal component type");
|
|
}
|
|
|
|
if (kind == KeyPathPatternComponent::Kind::SettableProperty) {
|
|
// Setter should be
|
|
// <Sig...> @convention(thin) (@in_guaranteed Result, @in Base) -> ()
|
|
|
|
auto setter = component.getComputedPropertySetter();
|
|
if (expansion == ResilienceExpansion::Minimal) {
|
|
require(setter->hasValidLinkageForFragileRef(),
|
|
"Key path in serialized function should not reference "
|
|
"less visible setters");
|
|
}
|
|
|
|
auto substSetterType = setter->getLoweredFunctionType()
|
|
->substGenericArgs(M, patternSubs);
|
|
|
|
require(substSetterType->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thin,
|
|
"setter should be a thin function");
|
|
|
|
require(substSetterType->getNumParameters() == 2 + hasIndices,
|
|
"setter should have two parameters");
|
|
|
|
auto newValueParam = substSetterType->getParameters()[0];
|
|
// TODO: This should probably be unconditionally +1 when we
|
|
// can represent that.
|
|
require(newValueParam.getConvention() == normalArgConvention,
|
|
"setter value parameter should havee normal arg convention");
|
|
|
|
auto baseParam = substSetterType->getParameters()[1];
|
|
require(baseParam.getConvention() == normalArgConvention
|
|
|| baseParam.getConvention() ==
|
|
ParameterConvention::Indirect_Inout,
|
|
"setter base parameter should be normal arg convention "
|
|
"or @inout");
|
|
|
|
if (hasIndices) {
|
|
auto indicesParam = substSetterType->getParameters()[2];
|
|
require(indicesParam.getConvention()
|
|
== ParameterConvention::Direct_Unowned,
|
|
"indices pointer should be trivial");
|
|
require(indicesParam.getType()->getAnyNominal()
|
|
== C.getUnsafeRawPointerDecl(),
|
|
"indices pointer should be an UnsafeRawPointer");
|
|
}
|
|
|
|
require(newValueParam.getType() ==
|
|
loweredComponentTy.getASTType(),
|
|
"setter value should match the maximal abstraction of the "
|
|
"formal component type");
|
|
|
|
require(substSetterType->getNumResults() == 0,
|
|
"setter should have no results");
|
|
}
|
|
|
|
if (!forPropertyDescriptor) {
|
|
for (auto &index : component.getSubscriptIndices()) {
|
|
auto opIndex = index.Operand;
|
|
auto contextType =
|
|
index.LoweredType.subst(M, patternSubs);
|
|
require(contextType == operands[opIndex].get()->getType(),
|
|
"operand must match type required by pattern");
|
|
SILType loweredType = index.LoweredType;
|
|
require(loweredType.isLoweringOf(M, index.FormalType),
|
|
"pattern index formal type doesn't match lowered type");
|
|
}
|
|
|
|
checkIndexEqualsAndHash();
|
|
}
|
|
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::OptionalChain: {
|
|
require(baseTy->getOptionalObjectType()->isEqual(componentTy),
|
|
"chaining component should unwrap optional");
|
|
require((bool)leafTy->getOptionalObjectType(),
|
|
"key path with chaining component should have optional "
|
|
"result");
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::OptionalForce: {
|
|
require(baseTy->getOptionalObjectType()->isEqual(componentTy),
|
|
"forcing component should unwrap optional");
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::OptionalWrap: {
|
|
require(componentTy->getOptionalObjectType()->isEqual(baseTy),
|
|
"wrapping component should wrap optional");
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::TupleElement: {
|
|
require(loweredBaseTy.is<TupleType>(),
|
|
"invalid baseTy, should have been a TupleType");
|
|
|
|
auto tupleTy = loweredBaseTy.castTo<TupleType>();
|
|
auto eltIdx = component.getTupleIndex();
|
|
|
|
require(eltIdx < tupleTy->getNumElements(),
|
|
"invalid element index, greater than # of tuple elements");
|
|
|
|
auto eltTy = tupleTy.getElementType(eltIdx)
|
|
.getReferenceStorageReferent();
|
|
|
|
require(eltTy == componentTy,
|
|
"tuple element type should match the type of the component");
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
baseTy = componentTy;
|
|
}
|
|
|
|
/// Check if according to the SIL language model this memory /must only/ be used
|
|
/// immutably. Today this is only applied to in_guaranteed arguments and
|
|
/// open_existential_addr. We should expand it as needed.
|
|
struct ImmutableAddressUseVerifier {
|
|
SmallVector<Operand *, 32> worklist;
|
|
|
|
bool isConsumingOrMutatingArgumentConvention(SILArgumentConvention conv) {
|
|
switch (conv) {
|
|
case SILArgumentConvention::Indirect_In_Guaranteed:
|
|
return false;
|
|
|
|
case SILArgumentConvention::Indirect_InoutAliasable:
|
|
// DISCUSSION: We do not consider inout_aliasable to be "truly mutating"
|
|
// since today it is just used as a way to mark a captured argument and
|
|
// not that something truly has mutating semantics. The reason why this
|
|
// is safe is that the typechecker guarantees that if our value was
|
|
// immutable, then the use in the closure must be immutable as well.
|
|
//
|
|
// TODO: Remove this in favor of using Inout and In_Guaranteed.
|
|
return false;
|
|
|
|
case SILArgumentConvention::Indirect_Out:
|
|
case SILArgumentConvention::Indirect_In:
|
|
case SILArgumentConvention::Indirect_In_Constant:
|
|
case SILArgumentConvention::Indirect_Inout:
|
|
return true;
|
|
|
|
case SILArgumentConvention::Direct_Unowned:
|
|
case SILArgumentConvention::Direct_Guaranteed:
|
|
case SILArgumentConvention::Direct_Owned:
|
|
case SILArgumentConvention::Direct_Deallocating:
|
|
assert(conv.isIndirectConvention() && "Expect an indirect convention");
|
|
return true; // return something "conservative".
|
|
}
|
|
llvm_unreachable("covered switch isn't covered?!");
|
|
}
|
|
|
|
bool isConsumingOrMutatingApplyUse(Operand *use) {
|
|
ApplySite apply(use->getUser());
|
|
assert(apply && "Not an apply instruction kind");
|
|
auto conv = apply.getArgumentConvention(*use);
|
|
return isConsumingOrMutatingArgumentConvention(conv);
|
|
}
|
|
|
|
bool isConsumingOrMutatingYieldUse(Operand *use) {
|
|
// For now, just say that it is non-consuming for now.
|
|
auto *yield = cast<YieldInst>(use->getUser());
|
|
auto conv = yield->getArgumentConventionForOperand(*use);
|
|
return isConsumingOrMutatingArgumentConvention(conv);
|
|
}
|
|
|
|
// A "copy_addr %src [take] to *" is consuming on "%src".
|
|
// A "copy_addr * to * %dst" is mutating on "%dst".
|
|
bool isConsumingOrMutatingCopyAddrUse(Operand *use) {
|
|
auto *copyAddr = cast<CopyAddrInst>(use->getUser());
|
|
if (copyAddr->getDest() == use->get())
|
|
return true;
|
|
if (copyAddr->getSrc() == use->get() && copyAddr->isTakeOfSrc() == IsTake)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool isCastToNonConsuming(UncheckedAddrCastInst *i) {
|
|
// Check if any of our uses are consuming. If none of them are consuming, we
|
|
// are good to go.
|
|
return llvm::none_of(i->getUses(), [&](Operand *use) -> bool {
|
|
auto *inst = use->getUser();
|
|
switch (inst->getKind()) {
|
|
default:
|
|
return false;
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::PartialApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
return isConsumingOrMutatingApplyUse(use);
|
|
}
|
|
});
|
|
}
|
|
|
|
bool isMutatingOrConsuming(SILValue address) {
|
|
copy(address->getUses(), std::back_inserter(worklist));
|
|
while (!worklist.empty()) {
|
|
auto *use = worklist.pop_back_val();
|
|
auto *inst = use->getUser();
|
|
|
|
if (inst->isTypeDependentOperand(*use))
|
|
continue;
|
|
|
|
switch (inst->getKind()) {
|
|
case SILInstructionKind::MarkDependenceInst:
|
|
case SILInstructionKind::LoadBorrowInst:
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::ExistentialMetatypeInst:
|
|
case SILInstructionKind::ValueMetatypeInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::KeyPathInst:
|
|
case SILInstructionKind::SwitchEnumAddrInst:
|
|
break;
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
// We assume that the user is attempting to do something unsafe since we
|
|
// are converting to a raw pointer. So just ignore this use.
|
|
//
|
|
// TODO: Can we do better?
|
|
break;
|
|
case SILInstructionKind::BranchInst:
|
|
case SILInstructionKind::CondBranchInst:
|
|
// We do not analyze through branches and cond_br instructions and just
|
|
// assume correctness. This is so that we can avoid having to analyze
|
|
// through phi loops and since we want to remove address phis (meaning
|
|
// that this eventually would never be able to happen). Once that
|
|
// changes happens, we should remove this code and just error below.
|
|
break;
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::PartialApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
if (isConsumingOrMutatingApplyUse(use))
|
|
return true;
|
|
break;
|
|
case SILInstructionKind::YieldInst:
|
|
if (isConsumingOrMutatingYieldUse(use))
|
|
return true;
|
|
break;
|
|
case SILInstructionKind::CopyAddrInst:
|
|
if (isConsumingOrMutatingCopyAddrUse(use))
|
|
return true;
|
|
else
|
|
break;
|
|
case SILInstructionKind::DestroyAddrInst:
|
|
return true;
|
|
case SILInstructionKind::UncheckedAddrCastInst: {
|
|
if (isCastToNonConsuming(cast<UncheckedAddrCastInst>(inst))) {
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
case SILInstructionKind::CheckedCastAddrBranchInst:
|
|
switch (cast<CheckedCastAddrBranchInst>(inst)->getConsumptionKind()) {
|
|
case CastConsumptionKind::BorrowAlways:
|
|
llvm_unreachable("checked_cast_addr_br cannot have BorrowAlways");
|
|
case CastConsumptionKind::CopyOnSuccess:
|
|
break;
|
|
case CastConsumptionKind::TakeAlways:
|
|
case CastConsumptionKind::TakeOnSuccess:
|
|
return true;
|
|
}
|
|
break;
|
|
case SILInstructionKind::LoadInst:
|
|
// A 'non-taking' value load is harmless.
|
|
if (cast<LoadInst>(inst)->getOwnershipQualifier() ==
|
|
LoadOwnershipQualifier::Take)
|
|
return true;
|
|
break;
|
|
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
case SILInstructionKind::Load##Name##Inst: \
|
|
if (cast<Load##Name##Inst>(inst)->isTake()) \
|
|
return true; \
|
|
break;
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
case SILInstructionKind::OpenExistentialAddrInst:
|
|
// If we have a mutable use, return true. Otherwise fallthrough since we
|
|
// want to look through immutable uses.
|
|
if (cast<OpenExistentialAddrInst>(inst)->getAccessKind() !=
|
|
OpenedExistentialAccess::Immutable)
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::IndexAddrInst:
|
|
case SILInstructionKind::TailAddrInst:
|
|
case SILInstructionKind::IndexRawPointerInst:
|
|
// Add these to our worklist.
|
|
for (auto result : inst->getResults()) {
|
|
copy(result->getUses(), std::back_inserter(worklist));
|
|
}
|
|
break;
|
|
default:
|
|
llvm::errs() << "Unhandled, unexpected instruction: " << *inst;
|
|
llvm_unreachable("invoking standard assertion failure");
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
/// The SIL verifier walks over a SIL function / basic block / instruction,
|
|
/// checking and enforcing its invariants.
|
|
class SILVerifier : public SILVerifierBase<SILVerifier> {
|
|
ModuleDecl *M;
|
|
const SILFunction &F;
|
|
SILFunctionConventions fnConv;
|
|
Lowering::TypeConverter &TC;
|
|
SILOpenedArchetypesTracker OpenedArchetypes;
|
|
SmallVector<StringRef, 16> DebugVars;
|
|
const SILInstruction *CurInstruction = nullptr;
|
|
const SILArgument *CurArgument = nullptr;
|
|
std::unique_ptr<DominanceInfo> Dominance;
|
|
|
|
// Used for dominance checking within a basic block.
|
|
llvm::DenseMap<const SILInstruction *, unsigned> InstNumbers;
|
|
|
|
DeadEndBlocks DEBlocks;
|
|
bool SingleFunction = true;
|
|
|
|
SILVerifier(const SILVerifier&) = delete;
|
|
void operator=(const SILVerifier&) = delete;
|
|
public:
|
|
bool isSILOwnershipEnabled() const {
|
|
return F.getModule().getOptions().VerifySILOwnership;
|
|
}
|
|
|
|
void _require(bool condition, const Twine &complaint,
|
|
const std::function<void()> &extraContext = nullptr) {
|
|
if (condition) return;
|
|
|
|
llvm::dbgs() << "SIL verification failed: " << complaint << "\n";
|
|
|
|
if (extraContext) extraContext();
|
|
|
|
if (CurInstruction) {
|
|
llvm::dbgs() << "Verifying instruction:\n";
|
|
CurInstruction->printInContext(llvm::dbgs());
|
|
} else if (CurArgument) {
|
|
llvm::dbgs() << "Verifying argument:\n";
|
|
CurArgument->printInContext(llvm::dbgs());
|
|
}
|
|
llvm::dbgs() << "In function:\n";
|
|
F.print(llvm::dbgs());
|
|
|
|
// We abort by default because we want to always crash in
|
|
// the debugger.
|
|
if (AbortOnFailure)
|
|
abort();
|
|
else
|
|
exit(1);
|
|
}
|
|
#define require(condition, complaint) \
|
|
_require(bool(condition), complaint ": " #condition)
|
|
|
|
template <class T> typename CanTypeWrapperTraits<T>::type
|
|
_requireObjectType(SILType type, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
_require(type.isObject(), valueDescription + " must be an object");
|
|
auto result = type.getAs<T>();
|
|
_require(bool(result), valueDescription + " must have type " + typeName);
|
|
return result;
|
|
}
|
|
template <class T> typename CanTypeWrapperTraits<T>::type
|
|
_requireObjectType(SILValue value, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
return _requireObjectType<T>(value->getType(), valueDescription, typeName);
|
|
}
|
|
#define requireObjectType(type, value, valueDescription) \
|
|
_requireObjectType<type>(value, valueDescription, #type)
|
|
|
|
template <class T> typename CanTypeWrapperTraits<T>::type
|
|
_requireAddressType(SILType type, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
_require(type.isAddress(), valueDescription + " must be an address");
|
|
auto result = type.getAs<T>();
|
|
_require(bool(result), valueDescription + " must have type " + typeName);
|
|
return result;
|
|
}
|
|
template <class T> typename CanTypeWrapperTraits<T>::type
|
|
_requireAddressType(SILValue value, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
return _requireAddressType<T>(value->getType(), valueDescription, typeName);
|
|
}
|
|
#define requireAddressType(type, value, valueDescription) \
|
|
_requireAddressType<type>(value, valueDescription, #type)
|
|
|
|
template <class T>
|
|
typename CanTypeWrapperTraits<T>::type
|
|
_forbidObjectType(SILType type, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
_require(type.isObject(), valueDescription + " must be an object");
|
|
auto result = type.getAs<T>();
|
|
_require(!bool(result),
|
|
valueDescription + " must not have type " + typeName);
|
|
return result;
|
|
}
|
|
template <class T>
|
|
typename CanTypeWrapperTraits<T>::type
|
|
_forbidObjectType(SILValue value, const Twine &valueDescription,
|
|
const char *typeName) {
|
|
return _forbidObjectType<T>(value->getType(), valueDescription, typeName);
|
|
}
|
|
#define forbidObjectType(type, value, valueDescription) \
|
|
_forbidObjectType<type>(value, valueDescription, #type)
|
|
|
|
// Require that the operand is a non-optional, non-unowned reference-counted
|
|
// type.
|
|
void requireReferenceValue(SILValue value, const Twine &valueDescription) {
|
|
require(value->getType().isObject(), valueDescription +" must be an object");
|
|
require(value->getType().isReferenceCounted(F.getModule()),
|
|
valueDescription + " must have reference semantics");
|
|
forbidObjectType(UnownedStorageType, value, valueDescription);
|
|
}
|
|
|
|
// Require that the operand is a reference-counted type, or an Optional
|
|
// thereof.
|
|
void requireReferenceOrOptionalReferenceValue(SILValue value,
|
|
const Twine &valueDescription) {
|
|
require(value->getType().isObject(), valueDescription +" must be an object");
|
|
|
|
auto objectTy = value->getType().unwrapOptionalType();
|
|
|
|
require(objectTy.isReferenceCounted(F.getModule()),
|
|
valueDescription + " must have reference semantics");
|
|
}
|
|
|
|
// Require that the operand is a type that supports reference storage
|
|
// modifiers.
|
|
void requireReferenceStorageCapableValue(SILValue value,
|
|
const Twine &valueDescription) {
|
|
requireReferenceOrOptionalReferenceValue(value, valueDescription);
|
|
require(!value->getType().is<SILFunctionType>(),
|
|
valueDescription + " cannot apply to a function type");
|
|
}
|
|
|
|
/// Assert that two types are equal.
|
|
void requireSameType(SILType type1, SILType type2, const Twine &complaint) {
|
|
_require(type1 == type2, complaint, [&] {
|
|
llvm::dbgs() << " " << type1 << "\n " << type2 << '\n';
|
|
});
|
|
}
|
|
|
|
/// Require two function types to be ABI-compatible.
|
|
void requireABICompatibleFunctionTypes(CanSILFunctionType type1,
|
|
CanSILFunctionType type2,
|
|
const Twine &what,
|
|
SILFunction *inFunction = nullptr) {
|
|
auto complain = [=](const char *msg) -> std::function<void()> {
|
|
return [=]{
|
|
llvm::dbgs() << " " << msg << '\n'
|
|
<< " " << type1 << "\n " << type2 << '\n';
|
|
};
|
|
};
|
|
auto complainBy = [=](std::function<void()> msg) -> std::function<void()> {
|
|
return [=]{
|
|
msg();
|
|
llvm::dbgs() << '\n';
|
|
llvm::dbgs() << " " << type1 << "\n " << type2 << '\n';
|
|
};
|
|
};
|
|
|
|
// If we didn't have a failure, return.
|
|
auto Result = type1->isABICompatibleWith(type2, inFunction);
|
|
if (Result.isCompatible())
|
|
return;
|
|
|
|
if (!Result.hasPayload()) {
|
|
_require(false, what, complain(Result.getMessage().data()));
|
|
} else {
|
|
_require(false, what, complainBy([=] {
|
|
llvm::dbgs() << " " << Result.getMessage().data()
|
|
<< ".\nParameter: " << Result.getPayload();
|
|
}));
|
|
}
|
|
}
|
|
|
|
void requireSameFunctionComponents(CanSILFunctionType type1,
|
|
CanSILFunctionType type2,
|
|
const Twine &what) {
|
|
require(type1->getNumResults() == type2->getNumResults(),
|
|
"results of " + what + " do not match in count");
|
|
for (auto i : indices(type1->getResults())) {
|
|
require(type1->getResults()[i] == type2->getResults()[i],
|
|
"result " + Twine(i) + " of " + what + " do not match");
|
|
}
|
|
require(type1->getParameters().size() ==
|
|
type2->getParameters().size(),
|
|
"inputs of " + what + " do not match in count");
|
|
for (auto i : indices(type1->getParameters())) {
|
|
require(type1->getParameters()[i] ==
|
|
type2->getParameters()[i],
|
|
"input " + Twine(i) + " of " + what + " do not match");
|
|
}
|
|
}
|
|
|
|
static unsigned numInstsInFunction(const SILFunction &F) {
|
|
unsigned numInsts = 0;
|
|
for (auto &BB : F) {
|
|
numInsts += std::distance(BB.begin(), BB.end());
|
|
}
|
|
return numInsts;
|
|
}
|
|
|
|
SILVerifier(const SILFunction &F, bool SingleFunction = true)
|
|
: M(F.getModule().getSwiftModule()), F(F),
|
|
fnConv(F.getLoweredFunctionType(), F.getModule()),
|
|
TC(F.getModule().Types), OpenedArchetypes(&F), Dominance(nullptr),
|
|
InstNumbers(numInstsInFunction(F)),
|
|
DEBlocks(&F), SingleFunction(SingleFunction) {
|
|
if (F.isExternalDeclaration())
|
|
return;
|
|
|
|
// Check to make sure that all blocks are well formed. If not, the
|
|
// SILVerifier object will explode trying to compute dominance info.
|
|
unsigned InstIdx = 0;
|
|
for (auto &BB : F) {
|
|
require(!BB.empty(), "Basic blocks cannot be empty");
|
|
require(isa<TermInst>(BB.back()),
|
|
"Basic blocks must end with a terminator instruction");
|
|
for (auto &I : BB)
|
|
InstNumbers[&I] = InstIdx++;
|
|
}
|
|
|
|
Dominance.reset(new DominanceInfo(const_cast<SILFunction *>(&F)));
|
|
|
|
auto *DebugScope = F.getDebugScope();
|
|
require(DebugScope, "All SIL functions must have a debug scope");
|
|
require(DebugScope->Parent.get<SILFunction *>() == &F,
|
|
"Scope of SIL function points to different function");
|
|
}
|
|
|
|
// Checks dominance between two instructions.
|
|
// This does not use DominanceInfo.properlyDominates, because for large basic
|
|
// blocks it would result in quadratic behavior.
|
|
bool properlyDominates(SILInstruction *a, SILInstruction *b) {
|
|
auto aBlock = a->getParent(), bBlock = b->getParent();
|
|
|
|
// If the blocks are different, it's as easy as whether A's block
|
|
// dominates B's block.
|
|
if (aBlock != bBlock)
|
|
return Dominance->properlyDominates(aBlock, bBlock);
|
|
|
|
return InstNumbers[a] < InstNumbers[b];
|
|
}
|
|
|
|
// FIXME: For sanity, address-type block args should be prohibited at all SIL
|
|
// stages. However, the optimizer currently breaks the invariant in three
|
|
// places:
|
|
// 1. Normal Simplify CFG during conditional branch simplification
|
|
// (sneaky jump threading).
|
|
// 2. Simplify CFG via Jump Threading.
|
|
// 3. Loop Rotation.
|
|
//
|
|
//
|
|
bool prohibitAddressBlockArgs() {
|
|
// If this function was deserialized from canonical SIL, this invariant may
|
|
// already have been violated regardless of this module's SIL stage or
|
|
// exclusivity enforcement level. Presumably, access markers were already
|
|
// removed prior to serialization.
|
|
if (F.wasDeserializedCanonical())
|
|
return false;
|
|
|
|
SILModule &M = F.getModule();
|
|
return M.getStage() == SILStage::Raw;
|
|
}
|
|
|
|
void visitSILPhiArgument(SILPhiArgument *arg) {
|
|
// Verify that the `isPhiArgument` property is sound:
|
|
// - Phi arguments come from branches.
|
|
// - Non-phi arguments have a single predecessor.
|
|
if (arg->isPhiArgument()) {
|
|
for (SILBasicBlock *predBB : arg->getParent()->getPredecessorBlocks()) {
|
|
auto *TI = predBB->getTerminator();
|
|
// FIXME: when critical edges are removed, only allow BranchInst.
|
|
require(isa <BranchInst>(TI) || isa<CondBranchInst>(TI),
|
|
"All phi argument inputs must be from branches.");
|
|
}
|
|
} else {
|
|
}
|
|
if (arg->isPhiArgument() && prohibitAddressBlockArgs()) {
|
|
// As a property of well-formed SIL, we disallow address-type block
|
|
// arguments. Supporting them would prevent reliably reasoning about the
|
|
// underlying storage of memory access. This reasoning is important for
|
|
// diagnosing violations of memory access rules and supporting future
|
|
// optimizations such as bitfield packing. Address-type block arguments
|
|
// also create unnecessary complexity for SIL optimization passes that
|
|
// need to reason about memory aliasing.
|
|
require(!arg->getType().isAddress(),
|
|
"Block arguments cannot be addresses");
|
|
}
|
|
}
|
|
|
|
void visitSILArgument(SILArgument *arg) {
|
|
CurArgument = arg;
|
|
checkLegalType(arg->getFunction(), arg, nullptr);
|
|
checkValueBaseOwnership(arg);
|
|
if (auto *phiArg = dyn_cast<SILPhiArgument>(arg)) {
|
|
if (phiArg->isPhiArgument())
|
|
visitSILPhiArgument(phiArg);
|
|
else {
|
|
// A non-phi BlockArgument must have a single predecessor unless it is
|
|
// unreachable.
|
|
require(arg->getParent()->pred_empty()
|
|
|| arg->getParent()->getSinglePredecessorBlock(),
|
|
"Non-branch terminator must have a unique successor.");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we are not in lowered SIL and have an in_guaranteed function argument,
|
|
// verify that we do not mutate or consume it.
|
|
auto *fArg = cast<SILFunctionArgument>(arg);
|
|
if (fArg->getModule().getStage() == SILStage::Lowered ||
|
|
!fArg->getType().isAddress() ||
|
|
!fArg->hasConvention(SILArgumentConvention::Indirect_In_Guaranteed))
|
|
return;
|
|
|
|
require(!ImmutableAddressUseVerifier().isMutatingOrConsuming(fArg),
|
|
"Found mutating or consuming use of an in_guaranteed parameter?!");
|
|
}
|
|
|
|
void visitSILInstruction(SILInstruction *I) {
|
|
CurInstruction = I;
|
|
OpenedArchetypes.registerOpenedArchetypes(I);
|
|
checkSILInstruction(I);
|
|
|
|
// Check the SILLLocation attached to the instruction.
|
|
checkInstructionsSILLocation(I);
|
|
|
|
// Check ownership.
|
|
SILFunction *F = I->getFunction();
|
|
assert(F && "Expected value base with parent function");
|
|
|
|
for (auto result : I->getResults()) {
|
|
checkLegalType(F, result, I);
|
|
checkValueBaseOwnership(result);
|
|
}
|
|
}
|
|
|
|
void checkValueBaseOwnership(ValueBase *V) {
|
|
// If ownership is not enabled, bail.
|
|
if (!isSILOwnershipEnabled())
|
|
return;
|
|
|
|
SILFunction *F = V->getFunction();
|
|
assert(F && "Expected value base with parent function");
|
|
// If we do not have qualified ownership, then do not verify value base
|
|
// ownership.
|
|
if (!F->hasOwnership())
|
|
return;
|
|
SILValue(V).verifyOwnership(&DEBlocks);
|
|
}
|
|
|
|
void checkSILInstruction(SILInstruction *I) {
|
|
const SILBasicBlock *BB = I->getParent();
|
|
require(BB, "Instruction with null parent");
|
|
|
|
// Check that non-terminators look ok.
|
|
if (!isa<TermInst>(I)) {
|
|
require(!BB->empty(), "Can't be in a parent block if it is empty");
|
|
if (!I->isStaticInitializerInst()) {
|
|
require(&*BB->rbegin() != I,
|
|
"Non-terminators cannot be the last in a block");
|
|
}
|
|
} else {
|
|
// Skip the check for UnreachableInst, if explicitly asked to do so.
|
|
if (!isa<UnreachableInst>(I) || !SkipUnreachableMustBeLastErrors)
|
|
require(&*BB->rbegin() == I,
|
|
"Terminator must be the last in block");
|
|
}
|
|
|
|
// Verify that all of our uses are in this function.
|
|
for (auto result : I->getResults()) {
|
|
for (Operand *use : result->getUses()) {
|
|
auto user = use->getUser();
|
|
require(user, "instruction user is null?");
|
|
require(isa<SILInstruction>(user),
|
|
"instruction used by non-instruction");
|
|
auto userI = cast<SILInstruction>(user);
|
|
require(userI->getParent(),
|
|
"instruction used by unparented instruction");
|
|
if (I->isStaticInitializerInst()) {
|
|
require(userI->getParent() == BB,
|
|
"instruction used by instruction not in same static initializer");
|
|
} else {
|
|
require(userI->getFunction() == &F,
|
|
"instruction used by instruction in different function");
|
|
}
|
|
|
|
auto operands = userI->getAllOperands();
|
|
require(operands.begin() <= use && use <= operands.end(),
|
|
"use doesn't actually belong to instruction it claims to");
|
|
}
|
|
}
|
|
|
|
// Verify some basis structural stuff about an instruction's operands.
|
|
for (auto &operand : I->getAllOperands()) {
|
|
require(operand.get(), "instruction has null operand");
|
|
|
|
if (auto *valueI = operand.get()->getDefiningInstruction()) {
|
|
require(valueI->getParent(),
|
|
"instruction uses value of unparented instruction");
|
|
if (I->isStaticInitializerInst()) {
|
|
require(valueI->getParent() == BB,
|
|
"instruction uses value which is not in same static initializer");
|
|
} else {
|
|
require(valueI->getFunction() == &F,
|
|
"instruction uses value of instruction from another function");
|
|
require(properlyDominates(valueI, I),
|
|
"instruction isn't dominated by its operand");
|
|
}
|
|
}
|
|
|
|
if (auto *valueBBA = dyn_cast<SILArgument>(operand.get())) {
|
|
require(!I->isStaticInitializerInst(),
|
|
"static initializer inst cannot refer to SILArgument");
|
|
require(valueBBA->getParent(),
|
|
"instruction uses value of unparented instruction");
|
|
require(valueBBA->getFunction() == &F,
|
|
"bb argument value from another function");
|
|
require(Dominance->dominates(valueBBA->getParent(), I->getParent()),
|
|
"instruction isn't dominated by its bb argument operand");
|
|
}
|
|
|
|
require(operand.getUser() == I,
|
|
"instruction's operand's owner isn't the instruction");
|
|
require(isInValueUses(&operand), "operand value isn't used by operand");
|
|
|
|
if (I->isTypeDependentOperand(operand)) {
|
|
require(isa<SILInstruction>(I),
|
|
"opened archetype operand should refer to a SILInstruction");
|
|
}
|
|
|
|
// Make sure that if operand is generic that its primary archetypes match
|
|
// the function context.
|
|
checkLegalType(I->getFunction(), operand.get(), I);
|
|
}
|
|
|
|
// TODO: There should be a use of an opened archetype inside the instruction for
|
|
// each opened archetype operand of the instruction.
|
|
}
|
|
|
|
void checkInstructionsSILLocation(SILInstruction *I) {
|
|
// Check the debug scope.
|
|
auto *DS = I->getDebugScope();
|
|
if (DS && !maybeScopeless(*I))
|
|
require(DS, "instruction has a location, but no scope");
|
|
|
|
require(!DS || DS->getParentFunction() == I->getFunction(),
|
|
"debug scope of instruction belongs to a different function");
|
|
|
|
// Check the location kind.
|
|
SILLocation L = I->getLoc();
|
|
SILLocation::LocationKind LocKind = L.getKind();
|
|
SILInstructionKind InstKind = I->getKind();
|
|
|
|
// Check that there is at most one debug variable defined
|
|
// for each argument slot. This catches SIL transformations
|
|
// that accidentally remove inline information (stored in the SILDebugScope)
|
|
// from debug-variable-carrying instructions.
|
|
if (!DS->InlinedCallSite) {
|
|
Optional<SILDebugVariable> VarInfo;
|
|
if (auto *DI = dyn_cast<AllocStackInst>(I))
|
|
VarInfo = DI->getVarInfo();
|
|
else if (auto *DI = dyn_cast<AllocBoxInst>(I))
|
|
VarInfo = DI->getVarInfo();
|
|
else if (auto *DI = dyn_cast<DebugValueInst>(I))
|
|
VarInfo = DI->getVarInfo();
|
|
else if (auto *DI = dyn_cast<DebugValueAddrInst>(I))
|
|
VarInfo = DI->getVarInfo();
|
|
|
|
if (VarInfo)
|
|
if (unsigned ArgNo = VarInfo->ArgNo) {
|
|
// It is a function argument.
|
|
if (ArgNo < DebugVars.size() && !DebugVars[ArgNo].empty()) {
|
|
require(
|
|
DebugVars[ArgNo] == VarInfo->Name,
|
|
"Scope contains conflicting debug variables for one function "
|
|
"argument");
|
|
} else {
|
|
// Reserve enough space.
|
|
while (DebugVars.size() <= ArgNo) {
|
|
DebugVars.push_back(StringRef());
|
|
}
|
|
}
|
|
DebugVars[ArgNo] = VarInfo->Name;
|
|
}
|
|
}
|
|
|
|
// Regular locations are allowed on all instructions.
|
|
if (LocKind == SILLocation::RegularKind)
|
|
return;
|
|
|
|
if (LocKind == SILLocation::ReturnKind ||
|
|
LocKind == SILLocation::ImplicitReturnKind)
|
|
require(InstKind == SILInstructionKind::BranchInst ||
|
|
InstKind == SILInstructionKind::ReturnInst ||
|
|
InstKind == SILInstructionKind::UnreachableInst,
|
|
"return locations are only allowed on branch and return instructions");
|
|
|
|
if (LocKind == SILLocation::ArtificialUnreachableKind)
|
|
require(InstKind == SILInstructionKind::UnreachableInst,
|
|
"artificial locations are only allowed on Unreachable instructions");
|
|
}
|
|
|
|
/// Check that the types of this value producer are all legal in the function
|
|
/// context in which it exists.
|
|
void checkLegalType(SILFunction *F, ValueBase *value, SILInstruction *I) {
|
|
SILType type = value->getType();
|
|
if (type.is<SILTokenType>()) {
|
|
require(isLegalSILTokenProducer(value),
|
|
"SIL tokens can only be produced as the results of specific "
|
|
"instructions");
|
|
return;
|
|
}
|
|
|
|
checkLegalType(F, type, I);
|
|
}
|
|
|
|
static bool isLegalSILTokenProducer(SILValue value) {
|
|
if (auto beginApply = dyn_cast<BeginApplyResult>(value))
|
|
return beginApply->isTokenResult();
|
|
|
|
// Add more token cases here as they arise.
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check that the given type is a legal SIL value type.
|
|
void checkLegalType(SILFunction *F, SILType type, SILInstruction *I) {
|
|
checkLegalSILType(F, type.getASTType(), I);
|
|
}
|
|
|
|
/// Check that the given type is a legal SIL value type.
|
|
void checkLegalSILType(SILFunction *F, CanType rvalueType, SILInstruction *I) {
|
|
// These types should have been removed by lowering.
|
|
require(!isa<LValueType>(rvalueType),
|
|
"l-value types are not legal in SIL");
|
|
require(!isa<AnyFunctionType>(rvalueType),
|
|
"AST function types are not legal in SIL");
|
|
|
|
// Tuples should have had their element lowered.
|
|
if (auto tuple = dyn_cast<TupleType>(rvalueType)) {
|
|
for (auto eltTy : tuple.getElementTypes()) {
|
|
checkLegalSILType(F, eltTy, I);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Optionals should have had their objects lowered.
|
|
if (auto objectType = rvalueType.getOptionalObjectType()) {
|
|
return checkLegalSILType(F, objectType, I);
|
|
}
|
|
|
|
// Metatypes should have explicit representations.
|
|
if (auto metatype = dyn_cast<AnyMetatypeType>(rvalueType)) {
|
|
require(metatype->hasRepresentation(),
|
|
"metatypes in SIL must have a representation");;
|
|
// fallthrough for archetype check
|
|
}
|
|
|
|
rvalueType.visit([&](CanType t) {
|
|
auto A = dyn_cast<ArchetypeType>(t);
|
|
if (!A)
|
|
return;
|
|
require(isArchetypeValidInFunction(A, F),
|
|
"Operand is of an ArchetypeType that does not exist in the "
|
|
"Caller's generic param list.");
|
|
if (auto OpenedA = getOpenedArchetypeOf(A)) {
|
|
auto Def = OpenedArchetypes.getOpenedArchetypeDef(OpenedA);
|
|
require (Def, "Opened archetype should be registered in SILFunction");
|
|
require(I == nullptr || Def == I ||
|
|
properlyDominates(cast<SILInstruction>(Def), I),
|
|
"Use of an opened archetype should be dominated by a "
|
|
"definition of this opened archetype");
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Check that this operand appears in the use-chain of the value it uses.
|
|
static bool isInValueUses(const Operand *operand) {
|
|
for (auto use : operand->get()->getUses())
|
|
if (use == operand)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// \return True if all of the users of the AllocStack instruction \p ASI are
|
|
/// inside the same basic block.
|
|
static bool isSingleBlockUsage(AllocStackInst *ASI, DominanceInfo *Dominance){
|
|
SILBasicBlock *BB = ASI->getParent();
|
|
for (auto UI = ASI->use_begin(), E = ASI->use_end(); UI != E; ++UI)
|
|
if (UI->getUser()->getParent() != BB &&
|
|
Dominance->isReachableFromEntry(UI->getUser()->getParent()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void checkAllocStackInst(AllocStackInst *AI) {
|
|
require(AI->getType().isAddress(),
|
|
"result of alloc_stack must be an address type");
|
|
|
|
verifyOpenedArchetype(AI, AI->getElementType().getASTType());
|
|
|
|
// There used to be a check if all uses of ASI are inside the alloc-dealloc
|
|
// range. But apparently it can be the case that ASI has uses after the
|
|
// dealloc_stack. This can come up if the source contains a
|
|
// withUnsafePointer where the pointer escapes.
|
|
// It's illegal code but the compiler should not crash on it.
|
|
}
|
|
|
|
void checkAllocRefBase(AllocRefInstBase *ARI) {
|
|
requireReferenceValue(ARI, "Result of alloc_ref");
|
|
verifyOpenedArchetype(ARI, ARI->getType().getASTType());
|
|
auto Types = ARI->getTailAllocatedTypes();
|
|
auto Counts = ARI->getTailAllocatedCounts();
|
|
unsigned NumTypes = Types.size();
|
|
require(NumTypes == Counts.size(), "Mismatching types and counts");
|
|
require(NumTypes == 0 || !ARI->isObjC(),
|
|
"Can't tail allocate with ObjC class");
|
|
for (unsigned Idx = 0; Idx < NumTypes; ++Idx) {
|
|
verifyOpenedArchetype(ARI, Types[Idx].getASTType());
|
|
require(Counts[Idx].get()->getType().is<BuiltinIntegerType>(),
|
|
"count needs integer type");
|
|
}
|
|
}
|
|
|
|
void checkAllocRefInst(AllocRefInst *AI) {
|
|
require(AI->isObjC() || AI->getType().getClassOrBoundGenericClass(),
|
|
"alloc_ref must allocate class");
|
|
checkAllocRefBase(AI);
|
|
}
|
|
|
|
void checkAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
|
|
SILValue Metadata = ARDI->getMetatypeOperand();
|
|
require(Metadata->getType().is<AnyMetatypeType>(),
|
|
"operand of alloc_ref_dynamic must be of metatype type");
|
|
auto metaTy = Metadata->getType().castTo<AnyMetatypeType>();
|
|
require(metaTy->hasRepresentation(),
|
|
"operand of alloc_ref_dynamic must have a metatype representation");
|
|
if (ARDI->isObjC()) {
|
|
require(metaTy->getRepresentation() == MetatypeRepresentation::ObjC,
|
|
"alloc_ref_dynamic @objc requires operand of ObjC metatype");
|
|
} else {
|
|
require(metaTy->getRepresentation() == MetatypeRepresentation::Thick,
|
|
"alloc_ref_dynamic requires operand of thick metatype");
|
|
}
|
|
checkAllocRefBase(ARDI);
|
|
}
|
|
|
|
/// Check the substitutions passed to an apply or partial_apply.
|
|
CanSILFunctionType checkApplySubstitutions(SubstitutionMap subs,
|
|
SILType calleeTy) {
|
|
auto fnTy = requireObjectType(SILFunctionType, calleeTy, "callee operand");
|
|
|
|
// If there are substitutions, verify them and apply them to the callee.
|
|
if (!subs.hasAnySubstitutableParams()) {
|
|
require(!fnTy->isPolymorphic(),
|
|
"callee of apply without substitutions must not be polymorphic");
|
|
return fnTy;
|
|
}
|
|
require(fnTy->isPolymorphic(),
|
|
"callee of apply with substitutions must be polymorphic");
|
|
|
|
// Each archetype occurring in the substitutions list should belong to the
|
|
// current function.
|
|
for (auto replacementType : subs.getReplacementTypes()) {
|
|
replacementType->getCanonicalType().visit([&](CanType t) {
|
|
auto A = dyn_cast<ArchetypeType>(t);
|
|
if (!A)
|
|
return;
|
|
require(isArchetypeValidInFunction(A, &F),
|
|
"Replacement type of a substitution contains an ArchetypeType "
|
|
"that does not exist in the Caller's generic param list.");
|
|
});
|
|
}
|
|
|
|
// Apply the substitutions.
|
|
return fnTy->substGenericArgs(F.getModule(), subs);
|
|
}
|
|
|
|
/// Check that for each opened archetype or dynamic self type in substitutions
|
|
/// or the calle type, there is a type dependent operand.
|
|
void checkApplyTypeDependentArguments(ApplySite AS) {
|
|
SILInstruction *AI = AS.getInstruction();
|
|
|
|
llvm::DenseSet<ArchetypeType *> FoundOpenedArchetypes;
|
|
unsigned hasDynamicSelf = 0;
|
|
|
|
// Function to collect opened archetypes in FoundOpenedArchetypes and set
|
|
// hasDynamicSelf.
|
|
auto HandleType = [&](CanType Ty) {
|
|
if (Ty->isOpenedExistential()) {
|
|
auto A = cast<ArchetypeType>(Ty);
|
|
require(isArchetypeValidInFunction(A, AI->getFunction()),
|
|
"Archetype to be substituted must be valid in function.");
|
|
// Collect all opened archetypes used in the substitutions list.
|
|
FoundOpenedArchetypes.insert(A);
|
|
// Also check that they are properly tracked inside the current
|
|
// function.
|
|
auto Def = OpenedArchetypes.getOpenedArchetypeDef(A);
|
|
require(Def, "Opened archetype should be registered in SILFunction");
|
|
require(Def == AI ||
|
|
properlyDominates(cast<SILInstruction>(Def), AI),
|
|
"Use of an opened archetype should be dominated by a "
|
|
"definition of this opened archetype");
|
|
}
|
|
if (Ty->hasDynamicSelfType()) {
|
|
hasDynamicSelf = 1;
|
|
}
|
|
};
|
|
|
|
// Search for opened archetypes and dynamic self.
|
|
for (auto Replacement : AS.getSubstitutionMap().getReplacementTypes()) {
|
|
Replacement->getCanonicalType().visit(HandleType);
|
|
}
|
|
AS.getSubstCalleeType().visit(HandleType);
|
|
|
|
require(FoundOpenedArchetypes.size() + hasDynamicSelf ==
|
|
AI->getTypeDependentOperands().size(),
|
|
"Number of opened archetypes and dynamic self in the substitutions "
|
|
"list should match the number of type dependent operands");
|
|
|
|
for (auto &Op : AI->getTypeDependentOperands()) {
|
|
auto V = Op.get();
|
|
if (isa<SILArgument>(V)) {
|
|
require(hasDynamicSelf,
|
|
"dynamic self operand without dynamic self type");
|
|
require(AI->getFunction()->hasSelfMetadataParam(),
|
|
"self metadata operand in function without self metadata param");
|
|
require((ValueBase *)V == AI->getFunction()->getSelfMetadataArgument(),
|
|
"wrong self metadata operand");
|
|
} else {
|
|
require(isa<SingleValueInstruction>(V),
|
|
"opened archetype operand should refer to a SIL instruction");
|
|
auto Archetype = getOpenedArchetypeOf(cast<SingleValueInstruction>(V));
|
|
require(Archetype,
|
|
"opened archetype operand should define an opened archetype");
|
|
require(FoundOpenedArchetypes.count(Archetype),
|
|
"opened archetype operand does not correspond to any opened "
|
|
"archetype from the substitutions list");
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkFullApplySite(FullApplySite site) {
|
|
checkApplyTypeDependentArguments(site);
|
|
|
|
// Then make sure that we have a type that can be substituted for the
|
|
// callee.
|
|
auto substTy = checkApplySubstitutions(site.getSubstitutionMap(),
|
|
site.getCallee()->getType());
|
|
require(site.getOrigCalleeType()->getRepresentation() ==
|
|
site.getSubstCalleeType()->getRepresentation(),
|
|
"calling convention difference between types");
|
|
|
|
require(!site.getSubstCalleeType()->isPolymorphic(),
|
|
"substituted callee type should not be generic");
|
|
|
|
requireSameType(SILType::getPrimitiveObjectType(substTy),
|
|
SILType::getPrimitiveObjectType(site.getSubstCalleeType()),
|
|
"substituted callee type does not match substitutions");
|
|
|
|
// Check that the arguments and result match.
|
|
SILFunctionConventions substConv(substTy, F.getModule());
|
|
//require(site.getArguments().size() == substTy->getNumSILArguments(),
|
|
require(site.getNumArguments() == substConv.getNumSILArguments(),
|
|
"apply doesn't have right number of arguments for function");
|
|
for (size_t i = 0, size = site.getNumArguments(); i < size; ++i) {
|
|
requireSameType(site.getArguments()[i]->getType(),
|
|
substConv.getSILArgumentType(i),
|
|
"operand of 'apply' doesn't match function input type");
|
|
}
|
|
}
|
|
|
|
void checkApplyInst(ApplyInst *AI) {
|
|
checkFullApplySite(AI);
|
|
|
|
SILFunctionConventions calleeConv(AI->getSubstCalleeType(), F.getModule());
|
|
require(AI->getType() == calleeConv.getSILResultType(),
|
|
"type of apply instruction doesn't match function result type");
|
|
if (AI->isNonThrowing()) {
|
|
require(calleeConv.funcTy->hasErrorResult(),
|
|
"nothrow flag used for callee without error result");
|
|
} else {
|
|
require(!calleeConv.funcTy->hasErrorResult(),
|
|
"apply instruction cannot call function with error result");
|
|
}
|
|
|
|
require(!calleeConv.funcTy->isCoroutine(),
|
|
"cannot call coroutine with normal apply");
|
|
|
|
// Check that if the apply is of a noreturn callee, make sure that an
|
|
// unreachable is the next instruction.
|
|
if (AI->getModule().getStage() == SILStage::Raw ||
|
|
!AI->isCalleeNoReturn())
|
|
return;
|
|
require(isa<UnreachableInst>(std::next(SILBasicBlock::iterator(AI))),
|
|
"No return apply without an unreachable as a next instruction.");
|
|
}
|
|
|
|
void checkTryApplyInst(TryApplyInst *AI) {
|
|
checkFullApplySite(AI);
|
|
|
|
SILFunctionConventions calleeConv(AI->getSubstCalleeType(), F.getModule());
|
|
|
|
require(!calleeConv.funcTy->isCoroutine(),
|
|
"cannot call coroutine with normal apply");
|
|
|
|
auto normalBB = AI->getNormalBB();
|
|
require(normalBB->args_size() == 1,
|
|
"normal destination of try_apply must take one argument");
|
|
requireSameType((*normalBB->args_begin())->getType(),
|
|
calleeConv.getSILResultType(),
|
|
"normal destination of try_apply must take argument "
|
|
"of normal result type");
|
|
|
|
auto errorBB = AI->getErrorBB();
|
|
require(calleeConv.funcTy->hasErrorResult(),
|
|
"try_apply must call function with error result");
|
|
require(errorBB->args_size() == 1,
|
|
"error destination of try_apply must take one argument");
|
|
requireSameType((*errorBB->args_begin())->getType(),
|
|
calleeConv.getSILErrorType(),
|
|
"error destination of try_apply must take argument "
|
|
"of error result type");
|
|
}
|
|
|
|
void checkBeginApplyInst(BeginApplyInst *AI) {
|
|
checkFullApplySite(AI);
|
|
|
|
SILFunctionConventions calleeConv(AI->getSubstCalleeType(), F.getModule());
|
|
auto yieldResults = AI->getYieldedValues();
|
|
auto yields = calleeConv.getYields();
|
|
require(yields.size() == yieldResults.size(),
|
|
"length mismatch in callee yields vs. begin_apply results");
|
|
for (auto i : indices(yields)) {
|
|
require(yieldResults[i]->getType() == calleeConv.getSILType(yields[i]),
|
|
"callee yield type does not match begin_apply result type");
|
|
}
|
|
|
|
if (AI->isNonThrowing()) {
|
|
require(calleeConv.funcTy->hasErrorResult(),
|
|
"nothrow flag used for callee without error result");
|
|
} else {
|
|
require(!calleeConv.funcTy->hasErrorResult(),
|
|
"begin_apply instruction cannot call function with error result");
|
|
}
|
|
|
|
require(calleeConv.funcTy->getCoroutineKind() == SILCoroutineKind::YieldOnce,
|
|
"must call yield_once coroutine with begin_apply");
|
|
}
|
|
|
|
void checkAbortApplyInst(AbortApplyInst *AI) {
|
|
require(isa<BeginApplyResult>(AI->getOperand()) &&
|
|
cast<BeginApplyResult>(AI->getOperand())->isTokenResult(),
|
|
"operand of abort_apply must be a begin_apply");
|
|
}
|
|
|
|
void checkEndApplyInst(EndApplyInst *AI) {
|
|
require(isa<BeginApplyResult>(AI->getOperand()) &&
|
|
cast<BeginApplyResult>(AI->getOperand())->isTokenResult(),
|
|
"operand of end_apply must be a begin_apply");
|
|
}
|
|
|
|
void verifyLLVMIntrinsic(BuiltinInst *BI, llvm::Intrinsic::ID ID) {
|
|
// Certain llvm intrinsic require constant values as their operands.
|
|
// Consequently, these must not be phi nodes (aka. basic block arguments).
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case llvm::Intrinsic::ctlz: // llvm.ctlz
|
|
case llvm::Intrinsic::cttz: // llvm.cttz
|
|
break;
|
|
case llvm::Intrinsic::memcpy:
|
|
case llvm::Intrinsic::memmove:
|
|
case llvm::Intrinsic::memset:
|
|
require(!isa<SILArgument>(BI->getArguments()[3]),
|
|
"isvolatile argument of memory intrinsics must be an integer "
|
|
"literal");
|
|
break;
|
|
case llvm::Intrinsic::lifetime_start:
|
|
case llvm::Intrinsic::lifetime_end:
|
|
case llvm::Intrinsic::invariant_start:
|
|
require(!isa<SILArgument>(BI->getArguments()[0]),
|
|
"size argument of memory use markers must be an integer literal");
|
|
break;
|
|
case llvm::Intrinsic::invariant_end:
|
|
require(!isa<SILArgument>(BI->getArguments()[1]),
|
|
"llvm.invariant.end parameter #2 must be an integer literal");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void checkPartialApplyInst(PartialApplyInst *PAI) {
|
|
auto resultInfo = requireObjectType(SILFunctionType, PAI,
|
|
"result of partial_apply");
|
|
verifySILFunctionType(resultInfo);
|
|
require(resultInfo->getExtInfo().hasContext(),
|
|
"result of closure cannot have a thin function type");
|
|
|
|
checkApplyTypeDependentArguments(PAI);
|
|
|
|
auto substTy = checkApplySubstitutions(PAI->getSubstitutionMap(),
|
|
PAI->getCallee()->getType());
|
|
|
|
require(!PAI->getSubstCalleeType()->isPolymorphic(),
|
|
"substituted callee type should not be generic");
|
|
|
|
requireSameType(SILType::getPrimitiveObjectType(substTy),
|
|
SILType::getPrimitiveObjectType(PAI->getSubstCalleeType()),
|
|
"substituted callee type does not match substitutions");
|
|
|
|
// The arguments must match the suffix of the original function's input
|
|
// types.
|
|
require(PAI->getArguments().size() +
|
|
resultInfo->getParameters().size()
|
|
== substTy->getParameters().size(),
|
|
"result of partial_apply should take as many inputs as were not "
|
|
"applied by the instruction");
|
|
|
|
SILFunctionConventions substConv(substTy, F.getModule());
|
|
unsigned appliedArgStartIdx =
|
|
substConv.getNumSILArguments() - PAI->getNumArguments();
|
|
for (unsigned i = 0, size = PAI->getArguments().size(); i < size; ++i) {
|
|
require(PAI->getArguments()[i]->getType()
|
|
== substConv.getSILArgumentType(appliedArgStartIdx + i),
|
|
"applied argument types do not match suffix of function type's "
|
|
"inputs");
|
|
}
|
|
|
|
// The arguments to the result function type must match the prefix of the
|
|
// original function's input types.
|
|
for (unsigned i = 0, size = resultInfo->getParameters().size();
|
|
i < size; ++i) {
|
|
require(resultInfo->getParameters()[i] ==
|
|
substTy->getParameters()[i],
|
|
"inputs to result function type do not match unapplied inputs "
|
|
"of original function");
|
|
}
|
|
|
|
require(resultInfo->getNumResults() == substTy->getNumResults(),
|
|
"applied results do not agree in count with function type");
|
|
for (unsigned i = 0, size = resultInfo->getNumResults(); i < size; ++i) {
|
|
auto originalResult = resultInfo->getResults()[i];
|
|
auto expectedResult = substTy->getResults()[i];
|
|
|
|
// The "returns inner pointer" convention doesn't survive through a
|
|
// partial application, since the thunk takes responsibility for
|
|
// lifetime-extending 'self'.
|
|
if (expectedResult.getConvention()
|
|
== ResultConvention::UnownedInnerPointer) {
|
|
expectedResult = SILResultInfo(expectedResult.getType(),
|
|
ResultConvention::Unowned);
|
|
require(originalResult == expectedResult,
|
|
"result type of result function type for partially applied "
|
|
"@unowned_inner_pointer function should have @unowned"
|
|
"convention");
|
|
|
|
// The "autoreleased" convention doesn't survive through a
|
|
// partial application, since the thunk takes responsibility for
|
|
// retaining the return value.
|
|
} else if (expectedResult.getConvention()
|
|
== ResultConvention::Autoreleased) {
|
|
expectedResult = SILResultInfo(expectedResult.getType(),
|
|
ResultConvention::Owned);
|
|
require(originalResult == expectedResult,
|
|
"result type of result function type for partially applied "
|
|
"@autoreleased function should have @owned convention");
|
|
|
|
} else {
|
|
require(originalResult == expectedResult,
|
|
"result type of result function type does not match original "
|
|
"function");
|
|
}
|
|
}
|
|
|
|
// TODO: Impose additional constraints when partial_apply when the
|
|
// -disable-sil-partial-apply flag is enabled. We want to reduce
|
|
// partial_apply to being only a means of associating a closure invocation
|
|
// function with its context.
|
|
//
|
|
// When we reach that point, we should be able to more deeply redesign
|
|
// PartialApplyInst to simplify the representation to carry a single
|
|
// argument.
|
|
if (PAI->getModule().getOptions().DisableSILPartialApply) {
|
|
// Should only be one context argument.
|
|
require(PAI->getArguments().size() == 1,
|
|
"partial_apply should have a single context argument");
|
|
|
|
// Callee should already have the thin convention, and result should be
|
|
// thick.
|
|
require(resultInfo->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thick,
|
|
"partial_apply result should have thick convention");
|
|
require(PAI->getCallee()->getType().castTo<SILFunctionType>()
|
|
->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thin,
|
|
"partial_apply callee should have thin convention");
|
|
|
|
// TODO: Check that generic signature matches box's generic signature,
|
|
// once we have boxes with generic signatures.
|
|
require(!PAI->getCalleeFunction()->getGenericEnvironment(),
|
|
"partial_apply context must capture generic environment for "
|
|
"callee");
|
|
|
|
// Result's callee convention should match context argument's convention.
|
|
require(substTy->getParameters().back().getConvention()
|
|
== resultInfo->getCalleeConvention(),
|
|
"partial_apply context argument must have the same convention "
|
|
"as the resulting function's callee convention");
|
|
|
|
auto isSwiftRefcounted = [](SILType t) -> bool {
|
|
if (t.is<SILBoxType>())
|
|
return true;
|
|
if (t.getASTType() == t.getASTContext().TheNativeObjectType)
|
|
return true;
|
|
if (auto clas = t.getClassOrBoundGenericClass())
|
|
// Must be a class defined in Swift.
|
|
return clas->hasKnownSwiftImplementation();
|
|
return false;
|
|
};
|
|
|
|
// The context argument must be a swift-refcounted box or class.
|
|
require(isSwiftRefcounted(PAI->getArguments().front()->getType()),
|
|
"partial_apply context argument must be swift-refcounted");
|
|
}
|
|
}
|
|
|
|
void checkBuiltinInst(BuiltinInst *BI) {
|
|
// Check for special constraints on llvm intrinsics.
|
|
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::not_intrinsic)
|
|
verifyLLVMIntrinsic(BI, BI->getIntrinsicInfo().ID);
|
|
}
|
|
|
|
void checkFunctionRefBaseInst(FunctionRefBaseInst *FRI) {
|
|
auto fnType = requireObjectType(SILFunctionType, FRI,
|
|
"result of function_ref");
|
|
require(!fnType->getExtInfo().hasContext(),
|
|
"function_ref should have a context-free function result");
|
|
|
|
// Note: in SingleFunction mode, we relax some of these checks because
|
|
// we may not have linked everything yet.
|
|
|
|
SILFunction *RefF = FRI->getReferencedFunction();
|
|
|
|
if (isa<FunctionRefInst>(FRI))
|
|
require(
|
|
!RefF->isDynamicallyReplaceable(),
|
|
"function_ref cannot reference a [dynamically_replaceable] function");
|
|
else if (isa<PreviousDynamicFunctionRefInst>(FRI)) {
|
|
require(!RefF->isDynamicallyReplaceable(),
|
|
"previous_function_ref cannot reference a "
|
|
"[dynamically_replaceable] function");
|
|
require(RefF->getDynamicallyReplacedFunction(),
|
|
"previous_function_ref must reference a "
|
|
"[dynamic_replacement_for:...] function");
|
|
} else if (isa<DynamicFunctionRefInst>(FRI))
|
|
require(RefF->isDynamicallyReplaceable(),
|
|
"dynamic_function_ref must reference a "
|
|
"[dynamically_replaceable] function");
|
|
|
|
// In canonical SIL, direct reference to a shared_external declaration
|
|
// is an error; we should have deserialized a body. In raw SIL, we may
|
|
// not have deserialized the body yet.
|
|
if (F.getModule().getStage() >= SILStage::Canonical) {
|
|
if (RefF->isExternalDeclaration()) {
|
|
require(SingleFunction ||
|
|
!hasSharedVisibility(RefF->getLinkage()) ||
|
|
RefF->hasForeignBody(),
|
|
"external declarations of SILFunctions with shared visibility is "
|
|
"not allowed");
|
|
}
|
|
}
|
|
|
|
// A direct reference to a non-public or shared but not fragile function
|
|
// from a fragile function is an error.
|
|
if (F.isSerialized()) {
|
|
require((SingleFunction && RefF->isExternalDeclaration()) ||
|
|
RefF->hasValidLinkageForFragileRef(),
|
|
"function_ref inside fragile function cannot "
|
|
"reference a private or hidden symbol");
|
|
}
|
|
|
|
verifySILFunctionType(fnType);
|
|
}
|
|
|
|
void checkFunctionRefInst(FunctionRefInst *FRI) {
|
|
checkFunctionRefBaseInst(FRI);
|
|
}
|
|
|
|
void checkDynamicFunctionRefInst(DynamicFunctionRefInst *FRI) {
|
|
checkFunctionRefBaseInst(FRI);
|
|
}
|
|
|
|
void checkPreviousDynamicFunctionRefInst(PreviousDynamicFunctionRefInst *FRI) {
|
|
checkFunctionRefBaseInst(FRI);
|
|
}
|
|
|
|
void checkAllocGlobalInst(AllocGlobalInst *AGI) {
|
|
SILGlobalVariable *RefG = AGI->getReferencedGlobal();
|
|
if (auto *VD = RefG->getDecl()) {
|
|
require(!VD->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient global");
|
|
}
|
|
if (F.isSerialized()) {
|
|
require(RefG->isSerialized()
|
|
|| hasPublicVisibility(RefG->getLinkage()),
|
|
"alloc_global inside fragile function cannot "
|
|
"reference a private or hidden symbol");
|
|
}
|
|
}
|
|
|
|
void checkGlobalAccessInst(GlobalAccessInst *GAI) {
|
|
SILGlobalVariable *RefG = GAI->getReferencedGlobal();
|
|
require(GAI->getType().getObjectType() == RefG->getLoweredType(),
|
|
"global_addr/value must be the type of the variable it references");
|
|
if (auto *VD = RefG->getDecl()) {
|
|
require(!VD->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient global");
|
|
}
|
|
if (F.isSerialized()) {
|
|
require(RefG->isSerialized()
|
|
|| hasPublicVisibility(RefG->getLinkage()),
|
|
"global_addr/value inside fragile function cannot "
|
|
"reference a private or hidden symbol");
|
|
}
|
|
}
|
|
|
|
void checkGlobalAddrInst(GlobalAddrInst *GAI) {
|
|
require(GAI->getType().isAddress(),
|
|
"global_addr must have an address result type");
|
|
require(!GAI->getReferencedGlobal()->isInitializedObject(),
|
|
"global_addr cannot refer to a statically initialized object");
|
|
checkGlobalAccessInst(GAI);
|
|
}
|
|
|
|
void checkGlobalValueInst(GlobalValueInst *GVI) {
|
|
require(GVI->getType().isObject(),
|
|
"global_value must have an address result type");
|
|
checkGlobalAccessInst(GVI);
|
|
}
|
|
|
|
void checkObjectInst(ObjectInst *) {
|
|
require(false, "object instruction is only allowed in a static initializer");
|
|
}
|
|
|
|
void checkIntegerLiteralInst(IntegerLiteralInst *ILI) {
|
|
require(ILI->getType().is<AnyBuiltinIntegerType>(),
|
|
"invalid integer literal type");
|
|
}
|
|
|
|
void checkLoadInst(LoadInst *LI) {
|
|
require(LI->getType().isObject(), "Result of load must be an object");
|
|
require(!fnConv.useLoweredAddresses()
|
|
|| LI->getType().isLoadable(*LI->getFunction()),
|
|
"Load must have a loadable type");
|
|
require(LI->getOperand()->getType().isAddress(),
|
|
"Load operand must be an address");
|
|
require(LI->getOperand()->getType().getObjectType() == LI->getType(),
|
|
"Load operand type and result type mismatch");
|
|
|
|
// Ownership semantic checks.
|
|
switch (LI->getOwnershipQualifier()) {
|
|
case LoadOwnershipQualifier::Unqualified:
|
|
// We should not see loads with unqualified ownership when SILOwnership is
|
|
// enabled.
|
|
require(!F.hasOwnership(),
|
|
"Load with unqualified ownership in a qualified function");
|
|
break;
|
|
case LoadOwnershipQualifier::Copy:
|
|
case LoadOwnershipQualifier::Take:
|
|
require(F.hasOwnership(),
|
|
"Load with qualified ownership in an unqualified function");
|
|
// TODO: Could probably make this a bit stricter.
|
|
require(!LI->getType().isTrivial(*LI->getFunction()),
|
|
"load [copy] or load [take] can only be applied to non-trivial "
|
|
"types");
|
|
break;
|
|
case LoadOwnershipQualifier::Trivial:
|
|
require(F.hasOwnership(),
|
|
"Load with qualified ownership in an unqualified function");
|
|
require(LI->getType().isTrivial(*LI->getFunction()),
|
|
"A load with trivial ownership must load a trivial type");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void checkLoadBorrowInst(LoadBorrowInst *LBI) {
|
|
require(
|
|
F.hasOwnership(),
|
|
"Inst with qualified ownership in a function that is not qualified");
|
|
require(LBI->getType().isObject(), "Result of load must be an object");
|
|
require(!fnConv.useLoweredAddresses()
|
|
|| LBI->getType().isLoadable(*LBI->getFunction()),
|
|
"Load must have a loadable type");
|
|
require(LBI->getOperand()->getType().isAddress(),
|
|
"Load operand must be an address");
|
|
require(LBI->getOperand()->getType().getObjectType() == LBI->getType(),
|
|
"Load operand type and result type mismatch");
|
|
}
|
|
|
|
void checkEndBorrowInst(EndBorrowInst *EBI) {
|
|
require(
|
|
F.hasOwnership(),
|
|
"Inst with qualified ownership in a function that is not qualified");
|
|
}
|
|
|
|
template <class AI>
|
|
void checkAccessEnforcement(AI *AccessInst) {
|
|
if (AccessInst->getModule().getStage() != SILStage::Raw) {
|
|
require(AccessInst->getEnforcement() != SILAccessEnforcement::Unknown,
|
|
"access must have known enforcement outside raw stage");
|
|
}
|
|
}
|
|
|
|
void checkBeginAccessInst(BeginAccessInst *BAI) {
|
|
requireSameType(BAI->getType(), BAI->getSource()->getType(),
|
|
"result must be same type as operand");
|
|
require(BAI->getType().isAddress(),
|
|
"begin_access operand must have address type");
|
|
|
|
checkAccessEnforcement(BAI);
|
|
|
|
switch (BAI->getAccessKind()) {
|
|
case SILAccessKind::Init:
|
|
case SILAccessKind::Deinit:
|
|
require(BAI->getEnforcement() == SILAccessEnforcement::Static,
|
|
"init/deinit accesses cannot use non-static enforcement");
|
|
break;
|
|
|
|
case SILAccessKind::Read:
|
|
case SILAccessKind::Modify:
|
|
break;
|
|
}
|
|
|
|
// Verify that all formal accesses patterns are recognized as part of a
|
|
// whitelist. The presence of an unknown pattern means that analysis will
|
|
// silently fail, and the compiler may be introducing undefined behavior
|
|
// with no other way to detect it.
|
|
//
|
|
// For example, AccessEnforcementWMO runs very late in the
|
|
// pipeline and assumes valid storage for all dynamic Read/Modify access. It
|
|
// also requires that Unidentified access fit a whitelist on known
|
|
// non-internal globals or class properties.
|
|
//
|
|
// First check that findAccessedStorage returns without asserting. For
|
|
// Unsafe enforcement, that is sufficient. For any other enforcement
|
|
// level also require that it returns a valid AccessedStorage object.
|
|
// Unsafe enforcement is used for some unrecognizable access patterns,
|
|
// like debugger variables. The compiler never cares about the source of
|
|
// those accesses.
|
|
AccessedStorage storage = findAccessedStorage(BAI->getSource());
|
|
if (BAI->getEnforcement() != SILAccessEnforcement::Unsafe)
|
|
require(storage, "Unknown formal access pattern");
|
|
}
|
|
|
|
void checkEndAccessInst(EndAccessInst *EAI) {
|
|
auto BAI = dyn_cast<BeginAccessInst>(EAI->getOperand());
|
|
require(BAI != nullptr,
|
|
"operand of end_access must be a begin_access");
|
|
|
|
if (EAI->isAborting()) {
|
|
require(BAI->getAccessKind() == SILAccessKind::Init ||
|
|
BAI->getAccessKind() == SILAccessKind::Deinit,
|
|
"aborting access must apply to init or deinit");
|
|
}
|
|
}
|
|
|
|
void checkBeginUnpairedAccessInst(BeginUnpairedAccessInst *BUAI) {
|
|
require(BUAI->getEnforcement() != SILAccessEnforcement::Unknown,
|
|
"unpaired access can never use unknown enforcement");
|
|
require(BUAI->getSource()->getType().isAddress(),
|
|
"address operand must have address type");
|
|
requireAddressType(BuiltinUnsafeValueBufferType, BUAI->getBuffer(),
|
|
"scratch buffer operand");
|
|
|
|
checkAccessEnforcement(BUAI);
|
|
|
|
switch (BUAI->getAccessKind()) {
|
|
case SILAccessKind::Init:
|
|
case SILAccessKind::Deinit:
|
|
require(BUAI->getEnforcement() == SILAccessEnforcement::Static,
|
|
"init/deinit accesses cannot use non-static enforcement");
|
|
break;
|
|
case SILAccessKind::Read:
|
|
case SILAccessKind::Modify:
|
|
break;
|
|
}
|
|
|
|
// First check that findAccessedStorage never asserts.
|
|
AccessedStorage storage = findAccessedStorage(BUAI->getSource());
|
|
// Only allow Unsafe and Builtin access to have invalid storage.
|
|
if (BUAI->getEnforcement() != SILAccessEnforcement::Unsafe
|
|
&& !BUAI->isFromBuiltin()) {
|
|
require(storage, "Unknown formal access pattern");
|
|
}
|
|
}
|
|
|
|
void checkEndUnpairedAccessInst(EndUnpairedAccessInst *I) {
|
|
require(I->getEnforcement() != SILAccessEnforcement::Unknown,
|
|
"unpaired access can never use unknown enforcement");
|
|
requireAddressType(BuiltinUnsafeValueBufferType, I->getBuffer(),
|
|
"scratch buffer operand");
|
|
|
|
checkAccessEnforcement(I);
|
|
}
|
|
|
|
void checkStoreInst(StoreInst *SI) {
|
|
require(SI->getSrc()->getType().isObject(),
|
|
"Can't store from an address source");
|
|
require(!fnConv.useLoweredAddresses()
|
|
|| SI->getSrc()->getType().isLoadable(*SI->getFunction()),
|
|
"Can't store a non loadable type");
|
|
require(SI->getDest()->getType().isAddress(),
|
|
"Must store to an address dest");
|
|
require(SI->getDest()->getType().getObjectType() == SI->getSrc()->getType(),
|
|
"Store operand type and dest type mismatch");
|
|
|
|
// Perform ownership checks.
|
|
switch (SI->getOwnershipQualifier()) {
|
|
case StoreOwnershipQualifier::Unqualified:
|
|
// We should not see loads with unqualified ownership when SILOwnership is
|
|
// enabled.
|
|
require(!F.hasOwnership(),
|
|
"Qualified store in function with unqualified ownership?!");
|
|
break;
|
|
case StoreOwnershipQualifier::Init:
|
|
case StoreOwnershipQualifier::Assign:
|
|
require(
|
|
F.hasOwnership(),
|
|
"Inst with qualified ownership in a function that is not qualified");
|
|
// TODO: Could probably make this a bit stricter.
|
|
require(!SI->getSrc()->getType().isTrivial(*SI->getFunction()),
|
|
"store [init] or store [assign] can only be applied to "
|
|
"non-trivial types");
|
|
break;
|
|
case StoreOwnershipQualifier::Trivial: {
|
|
require(
|
|
F.hasOwnership(),
|
|
"Inst with qualified ownership in a function that is not qualified");
|
|
SILValue Src = SI->getSrc();
|
|
require(Src->getType().isTrivial(*SI->getFunction()) ||
|
|
Src.getOwnershipKind() == ValueOwnershipKind::Any,
|
|
"A store with trivial ownership must store a type with trivial "
|
|
"ownership");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkAssignInst(AssignInst *AI) {
|
|
SILValue Src = AI->getSrc(), Dest = AI->getDest();
|
|
require(AI->getModule().getStage() == SILStage::Raw,
|
|
"assign instruction can only exist in raw SIL");
|
|
require(Src->getType().isObject(), "Can't assign from an address source");
|
|
require(Dest->getType().isAddress(), "Must store to an address dest");
|
|
require(Dest->getType().getObjectType() == Src->getType(),
|
|
"Store operand type and dest type mismatch");
|
|
}
|
|
|
|
void checkAssignByDelegateInst(AssignByDelegateInst *AI) {
|
|
SILValue Src = AI->getSrc(), Dest = AI->getDest();
|
|
require(AI->getModule().getStage() == SILStage::Raw,
|
|
"assign instruction can only exist in raw SIL");
|
|
require(Dest->getType().isAddress(), "Must store to an address dest");
|
|
|
|
unsigned indirectInitResults = Src->getType().isAddress() ? 1 : 0;
|
|
|
|
SILValue initFn = AI->getInitializer();
|
|
CanSILFunctionType initTy = initFn->getType().castTo<SILFunctionType>();
|
|
SILFunctionConventions initConv(initTy, AI->getModule());
|
|
require(initConv.getNumIndirectSILResults() == indirectInitResults,
|
|
"init function has wrong number of indirect results");
|
|
unsigned firstArgIdx = initConv.getSILArgIndexOfFirstParam();
|
|
require(initConv.getNumSILArguments() == firstArgIdx + 1,
|
|
"init function has wrong number of arguments");
|
|
require(Src->getType() == initConv.getSILArgumentType(firstArgIdx),
|
|
"wrong argument type of init function");
|
|
switch (initConv.getNumIndirectSILResults()) {
|
|
case 0:
|
|
require(initConv.getNumDirectSILResults() == 1,
|
|
"wrong number of init function results");
|
|
require(Dest->getType().getObjectType() ==
|
|
initConv.getDirectSILResultTypes().front(),
|
|
"wrong init function result type");
|
|
break;
|
|
case 1:
|
|
require(initConv.getNumDirectSILResults() == 0,
|
|
"wrong number of init function results");
|
|
require(Dest->getType() == initConv.getIndirectSILResultTypes().front(),
|
|
"wrong indirect init function result type");
|
|
break;
|
|
default:
|
|
require(false, "wrong number of indirect init function results");
|
|
}
|
|
|
|
SILValue setterFn = AI->getSetter();
|
|
CanSILFunctionType setterTy = setterFn->getType().castTo<SILFunctionType>();
|
|
SILFunctionConventions setterConv(setterTy, AI->getModule());
|
|
require(setterConv.getNumIndirectSILResults() == 0,
|
|
"set function has indirect results");
|
|
require(setterConv.getNumSILArguments() == 1,
|
|
"init function has wrong number of arguments");
|
|
require(Src->getType() == setterConv.getSILArgumentType(0),
|
|
"wrong argument type of init function");
|
|
}
|
|
|
|
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
|
|
void checkLoad##Name##Inst(Load##Name##Inst *LWI) { \
|
|
require(LWI->getType().isObject(), "Result of load must be an object"); \
|
|
auto isOptional = bool(LWI->getType().getOptionalObjectType()); \
|
|
auto optionality = optionalityOf(ReferenceOwnership::Name); \
|
|
if (optionality == ReferenceOwnershipOptionality::Required) \
|
|
require(isOptional, "Optionality mismatch"); \
|
|
if (optionality == ReferenceOwnershipOptionality::Disallowed) \
|
|
require(!isOptional, "Optionality mismatch"); \
|
|
auto PointerType = LWI->getOperand()->getType(); \
|
|
auto PointerRVType = PointerType.getASTType(); \
|
|
require(PointerType.isAddress() && \
|
|
PointerRVType->is<Name##StorageType>(), \
|
|
"load_" #name " operand must be a " #name " address"); \
|
|
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==\
|
|
LWI->getType().getASTType(), \
|
|
"Load operand type and result type mismatch"); \
|
|
} \
|
|
void checkStore##Name##Inst(Store##Name##Inst *SWI) { \
|
|
auto SrcTy = SWI->getSrc()->getType(); \
|
|
require(SrcTy.isObject(), "Can't store from an address source"); \
|
|
auto isOptional = bool(SrcTy.getOptionalObjectType()); \
|
|
auto optionality = optionalityOf(ReferenceOwnership::Name); \
|
|
if (optionality == ReferenceOwnershipOptionality::Required) \
|
|
require(isOptional, "Optionality mismatch"); \
|
|
if (optionality == ReferenceOwnershipOptionality::Disallowed) \
|
|
require(!isOptional, "Optionality mismatch"); \
|
|
auto PointerType = SWI->getDest()->getType(); \
|
|
auto PointerRVType = PointerType.getASTType(); \
|
|
require(PointerType.isAddress() && \
|
|
PointerRVType->is<Name##StorageType>(), \
|
|
"store_" #name " address operand must be a " #name " address"); \
|
|
require(PointerRVType->getReferenceStorageReferent()->getCanonicalType() ==\
|
|
SrcTy.getASTType(), \
|
|
"Store operand type and dest type mismatch"); \
|
|
}
|
|
#define LOADABLE_REF_STORAGE_HELPER(Name, name) \
|
|
void checkRefTo##Name##Inst(RefTo##Name##Inst *I) { \
|
|
requireReferenceStorageCapableValue(I->getOperand(), \
|
|
"Operand of ref_to_" #name); \
|
|
auto operandType = I->getOperand()->getType().getASTType(); \
|
|
auto resultType = requireObjectType(Name##StorageType, I, \
|
|
"Result of ref_to_" #name); \
|
|
require(resultType.getReferentType() == operandType, \
|
|
"Result of ref_to_" #name " does not have the " \
|
|
"operand's type as its referent type"); \
|
|
} \
|
|
void check##Name##ToRefInst(Name##ToRefInst *I) { \
|
|
auto operandType = requireObjectType(Name##StorageType, \
|
|
I->getOperand(), \
|
|
"Operand of " #name "_to_ref"); \
|
|
requireReferenceStorageCapableValue(I, "Result of " #name "_to_ref"); \
|
|
auto resultType = I->getType().getASTType(); \
|
|
require(operandType.getReferentType() == resultType, \
|
|
"Operand of " #name "_to_ref does not have the " \
|
|
"operand's type as its referent type"); \
|
|
}
|
|
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, name, closure) \
|
|
void checkStrongRetain##Name##Inst(StrongRetain##Name##Inst *RI) { \
|
|
auto ty = requireObjectType(Name##StorageType, RI->getOperand(), \
|
|
"Operand of strong_retain_" #name); \
|
|
closure(); \
|
|
(void)ty; \
|
|
require(!F.hasOwnership(), "strong_retain_" #name " is only in " \
|
|
"functions with unqualified " \
|
|
"ownership"); \
|
|
} \
|
|
void check##Name##RetainInst(Name##RetainInst *RI) { \
|
|
auto ty = requireObjectType(Name##StorageType, RI->getOperand(), \
|
|
"Operand of " #name "_retain"); \
|
|
closure(); \
|
|
(void)ty; \
|
|
require(!F.hasOwnership(), \
|
|
#name "_retain is only in functions with unqualified ownership"); \
|
|
} \
|
|
void check##Name##ReleaseInst(Name##ReleaseInst *RI) { \
|
|
auto ty = requireObjectType(Name##StorageType, RI->getOperand(), \
|
|
"Operand of " #name "_release"); \
|
|
closure(); \
|
|
(void)ty; \
|
|
require(!F.hasOwnership(), \
|
|
#name "_release is only in functions with unqualified ownership"); \
|
|
} \
|
|
void checkCopy##Name##ValueInst(Copy##Name##ValueInst *I) { \
|
|
auto ty = requireObjectType(Name##StorageType, I->getOperand(), \
|
|
"Operand of " #name "_retain"); \
|
|
closure(); \
|
|
(void)ty; \
|
|
/* *NOTE* We allow copy_##name##_value to be used throughout the entire */ \
|
|
/* pipeline even though it is a higher level instruction. */ \
|
|
}
|
|
#define ALWAYS_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
|
|
LOADABLE_REF_STORAGE_HELPER(Name, name) \
|
|
ALWAYS_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, name, []{})
|
|
#define SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
|
|
LOADABLE_REF_STORAGE_HELPER(Name, name) \
|
|
NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, name, "...") \
|
|
ALWAYS_LOADABLE_CHECKED_REF_STORAGE_HELPER(Name, name, [&]{ \
|
|
require(ty->isLoadable(ResilienceExpansion::Maximal), \
|
|
"'" #name "' type must be loadable"); \
|
|
})
|
|
#define UNCHECKED_REF_STORAGE(Name, name, ...) \
|
|
LOADABLE_REF_STORAGE_HELPER(Name, name)
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
#undef LOADABLE_REF_STORAGE_HELPER
|
|
#undef ALWAYS_LOADABLE_CHECKED_REF_STORAGE_HELPER
|
|
|
|
void checkMarkUninitializedInst(MarkUninitializedInst *MU) {
|
|
SILValue Src = MU->getOperand();
|
|
require(MU->getModule().getStage() == SILStage::Raw,
|
|
"mark_uninitialized instruction can only exist in raw SIL");
|
|
require(Src->getType().isAddress() ||
|
|
Src->getType().getClassOrBoundGenericClass() ||
|
|
Src->getType().getAs<SILBoxType>(),
|
|
"mark_uninitialized must be an address, class, or box type");
|
|
require(Src->getType() == MU->getType(),"operand and result type mismatch");
|
|
// FIXME: When the work to force MUI to be on Allocations/SILArguments
|
|
// complete, turn on this assertion.
|
|
require(isa<AllocationInst>(Src)
|
|
|| isa<GlobalAddrInst>(Src)
|
|
// TODO: Should we support SILUndef on mark_uninitialized? We
|
|
// currently have a test that verifies this behavior, but it seems
|
|
// like this would always be a bug due to the implications around
|
|
// the code in DI. This just bakes in the current behavior.
|
|
|| isa<SILUndef>(Src)
|
|
// We allow SILArguments to support the case of initializing
|
|
// initializers. In such a case, the underlying case is allocated
|
|
// outside by the allocating initializer and we pass in the to be
|
|
// initialized value as a SILArgument.
|
|
|| isa<SILArgument>(Src)
|
|
// FIXME: Once the MarkUninitializedFixup pass is eliminated,
|
|
// mark_uninitialized should never be applied to a project_box. So
|
|
// at that point, this should be eliminated.
|
|
|| isa<ProjectBoxInst>(Src)
|
|
// FIXME: We only support pointer to address here to not break LLDB. It is
|
|
// important that long term we get rid of this since this is a situation
|
|
// where LLDB is breaking SILGen/DI invariants by not creating a new
|
|
// independent stack location for the pointer to address.
|
|
|| isa<PointerToAddressInst>(Src),
|
|
"Mark Uninitialized must be applied to a storage location");
|
|
}
|
|
|
|
void checkMarkFunctionEscapeInst(MarkFunctionEscapeInst *MFE) {
|
|
require(MFE->getModule().getStage() == SILStage::Raw,
|
|
"mark_function_escape instruction can only exist in raw SIL");
|
|
for (auto Elt : MFE->getElements())
|
|
require(Elt->getType().isAddress(), "MFE must refer to variable addrs");
|
|
}
|
|
|
|
void checkCopyAddrInst(CopyAddrInst *SI) {
|
|
require(SI->getSrc()->getType().isAddress(),
|
|
"Src value should be lvalue");
|
|
require(SI->getDest()->getType().isAddress(),
|
|
"Dest address should be lvalue");
|
|
require(SI->getDest()->getType() == SI->getSrc()->getType(),
|
|
"Store operand type and dest type mismatch");
|
|
require(F.isTypeABIAccessible(SI->getDest()->getType()),
|
|
"cannot directly copy type with inaccessible ABI");
|
|
}
|
|
|
|
void checkRetainValueInst(RetainValueInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
require(!F.hasOwnership(),
|
|
"retain_value is only in functions with unqualified ownership");
|
|
}
|
|
|
|
void checkRetainValueAddrInst(RetainValueAddrInst *I) {
|
|
require(I->getOperand()->getType().isAddress(),
|
|
"Source value should be an address value");
|
|
require(!F.hasOwnership(),
|
|
"retain_value is only in functions with unqualified ownership");
|
|
}
|
|
|
|
void checkCopyValueInst(CopyValueInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
require(!I->getOperand()->getType().isTrivial(*I->getFunction()),
|
|
"Source value should be non-trivial");
|
|
require(!fnConv.useLoweredAddresses() || F.hasOwnership(),
|
|
"copy_value is only valid in functions with qualified "
|
|
"ownership");
|
|
}
|
|
|
|
void checkDestroyValueInst(DestroyValueInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
require(!I->getOperand()->getType().isTrivial(*I->getFunction()),
|
|
"Source value should be non-trivial");
|
|
require(!fnConv.useLoweredAddresses() || F.hasOwnership(),
|
|
"destroy_value is only valid in functions with qualified "
|
|
"ownership");
|
|
}
|
|
|
|
void checkReleaseValueInst(ReleaseValueInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
require(!F.hasOwnership(),
|
|
"release_value is only in functions with unqualified ownership");
|
|
}
|
|
|
|
void checkReleaseValueAddrInst(ReleaseValueAddrInst *I) {
|
|
require(I->getOperand()->getType().isAddress(),
|
|
"Source value should be an address value");
|
|
require(!F.hasOwnership(),
|
|
"release_value is only in functions with unqualified ownership");
|
|
}
|
|
|
|
void checkAutoreleaseValueInst(AutoreleaseValueInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
// TODO: This instruction could in principle be generalized.
|
|
require(I->getOperand()->getType().hasRetainablePointerRepresentation(),
|
|
"Source value must be a reference type or optional thereof");
|
|
}
|
|
|
|
void checkSetDeallocatingInst(SetDeallocatingInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"Source value should be an object value");
|
|
require(I->getOperand()->getType().hasRetainablePointerRepresentation(),
|
|
"Source value must be a reference type");
|
|
}
|
|
|
|
void checkCopyBlockInst(CopyBlockInst *I) {
|
|
require(I->getOperand()->getType().isBlockPointerCompatible(),
|
|
"operand of copy_block should be a block");
|
|
require(I->getOperand()->getType() == I->getType(),
|
|
"result of copy_block should be same type as operand");
|
|
}
|
|
void checkCopyBlockInst(CopyBlockWithoutEscapingInst *I) {
|
|
require(I->getBlock()->getType().isBlockPointerCompatible(),
|
|
"operand of copy_block should be a block");
|
|
require(I->getBlock()->getType() == I->getType(),
|
|
"result of copy_block should be same type as operand");
|
|
auto FnTy = requireObjectType(SILFunctionType, I->getClosure(),
|
|
"copy_block_without_escaping operand");
|
|
require(!FnTy->isNoEscape(),
|
|
"closure parameter must not be a @noescape closure");
|
|
}
|
|
|
|
void checkAllocValueBufferInst(AllocValueBufferInst *I) {
|
|
require(I->getOperand()->getType().isAddress(),
|
|
"Operand value should be an address");
|
|
require(I->getOperand()->getType().is<BuiltinUnsafeValueBufferType>(),
|
|
"Operand value should be a Builtin.UnsafeValueBuffer");
|
|
verifyOpenedArchetype(I, I->getValueType().getASTType());
|
|
}
|
|
|
|
void checkProjectValueBufferInst(ProjectValueBufferInst *I) {
|
|
require(I->getOperand()->getType().isAddress(),
|
|
"Operand value should be an address");
|
|
require(I->getOperand()->getType().is<BuiltinUnsafeValueBufferType>(),
|
|
"Operand value should be a Builtin.UnsafeValueBuffer");
|
|
}
|
|
|
|
void checkProjectBoxInst(ProjectBoxInst *I) {
|
|
require(I->getOperand()->getType().isObject(),
|
|
"project_box operand should be a value");
|
|
auto boxTy = I->getOperand()->getType().getAs<SILBoxType>();
|
|
require(boxTy, "project_box operand should be a @box type");
|
|
require(I->getType() == boxTy->getFieldType(F.getModule(),
|
|
I->getFieldIndex()),
|
|
"project_box result should be address of boxed type");
|
|
|
|
// If we have a mark_uninitialized as a user, the mark_uninitialized must be
|
|
// our only user. This is a requirement that is asserted by allocbox to
|
|
// stack. This check just embeds the requirement into the IR.
|
|
require(I->hasOneUse() ||
|
|
none_of(I->getUses(),
|
|
[](Operand *Op) -> bool {
|
|
return isa<MarkUninitializedInst>(Op->getUser());
|
|
}),
|
|
"project_box with more than one user when a user is a "
|
|
"mark_uninitialized");
|
|
}
|
|
|
|
void checkProjectExistentialBoxInst(ProjectExistentialBoxInst *PEBI) {
|
|
SILType operandType = PEBI->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"project_existential_box operand must not be address");
|
|
|
|
require(operandType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Boxed),
|
|
"project_existential_box operand must be boxed existential");
|
|
|
|
require(PEBI->getType().isAddress(),
|
|
"project_existential_box result must be an address");
|
|
|
|
if (auto *AEBI = dyn_cast<AllocExistentialBoxInst>(PEBI->getOperand())) {
|
|
// The lowered type must be the properly-abstracted form of the AST type.
|
|
SILType exType = AEBI->getExistentialType();
|
|
auto archetype = OpenedArchetypeType::get(exType.getASTType());
|
|
|
|
auto loweredTy = F.getLoweredType(Lowering::AbstractionPattern(archetype),
|
|
AEBI->getFormalConcreteType())
|
|
.getAddressType();
|
|
|
|
requireSameType(loweredTy, PEBI->getType(),
|
|
"project_existential_box result should be the lowered "
|
|
"concrete type of its alloc_existential_box");
|
|
}
|
|
}
|
|
|
|
void checkDeallocValueBufferInst(DeallocValueBufferInst *I) {
|
|
require(I->getOperand()->getType().isAddress(),
|
|
"Operand value should be an address");
|
|
require(I->getOperand()->getType().is<BuiltinUnsafeValueBufferType>(),
|
|
"Operand value should be a Builtin.UnsafeValueBuffer");
|
|
}
|
|
|
|
void checkStructInst(StructInst *SI) {
|
|
auto *structDecl = SI->getType().getStructOrBoundGenericStruct();
|
|
require(structDecl, "StructInst must return a struct");
|
|
require(!structDecl->hasUnreferenceableStorage(),
|
|
"Cannot build a struct with unreferenceable storage from elements "
|
|
"using StructInst");
|
|
require(!structDecl->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient struct");
|
|
require(SI->getType().isObject(),
|
|
"StructInst must produce an object");
|
|
|
|
SILType structTy = SI->getType();
|
|
auto opi = SI->getElements().begin(), opEnd = SI->getElements().end();
|
|
for (VarDecl *field : structDecl->getStoredProperties()) {
|
|
require(opi != opEnd,
|
|
"number of struct operands does not match number of stored "
|
|
"member variables of struct");
|
|
|
|
SILType loweredType = structTy.getFieldType(field, F.getModule());
|
|
if (SI->getModule().getStage() != SILStage::Lowered) {
|
|
require((*opi)->getType() == loweredType,
|
|
"struct operand type does not match field type");
|
|
}
|
|
++opi;
|
|
}
|
|
}
|
|
|
|
void checkEnumInst(EnumInst *UI) {
|
|
EnumDecl *ud = UI->getType().getEnumOrBoundGenericEnum();
|
|
require(ud, "EnumInst must return an enum");
|
|
require(UI->getElement()->getParentEnum() == ud,
|
|
"EnumInst case must be a case of the result enum type");
|
|
require(UI->getType().isObject(),
|
|
"EnumInst must produce an object");
|
|
require(UI->hasOperand() == UI->getElement()->hasAssociatedValues(),
|
|
"EnumInst must take an argument iff the element does");
|
|
|
|
if (UI->getElement()->hasAssociatedValues()) {
|
|
require(UI->getOperand()->getType().isObject(),
|
|
"EnumInst operand must be an object");
|
|
SILType caseTy = UI->getType().getEnumElementType(UI->getElement(),
|
|
F.getModule());
|
|
if (UI->getModule().getStage() != SILStage::Lowered) {
|
|
require(caseTy == UI->getOperand()->getType(),
|
|
"EnumInst operand type does not match type of case");
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkInitEnumDataAddrInst(InitEnumDataAddrInst *UI) {
|
|
EnumDecl *ud = UI->getOperand()->getType().getEnumOrBoundGenericEnum();
|
|
require(ud, "InitEnumDataAddrInst must take an enum operand");
|
|
require(UI->getElement()->getParentEnum() == ud,
|
|
"InitEnumDataAddrInst case must be a case of the enum operand type");
|
|
require(UI->getElement()->hasAssociatedValues(),
|
|
"InitEnumDataAddrInst case must have a data type");
|
|
require(UI->getOperand()->getType().isAddress(),
|
|
"InitEnumDataAddrInst must take an address operand");
|
|
require(UI->getType().isAddress(),
|
|
"InitEnumDataAddrInst must produce an address");
|
|
|
|
SILType caseTy =
|
|
UI->getOperand()->getType().getEnumElementType(UI->getElement(),
|
|
F.getModule());
|
|
|
|
if (UI->getModule().getStage() != SILStage::Lowered) {
|
|
requireSameType(
|
|
caseTy, UI->getType(),
|
|
"InitEnumDataAddrInst result does not match type of enum case");
|
|
}
|
|
}
|
|
|
|
void checkUncheckedEnumDataInst(UncheckedEnumDataInst *UI) {
|
|
EnumDecl *ud = UI->getOperand()->getType().getEnumOrBoundGenericEnum();
|
|
require(ud, "UncheckedEnumData must take an enum operand");
|
|
require(UI->getElement()->getParentEnum() == ud,
|
|
"UncheckedEnumData case must be a case of the enum operand type");
|
|
require(UI->getElement()->getArgumentInterfaceType(),
|
|
"UncheckedEnumData case must have a data type");
|
|
require(UI->getOperand()->getType().isObject(),
|
|
"UncheckedEnumData must take an address operand");
|
|
require(UI->getType().isObject(),
|
|
"UncheckedEnumData must produce an address");
|
|
|
|
SILType caseTy =
|
|
UI->getOperand()->getType().getEnumElementType(UI->getElement(),
|
|
F.getModule());
|
|
|
|
if (UI->getModule().getStage() != SILStage::Lowered) {
|
|
require(caseTy == UI->getType(),
|
|
"UncheckedEnumData result does not match type of enum case");
|
|
}
|
|
}
|
|
|
|
void checkUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *UI) {
|
|
EnumDecl *ud = UI->getOperand()->getType().getEnumOrBoundGenericEnum();
|
|
require(ud, "UncheckedTakeEnumDataAddrInst must take an enum operand");
|
|
require(UI->getElement()->getParentEnum() == ud,
|
|
"UncheckedTakeEnumDataAddrInst case must be a case of the enum operand type");
|
|
require(UI->getElement()->getArgumentInterfaceType(),
|
|
"UncheckedTakeEnumDataAddrInst case must have a data type");
|
|
require(UI->getOperand()->getType().isAddress(),
|
|
"UncheckedTakeEnumDataAddrInst must take an address operand");
|
|
require(UI->getType().isAddress(),
|
|
"UncheckedTakeEnumDataAddrInst must produce an address");
|
|
|
|
SILType caseTy =
|
|
UI->getOperand()->getType().getEnumElementType(UI->getElement(),
|
|
F.getModule());
|
|
|
|
if (UI->getModule().getStage() != SILStage::Lowered) {
|
|
require(caseTy == UI->getType(), "UncheckedTakeEnumDataAddrInst result "
|
|
"does not match type of enum case");
|
|
}
|
|
}
|
|
|
|
void checkInjectEnumAddrInst(InjectEnumAddrInst *IUAI) {
|
|
require(IUAI->getOperand()->getType().is<EnumType>()
|
|
|| IUAI->getOperand()->getType().is<BoundGenericEnumType>(),
|
|
"InjectEnumAddrInst must take an enum operand");
|
|
require(IUAI->getElement()->getParentEnum()
|
|
== IUAI->getOperand()->getType().getEnumOrBoundGenericEnum(),
|
|
"InjectEnumAddrInst case must be a case of the enum operand type");
|
|
require(IUAI->getOperand()->getType().isAddress(),
|
|
"InjectEnumAddrInst must take an address operand");
|
|
}
|
|
|
|
void checkTupleInst(TupleInst *TI) {
|
|
CanTupleType ResTy = requireObjectType(TupleType, TI, "Result of tuple");
|
|
|
|
require(TI->getElements().size() == ResTy->getNumElements(),
|
|
"Tuple field count mismatch!");
|
|
|
|
if (TI->getModule().getStage() != SILStage::Lowered) {
|
|
for (size_t i = 0, size = TI->getElements().size(); i < size; ++i) {
|
|
require(TI->getElement(i)->getType().getASTType() ==
|
|
ResTy.getElementType(i),
|
|
"Tuple element arguments do not match tuple type!");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Is a SIL type a potential lowering of a formal type?
|
|
bool isLoweringOf(SILType loweredType, CanType formalType) {
|
|
return loweredType.isLoweringOf(F.getModule(), formalType);
|
|
}
|
|
|
|
void checkMetatypeInst(MetatypeInst *MI) {
|
|
require(MI->getType().is<MetatypeType>(),
|
|
"metatype instruction must be of metatype type");
|
|
auto MetaTy = MI->getType().castTo<MetatypeType>();
|
|
require(MetaTy->hasRepresentation(),
|
|
"metatype instruction must have a metatype representation");
|
|
verifyOpenedArchetype(MI, MetaTy.getInstanceType());
|
|
}
|
|
void checkValueMetatypeInst(ValueMetatypeInst *MI) {
|
|
require(MI->getType().is<MetatypeType>(),
|
|
"value_metatype instruction must be of metatype type");
|
|
require(MI->getType().castTo<MetatypeType>()->hasRepresentation(),
|
|
"value_metatype instruction must have a metatype representation");
|
|
auto formalInstanceTy
|
|
= MI->getType().castTo<MetatypeType>().getInstanceType();
|
|
require(isLoweringOf(MI->getOperand()->getType(), formalInstanceTy),
|
|
"value_metatype result must be formal metatype of "
|
|
"lowered operand type");
|
|
}
|
|
void checkExistentialMetatypeInst(ExistentialMetatypeInst *MI) {
|
|
require(MI->getType().is<ExistentialMetatypeType>(),
|
|
"existential_metatype instruction must be of metatype type");
|
|
require(MI->getType().castTo<ExistentialMetatypeType>()->hasRepresentation(),
|
|
"value_metatype instruction must have a metatype representation");
|
|
require(MI->getOperand()->getType().isAnyExistentialType(),
|
|
"existential_metatype operand must be of protocol type");
|
|
auto formalInstanceTy
|
|
= MI->getType().castTo<ExistentialMetatypeType>().getInstanceType();
|
|
require(isLoweringOf(MI->getOperand()->getType(), formalInstanceTy),
|
|
"existential_metatype result must be formal metatype of "
|
|
"lowered operand type");
|
|
}
|
|
|
|
void checkStrongRetainInst(StrongRetainInst *RI) {
|
|
requireReferenceValue(RI->getOperand(), "Operand of strong_retain");
|
|
require(!F.hasOwnership(),
|
|
"strong_retain is only in functions with unqualified ownership");
|
|
}
|
|
void checkStrongReleaseInst(StrongReleaseInst *RI) {
|
|
requireReferenceValue(RI->getOperand(), "Operand of release");
|
|
require(!F.hasOwnership(),
|
|
"strong_release is only in functions with unqualified ownership");
|
|
}
|
|
|
|
void checkDeallocStackInst(DeallocStackInst *DI) {
|
|
require(isa<SILUndef>(DI->getOperand()) ||
|
|
isa<AllocStackInst>(DI->getOperand()) ||
|
|
(isa<PartialApplyInst>(DI->getOperand()) &&
|
|
cast<PartialApplyInst>(DI->getOperand())->isOnStack()),
|
|
"Operand of dealloc_stack must be an alloc_stack or partial_apply "
|
|
"[stack]");
|
|
}
|
|
void checkDeallocRefInst(DeallocRefInst *DI) {
|
|
require(DI->getOperand()->getType().isObject(),
|
|
"Operand of dealloc_ref must be object");
|
|
auto *cd = DI->getOperand()->getType().getClassOrBoundGenericClass();
|
|
require(cd, "Operand of dealloc_ref must be of class type");
|
|
|
|
if (!DI->canAllocOnStack()) {
|
|
require(!cd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot directly deallocate resilient class");
|
|
}
|
|
}
|
|
void checkDeallocPartialRefInst(DeallocPartialRefInst *DPRI) {
|
|
require(DPRI->getInstance()->getType().isObject(),
|
|
"First operand of dealloc_partial_ref must be object");
|
|
auto class1 = DPRI->getInstance()->getType().getClassOrBoundGenericClass();
|
|
require(class1,
|
|
"First operand of dealloc_partial_ref must be of class type");
|
|
require(DPRI->getMetatype()->getType().is<MetatypeType>(),
|
|
"Second operand of dealloc_partial_ref must be a metatype");
|
|
auto class2 = DPRI->getMetatype()->getType().castTo<MetatypeType>()
|
|
->getInstanceType()->getClassOrBoundGenericClass();
|
|
require(class2,
|
|
"Second operand of dealloc_partial_ref must be a class metatype");
|
|
require(class2->isSuperclassOf(class1),
|
|
"First operand not superclass of second instance type");
|
|
}
|
|
|
|
void checkAllocBoxInst(AllocBoxInst *AI) {
|
|
auto boxTy = AI->getType().getAs<SILBoxType>();
|
|
require(boxTy, "alloc_box must have a @box type");
|
|
|
|
require(AI->getType().isObject(),
|
|
"result of alloc_box must be an object");
|
|
for (unsigned field : indices(AI->getBoxType()->getLayout()->getFields())) {
|
|
verifyOpenedArchetype(AI,
|
|
AI->getBoxType()->getFieldLoweredType(F.getModule(), field));
|
|
}
|
|
|
|
// An alloc_box with a mark_uninitialized user can not have any other users.
|
|
require(none_of(AI->getUses(),
|
|
[](Operand *Op) -> bool {
|
|
return isa<MarkUninitializedInst>(Op->getUser());
|
|
}) ||
|
|
AI->hasOneUse(),
|
|
"An alloc_box with a mark_uninitialized user can not have any "
|
|
"other users.");
|
|
}
|
|
|
|
void checkDeallocBoxInst(DeallocBoxInst *DI) {
|
|
auto boxTy = DI->getOperand()->getType().getAs<SILBoxType>();
|
|
require(boxTy, "operand must be a @box type");
|
|
require(DI->getOperand()->getType().isObject(),
|
|
"operand must be an object");
|
|
}
|
|
|
|
void checkDestroyAddrInst(DestroyAddrInst *DI) {
|
|
require(DI->getOperand()->getType().isAddress(),
|
|
"Operand of destroy_addr must be address");
|
|
require(F.isTypeABIAccessible(DI->getOperand()->getType()),
|
|
"cannot directly destroy type with inaccessible ABI");
|
|
}
|
|
|
|
void checkBindMemoryInst(BindMemoryInst *BI) {
|
|
require(BI->getBoundType(), "BI must have a bound type");
|
|
require(BI->getBase()->getType().is<BuiltinRawPointerType>(),
|
|
"bind_memory base be a RawPointer");
|
|
require(BI->getIndex()->getType()
|
|
== SILType::getBuiltinWordType(F.getASTContext()),
|
|
"bind_memory index must be a Word");
|
|
}
|
|
|
|
void checkIndexAddrInst(IndexAddrInst *IAI) {
|
|
require(IAI->getType().isAddress(), "index_addr must produce an address");
|
|
require(IAI->getType() == IAI->getBase()->getType(),
|
|
"index_addr must produce an address of the same type as its base");
|
|
require(IAI->getIndex()->getType().is<BuiltinIntegerType>(),
|
|
"index_addr index must be of a builtin integer type");
|
|
}
|
|
|
|
void checkTailAddrInst(TailAddrInst *IAI) {
|
|
require(IAI->getType().isAddress(), "tail_addr must produce an address");
|
|
require(IAI->getIndex()->getType().is<BuiltinIntegerType>(),
|
|
"tail_addr index must be of a builtin integer type");
|
|
}
|
|
|
|
void checkIndexRawPointerInst(IndexRawPointerInst *IAI) {
|
|
require(IAI->getType().is<BuiltinRawPointerType>(),
|
|
"index_raw_pointer must produce a RawPointer");
|
|
require(IAI->getBase()->getType().is<BuiltinRawPointerType>(),
|
|
"index_raw_pointer base must be a RawPointer");
|
|
require(IAI->getIndex()->getType().is<BuiltinIntegerType>(),
|
|
"index_raw_pointer index must be of a builtin integer type");
|
|
}
|
|
|
|
void checkTupleExtractInst(TupleExtractInst *EI) {
|
|
CanTupleType operandTy = requireObjectType(TupleType, EI->getOperand(),
|
|
"Operand of tuple_extract");
|
|
require(EI->getType().isObject(),
|
|
"result of tuple_extract must be object");
|
|
|
|
require(EI->getFieldNo() < operandTy->getNumElements(),
|
|
"invalid field index for tuple_extract instruction");
|
|
if (EI->getModule().getStage() != SILStage::Lowered) {
|
|
require(EI->getType().getASTType() ==
|
|
operandTy.getElementType(EI->getFieldNo()),
|
|
"type of tuple_extract does not match type of element");
|
|
}
|
|
}
|
|
|
|
void checkStructExtractInst(StructExtractInst *EI) {
|
|
SILType operandTy = EI->getOperand()->getType();
|
|
require(operandTy.isObject(),
|
|
"cannot struct_extract from address");
|
|
require(EI->getType().isObject(),
|
|
"result of struct_extract cannot be address");
|
|
StructDecl *sd = operandTy.getStructOrBoundGenericStruct();
|
|
require(sd, "must struct_extract from struct");
|
|
require(!sd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient struct");
|
|
require(!EI->getField()->isStatic(),
|
|
"cannot get address of static property with struct_element_addr");
|
|
require(EI->getField()->hasStorage(),
|
|
"cannot load computed property with struct_extract");
|
|
|
|
require(EI->getField()->getDeclContext() == sd,
|
|
"struct_extract field is not a member of the struct");
|
|
|
|
if (EI->getModule().getStage() != SILStage::Lowered) {
|
|
SILType loweredFieldTy =
|
|
operandTy.getFieldType(EI->getField(), F.getModule());
|
|
require(loweredFieldTy == EI->getType(),
|
|
"result of struct_extract does not match type of field");
|
|
}
|
|
}
|
|
|
|
void checkTupleElementAddrInst(TupleElementAddrInst *EI) {
|
|
SILType operandTy = EI->getOperand()->getType();
|
|
require(operandTy.isAddress(),
|
|
"must derive element_addr from address");
|
|
require(EI->getType().isAddress(),
|
|
"result of tuple_element_addr must be address");
|
|
require(operandTy.is<TupleType>(),
|
|
"must derive tuple_element_addr from tuple");
|
|
|
|
ArrayRef<TupleTypeElt> fields = operandTy.castTo<TupleType>()->getElements();
|
|
require(EI->getFieldNo() < fields.size(),
|
|
"invalid field index for element_addr instruction");
|
|
if (EI->getModule().getStage() != SILStage::Lowered) {
|
|
require(EI->getType().getASTType() ==
|
|
CanType(fields[EI->getFieldNo()].getType()),
|
|
"type of tuple_element_addr does not match type of element");
|
|
}
|
|
}
|
|
|
|
void checkStructElementAddrInst(StructElementAddrInst *EI) {
|
|
SILType operandTy = EI->getOperand()->getType();
|
|
require(operandTy.isAddress(),
|
|
"must derive struct_element_addr from address");
|
|
StructDecl *sd = operandTy.getStructOrBoundGenericStruct();
|
|
require(sd, "struct_element_addr operand must be struct address");
|
|
require(!sd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient struct");
|
|
require(EI->getType().isAddress(),
|
|
"result of struct_element_addr must be address");
|
|
require(!EI->getField()->isStatic(),
|
|
"cannot get address of static property with struct_element_addr");
|
|
require(EI->getField()->hasStorage(),
|
|
"cannot get address of computed property with struct_element_addr");
|
|
|
|
require(EI->getField()->getDeclContext() == sd,
|
|
"struct_element_addr field is not a member of the struct");
|
|
|
|
if (EI->getModule().getStage() != SILStage::Lowered) {
|
|
SILType loweredFieldTy =
|
|
operandTy.getFieldType(EI->getField(), F.getModule());
|
|
require(loweredFieldTy == EI->getType(),
|
|
"result of struct_element_addr does not match type of field");
|
|
}
|
|
}
|
|
|
|
void checkRefElementAddrInst(RefElementAddrInst *EI) {
|
|
requireReferenceValue(EI->getOperand(), "Operand of ref_element_addr");
|
|
require(EI->getType().isAddress(),
|
|
"result of ref_element_addr must be lvalue");
|
|
require(!EI->getField()->isStatic(),
|
|
"cannot get address of static property with struct_element_addr");
|
|
require(EI->getField()->hasStorage(),
|
|
"cannot get address of computed property with ref_element_addr");
|
|
SILType operandTy = EI->getOperand()->getType();
|
|
ClassDecl *cd = operandTy.getClassOrBoundGenericClass();
|
|
require(cd, "ref_element_addr operand must be a class instance");
|
|
require(!cd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient class");
|
|
|
|
require(EI->getField()->getDeclContext() == cd,
|
|
"ref_element_addr field must be a member of the class");
|
|
|
|
if (EI->getModule().getStage() != SILStage::Lowered) {
|
|
SILType loweredFieldTy =
|
|
operandTy.getFieldType(EI->getField(), F.getModule());
|
|
require(loweredFieldTy == EI->getType(),
|
|
"result of ref_element_addr does not match type of field");
|
|
}
|
|
EI->getFieldNo(); // Make sure we can access the field without crashing.
|
|
}
|
|
|
|
void checkRefTailAddrInst(RefTailAddrInst *RTAI) {
|
|
requireReferenceValue(RTAI->getOperand(), "Operand of ref_tail_addr");
|
|
require(RTAI->getType().isAddress(),
|
|
"result of ref_tail_addr must be lvalue");
|
|
SILType operandTy = RTAI->getOperand()->getType();
|
|
ClassDecl *cd = operandTy.getClassOrBoundGenericClass();
|
|
require(cd, "ref_tail_addr operand must be a class instance");
|
|
require(!cd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient class");
|
|
require(cd, "ref_tail_addr operand must be a class instance");
|
|
}
|
|
|
|
void checkDestructureStructInst(DestructureStructInst *DSI) {
|
|
SILType operandTy = DSI->getOperand()->getType();
|
|
StructDecl *sd = operandTy.getStructOrBoundGenericStruct();
|
|
require(sd, "must struct_extract from struct");
|
|
require(!sd->isResilient(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion()),
|
|
"cannot access storage of resilient struct");
|
|
}
|
|
|
|
SILType getMethodSelfType(CanSILFunctionType ft) {
|
|
return fnConv.getSILType(ft->getParameters().back());
|
|
}
|
|
|
|
void checkWitnessMethodInst(WitnessMethodInst *AMI) {
|
|
auto methodType = requireObjectType(SILFunctionType, AMI,
|
|
"result of witness_method");
|
|
|
|
auto *protocol
|
|
= dyn_cast<ProtocolDecl>(AMI->getMember().getDecl()->getDeclContext());
|
|
require(protocol,
|
|
"witness_method method must be a protocol method");
|
|
|
|
require(methodType->getRepresentation()
|
|
== F.getModule().Types.getProtocolWitnessRepresentation(protocol),
|
|
"result of witness_method must have correct representation for protocol");
|
|
|
|
require(methodType->isPolymorphic(),
|
|
"result of witness_method must be polymorphic");
|
|
|
|
auto genericSig = methodType->getGenericSignature();
|
|
|
|
auto selfGenericParam = genericSig->getGenericParams()[0];
|
|
require(selfGenericParam->getDepth() == 0
|
|
&& selfGenericParam->getIndex() == 0,
|
|
"method should be polymorphic on Self parameter at depth 0 index 0");
|
|
Optional<Requirement> selfRequirement;
|
|
for (auto req : genericSig->getRequirements()) {
|
|
if (req.getKind() != RequirementKind::SameType) {
|
|
selfRequirement = req;
|
|
break;
|
|
}
|
|
}
|
|
|
|
require(selfRequirement &&
|
|
selfRequirement->getKind() == RequirementKind::Conformance,
|
|
"first non-same-typerequirement should be conformance requirement");
|
|
auto conformsTo = genericSig->getConformsTo(selfGenericParam);
|
|
require(std::find(conformsTo.begin(), conformsTo.end(), protocol)
|
|
!= conformsTo.end(),
|
|
"requirement Self parameter must conform to called protocol");
|
|
|
|
auto lookupType = AMI->getLookupType();
|
|
if (getOpenedArchetypeOf(lookupType)) {
|
|
require(AMI->getTypeDependentOperands().size() == 1,
|
|
"Must have a type dependent operand for the opened archetype");
|
|
verifyOpenedArchetype(AMI, lookupType);
|
|
} else {
|
|
require(AMI->getTypeDependentOperands().empty(),
|
|
"Should not have an operand for the opened existential");
|
|
}
|
|
if (!isa<ArchetypeType>(lookupType)) {
|
|
require(AMI->getConformance().isConcrete(),
|
|
"concrete type lookup requires concrete conformance");
|
|
auto conformance = AMI->getConformance().getConcrete();
|
|
require(conformance->getType()->isEqual(AMI->getLookupType()),
|
|
"concrete type lookup requires conformance that matches type");
|
|
}
|
|
|
|
require(AMI->getMember().requiresNewWitnessTableEntry(),
|
|
"method does not have a witness table entry");
|
|
}
|
|
|
|
// Get the expected type of a dynamic method reference.
|
|
SILType getDynamicMethodType(SILType selfType, SILDeclRef method) {
|
|
auto &C = F.getASTContext();
|
|
|
|
// The type of the dynamic method must match the usual type of the method,
|
|
// but with the more opaque Self type.
|
|
auto constantInfo = F.getModule().Types.getConstantInfo(method);
|
|
auto methodTy = constantInfo.SILFnType;
|
|
|
|
assert(!methodTy->isCoroutine());
|
|
|
|
// Map interface types to archetypes.
|
|
if (auto *env = F.getModule().Types.getConstantGenericEnvironment(method)) {
|
|
auto subs = env->getForwardingSubstitutionMap();
|
|
methodTy = methodTy->substGenericArgs(F.getModule(), subs);
|
|
}
|
|
assert(!methodTy->isPolymorphic());
|
|
|
|
// Replace Self parameter with type of 'self' at the call site.
|
|
auto params = methodTy->getParameters();
|
|
SmallVector<SILParameterInfo, 4>
|
|
dynParams(params.begin(), params.end() - 1);
|
|
dynParams.push_back(SILParameterInfo(selfType.getASTType(),
|
|
params.back().getConvention()));
|
|
|
|
auto results = methodTy->getResults();
|
|
SmallVector<SILResultInfo, 4> dynResults(results.begin(), results.end());
|
|
|
|
// If the method returns Self, substitute AnyObject for the result type.
|
|
if (auto fnDecl = dyn_cast<FuncDecl>(method.getDecl())) {
|
|
if (fnDecl->hasDynamicSelf()) {
|
|
auto anyObjectTy = C.getAnyObjectType();
|
|
for (auto &dynResult : dynResults) {
|
|
auto newResultTy
|
|
= dynResult.getType()->replaceCovariantResultType(anyObjectTy, 0);
|
|
dynResult = SILResultInfo(newResultTy->getCanonicalType(),
|
|
dynResult.getConvention());
|
|
}
|
|
}
|
|
}
|
|
|
|
auto fnTy = SILFunctionType::get(nullptr,
|
|
methodTy->getExtInfo(),
|
|
methodTy->getCoroutineKind(),
|
|
methodTy->getCalleeConvention(),
|
|
dynParams,
|
|
methodTy->getYields(),
|
|
dynResults,
|
|
methodTy->getOptionalErrorResult(),
|
|
F.getASTContext());
|
|
return SILType::getPrimitiveObjectType(fnTy);
|
|
}
|
|
|
|
/// Visitor class that checks whether a given decl ref has an entry in the
|
|
/// class's vtable.
|
|
class VerifyClassMethodVisitor
|
|
: public SILVTableVisitor<VerifyClassMethodVisitor>
|
|
{
|
|
public:
|
|
SILDeclRef MethodToSee;
|
|
bool Seen = false;
|
|
|
|
VerifyClassMethodVisitor(ClassDecl *theClass,
|
|
SILDeclRef method)
|
|
: MethodToSee(method)
|
|
{
|
|
addVTableEntries(theClass);
|
|
}
|
|
|
|
bool methodMatches(SILDeclRef method) {
|
|
auto methodToCheck = MethodToSee;
|
|
do {
|
|
if (method == methodToCheck) {
|
|
return true;
|
|
}
|
|
} while ((methodToCheck = methodToCheck.getNextOverriddenVTableEntry()));
|
|
|
|
return false;
|
|
}
|
|
|
|
void addMethod(SILDeclRef method) {
|
|
if (Seen)
|
|
return;
|
|
if (methodMatches(method))
|
|
Seen = true;
|
|
}
|
|
|
|
void addMethodOverride(SILDeclRef base, SILDeclRef derived) {
|
|
if (Seen)
|
|
return;
|
|
// The derived method should already have been checked.
|
|
// Test against the overridden base.
|
|
if (methodMatches(base))
|
|
Seen = true;
|
|
}
|
|
|
|
|
|
void addPlaceholder(MissingMemberDecl *) {
|
|
/* no-op */
|
|
}
|
|
};
|
|
|
|
void checkClassMethodInst(ClassMethodInst *CMI) {
|
|
auto member = CMI->getMember();
|
|
auto overrideTy = TC.getConstantOverrideType(member);
|
|
if (CMI->getModule().getStage() != SILStage::Lowered) {
|
|
requireSameType(
|
|
CMI->getType(), SILType::getPrimitiveObjectType(overrideTy),
|
|
"result type of class_method must match abstracted type of method");
|
|
}
|
|
auto methodType = requireObjectType(SILFunctionType, CMI,
|
|
"result of class_method");
|
|
require(!methodType->getExtInfo().hasContext(),
|
|
"result method must be of a context-free function type");
|
|
SILType operandType = CMI->getOperand()->getType();
|
|
require(operandType.isClassOrClassMetatype(),
|
|
"operand must be of a class type");
|
|
require(getMethodSelfType(methodType).isClassOrClassMetatype(),
|
|
"result must be a method of a class");
|
|
|
|
require(!member.isForeign,
|
|
"foreign method cannot be dispatched natively");
|
|
require(!isa<ExtensionDecl>(member.getDecl()->getDeclContext()),
|
|
"extension method cannot be dispatched natively");
|
|
|
|
// The method ought to appear in the class vtable.
|
|
require(VerifyClassMethodVisitor(
|
|
operandType.getASTType()->getMetatypeInstanceType()
|
|
->getClassOrBoundGenericClass(),
|
|
member).Seen,
|
|
"method does not appear in the class's vtable");
|
|
}
|
|
|
|
void checkSuperMethodInst(SuperMethodInst *CMI) {
|
|
auto member = CMI->getMember();
|
|
auto overrideTy = TC.getConstantOverrideType(member);
|
|
if (CMI->getModule().getStage() != SILStage::Lowered) {
|
|
requireSameType(
|
|
CMI->getType(), SILType::getPrimitiveObjectType(overrideTy),
|
|
"result type of super_method must match abstracted type of method");
|
|
}
|
|
auto methodType = requireObjectType(SILFunctionType, CMI,
|
|
"result of super_method");
|
|
require(!methodType->getExtInfo().hasContext(),
|
|
"result method must be of a context-free function type");
|
|
SILType operandType = CMI->getOperand()->getType();
|
|
require(operandType.isClassOrClassMetatype(),
|
|
"operand must be of a class type");
|
|
require(getMethodSelfType(methodType).isClassOrClassMetatype(),
|
|
"result must be a method of a class");
|
|
|
|
require(!member.isForeign,
|
|
"foreign method cannot be dispatched natively");
|
|
require(!isa<ExtensionDecl>(member.getDecl()->getDeclContext()),
|
|
"extension method cannot be dispatched natively");
|
|
|
|
auto decl = CMI->getMember().getDecl();
|
|
auto methodClass = decl->getDeclContext()->getDeclaredInterfaceType();
|
|
|
|
require(methodClass->getClassOrBoundGenericClass(),
|
|
"super_method must look up a class method");
|
|
|
|
// The method ought to appear in the class vtable.
|
|
require(VerifyClassMethodVisitor(
|
|
operandType.getASTType()->getMetatypeInstanceType()
|
|
->getClassOrBoundGenericClass(),
|
|
member).Seen,
|
|
"method does not appear in the class's vtable");
|
|
}
|
|
|
|
void checkObjCMethodInst(ObjCMethodInst *OMI) {
|
|
auto member = OMI->getMember();
|
|
require(member.isForeign,
|
|
"native method cannot be dispatched via objc");
|
|
|
|
auto methodType = requireObjectType(SILFunctionType, OMI,
|
|
"result of objc_method");
|
|
require(!methodType->getExtInfo().hasContext(),
|
|
"result method must be of a context-free function type");
|
|
require(methodType->getRepresentation()
|
|
== SILFunctionTypeRepresentation::ObjCMethod,
|
|
"wrong function type representation");
|
|
|
|
auto operandType = OMI->getOperand()->getType();
|
|
auto operandInstanceType = operandType.getASTType();
|
|
if (auto metatypeType = dyn_cast<MetatypeType>(operandInstanceType))
|
|
operandInstanceType = metatypeType.getInstanceType();
|
|
|
|
if (operandInstanceType.getClassOrBoundGenericClass()) {
|
|
auto overrideTy = TC.getConstantOverrideType(member);
|
|
requireSameType(
|
|
OMI->getType(), SILType::getPrimitiveObjectType(overrideTy),
|
|
"result type of objc_method must match abstracted type of method");
|
|
} else {
|
|
require(isa<ArchetypeType>(operandInstanceType) ||
|
|
operandInstanceType->isObjCExistentialType(),
|
|
"operand type must be an archetype or self-conforming existential");
|
|
verifyOpenedArchetype(OMI, OMI->getType().getASTType());
|
|
}
|
|
|
|
// TODO: We should enforce that ObjC methods are dispatched on ObjC
|
|
// metatypes, but IRGen appears not to care right now.
|
|
#if 0
|
|
if (auto metaTy = operandType.getAs<AnyMetatypeType>()) {
|
|
bool objcMetatype
|
|
= metaTy->getRepresentation() == MetatypeRepresentation::ObjC;
|
|
require(objcMetatype,
|
|
"objc class methods must be invoked on objc metatypes");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void checkObjCSuperMethodInst(ObjCSuperMethodInst *OMI) {
|
|
auto member = OMI->getMember();
|
|
auto overrideTy = TC.getConstantOverrideType(member);
|
|
if (OMI->getModule().getStage() != SILStage::Lowered) {
|
|
requireSameType(
|
|
OMI->getType(), SILType::getPrimitiveObjectType(overrideTy),
|
|
"result type of super_method must match abstracted type of method");
|
|
}
|
|
auto methodType = requireObjectType(SILFunctionType, OMI,
|
|
"result of objc_super_method");
|
|
require(!methodType->getExtInfo().hasContext(),
|
|
"result method must be of a context-free function type");
|
|
SILType operandType = OMI->getOperand()->getType();
|
|
require(operandType.isClassOrClassMetatype(),
|
|
"operand must be of a class type");
|
|
require(getMethodSelfType(methodType).isClassOrClassMetatype(),
|
|
"result must be a method of a class");
|
|
|
|
require(member.isForeign,
|
|
"native method cannot be dispatched via objc");
|
|
|
|
auto decl = member.getDecl();
|
|
auto methodClass = decl->getDeclContext()->getDeclaredInterfaceType();
|
|
|
|
require(methodClass->getClassOrBoundGenericClass(),
|
|
"objc_super_method must look up a class method");
|
|
}
|
|
|
|
void checkOpenExistentialAddrInst(OpenExistentialAddrInst *OEI) {
|
|
SILType operandType = OEI->getOperand()->getType();
|
|
require(operandType.isAddress(),
|
|
"open_existential_addr must be applied to address");
|
|
require(operandType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Opaque),
|
|
"open_existential_addr must be applied to opaque existential");
|
|
|
|
require(OEI->getType().isAddress(),
|
|
"open_existential_addr result must be an address");
|
|
|
|
auto archetype = getOpenedArchetypeOf(OEI->getType().getASTType());
|
|
require(archetype,
|
|
"open_existential_addr result must be an opened existential archetype");
|
|
require(OpenedArchetypes.getOpenedArchetypeDef(archetype) == OEI,
|
|
"Archetype opened by open_existential_addr should be registered in "
|
|
"SILFunction");
|
|
|
|
// Check all the uses. Consuming or mutating uses must have mutable access
|
|
// to the opened value.
|
|
auto allowedAccessKind = OEI->getAccessKind();
|
|
if (allowedAccessKind == OpenedExistentialAccess::Mutable)
|
|
return;
|
|
|
|
require(allowedAccessKind == OpenedExistentialAccess::Mutable ||
|
|
!ImmutableAddressUseVerifier().isMutatingOrConsuming(OEI),
|
|
"open_existential_addr uses that consumes or mutates but is not "
|
|
"opened for mutation");
|
|
}
|
|
|
|
void checkOpenExistentialRefInst(OpenExistentialRefInst *OEI) {
|
|
SILType operandType = OEI->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"open_existential_ref operand must not be address");
|
|
|
|
require(operandType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Class),
|
|
"open_existential_ref operand must be class existential");
|
|
|
|
CanType resultInstanceTy = OEI->getType().getASTType();
|
|
|
|
require(OEI->getType().isObject(),
|
|
"open_existential_ref result must be an address");
|
|
|
|
auto archetype = getOpenedArchetypeOf(resultInstanceTy);
|
|
require(archetype,
|
|
"open_existential_ref result must be an opened existential archetype");
|
|
require(OpenedArchetypes.getOpenedArchetypeDef(archetype) == OEI,
|
|
"Archetype opened by open_existential_ref should be registered in "
|
|
"SILFunction");
|
|
}
|
|
|
|
void checkOpenExistentialBoxInst(OpenExistentialBoxInst *OEI) {
|
|
SILType operandType = OEI->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"open_existential_box operand must not be address");
|
|
|
|
require(operandType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Boxed),
|
|
"open_existential_box operand must be boxed existential");
|
|
|
|
CanType resultInstanceTy = OEI->getType().getASTType();
|
|
|
|
require(OEI->getType().isAddress(),
|
|
"open_existential_box result must be an address");
|
|
|
|
auto archetype = getOpenedArchetypeOf(resultInstanceTy);
|
|
require(archetype,
|
|
"open_existential_box result must be an opened existential archetype");
|
|
require(OpenedArchetypes.getOpenedArchetypeDef(archetype) == OEI,
|
|
"Archetype opened by open_existential_box should be registered in "
|
|
"SILFunction");
|
|
}
|
|
|
|
void checkOpenExistentialBoxValueInst(OpenExistentialBoxValueInst *OEI) {
|
|
SILType operandType = OEI->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"open_existential_box operand must not be address");
|
|
|
|
require(operandType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Boxed),
|
|
"open_existential_box operand must be boxed existential");
|
|
|
|
CanType resultInstanceTy = OEI->getType().getASTType();
|
|
|
|
require(!OEI->getType().isAddress(),
|
|
"open_existential_box_value result must not be an address");
|
|
|
|
auto archetype = getOpenedArchetypeOf(resultInstanceTy);
|
|
require(archetype,
|
|
"open_existential_box_value result not an opened existential archetype");
|
|
require(OpenedArchetypes.getOpenedArchetypeDef(archetype) == OEI,
|
|
"Archetype opened by open_existential_box_value should be "
|
|
"registered in SILFunction");
|
|
}
|
|
|
|
void checkOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *I) {
|
|
SILType operandType = I->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"open_existential_metatype operand must not be address");
|
|
require(operandType.is<ExistentialMetatypeType>(),
|
|
"open_existential_metatype operand must be existential metatype");
|
|
require(operandType.castTo<ExistentialMetatypeType>()->hasRepresentation(),
|
|
"open_existential_metatype operand must have a representation");
|
|
|
|
SILType resultType = I->getType();
|
|
require(resultType.isObject(),
|
|
"open_existential_metatype result must not be address");
|
|
require(resultType.is<MetatypeType>(),
|
|
"open_existential_metatype result must be metatype");
|
|
require(resultType.castTo<MetatypeType>()->hasRepresentation(),
|
|
"open_existential_metatype result must have a representation");
|
|
require(operandType.castTo<ExistentialMetatypeType>()->getRepresentation()
|
|
== resultType.castTo<MetatypeType>()->getRepresentation(),
|
|
"open_existential_metatype result must match representation of "
|
|
"operand");
|
|
|
|
CanType operandInstTy =
|
|
operandType.castTo<ExistentialMetatypeType>().getInstanceType();
|
|
CanType resultInstTy =
|
|
resultType.castTo<MetatypeType>().getInstanceType();
|
|
|
|
while (auto operandMetatype =
|
|
dyn_cast<ExistentialMetatypeType>(operandInstTy)) {
|
|
require(isa<MetatypeType>(resultInstTy),
|
|
"metatype depth mismatch in open_existential_metatype result");
|
|
operandInstTy = operandMetatype.getInstanceType();
|
|
resultInstTy = cast<MetatypeType>(resultInstTy).getInstanceType();
|
|
}
|
|
|
|
require(operandInstTy.isExistentialType(),
|
|
"ill-formed existential metatype in open_existential_metatype "
|
|
"operand");
|
|
auto archetype = getOpenedArchetypeOf(resultInstTy);
|
|
require(archetype, "open_existential_metatype result must be an opened "
|
|
"existential metatype");
|
|
require(
|
|
OpenedArchetypes.getOpenedArchetypeDef(archetype) == I,
|
|
"Archetype opened by open_existential_metatype should be registered in "
|
|
"SILFunction");
|
|
}
|
|
|
|
void checkOpenExistentialValueInst(OpenExistentialValueInst *OEI) {
|
|
SILType operandType = OEI->getOperand()->getType();
|
|
require(!operandType.isAddress(),
|
|
"open_existential_value must not be applied to address");
|
|
require(operandType.canUseExistentialRepresentation(
|
|
F.getModule(), ExistentialRepresentation::Opaque),
|
|
"open_existential_value must be applied to opaque existential");
|
|
|
|
require(!OEI->getType().isAddress(),
|
|
"open_existential_value result must not be an address");
|
|
|
|
auto archetype = getOpenedArchetypeOf(OEI->getType().getASTType());
|
|
require(archetype, "open_existential_value result must be an opened "
|
|
"existential archetype");
|
|
require(OpenedArchetypes.getOpenedArchetypeDef(archetype) == OEI,
|
|
"Archetype opened by open_existential should be registered in "
|
|
"SILFunction");
|
|
}
|
|
|
|
void checkAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
|
|
SILType exType = AEBI->getExistentialType();
|
|
require(exType.isObject(),
|
|
"alloc_existential_box #0 result should be a value");
|
|
require(exType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Boxed,
|
|
AEBI->getFormalConcreteType()),
|
|
"alloc_existential_box must be used with a boxed existential "
|
|
"type");
|
|
|
|
checkExistentialProtocolConformances(exType.getASTType(),
|
|
AEBI->getFormalConcreteType(),
|
|
AEBI->getConformances());
|
|
verifyOpenedArchetype(AEBI, AEBI->getFormalConcreteType());
|
|
}
|
|
|
|
void checkInitExistentialAddrInst(InitExistentialAddrInst *AEI) {
|
|
SILType exType = AEI->getOperand()->getType();
|
|
require(exType.isAddress(),
|
|
"init_existential_addr must be applied to an address");
|
|
require(exType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Opaque,
|
|
AEI->getFormalConcreteType()),
|
|
"init_existential_addr must be used with an opaque "
|
|
"existential type");
|
|
|
|
// The lowered type must be the properly-abstracted form of the AST type.
|
|
auto archetype = OpenedArchetypeType::get(exType.getASTType());
|
|
|
|
auto loweredTy = F.getLoweredType(Lowering::AbstractionPattern(archetype),
|
|
AEI->getFormalConcreteType())
|
|
.getAddressType();
|
|
|
|
requireSameType(loweredTy, AEI->getLoweredConcreteType(),
|
|
"init_existential_addr result type must be the lowered "
|
|
"concrete type at the right abstraction level");
|
|
|
|
require(isLoweringOf(AEI->getLoweredConcreteType(),
|
|
AEI->getFormalConcreteType()),
|
|
"init_existential_addr payload must be a lowering of the formal "
|
|
"concrete type");
|
|
|
|
checkExistentialProtocolConformances(exType.getASTType(),
|
|
AEI->getFormalConcreteType(),
|
|
AEI->getConformances());
|
|
verifyOpenedArchetype(AEI, AEI->getFormalConcreteType());
|
|
}
|
|
|
|
void checkInitExistentialValueInst(InitExistentialValueInst *IEI) {
|
|
SILType concreteType = IEI->getOperand()->getType();
|
|
require(!concreteType.isAddress(),
|
|
"init_existential_value must not be used on addresses");
|
|
require(!IEI->getType().isAddress(),
|
|
"init_existential_value result must not be an address");
|
|
// The operand must be at the right abstraction level for the existential.
|
|
SILType exType = IEI->getType();
|
|
auto archetype = OpenedArchetypeType::get(exType.getASTType());
|
|
auto loweredTy = F.getLoweredType(Lowering::AbstractionPattern(archetype),
|
|
IEI->getFormalConcreteType());
|
|
requireSameType(
|
|
concreteType, loweredTy,
|
|
"init_existential_value operand must be lowered to the right "
|
|
"abstraction level for the existential");
|
|
|
|
require(isLoweringOf(IEI->getOperand()->getType(),
|
|
IEI->getFormalConcreteType()),
|
|
"init_existential_value operand must be a lowering of the formal "
|
|
"concrete type");
|
|
|
|
checkExistentialProtocolConformances(exType.getASTType(),
|
|
IEI->getFormalConcreteType(),
|
|
IEI->getConformances());
|
|
verifyOpenedArchetype(IEI, IEI->getFormalConcreteType());
|
|
}
|
|
|
|
void checkInitExistentialRefInst(InitExistentialRefInst *IEI) {
|
|
SILType concreteType = IEI->getOperand()->getType();
|
|
require(concreteType.getASTType()->isBridgeableObjectType(),
|
|
"init_existential_ref operand must be a class instance");
|
|
require(IEI->getType().canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Class,
|
|
IEI->getFormalConcreteType()),
|
|
"init_existential_ref must be used with a class existential type");
|
|
require(IEI->getType().isObject(),
|
|
"init_existential_ref result must not be an address");
|
|
|
|
// The operand must be at the right abstraction level for the existential.
|
|
SILType exType = IEI->getType();
|
|
auto archetype = OpenedArchetypeType::get(exType.getASTType());
|
|
auto loweredTy = F.getLoweredType(Lowering::AbstractionPattern(archetype),
|
|
IEI->getFormalConcreteType());
|
|
requireSameType(concreteType, loweredTy,
|
|
"init_existential_ref operand must be lowered to the right "
|
|
"abstraction level for the existential");
|
|
|
|
require(isLoweringOf(IEI->getOperand()->getType(),
|
|
IEI->getFormalConcreteType()),
|
|
"init_existential_ref operand must be a lowering of the formal "
|
|
"concrete type");
|
|
|
|
checkExistentialProtocolConformances(exType.getASTType(),
|
|
IEI->getFormalConcreteType(),
|
|
IEI->getConformances());
|
|
verifyOpenedArchetype(IEI, IEI->getFormalConcreteType());
|
|
}
|
|
|
|
void checkDeinitExistentialAddrInst(DeinitExistentialAddrInst *DEI) {
|
|
SILType exType = DEI->getOperand()->getType();
|
|
require(exType.isAddress(),
|
|
"deinit_existential_addr must be applied to an address");
|
|
require(exType.canUseExistentialRepresentation(
|
|
F.getModule(), ExistentialRepresentation::Opaque),
|
|
"deinit_existential_addr must be applied to an opaque existential");
|
|
}
|
|
|
|
void checkDeinitExistentialValueInst(DeinitExistentialValueInst *DEI) {
|
|
SILType exType = DEI->getOperand()->getType();
|
|
require(!exType.isAddress(),
|
|
"deinit_existential_value must not be applied to an address");
|
|
require(
|
|
exType.canUseExistentialRepresentation(
|
|
F.getModule(), ExistentialRepresentation::Opaque),
|
|
"deinit_existential_value must be applied to an opaque existential");
|
|
}
|
|
|
|
void checkDeallocExistentialBoxInst(DeallocExistentialBoxInst *DEBI) {
|
|
SILType exType = DEBI->getOperand()->getType();
|
|
require(exType.isObject(),
|
|
"dealloc_existential_box must be applied to a value");
|
|
require(exType.canUseExistentialRepresentation(F.getModule(),
|
|
ExistentialRepresentation::Boxed),
|
|
"dealloc_existential_box must be applied to a boxed "
|
|
"existential");
|
|
}
|
|
|
|
void checkInitExistentialMetatypeInst(InitExistentialMetatypeInst *I) {
|
|
SILType operandType = I->getOperand()->getType();
|
|
require(operandType.isObject(),
|
|
"init_existential_metatype operand must not be an address");
|
|
require(operandType.is<MetatypeType>(),
|
|
"init_existential_metatype operand must be a metatype");
|
|
require(operandType.castTo<MetatypeType>()->hasRepresentation(),
|
|
"init_existential_metatype operand must have a representation");
|
|
|
|
SILType resultType = I->getType();
|
|
require(resultType.is<ExistentialMetatypeType>(),
|
|
"init_existential_metatype result must be an existential metatype");
|
|
auto MetaTy = resultType.castTo<ExistentialMetatypeType>();
|
|
require(resultType.isObject(),
|
|
"init_existential_metatype result must not be an address");
|
|
require(MetaTy->hasRepresentation(),
|
|
"init_existential_metatype result must have a representation");
|
|
require(MetaTy->getRepresentation()
|
|
== operandType.castTo<MetatypeType>()->getRepresentation(),
|
|
"init_existential_metatype result must match representation of "
|
|
"operand");
|
|
|
|
auto resultInstanceType = resultType.getASTType();
|
|
auto operandInstanceType = operandType.getASTType();
|
|
while (isa<ExistentialMetatypeType>(resultInstanceType)) {
|
|
resultInstanceType =
|
|
cast<ExistentialMetatypeType>(resultInstanceType).getInstanceType();
|
|
operandInstanceType =
|
|
cast<MetatypeType>(operandInstanceType).getInstanceType();
|
|
}
|
|
|
|
checkExistentialProtocolConformances(resultInstanceType,
|
|
operandInstanceType,
|
|
I->getConformances());
|
|
verifyOpenedArchetype(I, MetaTy.getInstanceType());
|
|
}
|
|
|
|
void checkExistentialProtocolConformances(CanType resultType,
|
|
CanType concreteType,
|
|
ArrayRef<ProtocolConformanceRef> conformances) {
|
|
auto layout = resultType.getExistentialLayout();
|
|
auto protocols = layout.getProtocols();
|
|
|
|
require(conformances.size() == protocols.size(),
|
|
"init_existential instruction must have the "
|
|
"right number of conformances");
|
|
|
|
if (layout.requiresClass()) {
|
|
require(concreteType->mayHaveSuperclass() ||
|
|
(concreteType.isExistentialType() &&
|
|
concreteType.getExistentialLayout().requiresClass()),
|
|
"init_existential of class existential with non-class type");
|
|
}
|
|
|
|
if (auto superclass = layout.getSuperclass()) {
|
|
require(superclass->isExactSuperclassOf(concreteType),
|
|
"init_existential of subclass existential with wrong type");
|
|
}
|
|
|
|
for (auto i : indices(conformances)) {
|
|
require(conformances[i].getRequirement() == protocols[i]->getDecl(),
|
|
"init_existential instruction must have conformances in "
|
|
"proper order");
|
|
}
|
|
}
|
|
|
|
void verifyCheckedCast(bool isExact, SILType fromTy, SILType toTy,
|
|
bool isOpaque = false) {
|
|
// Verify common invariants.
|
|
require(fromTy.isObject() && toTy.isObject(),
|
|
"value checked cast src and dest must be objects");
|
|
|
|
auto fromCanTy = fromTy.getASTType();
|
|
auto toCanTy = toTy.getASTType();
|
|
|
|
require(isOpaque || canUseScalarCheckedCastInstructions(F.getModule(),
|
|
fromCanTy, toCanTy),
|
|
"invalid value checked cast src or dest types");
|
|
|
|
// Peel off metatypes. If two types are checked-cast-able, so are their
|
|
// metatypes.
|
|
unsigned MetatyLevel = 0;
|
|
while (isa<AnyMetatypeType>(fromCanTy) && isa<AnyMetatypeType>(toCanTy)) {
|
|
auto fromMetaty = cast<AnyMetatypeType>(fromCanTy);
|
|
auto toMetaty = cast<AnyMetatypeType>(toCanTy);
|
|
|
|
// Check representations only for the top-level metatypes as only
|
|
// those are SIL-lowered.
|
|
if (!MetatyLevel) {
|
|
// The representations must match.
|
|
require(fromMetaty->getRepresentation() == toMetaty->getRepresentation(),
|
|
"metatype checked cast cannot change metatype representation");
|
|
|
|
// We can't handle the 'thin' case yet, but it shouldn't really even be
|
|
// interesting.
|
|
require(fromMetaty->getRepresentation() != MetatypeRepresentation::Thin,
|
|
"metatype checked cast cannot check thin metatypes");
|
|
}
|
|
|
|
fromCanTy = fromMetaty.getInstanceType();
|
|
toCanTy = toMetaty.getInstanceType();
|
|
MetatyLevel++;
|
|
}
|
|
|
|
if (isExact) {
|
|
require(fromCanTy.getClassOrBoundGenericClass(),
|
|
"downcast operand must be a class type");
|
|
require(toCanTy.getClassOrBoundGenericClass(),
|
|
"downcast must convert to a class type");
|
|
require(fromCanTy->isBindableToSuperclassOf(toCanTy),
|
|
"downcast must convert to a subclass");
|
|
}
|
|
}
|
|
|
|
void checkUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *CI) {
|
|
verifyCheckedCast(/*exact*/ false,
|
|
CI->getOperand()->getType(),
|
|
CI->getType());
|
|
verifyOpenedArchetype(CI, CI->getType().getASTType());
|
|
}
|
|
|
|
void checkUnconditionalCheckedCastValueInst(
|
|
UnconditionalCheckedCastValueInst *CI) {
|
|
verifyCheckedCast(/*exact*/ false, CI->getOperand()->getType(),
|
|
CI->getType(), true);
|
|
verifyOpenedArchetype(CI, CI->getType().getASTType());
|
|
}
|
|
|
|
/// Verify if a given type is or contains an opened archetype or dynamic self.
|
|
/// If this is the case, verify that the provided instruction has a type
|
|
/// dependent operand for it.
|
|
void verifyOpenedArchetype(SILInstruction *I, CanType Ty) {
|
|
if (!Ty)
|
|
return;
|
|
// Check the type and all of its contained types.
|
|
Ty.visit([&](CanType t) {
|
|
SILValue Def;
|
|
if (t->isOpenedExistential()) {
|
|
auto archetypeTy = cast<ArchetypeType>(t);
|
|
Def = OpenedArchetypes.getOpenedArchetypeDef(archetypeTy);
|
|
require(Def, "Opened archetype should be registered in SILFunction");
|
|
} else if (t->hasDynamicSelfType()) {
|
|
require(I->getFunction()->hasSelfParam() ||
|
|
I->getFunction()->hasSelfMetadataParam(),
|
|
"Function containing dynamic self type must have self parameter");
|
|
if (I->getFunction()->hasSelfMetadataParam())
|
|
Def = I->getFunction()->getArguments().back();
|
|
else
|
|
Def = I->getFunction()->getSelfArgument();
|
|
} else {
|
|
return;
|
|
}
|
|
for (auto &TypeDefOp : I->getTypeDependentOperands()) {
|
|
if (TypeDefOp.get() == Def)
|
|
return;
|
|
}
|
|
require(false, "Instruction should contain a type dependent operand for "
|
|
"every used open archetype or dynamic self");
|
|
});
|
|
}
|
|
|
|
void checkCheckedCastBranchInst(CheckedCastBranchInst *CBI) {
|
|
verifyCheckedCast(CBI->isExact(),
|
|
CBI->getOperand()->getType(),
|
|
CBI->getCastType());
|
|
verifyOpenedArchetype(CBI, CBI->getCastType().getASTType());
|
|
|
|
require(CBI->getSuccessBB()->args_size() == 1,
|
|
"success dest of checked_cast_br must take one argument");
|
|
require(CBI->getSuccessBB()->args_begin()[0]->getType() ==
|
|
CBI->getCastType(),
|
|
"success dest block argument of checked_cast_br must match type of "
|
|
"cast");
|
|
require(!F.hasOwnership() || CBI->getFailureBB()->args_size() == 1,
|
|
"failure dest of checked_cast_br must take one argument in "
|
|
"ownership qualified sil");
|
|
require(!F.hasOwnership() ||
|
|
CBI->getFailureBB()->args_begin()[0]->getType() ==
|
|
CBI->getOperand()->getType(),
|
|
"failure dest block argument must match type of original type in "
|
|
"ownership qualified sil");
|
|
require(F.hasOwnership() || CBI->getFailureBB()->args_empty(),
|
|
"Failure dest of checked_cast_br must not take any argument in "
|
|
"non-ownership qualified sil");
|
|
}
|
|
|
|
void checkCheckedCastValueBranchInst(CheckedCastValueBranchInst *CBI) {
|
|
verifyCheckedCast(false, CBI->getOperand()->getType(), CBI->getCastType(),
|
|
true);
|
|
verifyOpenedArchetype(CBI, CBI->getCastType().getASTType());
|
|
|
|
require(CBI->getSuccessBB()->args_size() == 1,
|
|
"success dest of checked_cast_value_br must take one argument");
|
|
require(CBI->getSuccessBB()->args_begin()[0]->getType() ==
|
|
CBI->getCastType(),
|
|
"success dest block argument of checked_cast_value_br must match "
|
|
"type of cast");
|
|
require(F.hasOwnership() || CBI->getFailureBB()->args_empty(),
|
|
"failure dest of checked_cast_value_br in unqualified ownership "
|
|
"sil must take no arguments");
|
|
}
|
|
|
|
void checkCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *CCABI) {
|
|
require(CCABI->getSrc()->getType().isAddress(),
|
|
"checked_cast_addr_br src must be an address");
|
|
require(CCABI->getDest()->getType().isAddress(),
|
|
"checked_cast_addr_br dest must be an address");
|
|
|
|
require(
|
|
CCABI->getSuccessBB()->args_size() == 0,
|
|
"success dest block of checked_cast_addr_br must not take an argument");
|
|
require(
|
|
CCABI->getFailureBB()->args_size() == 0,
|
|
"failure dest block of checked_cast_addr_br must not take an argument");
|
|
}
|
|
|
|
void checkThinToThickFunctionInst(ThinToThickFunctionInst *TTFI) {
|
|
auto opFTy = requireObjectType(SILFunctionType, TTFI->getOperand(),
|
|
"thin_to_thick_function operand");
|
|
auto resFTy = requireObjectType(SILFunctionType, TTFI,
|
|
"thin_to_thick_function result");
|
|
require(opFTy->isPolymorphic() == resFTy->isPolymorphic(),
|
|
"thin_to_thick_function operand and result type must differ only "
|
|
" in thinness");
|
|
requireSameFunctionComponents(opFTy, resFTy,
|
|
"thin_to_thick_function operand and result");
|
|
|
|
require(opFTy->getRepresentation() == SILFunctionType::Representation::Thin,
|
|
"operand of thin_to_thick_function must be thin");
|
|
require(resFTy->getRepresentation() == SILFunctionType::Representation::Thick,
|
|
"result of thin_to_thick_function must be thick");
|
|
|
|
auto adjustedOperandExtInfo =
|
|
opFTy->getExtInfo()
|
|
.withRepresentation(SILFunctionType::Representation::Thick)
|
|
.withNoEscape(resFTy->isNoEscape());
|
|
require(adjustedOperandExtInfo == resFTy->getExtInfo(),
|
|
"operand and result of thin_to_think_function must agree in particulars");
|
|
}
|
|
|
|
void checkThickToObjCMetatypeInst(ThickToObjCMetatypeInst *TTOCI) {
|
|
auto opTy = requireObjectType(AnyMetatypeType, TTOCI->getOperand(),
|
|
"thick_to_objc_metatype operand");
|
|
auto resTy = requireObjectType(AnyMetatypeType, TTOCI,
|
|
"thick_to_objc_metatype result");
|
|
|
|
require(TTOCI->getOperand()->getType().is<MetatypeType>() ==
|
|
TTOCI->getType().is<MetatypeType>(),
|
|
"thick_to_objc_metatype cannot change metatype kinds");
|
|
require(opTy->getRepresentation() == MetatypeRepresentation::Thick,
|
|
"operand of thick_to_objc_metatype must be thick");
|
|
require(resTy->getRepresentation() == MetatypeRepresentation::ObjC,
|
|
"operand of thick_to_objc_metatype must be ObjC");
|
|
|
|
require(opTy->getInstanceType()->isEqual(resTy->getInstanceType()),
|
|
"thick_to_objc_metatype instance types do not match");
|
|
}
|
|
|
|
void checkObjCToThickMetatypeInst(ObjCToThickMetatypeInst *OCTTI) {
|
|
auto opTy = requireObjectType(AnyMetatypeType, OCTTI->getOperand(),
|
|
"objc_to_thick_metatype operand");
|
|
auto resTy = requireObjectType(AnyMetatypeType, OCTTI,
|
|
"objc_to_thick_metatype result");
|
|
|
|
require(OCTTI->getOperand()->getType().is<MetatypeType>() ==
|
|
OCTTI->getType().is<MetatypeType>(),
|
|
"objc_to_thick_metatype cannot change metatype kinds");
|
|
require(opTy->getRepresentation() == MetatypeRepresentation::ObjC,
|
|
"operand of objc_to_thick_metatype must be ObjC");
|
|
require(resTy->getRepresentation() == MetatypeRepresentation::Thick,
|
|
"operand of objc_to_thick_metatype must be thick");
|
|
|
|
require(opTy->getInstanceType()->isEqual(resTy->getInstanceType()),
|
|
"objc_to_thick_metatype instance types do not match");
|
|
}
|
|
|
|
void checkUpcastInst(UpcastInst *UI) {
|
|
require(UI->getType() != UI->getOperand()->getType(),
|
|
"can't upcast to same type");
|
|
if (UI->getType().is<MetatypeType>()) {
|
|
CanType instTy(UI->getType().castTo<MetatypeType>()->getInstanceType());
|
|
require(UI->getOperand()->getType().is<MetatypeType>(),
|
|
"upcast operand must be a class or class metatype instance");
|
|
CanType opInstTy(UI->getOperand()->getType().castTo<MetatypeType>()
|
|
->getInstanceType());
|
|
auto instClass = instTy->getClassOrBoundGenericClass();
|
|
require(instClass,
|
|
"upcast must convert a class metatype to a class metatype");
|
|
|
|
if (instClass->usesObjCGenericsModel()) {
|
|
require(instClass->getDeclaredTypeInContext()
|
|
->isBindableToSuperclassOf(opInstTy),
|
|
"upcast must cast to a superclass or an existential metatype");
|
|
} else {
|
|
require(instTy->isExactSuperclassOf(opInstTy),
|
|
"upcast must cast to a superclass or an existential metatype");
|
|
}
|
|
return;
|
|
}
|
|
|
|
require(UI->getType().getCategory() ==
|
|
UI->getOperand()->getType().getCategory(),
|
|
"Upcast can only upcast in between types of the same "
|
|
"SILValueCategory. This prevents address types from being cast to "
|
|
"object types or vis-a-versa");
|
|
|
|
auto ToTy = UI->getType();
|
|
auto FromTy = UI->getOperand()->getType();
|
|
|
|
// Upcast from Optional<B> to Optional<A> is legal as long as B is a
|
|
// subclass of A.
|
|
if (ToTy.getASTType().getOptionalObjectType() &&
|
|
FromTy.getASTType().getOptionalObjectType()) {
|
|
ToTy = SILType::getPrimitiveObjectType(
|
|
ToTy.getASTType().getOptionalObjectType());
|
|
FromTy = SILType::getPrimitiveObjectType(
|
|
FromTy.getASTType().getOptionalObjectType());
|
|
}
|
|
|
|
auto ToClass = ToTy.getClassOrBoundGenericClass();
|
|
require(ToClass,
|
|
"upcast must convert a class instance to a class type");
|
|
if (ToClass->usesObjCGenericsModel()) {
|
|
require(ToClass->getDeclaredTypeInContext()
|
|
->isBindableToSuperclassOf(FromTy.getASTType()),
|
|
"upcast must cast to a superclass or an existential metatype");
|
|
} else {
|
|
require(ToTy.isExactSuperclassOf(FromTy),
|
|
"upcast must cast to a superclass or an existential metatype");
|
|
}
|
|
}
|
|
|
|
void checkAddressToPointerInst(AddressToPointerInst *AI) {
|
|
require(AI->getOperand()->getType().isAddress(),
|
|
"address-to-pointer operand must be an address");
|
|
require(AI->getType().getASTType()->isEqual(
|
|
AI->getType().getASTContext().TheRawPointerType),
|
|
"address-to-pointer result type must be RawPointer");
|
|
}
|
|
|
|
void checkUncheckedRefCastInst(UncheckedRefCastInst *AI) {
|
|
verifyOpenedArchetype(AI, AI->getType().getASTType());
|
|
require(AI->getOperand()->getType().isObject(),
|
|
"unchecked_ref_cast operand must be a value");
|
|
require(AI->getType().isObject(),
|
|
"unchecked_ref_cast result must be an object");
|
|
require(SILType::canRefCast(AI->getOperand()->getType(), AI->getType(),
|
|
AI->getModule()),
|
|
"unchecked_ref_cast requires a heap object reference type");
|
|
}
|
|
|
|
void checkUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *AI) {
|
|
auto srcTy = AI->getSrc()->getType();
|
|
auto destTy = AI->getDest()->getType();
|
|
require(srcTy.isAddress(),
|
|
"unchecked_ref_cast_addr operand must be an address");
|
|
require(destTy.isAddress(),
|
|
"unchecked_ref_cast_addr result must be an address");
|
|
// The static src/dest types cannot be checked here even if they are
|
|
// loadable. unchecked_ref_cast_addr may accept nonreference static types
|
|
// (as a result of specialization). These cases will never be promoted to
|
|
// value bitcast, thus will cause the subsequent runtime cast to fail.
|
|
}
|
|
|
|
void checkUncheckedAddrCastInst(UncheckedAddrCastInst *AI) {
|
|
verifyOpenedArchetype(AI, AI->getType().getASTType());
|
|
|
|
require(AI->getOperand()->getType().isAddress(),
|
|
"unchecked_addr_cast operand must be an address");
|
|
require(AI->getType().isAddress(),
|
|
"unchecked_addr_cast result must be an address");
|
|
}
|
|
|
|
void checkUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *BI) {
|
|
verifyOpenedArchetype(BI, BI->getType().getASTType());
|
|
require(BI->getOperand()->getType().isObject(),
|
|
"unchecked_trivial_bit_cast must operate on a value");
|
|
require(BI->getType().isObject(),
|
|
"unchecked_trivial_bit_cast must produce a value");
|
|
require(BI->getType().isTrivial(F),
|
|
"unchecked_trivial_bit_cast must produce a value of trivial type");
|
|
}
|
|
|
|
void checkUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *BI) {
|
|
verifyOpenedArchetype(BI, BI->getType().getASTType());
|
|
require(BI->getOperand()->getType().isObject(),
|
|
"unchecked_bitwise_cast must operate on a value");
|
|
require(BI->getType().isObject(),
|
|
"unchecked_bitwise_cast must produce a value");
|
|
}
|
|
|
|
void checkRefToRawPointerInst(RefToRawPointerInst *AI) {
|
|
require(AI->getOperand()->getType().isAnyClassReferenceType(),
|
|
"ref-to-raw-pointer operand must be a class reference or"
|
|
" NativeObject");
|
|
require(AI->getType().getASTType()->isEqual(
|
|
AI->getType().getASTContext().TheRawPointerType),
|
|
"ref-to-raw-pointer result must be RawPointer");
|
|
}
|
|
|
|
void checkRawPointerToRefInst(RawPointerToRefInst *AI) {
|
|
verifyOpenedArchetype(AI, AI->getType().getASTType());
|
|
require(AI->getType()
|
|
.getASTType()->isBridgeableObjectType()
|
|
|| AI->getType().getASTType()->isEqual(
|
|
AI->getType().getASTContext().TheNativeObjectType),
|
|
"raw-pointer-to-ref result must be a class reference or NativeObject");
|
|
require(AI->getOperand()->getType().getASTType()->isEqual(
|
|
AI->getType().getASTContext().TheRawPointerType),
|
|
"raw-pointer-to-ref operand must be NativeObject");
|
|
}
|
|
|
|
void checkRefToBridgeObjectInst(RefToBridgeObjectInst *RI) {
|
|
require(RI->getConverted()->getType().isObject(),
|
|
"ref_to_bridge_object must convert from a value");
|
|
require(RI->getConverted()->getType().getASTType()
|
|
->isBridgeableObjectType(),
|
|
"ref_to_bridge_object must convert from a heap object ref");
|
|
require(RI->getBitsOperand()->getType()
|
|
== SILType::getBuiltinWordType(F.getASTContext()),
|
|
"ref_to_bridge_object must take a Builtin.Word bits operand");
|
|
require(RI->getType() == SILType::getBridgeObjectType(F.getASTContext()),
|
|
"ref_to_bridge_object must produce a BridgeObject");
|
|
}
|
|
|
|
void checkBridgeObjectToRefInst(BridgeObjectToRefInst *RI) {
|
|
verifyOpenedArchetype(RI, RI->getType().getASTType());
|
|
require(RI->getConverted()->getType()
|
|
== SILType::getBridgeObjectType(F.getASTContext()),
|
|
"bridge_object_to_ref must take a BridgeObject");
|
|
require(RI->getType().isObject(),
|
|
"bridge_object_to_ref must produce a value");
|
|
require(RI->getType().getASTType()->isBridgeableObjectType(),
|
|
"bridge_object_to_ref must produce a heap object reference");
|
|
}
|
|
void checkBridgeObjectToWordInst(BridgeObjectToWordInst *RI) {
|
|
require(RI->getConverted()->getType()
|
|
== SILType::getBridgeObjectType(F.getASTContext()),
|
|
"bridge_object_to_word must take a BridgeObject");
|
|
require(RI->getType().isObject(),
|
|
"bridge_object_to_word must produce a value");
|
|
require(RI->getType() == SILType::getBuiltinWordType(F.getASTContext()),
|
|
"bridge_object_to_word must produce a Word");
|
|
}
|
|
|
|
void checkConvertFunctionInst(ConvertFunctionInst *ICI) {
|
|
auto opTI = requireObjectType(SILFunctionType, ICI->getOperand(),
|
|
"convert_function operand");
|
|
auto resTI = requireObjectType(SILFunctionType, ICI,
|
|
"convert_function result");
|
|
|
|
// convert_function is required to be an ABI-compatible conversion.
|
|
requireABICompatibleFunctionTypes(
|
|
opTI, resTI, "convert_function cannot change function ABI",
|
|
ICI->getFunction());
|
|
}
|
|
|
|
void checkConvertEscapeToNoEscapeInst(ConvertEscapeToNoEscapeInst *ICI) {
|
|
auto opTI = requireObjectType(SILFunctionType, ICI->getOperand(),
|
|
"convert_escape_to_noescape operand");
|
|
auto resTI = ICI->getType().castTo<SILFunctionType>();
|
|
|
|
// FIXME: Not yet, to be enabled when this is true.
|
|
// require(resTI->isTrivial(F.getModule()),
|
|
// "convert_escape_to_noescape should produce a trivial result type");
|
|
|
|
// convert_escape_to_noescape is required to be an ABI-compatible
|
|
// conversion once escapability is the same on both sides.
|
|
requireABICompatibleFunctionTypes(
|
|
opTI, resTI->getWithExtInfo(resTI->getExtInfo().withNoEscape(false)),
|
|
"convert_escape_to_noescape cannot change function ABI",
|
|
ICI->getFunction());
|
|
|
|
// After mandatory passes convert_escape_to_noescape should not have the
|
|
// '[not_guaranteed]' or '[escaped]' attributes.
|
|
if (!SkipConvertEscapeToNoescapeAttributes &&
|
|
F.getModule().getStage() != SILStage::Raw) {
|
|
require(ICI->isLifetimeGuaranteed(),
|
|
"convert_escape_to_noescape [not_guaranteed] not "
|
|
"allowed after mandatory passes");
|
|
}
|
|
}
|
|
|
|
void checkThinFunctionToPointerInst(ThinFunctionToPointerInst *CI) {
|
|
auto opTI = requireObjectType(SILFunctionType, CI->getOperand(),
|
|
"thin_function_to_pointer operand");
|
|
requireObjectType(BuiltinRawPointerType, CI,
|
|
"thin_function_to_pointer result");
|
|
|
|
auto rep = opTI->getRepresentation();
|
|
require(rep == SILFunctionTypeRepresentation::Thin ||
|
|
rep == SILFunctionTypeRepresentation::Method ||
|
|
rep == SILFunctionTypeRepresentation::WitnessMethod,
|
|
"thin_function_to_pointer only works on thin, method or "
|
|
"witness_method functions");
|
|
}
|
|
|
|
void checkPointerToThinFunctionInst(PointerToThinFunctionInst *CI) {
|
|
auto resultTI = requireObjectType(SILFunctionType, CI,
|
|
"pointer_to_thin_function result");
|
|
requireObjectType(BuiltinRawPointerType, CI->getOperand(),
|
|
"pointer_to_thin_function operand");
|
|
|
|
auto rep = resultTI->getRepresentation();
|
|
require(rep == SILFunctionTypeRepresentation::Thin ||
|
|
rep == SILFunctionTypeRepresentation::Method ||
|
|
rep == SILFunctionTypeRepresentation::WitnessMethod,
|
|
"pointer_to_thin_function only works on thin, method or "
|
|
"witness_method functions");
|
|
}
|
|
|
|
void checkCondFailInst(CondFailInst *CFI) {
|
|
require(CFI->getOperand()->getType()
|
|
== SILType::getBuiltinIntegerType(1, F.getASTContext()),
|
|
"cond_fail operand must be a Builtin.Int1");
|
|
}
|
|
|
|
void checkReturnInst(ReturnInst *RI) {
|
|
LLVM_DEBUG(RI->print(llvm::dbgs()));
|
|
|
|
SILType functionResultType =
|
|
F.mapTypeIntoContext(fnConv.getSILResultType());
|
|
SILType instResultType = RI->getOperand()->getType();
|
|
LLVM_DEBUG(llvm::dbgs() << "function return type: ";
|
|
functionResultType.dump();
|
|
llvm::dbgs() << "return inst type: ";
|
|
instResultType.dump(););
|
|
require(functionResultType == instResultType,
|
|
"return value type does not match return type of function");
|
|
}
|
|
|
|
void checkThrowInst(ThrowInst *TI) {
|
|
LLVM_DEBUG(TI->print(llvm::dbgs()));
|
|
|
|
CanSILFunctionType fnType = F.getLoweredFunctionType();
|
|
require(fnType->hasErrorResult(),
|
|
"throw in function that doesn't have an error result");
|
|
|
|
SILType functionResultType = F.mapTypeIntoContext(fnConv.getSILErrorType());
|
|
SILType instResultType = TI->getOperand()->getType();
|
|
LLVM_DEBUG(llvm::dbgs() << "function error result type: ";
|
|
functionResultType.dump();
|
|
llvm::dbgs() << "throw operand type: ";
|
|
instResultType.dump(););
|
|
require(functionResultType == instResultType,
|
|
"throw operand type does not match error result type of function");
|
|
}
|
|
|
|
void checkUnwindInst(UnwindInst *UI) {
|
|
require(F.getLoweredFunctionType()->isCoroutine(),
|
|
"unwind in non-coroutine function");
|
|
}
|
|
|
|
void checkYieldInst(YieldInst *YI) {
|
|
CanSILFunctionType fnType = F.getLoweredFunctionType();
|
|
require(fnType->isCoroutine(),
|
|
"yield in non-coroutine function");
|
|
|
|
auto yieldedValues = YI->getYieldedValues();
|
|
auto yieldInfos = fnType->getYields();
|
|
require(yieldedValues.size() == yieldInfos.size(),
|
|
"wrong number of yielded values for function");
|
|
for (auto i : indices(yieldedValues)) {
|
|
SILType yieldType =
|
|
F.mapTypeIntoContext(fnConv.getSILType(yieldInfos[i]));
|
|
require(yieldedValues[i]->getType() == yieldType,
|
|
"yielded value does not match yield type of coroutine");
|
|
}
|
|
|
|
// We require the resume and unwind destinations to be unique in order
|
|
// to prevent either edge from becoming critical.
|
|
require(YI->getResumeBB()->getSinglePredecessorBlock(),
|
|
"resume dest of 'yield' must be uniquely used");
|
|
require(YI->getUnwindBB()->getSinglePredecessorBlock(),
|
|
"unwind dest of 'yield' must be uniquely used");
|
|
}
|
|
|
|
void checkSelectEnumCases(SelectEnumInstBase *I) {
|
|
EnumDecl *eDecl = I->getEnumOperand()->getType().getEnumOrBoundGenericEnum();
|
|
require(eDecl, "select_enum operand must be an enum");
|
|
|
|
// Find the set of enum elements for the type so we can verify
|
|
// exhaustiveness.
|
|
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
|
|
eDecl->getAllElements(unswitchedElts);
|
|
|
|
// Verify the set of enum cases we dispatch on.
|
|
for (unsigned i = 0, e = I->getNumCases(); i < e; ++i) {
|
|
EnumElementDecl *elt;
|
|
SILValue result;
|
|
std::tie(elt, result) = I->getCase(i);
|
|
|
|
require(elt->getDeclContext() == eDecl,
|
|
"select_enum dispatches on enum element that is not part of "
|
|
"its type");
|
|
require(unswitchedElts.count(elt),
|
|
"select_enum dispatches on same enum element more than once");
|
|
unswitchedElts.erase(elt);
|
|
|
|
// The result value must match the type of the instruction.
|
|
requireSameType(result->getType(), I->getType(),
|
|
"select_enum case operand must match type of instruction");
|
|
}
|
|
|
|
// If the select is non-exhaustive, we require a default.
|
|
bool isExhaustive =
|
|
eDecl->isEffectivelyExhaustive(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion());
|
|
require((isExhaustive && unswitchedElts.empty()) || I->hasDefault(),
|
|
"nonexhaustive select_enum must have a default destination");
|
|
if (I->hasDefault()) {
|
|
requireSameType(I->getDefaultResult()->getType(),
|
|
I->getType(),
|
|
"select_enum default operand must match type of instruction");
|
|
}
|
|
}
|
|
|
|
void checkSelectEnumInst(SelectEnumInst *SEI) {
|
|
require(SEI->getEnumOperand()->getType().isObject(),
|
|
"select_enum operand must be an object");
|
|
|
|
checkSelectEnumCases(SEI);
|
|
}
|
|
void checkSelectEnumAddrInst(SelectEnumAddrInst *SEI) {
|
|
require(SEI->getEnumOperand()->getType().isAddress(),
|
|
"select_enum_addr operand must be an address");
|
|
|
|
checkSelectEnumCases(SEI);
|
|
}
|
|
|
|
void checkSwitchValueInst(SwitchValueInst *SVI) {
|
|
// TODO: Type should be either integer or function
|
|
auto Ty = SVI->getOperand()->getType();
|
|
require(Ty.is<BuiltinIntegerType>() || Ty.is<SILFunctionType>(),
|
|
"switch_value operand should be either of an integer "
|
|
"or function type");
|
|
|
|
auto ult = [](const SILValue &a, const SILValue &b) {
|
|
return a == b || a < b;
|
|
};
|
|
|
|
std::set<SILValue, decltype(ult)> cases(ult);
|
|
|
|
for (unsigned i = 0, e = SVI->getNumCases(); i < e; ++i) {
|
|
SILValue value;
|
|
SILBasicBlock *dest;
|
|
std::tie(value, dest) = SVI->getCase(i);
|
|
|
|
require(value->getType() == Ty,
|
|
"switch_value case value should have the same type as its operand");
|
|
|
|
require(!cases.count(value),
|
|
"multiple switch_value cases for same value");
|
|
cases.insert(value);
|
|
|
|
require(dest->args_empty(),
|
|
"switch_value case destination cannot take arguments");
|
|
}
|
|
|
|
if (SVI->hasDefault())
|
|
require(SVI->getDefaultBB()->args_empty(),
|
|
"switch_value default destination cannot take arguments");
|
|
}
|
|
|
|
void checkSelectValueCases(SelectValueInst *I) {
|
|
struct APIntCmp {
|
|
bool operator()(const APInt &a, const APInt &b) const {
|
|
return a.ult(b);
|
|
};
|
|
};
|
|
|
|
llvm::SmallSet<APInt, 16, APIntCmp> seenCaseValues;
|
|
|
|
// Verify the set of cases we dispatch on.
|
|
for (unsigned i = 0, e = I->getNumCases(); i < e; ++i) {
|
|
SILValue casevalue;
|
|
SILValue result;
|
|
std::tie(casevalue, result) = I->getCase(i);
|
|
|
|
if (!isa<SILUndef>(casevalue)) {
|
|
auto *il = dyn_cast<IntegerLiteralInst>(casevalue);
|
|
require(il,
|
|
"select_value case operands should refer to integer literals");
|
|
APInt elt = il->getValue();
|
|
|
|
require(!seenCaseValues.count(elt),
|
|
"select_value dispatches on same case value more than once");
|
|
|
|
seenCaseValues.insert(elt);
|
|
}
|
|
|
|
requireSameType(I->getOperand()->getType(), casevalue->getType(),
|
|
"select_value case value must match type of operand");
|
|
|
|
// The result value must match the type of the instruction.
|
|
requireSameType(result->getType(), I->getType(),
|
|
"select_value case result must match type of instruction");
|
|
}
|
|
|
|
require(I->hasDefault(),
|
|
"select_value should always have a default");
|
|
requireSameType(I->getDefaultResult()->getType(),
|
|
I->getType(),
|
|
"select_value default operand must match type of instruction");
|
|
}
|
|
|
|
void checkSelectValueInst(SelectValueInst *SVI) {
|
|
require(SVI->getOperand()->getType().isObject(),
|
|
"select_value operand must be an object");
|
|
|
|
checkSelectValueCases(SVI);
|
|
}
|
|
|
|
void checkSwitchEnumInst(SwitchEnumInst *SOI) {
|
|
require(SOI->getOperand()->getType().isObject(),
|
|
"switch_enum operand must be an object");
|
|
|
|
SILType uTy = SOI->getOperand()->getType();
|
|
EnumDecl *uDecl = uTy.getEnumOrBoundGenericEnum();
|
|
require(uDecl, "switch_enum operand is not an enum");
|
|
|
|
// Find the set of enum elements for the type so we can verify
|
|
// exhaustiveness.
|
|
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
|
|
uDecl->getAllElements(unswitchedElts);
|
|
|
|
// Verify the set of enum cases we dispatch on.
|
|
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
|
|
EnumElementDecl *elt;
|
|
SILBasicBlock *dest;
|
|
std::tie(elt, dest) = SOI->getCase(i);
|
|
|
|
require(elt->getDeclContext() == uDecl,
|
|
"switch_enum dispatches on enum element that is not part of "
|
|
"its type");
|
|
require(unswitchedElts.count(elt),
|
|
"switch_enum dispatches on same enum element more than once");
|
|
unswitchedElts.erase(elt);
|
|
|
|
// The destination BB can take the argument payload, if any, as a BB
|
|
// arguments, or it can ignore it and take no arguments.
|
|
if (elt->hasAssociatedValues()) {
|
|
if (isSILOwnershipEnabled() && F.hasOwnership()) {
|
|
require(dest->getArguments().size() == 1,
|
|
"switch_enum destination for case w/ args must take 1 "
|
|
"argument");
|
|
} else {
|
|
require(dest->getArguments().empty() ||
|
|
dest->getArguments().size() == 1,
|
|
"switch_enum destination for case w/ args must take 0 or 1 "
|
|
"arguments");
|
|
}
|
|
|
|
if (dest->getArguments().size() == 1) {
|
|
SILType eltArgTy = uTy.getEnumElementType(elt, F.getModule());
|
|
SILType bbArgTy = dest->getArguments()[0]->getType();
|
|
if (F.getModule().getStage() != SILStage::Lowered) {
|
|
// During the lowered stage, a function type might have different
|
|
// signature
|
|
require(eltArgTy == bbArgTy,
|
|
"switch_enum destination bbarg must match case arg type");
|
|
}
|
|
require(!dest->getArguments()[0]->getType().isAddress(),
|
|
"switch_enum destination bbarg type must not be an address");
|
|
}
|
|
|
|
} else {
|
|
require(dest->getArguments().empty(),
|
|
"switch_enum destination for no-argument case must take no "
|
|
"arguments");
|
|
}
|
|
}
|
|
|
|
// If the switch is non-exhaustive, we require a default.
|
|
bool isExhaustive =
|
|
uDecl->isEffectivelyExhaustive(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion());
|
|
require((isExhaustive && unswitchedElts.empty()) || SOI->hasDefault(),
|
|
"nonexhaustive switch_enum must have a default destination");
|
|
if (SOI->hasDefault()) {
|
|
// When SIL ownership is enabled, we require all default branches to take
|
|
// an @owned original version of the enum.
|
|
//
|
|
// When SIL ownership is disabled, we no longer support this.
|
|
if (isSILOwnershipEnabled() && F.hasOwnership()) {
|
|
require(SOI->getDefaultBB()->getNumArguments() == 1,
|
|
"Switch enum default block should have one argument");
|
|
require(SOI->getDefaultBB()->getArgument(0)->getType() ==
|
|
SOI->getOperand()->getType(),
|
|
"Switch enum default block should have one argument that is "
|
|
"the same as the input type");
|
|
} else if (!F.hasOwnership()) {
|
|
require(SOI->getDefaultBB()->args_empty(),
|
|
"switch_enum default destination must take no arguments");
|
|
}
|
|
}
|
|
}
|
|
|
|
void checkSwitchEnumAddrInst(SwitchEnumAddrInst *SOI) {
|
|
require(SOI->getOperand()->getType().isAddress(),
|
|
"switch_enum_addr operand must be an address");
|
|
|
|
SILType uTy = SOI->getOperand()->getType();
|
|
EnumDecl *uDecl = uTy.getEnumOrBoundGenericEnum();
|
|
require(uDecl, "switch_enum_addr operand must be an enum");
|
|
|
|
// Find the set of enum elements for the type so we can verify
|
|
// exhaustiveness.
|
|
llvm::DenseSet<EnumElementDecl*> unswitchedElts;
|
|
uDecl->getAllElements(unswitchedElts);
|
|
|
|
// Verify the set of enum cases we dispatch on.
|
|
for (unsigned i = 0, e = SOI->getNumCases(); i < e; ++i) {
|
|
EnumElementDecl *elt;
|
|
SILBasicBlock *dest;
|
|
std::tie(elt, dest) = SOI->getCase(i);
|
|
|
|
require(elt->getDeclContext() == uDecl,
|
|
"switch_enum_addr dispatches on enum element that "
|
|
"is not part of its type");
|
|
require(unswitchedElts.count(elt),
|
|
"switch_enum_addr dispatches on same enum element "
|
|
"more than once");
|
|
unswitchedElts.erase(elt);
|
|
|
|
// The destination BB must not have BB arguments.
|
|
require(dest->getArguments().empty(),
|
|
"switch_enum_addr destination must take no BB args");
|
|
}
|
|
|
|
// If the switch is non-exhaustive, we require a default.
|
|
bool isExhaustive =
|
|
uDecl->isEffectivelyExhaustive(F.getModule().getSwiftModule(),
|
|
F.getResilienceExpansion());
|
|
require((isExhaustive && unswitchedElts.empty()) || SOI->hasDefault(),
|
|
"nonexhaustive switch_enum_addr must have a default destination");
|
|
|
|
if (SOI->hasDefault())
|
|
require(SOI->getDefaultBB()->args_empty(),
|
|
"switch_enum_addr default destination must take "
|
|
"no arguments");
|
|
}
|
|
|
|
bool verifyBranchArgs(SILValue branchArg, SILArgument *bbArg) {
|
|
// NOTE: IRGen currently does not support the following method_inst
|
|
// variants as branch arguments.
|
|
// Once this is supported, the check can be removed.
|
|
require(!(isa<MethodInst>(branchArg) &&
|
|
cast<MethodInst>(branchArg)->getMember().isForeign),
|
|
"branch argument cannot be a witness_method or an objc method_inst");
|
|
require(!(branchArg->getType().is<SILFunctionType>() &&
|
|
branchArg->getType()
|
|
.castTo<SILFunctionType>()
|
|
->getExtInfo()
|
|
.getRepresentation() ==
|
|
SILFunctionTypeRepresentation::ObjCMethod),
|
|
"branch argument cannot be a objective-c method");
|
|
return branchArg->getType() == bbArg->getType();
|
|
}
|
|
|
|
void checkBranchInst(BranchInst *BI) {
|
|
require(BI->getArgs().size() == BI->getDestBB()->args_size(),
|
|
"branch has wrong number of arguments for dest bb");
|
|
require(std::equal(BI->getArgs().begin(), BI->getArgs().end(),
|
|
BI->getDestBB()->args_begin(),
|
|
[&](SILValue branchArg, SILArgument *bbArg) {
|
|
return verifyBranchArgs(branchArg, bbArg);
|
|
}),
|
|
"branch argument types do not match arguments for dest bb");
|
|
}
|
|
|
|
void checkCondBranchInst(CondBranchInst *CBI) {
|
|
// It is important that cond_br keeps an i1 type. ARC Sequence Opts assumes
|
|
// that cond_br does not use reference counted values or decrement reference
|
|
// counted values under the assumption that the instruction that computes
|
|
// the i1 is the use/decrement that ARC cares about and that after that
|
|
// instruction is evaluated, the scalar i1 has a different identity and the
|
|
// object can be deallocated.
|
|
require(CBI->getCondition()->getType() ==
|
|
SILType::getBuiltinIntegerType(1,
|
|
CBI->getCondition()->getType().getASTContext()),
|
|
"condition of conditional branch must have Int1 type");
|
|
|
|
require(CBI->getTrueArgs().size() == CBI->getTrueBB()->args_size(),
|
|
"true branch has wrong number of arguments for dest bb");
|
|
require(CBI->getTrueBB() != CBI->getFalseBB(),
|
|
"identical destinations");
|
|
require(std::equal(CBI->getTrueArgs().begin(), CBI->getTrueArgs().end(),
|
|
CBI->getTrueBB()->args_begin(),
|
|
[&](SILValue branchArg, SILArgument *bbArg) {
|
|
return verifyBranchArgs(branchArg, bbArg);
|
|
}),
|
|
"true branch argument types do not match arguments for dest bb");
|
|
|
|
require(CBI->getFalseArgs().size() == CBI->getFalseBB()->args_size(),
|
|
"false branch has wrong number of arguments for dest bb");
|
|
require(std::equal(CBI->getFalseArgs().begin(), CBI->getFalseArgs().end(),
|
|
CBI->getFalseBB()->args_begin(),
|
|
[&](SILValue branchArg, SILArgument *bbArg) {
|
|
return verifyBranchArgs(branchArg, bbArg);
|
|
}),
|
|
"false branch argument types do not match arguments for dest bb");
|
|
}
|
|
|
|
void checkDynamicMethodBranchInst(DynamicMethodBranchInst *DMBI) {
|
|
SILType operandType = DMBI->getOperand()->getType();
|
|
|
|
require(DMBI->getMember().getDecl()->isObjC(), "method must be @objc");
|
|
if (!DMBI->getMember().getDecl()->isInstanceMember()) {
|
|
require(operandType.is<MetatypeType>(),
|
|
"operand must have metatype type");
|
|
require(operandType.castTo<MetatypeType>()
|
|
->getInstanceType()->mayHaveSuperclass(),
|
|
"operand must have metatype of class or class-bound type");
|
|
}
|
|
|
|
// Check that the branch argument is of the expected dynamic method type.
|
|
require(DMBI->getHasMethodBB()->args_size() == 1,
|
|
"true bb for dynamic_method_br must take an argument");
|
|
|
|
auto bbArgTy = DMBI->getHasMethodBB()->args_begin()[0]->getType();
|
|
require(getDynamicMethodType(operandType, DMBI->getMember())
|
|
.getASTType()
|
|
->isBindableTo(bbArgTy.getASTType()),
|
|
"bb argument for dynamic_method_br must be of the method's type");
|
|
}
|
|
|
|
void checkProjectBlockStorageInst(ProjectBlockStorageInst *PBSI) {
|
|
require(PBSI->getOperand()->getType().isAddress(),
|
|
"operand must be an address");
|
|
auto storageTy = PBSI->getOperand()->getType().getAs<SILBlockStorageType>();
|
|
require(storageTy, "operand must be a @block_storage type");
|
|
|
|
require(PBSI->getType().isAddress(),
|
|
"result must be an address");
|
|
auto captureTy = PBSI->getType().getASTType();
|
|
require(storageTy->getCaptureType() == captureTy,
|
|
"result must be the capture type of the @block_storage type");
|
|
}
|
|
|
|
void checkInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *IBSHI) {
|
|
auto storage = IBSHI->getBlockStorage();
|
|
require(storage->getType().isAddress(),
|
|
"block storage operand must be an address");
|
|
|
|
auto storageTy = storage->getType().getAs<SILBlockStorageType>();
|
|
require(storageTy, "block storage operand must be a @block_storage type");
|
|
|
|
auto captureTy = storageTy->getCaptureType();
|
|
if (auto capturedFnTy = captureTy->getAs<SILFunctionType>()) {
|
|
if (capturedFnTy->isNoEscape()) {
|
|
// If the capture is a noescape function then it must be possible to
|
|
// locally determine the value stored to initialize the storage for the
|
|
// capture. This is required to diagnose static exclusivity violations
|
|
// when a noescape closure is converted to a noescape block that
|
|
// is then passed to a function.
|
|
auto *storageProjection =
|
|
storage->getSingleUserOfType<ProjectBlockStorageInst>();
|
|
require(storageProjection,
|
|
"block storage operand with noescape capture must have "
|
|
"projection from block");
|
|
|
|
auto *storeInst = storageProjection->getSingleUserOfType<StoreInst>();
|
|
require(storeInst,
|
|
"block storage operand with noescape capture must have "
|
|
"store to projection");
|
|
}
|
|
}
|
|
|
|
require(IBSHI->getInvokeFunction()->getType().isObject(),
|
|
"invoke function operand must be a value");
|
|
auto invokeTy
|
|
= IBSHI->getInvokeFunction()->getType().getAs<SILFunctionType>();
|
|
require(invokeTy, "invoke function operand must be a function");
|
|
require(invokeTy->getRepresentation()
|
|
== SILFunctionType::Representation::CFunctionPointer,
|
|
"invoke function operand must be a c function");
|
|
require(invokeTy->getParameters().size() >= 1,
|
|
"invoke function must take at least one parameter");
|
|
require(!invokeTy->getGenericSignature() ||
|
|
invokeTy->getExtInfo().isPseudogeneric(),
|
|
"invoke function must not take reified generic parameters");
|
|
|
|
invokeTy = checkApplySubstitutions(IBSHI->getSubstitutions(),
|
|
SILType::getPrimitiveObjectType(invokeTy));
|
|
|
|
auto storageParam = invokeTy->getParameters()[0];
|
|
require(storageParam.getConvention() ==
|
|
ParameterConvention::Indirect_InoutAliasable,
|
|
"invoke function must take block storage as @inout_aliasable "
|
|
"parameter");
|
|
require(storageParam.getType() == storageTy,
|
|
"invoke function must take block storage type as first parameter");
|
|
|
|
require(IBSHI->getType().isObject(), "result must be a value");
|
|
auto blockTy = IBSHI->getType().getAs<SILFunctionType>();
|
|
require(blockTy, "result must be a function");
|
|
require(blockTy->getRepresentation() == SILFunctionType::Representation::Block,
|
|
"result must be a cdecl block function");
|
|
require(blockTy->getResults() == invokeTy->getResults(),
|
|
"result must have same results as invoke function");
|
|
|
|
require(blockTy->getParameters().size() + 1
|
|
== invokeTy->getParameters().size(),
|
|
"result must match all parameters of invoke function but the first");
|
|
auto blockParams = blockTy->getParameters();
|
|
auto invokeBlockParams = invokeTy->getParameters().slice(1);
|
|
for (unsigned i : indices(blockParams)) {
|
|
require(blockParams[i] == invokeBlockParams[i],
|
|
"result must match all parameters of invoke function but the first");
|
|
}
|
|
}
|
|
|
|
void checkObjCProtocolInst(ObjCProtocolInst *OPI) {
|
|
require(OPI->getProtocol()->isObjC(),
|
|
"objc_protocol must be applied to an @objc protocol");
|
|
auto classTy = OPI->getType();
|
|
require(classTy.isObject(), "objc_protocol must produce a value");
|
|
auto classDecl = classTy.getClassOrBoundGenericClass();
|
|
require(classDecl, "objc_protocol must produce a class instance");
|
|
require(classDecl->getName() == F.getASTContext().Id_Protocol,
|
|
"objc_protocol must produce an instance of ObjectiveC.Protocol class");
|
|
require(classDecl->getModuleContext()->getName() == F.getASTContext().Id_ObjectiveC,
|
|
"objc_protocol must produce an instance of ObjectiveC.Protocol class");
|
|
}
|
|
|
|
void checkObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *OMOI) {
|
|
require(OMOI->getOperand()->getType().isObject(),
|
|
"objc_metatype_to_object must take a value");
|
|
auto fromMetaTy = OMOI->getOperand()->getType().getAs<MetatypeType>();
|
|
require(fromMetaTy, "objc_metatype_to_object must take an @objc metatype value");
|
|
require(fromMetaTy->getRepresentation() == MetatypeRepresentation::ObjC,
|
|
"objc_metatype_to_object must take an @objc metatype value");
|
|
require(OMOI->getType().isObject(),
|
|
"objc_metatype_to_object must produce a value");
|
|
require(OMOI->getType().getASTType()->isAnyObject(),
|
|
"objc_metatype_to_object must produce an AnyObject value");
|
|
}
|
|
|
|
void checkObjCExistentialMetatypeToObjectInst(
|
|
ObjCExistentialMetatypeToObjectInst *OMOI) {
|
|
require(OMOI->getOperand()->getType().isObject(),
|
|
"objc_metatype_to_object must take a value");
|
|
auto fromMetaTy = OMOI->getOperand()->getType()
|
|
.getAs<ExistentialMetatypeType>();
|
|
require(fromMetaTy, "objc_metatype_to_object must take an @objc existential metatype value");
|
|
require(fromMetaTy->getRepresentation() == MetatypeRepresentation::ObjC,
|
|
"objc_metatype_to_object must take an @objc existential metatype value");
|
|
require(OMOI->getType().isObject(),
|
|
"objc_metatype_to_object must produce a value");
|
|
require(OMOI->getType().getASTType()->isAnyObject(),
|
|
"objc_metatype_to_object must produce an AnyObject value");
|
|
}
|
|
|
|
void checkKeyPathInst(KeyPathInst *KPI) {
|
|
auto kpTy = KPI->getType();
|
|
|
|
require(kpTy.isObject(), "keypath result must be an object type");
|
|
|
|
auto kpBGT = kpTy.getAs<BoundGenericType>();
|
|
require(kpBGT, "keypath result must be a generic type");
|
|
auto &C = F.getASTContext();
|
|
require(kpBGT->getDecl() == C.getKeyPathDecl()
|
|
|| kpBGT->getDecl() == C.getWritableKeyPathDecl()
|
|
|| kpBGT->getDecl() == C.getReferenceWritableKeyPathDecl(),
|
|
"keypath result must be a key path type");
|
|
|
|
auto baseTy = CanType(kpBGT->getGenericArgs()[0]);
|
|
auto pattern = KPI->getPattern();
|
|
SubstitutionMap patternSubs = KPI->getSubstitutions();
|
|
require(baseTy == pattern->getRootType().subst(patternSubs)->getCanonicalType(),
|
|
"keypath root type should match root type of keypath pattern");
|
|
|
|
auto leafTy = CanType(kpBGT->getGenericArgs()[1]);
|
|
require(leafTy == pattern->getValueType().subst(patternSubs)->getCanonicalType(),
|
|
"keypath value type should match value type of keypath pattern");
|
|
|
|
{
|
|
Lowering::GenericContextScope scope(F.getModule().Types,
|
|
pattern->getGenericSignature());
|
|
|
|
for (auto &component : pattern->getComponents()) {
|
|
bool hasIndices;
|
|
switch (component.getKind()) {
|
|
case KeyPathPatternComponent::Kind::GettableProperty:
|
|
case KeyPathPatternComponent::Kind::SettableProperty:
|
|
hasIndices = !component.getSubscriptIndices().empty();
|
|
break;
|
|
|
|
case KeyPathPatternComponent::Kind::StoredProperty:
|
|
case KeyPathPatternComponent::Kind::OptionalChain:
|
|
case KeyPathPatternComponent::Kind::OptionalWrap:
|
|
case KeyPathPatternComponent::Kind::OptionalForce:
|
|
case KeyPathPatternComponent::Kind::TupleElement:
|
|
hasIndices = false;
|
|
break;
|
|
}
|
|
|
|
verifyKeyPathComponent(F.getModule(), F.getResilienceExpansion(),
|
|
[&](bool reqt, StringRef message) { _require(reqt, message); },
|
|
baseTy,
|
|
leafTy,
|
|
component,
|
|
KPI->getAllOperands(),
|
|
KPI->getPattern()->getGenericSignature(),
|
|
KPI->getSubstitutions(),
|
|
/*property descriptor*/false,
|
|
hasIndices);
|
|
}
|
|
}
|
|
require(CanType(baseTy) == CanType(leafTy),
|
|
"final component should match leaf value type of key path type");
|
|
}
|
|
|
|
void checkIsEscapingClosureInst(IsEscapingClosureInst *IEC) {
|
|
// The closure operand is allowed to be an optional closure.
|
|
auto operandType = IEC->getOperand()->getType();
|
|
if (operandType.getOptionalObjectType())
|
|
operandType = operandType.getOptionalObjectType();
|
|
|
|
auto fnType = operandType.getAs<SILFunctionType>();
|
|
require(fnType && fnType->getExtInfo().hasContext() &&
|
|
!fnType->isNoEscape() &&
|
|
fnType->getExtInfo().getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thick,
|
|
"is_escaping_closure must have a thick "
|
|
"function operand");
|
|
require(IEC->getVerificationType() == IsEscapingClosureInst::ObjCEscaping ||
|
|
IEC->getVerificationType() ==
|
|
IsEscapingClosureInst::WithoutActuallyEscaping,
|
|
"unknown verfication type");
|
|
}
|
|
|
|
// This verifies that the entry block of a SIL function doesn't have
|
|
// any predecessors and also verifies the entry point arguments.
|
|
void verifyEntryBlock(SILBasicBlock *entry) {
|
|
require(entry->pred_empty(), "entry block cannot have predecessors");
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Argument types for entry point BB:\n";
|
|
for (auto *arg
|
|
: make_range(entry->args_begin(), entry->args_end()))
|
|
arg->getType()
|
|
.dump();
|
|
llvm::dbgs() << "Input types for SIL function type ";
|
|
F.getLoweredFunctionType()->print(llvm::dbgs());
|
|
llvm::dbgs() << ":\n";
|
|
for (auto paramTy
|
|
: fnConv.getParameterSILTypes()) { paramTy.dump(); });
|
|
|
|
require(entry->args_size() == (fnConv.getNumIndirectSILResults()
|
|
+ fnConv.getNumParameters()),
|
|
"entry point has wrong number of arguments");
|
|
|
|
bool matched = true;
|
|
auto argI = entry->args_begin();
|
|
|
|
auto check = [&](const char *what, SILType ty) {
|
|
auto mappedTy = F.mapTypeIntoContext(ty);
|
|
SILArgument *bbarg = *argI;
|
|
++argI;
|
|
if (bbarg->getType() != mappedTy) {
|
|
llvm::errs() << what << " type mismatch!\n";
|
|
llvm::errs() << " argument: "; bbarg->dump();
|
|
llvm::errs() << " expected: "; mappedTy.dump();
|
|
matched = false;
|
|
}
|
|
|
|
// If we do not have qualified ownership, do not check ownership.
|
|
if (!F.hasOwnership()) {
|
|
return;
|
|
}
|
|
|
|
auto ownershipkind = ValueOwnershipKind(
|
|
F, mappedTy, fnConv.getSILArgumentConvention(bbarg->getIndex()));
|
|
|
|
if (bbarg->getOwnershipKind() != ownershipkind) {
|
|
llvm::errs() << what << " ownership kind mismatch!\n";
|
|
llvm::errs() << " argument: " << bbarg->getOwnershipKind() << '\n';
|
|
llvm::errs() << " expected: " << ownershipkind << '\n';
|
|
matched = false;
|
|
}
|
|
};
|
|
|
|
for (auto result : fnConv.getIndirectSILResults()) {
|
|
assert(fnConv.isSILIndirect(result));
|
|
check("result", fnConv.getSILType(result));
|
|
}
|
|
for (auto param : F.getLoweredFunctionType()->getParameters()) {
|
|
check("parameter", fnConv.getSILType(param));
|
|
}
|
|
|
|
require(matched, "entry point argument types do not match function type");
|
|
|
|
// TBAA requirement for all address arguments.
|
|
require(std::equal(entry->args_begin() + fnConv.getNumIndirectSILResults(),
|
|
entry->args_end(),
|
|
fnConv.funcTy->getParameters().begin(),
|
|
[&](SILArgument *bbarg, SILParameterInfo paramInfo) {
|
|
if (!bbarg->getType().isAddress())
|
|
return true;
|
|
switch (paramInfo.getConvention()) {
|
|
default:
|
|
return false;
|
|
case ParameterConvention::Indirect_In:
|
|
case ParameterConvention::Indirect_In_Constant:
|
|
case ParameterConvention::Indirect_Inout:
|
|
case ParameterConvention::Indirect_InoutAliasable:
|
|
case ParameterConvention::Indirect_In_Guaranteed:
|
|
return true;
|
|
}
|
|
}),
|
|
"entry point address argument must have an indirect calling "
|
|
"convention");
|
|
}
|
|
|
|
void verifyEpilogBlocks(SILFunction *F) {
|
|
bool FoundReturnBlock = false;
|
|
bool FoundThrowBlock = false;
|
|
bool FoundUnwindBlock = false;
|
|
for (auto &BB : *F) {
|
|
if (isa<ReturnInst>(BB.getTerminator())) {
|
|
require(!FoundReturnBlock,
|
|
"more than one return block in function");
|
|
FoundReturnBlock = true;
|
|
} else if (isa<ThrowInst>(BB.getTerminator())) {
|
|
require(!FoundThrowBlock,
|
|
"more than one throw block in function");
|
|
FoundThrowBlock = true;
|
|
} else if (isa<UnwindInst>(BB.getTerminator())) {
|
|
require(!FoundUnwindBlock,
|
|
"more than one unwind block in function");
|
|
FoundUnwindBlock = true;
|
|
} else {
|
|
assert(!BB.getTerminator()->isFunctionExiting());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isUnreachableAlongAllPathsStartingAt(
|
|
SILBasicBlock *StartBlock, SmallPtrSetImpl<SILBasicBlock *> &Visited) {
|
|
if (isa<UnreachableInst>(StartBlock->getTerminator()))
|
|
return true;
|
|
else if (isa<ReturnInst>(StartBlock->getTerminator()))
|
|
return false;
|
|
else if (isa<ThrowInst>(StartBlock->getTerminator()))
|
|
return false;
|
|
|
|
// Recursively check all successors.
|
|
for (auto *SuccBB : StartBlock->getSuccessorBlocks())
|
|
if (!Visited.insert(SuccBB).second)
|
|
if (!isUnreachableAlongAllPathsStartingAt(SuccBB, Visited))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void verifySILFunctionType(CanSILFunctionType FTy) {
|
|
// Make sure that if FTy's calling convention implies that it must have a
|
|
// self parameter.
|
|
require(!FTy->hasSelfParam() || !FTy->getParameters().empty(),
|
|
"Functions with a calling convention with self parameter must "
|
|
"have at least one argument for self.");
|
|
}
|
|
|
|
struct VerifyFlowSensitiveRulesDetails {
|
|
enum CFGState {
|
|
/// No special rules are in play.
|
|
Normal,
|
|
/// We've followed the resume edge of a yield in a yield_once coroutine.
|
|
YieldOnceResume,
|
|
/// We've followed the unwind edge of a yield.
|
|
YieldUnwind
|
|
};
|
|
|
|
struct BBState {
|
|
std::vector<SingleValueInstruction*> Stack;
|
|
|
|
/// Contents: BeginAccessInst*, BeginApplyInst*.
|
|
std::set<SILInstruction*> ActiveOps;
|
|
|
|
CFGState CFG = Normal;
|
|
};
|
|
};
|
|
|
|
/// Verify the various control-flow-sensitive rules of SIL:
|
|
///
|
|
/// - stack allocations and deallocations must obey a stack discipline
|
|
/// - accesses must be uniquely ended
|
|
/// - flow-sensitive states must be equivalent on all paths into a block
|
|
void verifyFlowSensitiveRules(SILFunction *F) {
|
|
// Do a traversal of the basic blocks.
|
|
// Note that we intentionally don't verify these properties in blocks
|
|
// that can't be reached from the entry block.
|
|
llvm::DenseMap<SILBasicBlock*, VerifyFlowSensitiveRulesDetails::BBState> visitedBBs;
|
|
SmallVector<SILBasicBlock*, 16> Worklist;
|
|
visitedBBs.try_emplace(&*F->begin());
|
|
Worklist.push_back(&*F->begin());
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
VerifyFlowSensitiveRulesDetails::BBState state = visitedBBs[BB];
|
|
for (SILInstruction &i : *BB) {
|
|
CurInstruction = &i;
|
|
|
|
if (i.isAllocatingStack()) {
|
|
state.Stack.push_back(cast<SingleValueInstruction>(&i));
|
|
|
|
} else if (i.isDeallocatingStack()) {
|
|
SILValue op = i.getOperand(0);
|
|
require(!state.Stack.empty(),
|
|
"stack dealloc with empty stack");
|
|
require(op == state.Stack.back(),
|
|
"stack dealloc does not match most recent stack alloc");
|
|
state.Stack.pop_back();
|
|
|
|
} else if (isa<BeginAccessInst>(i) || isa<BeginApplyInst>(i)) {
|
|
bool notAlreadyPresent = state.ActiveOps.insert(&i).second;
|
|
require(notAlreadyPresent,
|
|
"operation was not ended before re-beginning it");
|
|
|
|
} else if (isa<EndAccessInst>(i) || isa<AbortApplyInst>(i) ||
|
|
isa<EndApplyInst>(i)) {
|
|
if (auto beginOp = i.getOperand(0)->getDefiningInstruction()) {
|
|
bool present = state.ActiveOps.erase(beginOp);
|
|
require(present, "operation has already been ended");
|
|
}
|
|
|
|
} else if (auto term = dyn_cast<TermInst>(&i)) {
|
|
if (term->isFunctionExiting()) {
|
|
require(state.Stack.empty(),
|
|
"return with stack allocs that haven't been deallocated");
|
|
require(state.ActiveOps.empty(),
|
|
"return with operations still active");
|
|
|
|
if (isa<UnwindInst>(term)) {
|
|
require(state.CFG == VerifyFlowSensitiveRulesDetails::YieldUnwind,
|
|
"encountered 'unwind' when not on unwind path");
|
|
} else {
|
|
require(state.CFG != VerifyFlowSensitiveRulesDetails::YieldUnwind,
|
|
"encountered 'return' or 'throw' when on unwind path");
|
|
if (isa<ReturnInst>(term) &&
|
|
F->getLoweredFunctionType()->getCoroutineKind() ==
|
|
SILCoroutineKind::YieldOnce &&
|
|
F->getModule().getStage() != SILStage::Raw) {
|
|
require(state.CFG == VerifyFlowSensitiveRulesDetails::YieldOnceResume,
|
|
"encountered 'return' before yielding a value in "
|
|
"yield_once coroutine");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<YieldInst>(term)) {
|
|
require(state.CFG != VerifyFlowSensitiveRulesDetails::YieldOnceResume,
|
|
"encountered multiple 'yield's along single path");
|
|
require(state.CFG == VerifyFlowSensitiveRulesDetails::Normal,
|
|
"encountered 'yield' on abnormal CFG path");
|
|
}
|
|
|
|
auto successors = term->getSuccessors();
|
|
for (auto i : indices(successors)) {
|
|
SILBasicBlock *succBB = successors[i].getBB();
|
|
|
|
// Optimistically try to set our current state as the state
|
|
// of the successor. We can use a move on the final successor;
|
|
// note that if the insertion fails, the move won't actually
|
|
// happen, which is important because we'll still need it
|
|
// to compare against the already-recorded state for the block.
|
|
auto insertResult =
|
|
i + 1 == successors.size()
|
|
? visitedBBs.try_emplace(succBB, std::move(state))
|
|
: visitedBBs.try_emplace(succBB, state);
|
|
|
|
// If the insertion was successful, add the successor to the
|
|
// worklist and continue.
|
|
if (insertResult.second) {
|
|
Worklist.push_back(succBB);
|
|
|
|
// If we're following a 'yield', update the CFG state:
|
|
if (isa<YieldInst>(term)) {
|
|
// Enforce that the unwind logic is segregated in all stages.
|
|
if (i == 1) {
|
|
insertResult.first->second.CFG = VerifyFlowSensitiveRulesDetails::YieldUnwind;
|
|
|
|
// We check the yield_once rule in the mandatory analyses,
|
|
// so we can't assert it yet in the raw stage.
|
|
} else if (F->getLoweredFunctionType()->getCoroutineKind()
|
|
== SILCoroutineKind::YieldOnce &&
|
|
F->getModule().getStage() != SILStage::Raw) {
|
|
insertResult.first->second.CFG = VerifyFlowSensitiveRulesDetails::YieldOnceResume;
|
|
}
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// This rule is checked elsewhere, but we'd want to assert it
|
|
// here anyway.
|
|
require(!isa<YieldInst>(term),
|
|
"successor of 'yield' should not be encountered twice");
|
|
|
|
// Check that the stack height is consistent coming from all entry
|
|
// points into this BB. We only care about consistency if there is
|
|
// a possible return from this function along the path starting at
|
|
// this successor bb. (FIXME: Why? Infinite loops should still
|
|
// preserve consistency...)
|
|
auto isUnreachable = [&] {
|
|
SmallPtrSet<SILBasicBlock *, 16> visited;
|
|
return isUnreachableAlongAllPathsStartingAt(succBB, visited);
|
|
};
|
|
|
|
const auto &foundState = insertResult.first->second;
|
|
require(state.Stack == foundState.Stack || isUnreachable(),
|
|
"inconsistent stack heights entering basic block");
|
|
require(state.ActiveOps == foundState.ActiveOps || isUnreachable(),
|
|
"inconsistent active-operations sets entering basic block");
|
|
require(state.CFG == foundState.CFG,
|
|
"inconsistent coroutine states entering basic block");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifyBranches(const SILFunction *F) {
|
|
// Verify that there is no non_condbr critical edge.
|
|
auto isCriticalEdgePred = [](const TermInst *T, unsigned EdgeIdx) {
|
|
assert(T->getSuccessors().size() > EdgeIdx && "Not enough successors");
|
|
|
|
// A critical edge has more than one outgoing edges from the source
|
|
// block.
|
|
auto SrcSuccs = T->getSuccessors();
|
|
if (SrcSuccs.size() <= 1)
|
|
return false;
|
|
|
|
// And its destination block has more than one predecessor.
|
|
SILBasicBlock *DestBB = SrcSuccs[EdgeIdx];
|
|
assert(!DestBB->pred_empty() && "There should be a predecessor");
|
|
if (DestBB->getSinglePredecessorBlock())
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
for (auto &BB : *F) {
|
|
const TermInst *TI = BB.getTerminator();
|
|
CurInstruction = TI;
|
|
|
|
// Check for non-cond_br critical edges.
|
|
auto *CBI = dyn_cast<CondBranchInst>(TI);
|
|
if (!CBI) {
|
|
for (unsigned Idx = 0, e = BB.getSuccessors().size(); Idx != e; ++Idx) {
|
|
require(!isCriticalEdgePred(TI, Idx),
|
|
"non cond_br critical edges not allowed");
|
|
}
|
|
continue;
|
|
}
|
|
// In ownership qualified SIL, ban critical edges from CondBranchInst that
|
|
// have non-trivial arguments.
|
|
//
|
|
// FIXME: it would be far simpler to ban all critical edges in general.
|
|
if (!F->hasOwnership())
|
|
continue;
|
|
|
|
if (isCriticalEdgePred(CBI, CondBranchInst::TrueIdx)) {
|
|
require(
|
|
llvm::all_of(CBI->getTrueArgs(),
|
|
[](SILValue V) -> bool {
|
|
return V.getOwnershipKind() ==
|
|
ValueOwnershipKind::Any;
|
|
}),
|
|
"cond_br with critical edges must not have a non-trivial value");
|
|
}
|
|
if (isCriticalEdgePred(CBI, CondBranchInst::FalseIdx)) {
|
|
require(
|
|
llvm::all_of(CBI->getFalseArgs(),
|
|
[](SILValue V) -> bool {
|
|
return V.getOwnershipKind() ==
|
|
ValueOwnershipKind::Any;
|
|
}),
|
|
"cond_br with critical edges must not have a non-trivial value");
|
|
}
|
|
}
|
|
}
|
|
|
|
void verifyOpenedArchetypes(SILFunction *F) {
|
|
require(OpenedArchetypes.getFunction() == F,
|
|
"Wrong SILFunction provided to verifyOpenedArchetypes");
|
|
// Check that definitions of all opened archetypes from
|
|
// OpenedArchetypesDefs are existing instructions
|
|
// belonging to the function F.
|
|
for (auto KV: OpenedArchetypes.getOpenedArchetypeDefs()) {
|
|
require(getOpenedArchetypeOf(CanType(KV.first)),
|
|
"Only opened archetypes should be registered in SILFunction");
|
|
auto Def = cast<SILInstruction>(KV.second);
|
|
require(Def->getFunction() == F,
|
|
"Definition of every registered opened archetype should be an"
|
|
" existing instruction in a current SILFunction");
|
|
}
|
|
}
|
|
|
|
/// This pass verifies that there are no hole in debug scopes at -Onone.
|
|
void verifyDebugScopeHoles(SILBasicBlock *BB) {
|
|
if (!VerifyDIHoles)
|
|
return;
|
|
|
|
// This check only makes sense at -Onone. Optimizations,
|
|
// e.g. inlining, can move scopes around.
|
|
llvm::DenseSet<const SILDebugScope *> AlreadySeenScopes;
|
|
if (BB->getParent()->getEffectiveOptimizationMode() !=
|
|
OptimizationMode::NoOptimization)
|
|
return;
|
|
|
|
// Exit early if this BB is empty.
|
|
if (BB->empty())
|
|
return;
|
|
|
|
const SILDebugScope *LastSeenScope = nullptr;
|
|
for (SILInstruction &SI : *BB) {
|
|
if (SI.isMetaInstruction())
|
|
continue;
|
|
LastSeenScope = SI.getDebugScope();
|
|
AlreadySeenScopes.insert(LastSeenScope);
|
|
break;
|
|
}
|
|
for (SILInstruction &SI : *BB) {
|
|
if (SI.isMetaInstruction())
|
|
continue;
|
|
|
|
// If we haven't seen this debug scope yet, update the
|
|
// map and go on.
|
|
auto *DS = SI.getDebugScope();
|
|
assert(DS && "Each instruction should have a debug scope");
|
|
if (!AlreadySeenScopes.count(DS)) {
|
|
AlreadySeenScopes.insert(DS);
|
|
LastSeenScope = DS;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we're allowed to re-enter a scope only if
|
|
// the scope is an ancestor of the scope we're currently leaving.
|
|
auto isAncestorScope = [](const SILDebugScope *Cur,
|
|
const SILDebugScope *Previous) {
|
|
const SILDebugScope *Tmp = Previous;
|
|
assert(Tmp && "scope can't be null");
|
|
while (Tmp) {
|
|
PointerUnion<const SILDebugScope *, SILFunction *> Parent =
|
|
Tmp->Parent;
|
|
auto *ParentScope = Parent.dyn_cast<const SILDebugScope *>();
|
|
if (!ParentScope)
|
|
break;
|
|
if (ParentScope == Cur)
|
|
return true;
|
|
Tmp = ParentScope;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
if (isAncestorScope(DS, LastSeenScope)) {
|
|
LastSeenScope = DS;
|
|
continue;
|
|
}
|
|
if (DS != LastSeenScope) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Broken instruction!\n"; SI.dump());
|
|
LLVM_DEBUG(llvm::dbgs() << "Please report a bug on bugs.swift.org\n");
|
|
LLVM_DEBUG(llvm::dbgs() <<
|
|
"Pass -Xllvm -verify-di-holes=false to disable the verification\n");
|
|
require(
|
|
DS == LastSeenScope,
|
|
"Basic block contains a non-contiguous lexical scope at -Onone");
|
|
}
|
|
}
|
|
}
|
|
|
|
void visitSILBasicBlock(SILBasicBlock *BB) {
|
|
// Make sure that each of the successors/predecessors of this basic block
|
|
// have this basic block in its predecessor/successor list.
|
|
for (const auto *SuccBB : BB->getSuccessorBlocks()) {
|
|
require(SuccBB->isPredecessorBlock(BB),
|
|
"Must be a predecessor of each successor.");
|
|
}
|
|
|
|
for (const SILBasicBlock *PredBB : BB->getPredecessorBlocks()) {
|
|
require(PredBB->isSuccessorBlock(BB),
|
|
"Must be a successor of each predecessor.");
|
|
}
|
|
|
|
SILInstructionVisitor::visitSILBasicBlock(BB);
|
|
verifyDebugScopeHoles(BB);
|
|
}
|
|
|
|
void visitBasicBlockArguments(SILBasicBlock *BB) {
|
|
CurInstruction = nullptr;
|
|
for (auto argI = BB->args_begin(), argEnd = BB->args_end(); argI != argEnd;
|
|
++argI)
|
|
visitSILArgument(*argI);
|
|
}
|
|
|
|
void visitSILBasicBlocks(SILFunction *F) {
|
|
// Visit all basic blocks in the RPOT order.
|
|
// This ensures that any open_existential instructions, which
|
|
// open archetypes, are seen before the uses of these archetypes.
|
|
llvm::ReversePostOrderTraversal<SILFunction *> RPOT(F);
|
|
llvm::DenseSet<SILBasicBlock *> VisitedBBs;
|
|
for (auto Iter = RPOT.begin(), E = RPOT.end(); Iter != E; ++Iter) {
|
|
auto *BB = *Iter;
|
|
VisitedBBs.insert(BB);
|
|
visitSILBasicBlock(BB);
|
|
}
|
|
|
|
// Visit all basic blocks that were not visited during the RPOT traversal,
|
|
// e.g. unreachable basic blocks.
|
|
for (auto &BB : *F) {
|
|
if (VisitedBBs.count(&BB))
|
|
continue;
|
|
visitSILBasicBlock(&BB);
|
|
}
|
|
}
|
|
|
|
void visitSILFunction(SILFunction *F) {
|
|
PrettyStackTraceSILFunction stackTrace("verifying", F);
|
|
|
|
CanSILFunctionType FTy = F->getLoweredFunctionType();
|
|
verifySILFunctionType(FTy);
|
|
|
|
if (F->isExternalDeclaration()) {
|
|
if (F->hasForeignBody())
|
|
return;
|
|
|
|
assert(F->isAvailableExternally() &&
|
|
"external declaration of internal SILFunction not allowed");
|
|
// If F is an external declaration, there is nothing further to do,
|
|
// return.
|
|
return;
|
|
}
|
|
|
|
assert(!F->hasForeignBody());
|
|
|
|
// Make sure that our SILFunction only has context generic params if our
|
|
// SILFunctionType is non-polymorphic.
|
|
if (F->getGenericEnvironment()) {
|
|
require(FTy->isPolymorphic(),
|
|
"non-generic function definitions cannot have a "
|
|
"generic environment");
|
|
} else {
|
|
require(!FTy->isPolymorphic(),
|
|
"generic function definition must have a generic environment");
|
|
}
|
|
|
|
// Otherwise, verify the body of the function.
|
|
verifyEntryBlock(&*F->getBlocks().begin());
|
|
verifyEpilogBlocks(F);
|
|
verifyFlowSensitiveRules(F);
|
|
verifyBranches(F);
|
|
|
|
visitSILBasicBlocks(F);
|
|
|
|
// Verify archetypes after all basic blocks are visited,
|
|
// because we build the map of archetypes as we visit the
|
|
// instructions.
|
|
verifyOpenedArchetypes(F);
|
|
}
|
|
|
|
void verify() {
|
|
visitSILFunction(const_cast<SILFunction*>(&F));
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
#undef require
|
|
#undef requireObjectType
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Out of Line Verifier Run Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// verify - Run the SIL verifier to make sure that the SILFunction follows
|
|
/// invariants.
|
|
void SILFunction::verify(bool SingleFunction) const {
|
|
#ifdef NDEBUG
|
|
if (!getModule().getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
// Please put all checks in visitSILFunction in SILVerifier, not here. This
|
|
// ensures that the pretty stack trace in the verifier is included with the
|
|
// back trace when the verifier crashes.
|
|
SILVerifier(*this, SingleFunction).verify();
|
|
}
|
|
|
|
void SILFunction::verifyCriticalEdges() const {
|
|
#ifdef NDEBUG
|
|
if (!getModule().getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
SILVerifier(*this, /*SingleFunction=*/true).verifyBranches(this);
|
|
}
|
|
|
|
/// Verify that a property descriptor follows invariants.
|
|
void SILProperty::verify(const SILModule &M) const {
|
|
#ifdef NDEBUG
|
|
if (!M.getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
|
|
auto *decl = getDecl();
|
|
auto *dc = decl->getInnermostDeclContext();
|
|
|
|
// TODO: base type for global/static descriptors
|
|
auto sig = dc->getGenericSignatureOfContext();
|
|
auto baseTy = dc->getInnermostTypeContext()->getSelfInterfaceType()
|
|
->getCanonicalType(sig);
|
|
auto leafTy = decl->getValueInterfaceType()->getCanonicalType(sig);
|
|
SubstitutionMap subs;
|
|
if (sig) {
|
|
auto env = dc->getGenericEnvironmentOfContext();
|
|
subs = env->getForwardingSubstitutionMap();
|
|
baseTy = env->mapTypeIntoContext(baseTy)->getCanonicalType();
|
|
leafTy = env->mapTypeIntoContext(leafTy)->getCanonicalType();
|
|
}
|
|
bool hasIndices = false;
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
|
|
hasIndices = subscript->getIndices()->size() != 0;
|
|
}
|
|
|
|
auto canSig = sig ? sig->getCanonicalSignature() : nullptr;
|
|
Lowering::GenericContextScope scope(M.Types, canSig);
|
|
|
|
auto require = [&](bool reqt, StringRef message) {
|
|
if (!reqt) {
|
|
llvm::errs() << message << "\n";
|
|
assert(false && "invoking standard assertion failure");
|
|
}
|
|
};
|
|
|
|
if (auto &component = getComponent()) {
|
|
verifyKeyPathComponent(const_cast<SILModule&>(M),
|
|
ResilienceExpansion::Maximal,
|
|
require,
|
|
baseTy,
|
|
leafTy,
|
|
*component,
|
|
{},
|
|
canSig,
|
|
subs,
|
|
/*property descriptor*/true,
|
|
hasIndices);
|
|
// verifyKeyPathComponent updates baseTy to be the projected type of the
|
|
// component, which should be the same as the type of the declared storage
|
|
require(baseTy == leafTy,
|
|
"component type of property descriptor should match type of storage");
|
|
}
|
|
}
|
|
|
|
/// Verify that a vtable follows invariants.
|
|
void SILVTable::verify(const SILModule &M) const {
|
|
#ifdef NDEBUG
|
|
if (!M.getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
for (auto &entry : getEntries()) {
|
|
// All vtable entries must be decls in a class context.
|
|
assert(entry.Method.hasDecl() && "vtable entry is not a decl");
|
|
auto baseInfo = M.Types.getConstantInfo(entry.Method);
|
|
ValueDecl *decl = entry.Method.getDecl();
|
|
|
|
assert((!isa<AccessorDecl>(decl)
|
|
|| !cast<AccessorDecl>(decl)->isObservingAccessor())
|
|
&& "observing accessors shouldn't have vtable entries");
|
|
|
|
// For ivar destroyers, the decl is the class itself.
|
|
ClassDecl *theClass;
|
|
if (entry.Method.kind == SILDeclRef::Kind::IVarDestroyer)
|
|
theClass = dyn_cast<ClassDecl>(decl);
|
|
else
|
|
theClass = dyn_cast<ClassDecl>(decl->getDeclContext());
|
|
|
|
assert(theClass && "vtable entry must refer to a class member");
|
|
|
|
// The class context must be the vtable's class, or a superclass thereof.
|
|
assert(theClass->isSuperclassOf(getClass()) &&
|
|
"vtable entry must refer to a member of the vtable's class");
|
|
|
|
// All function vtable entries must be at their natural uncurry level.
|
|
assert(!entry.Method.isCurried && "vtable entry must not be curried");
|
|
|
|
// Foreign entry points shouldn't appear in vtables.
|
|
assert(!entry.Method.isForeign && "vtable entry must not be foreign");
|
|
|
|
// The vtable entry must be ABI-compatible with the overridden vtable slot.
|
|
SmallString<32> baseName;
|
|
{
|
|
llvm::raw_svector_ostream os(baseName);
|
|
entry.Method.print(os);
|
|
}
|
|
|
|
if (M.getStage() != SILStage::Lowered) {
|
|
SILVerifier(*entry.Implementation)
|
|
.requireABICompatibleFunctionTypes(
|
|
baseInfo.getSILType().castTo<SILFunctionType>(),
|
|
entry.Implementation->getLoweredFunctionType(),
|
|
"vtable entry for " + baseName + " must be ABI-compatible");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Verify that a witness table follows invariants.
|
|
void SILWitnessTable::verify(const SILModule &M) const {
|
|
#ifdef NDEBUG
|
|
if (!M.getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
if (isDeclaration())
|
|
assert(getEntries().empty() &&
|
|
"A witness table declaration should not have any entries.");
|
|
|
|
for (const Entry &E : getEntries())
|
|
if (E.getKind() == SILWitnessTable::WitnessKind::Method) {
|
|
SILFunction *F = E.getMethodWitness().Witness;
|
|
if (F) {
|
|
// If a SILWitnessTable is going to be serialized, it must only
|
|
// reference public or serializable functions.
|
|
if (isSerialized()) {
|
|
assert(F->hasValidLinkageForFragileRef() &&
|
|
"Fragile witness tables should not reference "
|
|
"less visible functions.");
|
|
}
|
|
|
|
assert(F->getLoweredFunctionType()->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::WitnessMethod &&
|
|
"Witnesses must have witness_method representation.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Verify that a default witness table follows invariants.
|
|
void SILDefaultWitnessTable::verify(const SILModule &M) const {
|
|
#ifndef NDEBUG
|
|
for (const Entry &E : getEntries()) {
|
|
// FIXME: associated type witnesses.
|
|
if (!E.isValid() || E.getKind() != SILWitnessTable::Method)
|
|
continue;
|
|
|
|
SILFunction *F = E.getMethodWitness().Witness;
|
|
|
|
#if 0
|
|
// FIXME: For now, all default witnesses are private.
|
|
assert(F->hasValidLinkageForFragileRef() &&
|
|
"Default witness tables should not reference "
|
|
"less visible functions.");
|
|
#endif
|
|
|
|
assert(F->getLoweredFunctionType()->getRepresentation() ==
|
|
SILFunctionTypeRepresentation::WitnessMethod &&
|
|
"Default witnesses must have witness_method representation.");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Verify that a global variable follows invariants.
|
|
void SILGlobalVariable::verify() const {
|
|
#ifdef NDEBUG
|
|
if (!getModule().getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
assert(getLoweredType().isObject()
|
|
&& "global variable cannot have address type");
|
|
|
|
// Verify the static initializer.
|
|
for (const SILInstruction &I : StaticInitializerBlock) {
|
|
assert(isValidStaticInitializerInst(&I, getModule()) &&
|
|
"illegal static initializer");
|
|
auto init = cast<SingleValueInstruction>(&I);
|
|
if (init == &StaticInitializerBlock.back()) {
|
|
assert(init->use_empty() && "Init value must not have another use");
|
|
} else {
|
|
assert(!init->use_empty() && "dead instruction in static initializer");
|
|
assert(!isa<ObjectInst>(init) &&
|
|
"object instruction is only allowed for final initial value");
|
|
}
|
|
assert(I.getParent() == &StaticInitializerBlock);
|
|
}
|
|
}
|
|
|
|
/// Verify the module.
|
|
void SILModule::verify() const {
|
|
#ifdef NDEBUG
|
|
if (!getOptions().VerifyAll)
|
|
return;
|
|
#endif
|
|
// Uniquing set to catch symbol name collisions.
|
|
llvm::DenseSet<StringRef> symbolNames;
|
|
|
|
// When merging partial modules, we only link functions from the current
|
|
// module, without enabling "LinkAll" mode or running the SILLinker pass;
|
|
// in this case, we need to relax some of the checks.
|
|
bool SingleFunction = false;
|
|
if (getOptions().MergePartialModules)
|
|
SingleFunction = true;
|
|
|
|
// Check all functions.
|
|
for (const SILFunction &f : *this) {
|
|
if (!symbolNames.insert(f.getName()).second) {
|
|
llvm::errs() << "Symbol redefined: " << f.getName() << "!\n";
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
f.verify(SingleFunction);
|
|
}
|
|
|
|
// Check all globals.
|
|
for (const SILGlobalVariable &g : getSILGlobals()) {
|
|
if (!symbolNames.insert(g.getName()).second) {
|
|
llvm::errs() << "Symbol redefined: " << g.getName() << "!\n";
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
g.verify();
|
|
}
|
|
|
|
// Check all vtables and the vtable cache.
|
|
llvm::DenseSet<ClassDecl*> vtableClasses;
|
|
unsigned EntriesSZ = 0;
|
|
for (const SILVTable &vt : getVTables()) {
|
|
if (!vtableClasses.insert(vt.getClass()).second) {
|
|
llvm::errs() << "Vtable redefined: " << vt.getClass()->getName() << "!\n";
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
vt.verify(*this);
|
|
// Check if there is a cache entry for each vtable entry
|
|
for (auto entry : vt.getEntries()) {
|
|
if (VTableEntryCache.find({&vt, entry.Method}) == VTableEntryCache.end()) {
|
|
llvm::errs() << "Vtable entry for function: "
|
|
<< entry.Implementation->getName() << "not in cache!\n";
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
EntriesSZ++;
|
|
}
|
|
}
|
|
assert(EntriesSZ == VTableEntryCache.size() &&
|
|
"Cache size is not equal to true number of VTable entries");
|
|
|
|
// Check all witness tables.
|
|
LLVM_DEBUG(llvm::dbgs() <<"*** Checking witness tables for duplicates ***\n");
|
|
llvm::DenseSet<RootProtocolConformance*> wtableConformances;
|
|
for (const SILWitnessTable &wt : getWitnessTables()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Witness Table:\n"; wt.dump());
|
|
auto conformance = wt.getConformance();
|
|
if (!wtableConformances.insert(conformance).second) {
|
|
llvm::errs() << "Witness table redefined: ";
|
|
conformance->printName(llvm::errs());
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
wt.verify(*this);
|
|
}
|
|
|
|
// Check all default witness tables.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Checking default witness tables for "
|
|
"duplicates ***\n");
|
|
llvm::DenseSet<const ProtocolDecl *> defaultWitnessTables;
|
|
for (const SILDefaultWitnessTable &wt : getDefaultWitnessTables()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Default Witness Table:\n"; wt.dump());
|
|
if (!defaultWitnessTables.insert(wt.getProtocol()).second) {
|
|
llvm::errs() << "Default witness table redefined: ";
|
|
wt.dump();
|
|
assert(false && "triggering standard assertion failure routine");
|
|
}
|
|
wt.verify(*this);
|
|
}
|
|
|
|
// Check property descriptors.
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Checking property descriptors ***\n");
|
|
for (auto &prop : getPropertyList()) {
|
|
prop.verify(*this);
|
|
}
|
|
}
|
|
|
|
/// Determine whether an instruction may not have a SILDebugScope.
|
|
bool swift::maybeScopeless(SILInstruction &I) {
|
|
if (I.getFunction()->isBare())
|
|
return true;
|
|
return !isa<DebugValueInst>(I) && !isa<DebugValueAddrInst>(I);
|
|
}
|