Files
swift-mirror/lib/SILOptimizer/Analysis/SimplifyInstruction.cpp
Andrew Trick e400b66897 Cleanup replaceAllUsesAndErase, return an iterator, allow erase handlers.
This will make the forthcoming CanonicalizeInstruction interface more
clear.

This is generally the better approach to utilities that mutate the
instruction stream. It avoids the temptation to assume that only a
single instruction will be deleted or that only instructions before
the current iterator will be deleted. This often happens to work but
eventually fails in the presense of debug and end-of-scope
instructions.

A function returning an iterator has a more clear contract than one
accepting some iterator reference of unknown
providence. Unfortunately, it doesn't work at the lowest level of
utilities, such as recursivelyDeleteTriviallyDeadInstructions, where
we want to handle instruction batches.
2019-05-06 08:36:56 -07:00

724 lines
24 KiB
C++

//===--- SimplifyInstruction.cpp - Fold instructions ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// An SSA-peephole analysis. Given a single-value instruction, find an existing
/// equivalent but less costly or more canonical SIL value.
///
/// This analysis must handle 'raw' SIL form. It should be possible to perform
/// the substitution discovered by the analysis without interfering with
/// subsequent diagnostic passes.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/Local.h"
using namespace swift;
using namespace swift::PatternMatch;
namespace swift {
class ASTContext;
} // end namespace swift
namespace {
class InstSimplifier : public SILInstructionVisitor<InstSimplifier, SILValue>{
public:
SILValue visitSILInstruction(SILInstruction *I) { return SILValue(); }
SILValue visitTupleExtractInst(TupleExtractInst *TEI);
SILValue visitStructExtractInst(StructExtractInst *SEI);
SILValue visitEnumInst(EnumInst *EI);
SILValue visitSelectEnumInst(SelectEnumInst *SEI);
SILValue visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI);
SILValue visitAddressToPointerInst(AddressToPointerInst *ATPI);
SILValue visitPointerToAddressInst(PointerToAddressInst *PTAI);
SILValue visitRefToRawPointerInst(RefToRawPointerInst *RRPI);
SILValue
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI);
SILValue visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI);
SILValue visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI);
SILValue visitStructInst(StructInst *SI);
SILValue visitTupleInst(TupleInst *SI);
SILValue visitBuiltinInst(BuiltinInst *AI);
SILValue visitUpcastInst(UpcastInst *UI);
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue visitRefTo##Name##Inst(RefTo##Name##Inst *I); \
SILValue visit##Name##ToRefInst(Name##ToRefInst *I);
#include "swift/AST/ReferenceStorage.def"
SILValue visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI);
SILValue
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI);
SILValue visitThinFunctionToPointerInst(ThinFunctionToPointerInst *TFTPI);
SILValue visitPointerToThinFunctionInst(PointerToThinFunctionInst *PTTFI);
SILValue visitBeginAccessInst(BeginAccessInst *BAI);
SILValue simplifyOverflowBuiltin(BuiltinInst *BI);
};
} // end anonymous namespace
SILValue InstSimplifier::visitStructInst(StructInst *SI) {
// Ignore empty structs.
if (SI->getNumOperands() < 1)
return SILValue();
// Optimize structs that are generated from struct_extract instructions
// from the same struct.
if (auto *Ex0 = dyn_cast<StructExtractInst>(SI->getOperand(0))) {
// Check that the constructed struct and the extracted struct are of the
// same type.
if (SI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = SI->getNumOperands(); i < e; i++) {
auto *Ex = dyn_cast<StructExtractInst>(SI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldNo() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleInst(TupleInst *TI) {
// Ignore empty tuples.
if (TI->getNumOperands() < 1)
return SILValue();
// Optimize tuples that are generated from tuple_extract instructions
// from the same tuple.
if (auto *Ex0 = dyn_cast<TupleExtractInst>(TI->getOperand(0))) {
// Check that the constructed tuple and the extracted tuple are of the
// same type.
if (TI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = TI->getNumOperands(); i < e; i++) {
auto *Ex = dyn_cast<TupleExtractInst>(TI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldNo() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleExtractInst(TupleExtractInst *TEI) {
// tuple_extract(tuple(x, y), 0) -> x
if (auto *TheTuple = dyn_cast<TupleInst>(TEI->getOperand()))
return TheTuple->getElement(TEI->getFieldNo());
// tuple_extract(apply([add|sub|...]overflow(x,y)), 0) -> x
// tuple_extract(apply(checked_trunc(ext(x))), 0) -> x
if (TEI->getFieldNo() == 0)
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand()))
return simplifyOverflowBuiltin(BI);
return SILValue();
}
SILValue InstSimplifier::visitStructExtractInst(StructExtractInst *SEI) {
// struct_extract(struct(x, y), x) -> x
if (auto *Struct = dyn_cast<StructInst>(SEI->getOperand()))
return Struct->getFieldValue(SEI->getField());
return SILValue();
}
SILValue
InstSimplifier::
visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI) {
// (unchecked_enum_data (enum payload)) -> payload
if (auto *EI = dyn_cast<EnumInst>(UEDI->getOperand())) {
if (EI->getElement() != UEDI->getElement())
return SILValue();
assert(EI->hasOperand() &&
"Should only get data from an enum with payload.");
return EI->getOperand();
}
return SILValue();
}
// Simplify:
// %1 = unchecked_enum_data %0 : $Optional<C>, #Optional.Some!enumelt.1
// %2 = enum $Optional<C>, #Optional.Some!enumelt.1, %1 : $C
// to %0 since we are building the same enum.
static SILValue simplifyEnumFromUncheckedEnumData(EnumInst *EI) {
assert(EI->hasOperand() && "Expected an enum with an operand!");
auto *UEDI = dyn_cast<UncheckedEnumDataInst>(EI->getOperand());
if (!UEDI || UEDI->getElement() != EI->getElement())
return SILValue();
SILValue EnumOp = UEDI->getOperand();
// Same enum elements don't necessarily imply same enum types.
// Enum types may be different if the enum is generic, e.g.
// E<Int>.Case and E<Double>.Case.
SILType OriginalEnum = EnumOp->getType();
SILType NewEnum = EI->getType();
if (OriginalEnum != NewEnum)
return SILValue();
return EnumOp;
}
SILValue InstSimplifier::visitSelectEnumInst(SelectEnumInst *SEI) {
auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
if (EI && EI->getType() == SEI->getEnumOperand()->getType()) {
// Simplify a select_enum on an enum instruction.
// %27 = enum $Optional<Int>, #Optional.Some!enumelt.1, %20 : $Int
// %28 = integer_literal $Builtin.Int1, -1
// %29 = integer_literal $Builtin.Int1, 0
// %30 = select_enum %27 : $Optional<Int>, case #Optional.None!enumelt: %28,
// case #Optional.Some!enumelt.1: %29
// We will return %29.
return SEI->getCaseResult(EI->getElement());
}
return SILValue();
}
SILValue InstSimplifier::visitEnumInst(EnumInst *EI) {
if (EI->hasOperand()) {
auto Result = simplifyEnumFromUncheckedEnumData(EI);
if (Result)
return Result;
// switch_enum %e : $EnumTy, case %casex: bbX,...
// bbX(%arg):
// enum $EnumTy, EnumTy::casex, %arg
// ->
// replace enum $EnumTy, EnumTy::casex, %arg by %e
auto Op = EI->getOperand();
auto *EnumArg = dyn_cast<SILArgument>(Op);
if (!EnumArg)
return SILValue();
SILBasicBlock *EnumBlock = EI->getParent();
if (EnumArg->getParent() != EnumBlock)
return SILValue();
auto *Pred = EnumBlock->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator());
if (!SEI)
return SILValue();
auto Case = SEI->getUniqueCaseForDestination(EI->getParent());
if (Case && Case.getPtrOrNull() == EI->getElement() &&
SEI->getOperand()->getType() == EI->getType()) {
return SEI->getOperand();
}
return SILValue();
}
// Simplify enum insts to the value from a switch_enum when possible, e.g.
// for
// switch_enum %0 : $Bool, case #Bool.true!enumelt: bb1
// bb1:
// %1 = enum $Bool, #Bool.true!enumelt
//
// we'll return %0
auto *BB = EI->getParent();
auto *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
if (auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
if (EI->getType() != SEI->getOperand()->getType())
return SILValue();
if (EI->getElement() == SEI->getUniqueCaseForDestination(BB).getPtrOrNull())
return SEI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitAddressToPointerInst(AddressToPointerInst *ATPI) {
// (address_to_pointer (pointer_to_address x [strict])) -> x
// The 'strict' flag is only relevant for instructions that access memory;
// the moment the address is cast back to a pointer, it no longer matters.
if (auto *PTAI = dyn_cast<PointerToAddressInst>(ATPI->getOperand()))
if (PTAI->getType() == ATPI->getOperand()->getType())
return PTAI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitPointerToAddressInst(PointerToAddressInst *PTAI) {
// (pointer_to_address strict (address_to_pointer x)) -> x
// If this address is not strict, then it cannot be replaced by an address
// that may be strict.
if (auto *ATPI = dyn_cast<AddressToPointerInst>(PTAI->getOperand()))
if (ATPI->getOperand()->getType() == PTAI->getType() && PTAI->isStrict())
return ATPI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitRefToRawPointerInst(RefToRawPointerInst *RefToRaw) {
// Perform the following simplification:
//
// (ref_to_raw_pointer (raw_pointer_to_ref x)) -> x
//
// *NOTE* We don't need to check types here.
if (auto *RawToRef = dyn_cast<RawPointerToRefInst>(&*RefToRaw->getOperand()))
return RawToRef->getOperand();
return SILValue();
}
SILValue
InstSimplifier::
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI) {
// (UCCI downcast (upcast x #type1 to #type2) #type2 to #type1) -> x
if (auto *upcast = dyn_cast<UpcastInst>(UCCI->getOperand()))
if (UCCI->getType() == upcast->getOperand()->getType())
return upcast->getOperand();
return SILValue();
}
SILValue
InstSimplifier::
visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI) {
// (unchecked-ref-cast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *ROPI = dyn_cast<UncheckedRefCastInst>(&*OPRI->getOperand()))
if (ROPI->getOperand()->getType() == OPRI->getType())
return ROPI->getOperand();
// (unchecked-ref-cast Y->X (upcast x X->Y)) -> x
if (auto *UI = dyn_cast<UpcastInst>(OPRI->getOperand()))
if (UI->getOperand()->getType() == OPRI->getType())
return UI->getOperand();
// (unchecked-ref-cast Y->X (open_existential_ref x X->Y)) -> x
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OPRI->getOperand()))
if (OER->getOperand()->getType() == OPRI->getType())
return OER->getOperand();
// (unchecked-ref-cast X->X x) -> x
if (OPRI->getOperand()->getType() == OPRI->getType())
return OPRI->getOperand();
return SILValue();
}
SILValue
InstSimplifier::
visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI) {
// (unchecked-addr-cast Y->X (unchecked-addr-cast x X->Y)) -> x
if (auto *OtherUACI = dyn_cast<UncheckedAddrCastInst>(&*UACI->getOperand()))
if (OtherUACI->getOperand()->getType() == UACI->getType())
return OtherUACI->getOperand();
// (unchecked-addr-cast X->X x) -> x
if (UACI->getOperand()->getType() == UACI->getType())
return UACI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitUpcastInst(UpcastInst *UI) {
// (upcast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *URCI = dyn_cast<UncheckedRefCastInst>(UI->getOperand()))
if (URCI->getOperand()->getType() == UI->getType())
return URCI->getOperand();
return SILValue();
}
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue \
InstSimplifier::visitRefTo##Name##Inst(RefTo##Name##Inst *RUI) { \
if (auto *URI = dyn_cast<Name##ToRefInst>(RUI->getOperand())) \
if (URI->getOperand()->getType() == RUI->getType()) \
return URI->getOperand(); \
return SILValue(); \
} \
SILValue \
InstSimplifier::visit##Name##ToRefInst(Name##ToRefInst *URI) { \
if (auto *RUI = dyn_cast<RefTo##Name##Inst>(URI->getOperand())) \
if (RUI->getOperand()->getType() == URI->getType()) \
return RUI->getOperand(); \
return SILValue(); \
}
#include "swift/AST/ReferenceStorage.def"
SILValue
InstSimplifier::
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI) {
// (unchecked_trivial_bit_cast X->X x) -> x
if (UTBCI->getOperand()->getType() == UTBCI->getType())
return UTBCI->getOperand();
// (unchecked_trivial_bit_cast Y->X (unchecked_trivial_bit_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedTrivialBitCastInst>(UTBCI->getOperand()))
if (Op->getOperand()->getType() == UTBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue
InstSimplifier::
visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI) {
// (unchecked_bitwise_cast X->X x) -> x
if (UBCI->getOperand()->getType() == UBCI->getType())
return UBCI->getOperand();
// A round-trip cast implies X and Y have the same size:
// (unchecked_bitwise_cast Y->X (unchecked_bitwise_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedBitwiseCastInst>(UBCI->getOperand()))
if (Op->getOperand()->getType() == UBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitThinFunctionToPointerInst(ThinFunctionToPointerInst *TFTPI) {
// (thin_function_to_pointer (pointer_to_thin_function x)) -> x
if (auto *PTTFI = dyn_cast<PointerToThinFunctionInst>(TFTPI->getOperand()))
if (PTTFI->getOperand()->getType() == TFTPI->getType())
return PTTFI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitPointerToThinFunctionInst(PointerToThinFunctionInst *PTTFI) {
// (pointer_to_thin_function (thin_function_to_pointer x)) -> x
if (auto *TFTPI = dyn_cast<ThinFunctionToPointerInst>(PTTFI->getOperand()))
if (TFTPI->getOperand()->getType() == PTTFI->getType())
return TFTPI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitBeginAccessInst(BeginAccessInst *BAI) {
// Remove "dead" begin_access.
if (llvm::all_of(BAI->getUses(), [](Operand *operand) -> bool {
return isIncidentalUse(operand->getUser());
})) {
return BAI->getOperand();
}
return SILValue();
}
static SILValue simplifyBuiltin(BuiltinInst *BI) {
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
switch (Intrinsic.ID) {
default:
// TODO: Handle some of the llvm intrinsics here.
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::expect:
// If we have an expect optimizer hint with a constant value input,
// there is nothing left to expect so propagate the input, i.e.,
//
// apply(expect, constant, _) -> constant.
if (auto *Literal = dyn_cast<IntegerLiteralInst>(BI->getArguments()[0]))
return Literal;
return SILValue();
}
// Otherwise, it should be one of the builtin functions.
OperandValueArrayRef Args = BI->getArguments();
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
const SILValue &Op = Args[0];
// [s|z]extOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
}
break;
case BuiltinValueKind::TruncOrBitCast: {
const SILValue &Op = Args[0];
SILValue Result;
// truncOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
// trunc(extOrBitCast(x)) -> x
if (match(Op, m_ExtOrBitCast(m_SILValue(Result)))) {
// Truncated back to the same bits we started with.
if (Result->getType() == BI->getType())
return Result;
}
return SILValue();
}
case BuiltinValueKind::Xor: {
SILValue val1, val2, val3;
// xor (xor (val1, val2), val3) == val1
if (BI->getNumOperands() == 2 &&
(match(BI,
m_BuiltinInst(BuiltinValueKind::Xor,
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1), m_SILValue(val2)),
m_SILValue(val3))) ||
match(BI, m_BuiltinInst(BuiltinValueKind::Xor, m_SILValue(val3),
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1),
m_SILValue(val2)))))) {
if (val2 == val3)
return val1;
if (val1 == val3)
return val2;
if (val1 == val2)
return val3;
}
}
break;
case BuiltinValueKind::Shl:
case BuiltinValueKind::AShr:
case BuiltinValueKind::LShr:
auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
if (RHS && !RHS->getValue()) {
// Shifting a value by 0 bits is equivalent to the value itself.
auto LHS = Args[0];
return LHS;
}
break;
}
return SILValue();
}
/// Simplify an apply of the builtin canBeClass to either 0 or 1
/// when we can statically determine the result.
SILValue InstSimplifier::visitBuiltinInst(BuiltinInst *BI) {
return simplifyBuiltin(BI);
}
/// Simplify arithmetic intrinsics with overflow and known identity
/// constants such as 0 and 1.
/// If this returns a value other than SILValue() then the instruction was
/// simplified to a value which doesn't overflow. The overflow case is handled
/// in SILCombine.
static SILValue simplifyBinaryWithOverflow(BuiltinInst *BI,
llvm::Intrinsic::ID ID) {
OperandValueArrayRef Args = BI->getArguments();
assert(Args.size() >= 2);
const SILValue &Op1 = Args[0];
const SILValue &Op2 = Args[1];
auto *IntOp1 = dyn_cast<IntegerLiteralInst>(Op1);
auto *IntOp2 = dyn_cast<IntegerLiteralInst>(Op2);
// If both ops are not constants, we cannot do anything.
// FIXME: Add cases where we can do something, eg, (x - x) -> 0
if (!IntOp1 && !IntOp2)
return SILValue();
// Calculate the result.
switch (ID) {
default: llvm_unreachable("Invalid case");
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
// 0 + X -> X
if (match(Op1, m_Zero()))
return Op2;
// X + 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
// X - 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
// 0 * X -> 0
if (match(Op1, m_Zero()))
return Op1;
// X * 0 -> 0
if (match(Op2, m_Zero()))
return Op2;
// 1 * X -> X
if (match(Op1, m_One()))
return Op2;
// X * 1 -> X
if (match(Op2, m_One()))
return Op1;
return SILValue();
}
return SILValue();
}
/// Simplify operations that may overflow. All such operations return a tuple.
/// This function simplifies such operations, but returns only the first
/// element of a tuple. It looks strange at the first glance, but this
/// is OK, because this function is invoked only internally when processing
/// tuple_extract instructions. Therefore the result of this function
/// is used for simplifications like tuple_extract(x, 0) -> simplified(x)
SILValue InstSimplifier::simplifyOverflowBuiltin(BuiltinInst *BI) {
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
// If it's an llvm intrinsic, fold the intrinsic.
switch (Intrinsic.ID) {
default:
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
return simplifyBinaryWithOverflow(BI, Intrinsic.ID);
}
// Otherwise, it should be one of the builtin functions.
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::UToSCheckedTrunc:
case BuiltinValueKind::UToUCheckedTrunc:
case BuiltinValueKind::SToUCheckedTrunc:
case BuiltinValueKind::SToSCheckedTrunc: {
SILValue Result;
// CheckedTrunc(Ext(x)) -> x
if (match(BI, m_CheckedTrunc(m_Ext(m_SILValue(Result)))))
if (Result->getType() == BI->getType().getTupleElementType(0))
if (auto signBit = computeSignBit(Result))
if (!signBit.getValue())
return Result;
}
break;
// Check and simplify binary arithmetic with overflow.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return simplifyBinaryWithOverflow(BI,
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID));
}
return SILValue();
}
/// Try to simplify the specified instruction, performing local
/// analysis of the operands of the instruction, without looking at its uses
/// (e.g. constant folding). If a simpler result can be found, it is
/// returned, otherwise a null SILValue is returned.
///
SILValue swift::simplifyInstruction(SILInstruction *I) {
return InstSimplifier().visit(I);
}
/// Replace an instruction with a simplified result, including any debug uses,
/// and erase the instruction. If the instruction initiates a scope, do not
/// replace the end of its scope; it will be deleted along with its parent.
///
/// This is a simple transform based on the above analysis.
///
/// Return an iterator to the next (nondeleted) instruction.
SILBasicBlock::iterator swift::replaceAllSimplifiedUsesAndErase(
SILInstruction *I, SILValue result,
std::function<void(SILInstruction *)> eraseHandler) {
auto *SVI = cast<SingleValueInstruction>(I);
assert(SVI != result && "Cannot RAUW a value with itself");
SILBasicBlock::iterator nextii = std::next(I->getIterator());
// Only SingleValueInstructions are currently simplified.
while (!SVI->use_empty()) {
Operand *use = *SVI->use_begin();
SILInstruction *user = use->getUser();
// Erase the end of scope marker.
if (isEndOfScopeMarker(user)) {
if (&*nextii == user)
++nextii;
if (eraseHandler)
eraseHandler(user);
else
user->eraseFromParent();
continue;
}
use->set(result);
}
if (eraseHandler)
eraseHandler(I);
else
I->eraseFromParent();
return nextii;
}
/// Simplify invocations of builtin operations that may overflow.
/// All such operations return a tuple (result, overflow_flag).
/// This function try to simplify such operations, but returns only a
/// simplified first element of a tuple. The overflow flag is not returned
/// explicitly, because this simplification is only possible if there is
/// no overflow. Therefore the overflow flag is known to have a value of 0 if
/// simplification was successful.
/// In case when a simplification is not possible, a null SILValue is returned.
SILValue swift::simplifyOverflowBuiltinInstruction(BuiltinInst *BI) {
return InstSimplifier().simplifyOverflowBuiltin(BI);
}