Files
swift-mirror/lib/SILOptimizer/LoopTransforms/LICM.cpp
2019-05-14 10:45:53 -07:00

809 lines
27 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- LICM.cpp - Loop invariant code motion ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-licm"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/AccessedStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
namespace {
/// Instructions which can be hoisted:
/// loads, function calls without side effects and (some) exclusivity checks
using InstSet = llvm::SmallPtrSet<SILInstruction *, 8>;
using InstVector = llvm::SmallVector<SILInstruction *, 8>;
/// A subset of instruction which may have side effects.
/// Doesn't contain ones that have special handling (e.g. fix_lifetime)
using WriteSet = SmallPtrSet<SILInstruction *, 8>;
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with the memory addressed by \a LI.
template <SILInstructionKind K, typename T>
static bool mayWriteTo(AliasAnalysis *AA, WriteSet &MayWrites,
UnaryInstructionBase<K, T> *Inst) {
for (auto *W : MayWrites)
if (AA->mayWriteToMemory(W, Inst->getOperand())) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to "
<< *Inst << "\n");
return true;
}
return false;
}
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with any memory which is read by \p AI.
/// Note: This function should only be called on a read-only apply!
static bool mayWriteTo(AliasAnalysis *AA, SideEffectAnalysis *SEA,
WriteSet &MayWrites, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
assert(E.getMemBehavior(RetainObserveKind::IgnoreRetains) <=
SILInstruction::MemoryBehavior::MayRead &&
"apply should only read from memory");
assert(!E.getGlobalEffects().mayRead() &&
"apply should not have global effects");
for (unsigned Idx = 0, End = AI->getNumArguments(); Idx < End; ++Idx) {
auto &ArgEffect = E.getParameterEffects()[Idx];
assert(!ArgEffect.mayRelease() && "apply should only read from memory");
if (!ArgEffect.mayRead())
continue;
SILValue Arg = AI->getArgument(Idx);
// Check if the memory addressed by the argument may alias any writes.
for (auto *W : MayWrites) {
if (AA->mayWriteToMemory(W, Arg)) {
LLVM_DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to "
<< *AI << "\n");
return true;
}
}
}
return false;
}
static bool hasLoopInvariantOperands(SILInstruction *I, SILLoop *L) {
auto Opds = I->getAllOperands();
return std::all_of(Opds.begin(), Opds.end(), [=](Operand &Op) {
ValueBase *Def = Op.get();
// Operand is defined outside the loop.
if (auto *Inst = Def->getDefiningInstruction())
return !L->contains(Inst->getParent());
if (auto *Arg = dyn_cast<SILArgument>(Def))
return !L->contains(Arg->getParent());
return false;
});
}
// When Hoisting / Sinking,
// Don't descend into control-dependent code.
// Only traverse into basic blocks that dominate all exits.
static void getDominatingBlocks(SmallVectorImpl<SILBasicBlock *> &domBlocks,
SILLoop *Loop, DominanceInfo *DT) {
auto HeaderBB = Loop->getHeader();
auto DTRoot = DT->getNode(HeaderBB);
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
for (llvm::df_iterator<DominanceInfoNode *> It = llvm::df_begin(DTRoot),
E = llvm::df_end(DTRoot);
It != E;) {
auto *CurBB = It->getBlock();
// Don't decent into control-dependent code. Only traverse into basic blocks
// that dominate all exits.
if (!std::all_of(ExitingBBs.begin(), ExitingBBs.end(),
[=](SILBasicBlock *ExitBB) {
return DT->dominates(CurBB, ExitBB);
})) {
LLVM_DEBUG(llvm::dbgs() << " skipping conditional block "
<< *CurBB << "\n");
It.skipChildren();
continue;
}
domBlocks.push_back(CurBB);
// Next block in dominator tree.
++It;
}
}
static bool hoistInstruction(DominanceInfo *DT, SILInstruction *Inst,
SILLoop *Loop, SILBasicBlock *&Preheader) {
if (!hasLoopInvariantOperands(Inst, Loop)) {
LLVM_DEBUG(llvm::dbgs() << " loop variant operands\n");
return false;
}
auto mvBefore = Preheader->getTerminator();
ArraySemanticsCall semCall(Inst);
if (semCall.canHoist(mvBefore, DT)) {
semCall.hoist(mvBefore, DT);
} else {
Inst->moveBefore(mvBefore);
}
return true;
}
static bool hoistInstructions(SILLoop *Loop, DominanceInfo *DT,
InstSet &HoistUpSet) {
LLVM_DEBUG(llvm::dbgs() << " Hoisting instructions.\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
for (auto *CurBB : domBlocks) {
// We know that the block is guaranteed to be executed. Hoist if we can.
for (auto InstIt = CurBB->begin(), E = CurBB->end(); InstIt != E;) {
SILInstruction *Inst = &*InstIt;
++InstIt;
LLVM_DEBUG(llvm::dbgs() << " looking at " << *Inst);
if (!HoistUpSet.count(Inst)) {
continue;
}
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Hoisted " << *Inst);
Changed = true;
}
}
return Changed;
}
/// Summary of may writes occurring in the loop tree rooted at \p
/// Loop. This includes all writes of the sub loops and the loop itself.
struct LoopNestSummary {
SILLoop *Loop;
WriteSet MayWrites;
LoopNestSummary(SILLoop *Curr) : Loop(Curr) {}
void copySummary(LoopNestSummary &Other) {
MayWrites.insert(Other.MayWrites.begin(), Other.MayWrites.end());
}
LoopNestSummary(const LoopNestSummary &) = delete;
LoopNestSummary &operator=(const LoopNestSummary &) = delete;
LoopNestSummary(LoopNestSummary &&) = delete;
};
static unsigned getEdgeIndex(SILBasicBlock *BB, SILBasicBlock *ExitingBB) {
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *CurrBB = Succs[EdgeIdx];
if (CurrBB == BB) {
return EdgeIdx;
}
}
llvm_unreachable("BB is not a Successor");
}
static bool sinkInstruction(DominanceInfo *DT,
std::unique_ptr<LoopNestSummary> &LoopSummary,
SILInstruction *Inst, SILLoopInfo *LI) {
auto *Loop = LoopSummary->Loop;
SmallVector<SILBasicBlock *, 8> ExitBBs;
Loop->getExitBlocks(ExitBBs);
SmallVector<SILBasicBlock *, 8> NewExitBBs;
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
auto *ExitBB = Loop->getExitBlock();
bool Changed = false;
for (auto *ExitingBB : ExitingBBs) {
SmallVector<SILBasicBlock *, 8> BBSuccessors;
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *BB = Succs[EdgeIdx];
BBSuccessors.push_back(BB);
}
while (!BBSuccessors.empty()) {
SILBasicBlock *BB = BBSuccessors.pop_back_val();
if (std::find(NewExitBBs.begin(), NewExitBBs.end(), BB) !=
NewExitBBs.end()) {
// Already got a copy there
continue;
}
auto EdgeIdx = getEdgeIndex(BB, ExitingBB);
SILBasicBlock *OutsideBB = nullptr;
if (std::find(ExitBBs.begin(), ExitBBs.end(), BB) != ExitBBs.end()) {
auto *SplitBB =
splitCriticalEdge(ExitingBB->getTerminator(), EdgeIdx, DT, LI);
OutsideBB = SplitBB ? SplitBB : BB;
NewExitBBs.push_back(OutsideBB);
}
if (!OutsideBB) {
continue;
}
// If OutsideBB already contains Inst -> skip
// This might happen if we have a conditional control flow
// And a pair
// We hoisted the first part, we can safely ignore sinking
auto matchPred = [&](SILInstruction &CurrIns) {
return Inst->isIdenticalTo(&CurrIns);
};
if (std::find_if(OutsideBB->begin(), OutsideBB->end(), matchPred) !=
OutsideBB->end()) {
LLVM_DEBUG(llvm::errs() << " instruction already at exit BB "
<< *Inst);
ExitBB = nullptr;
} else if (ExitBB) {
// easy case
LLVM_DEBUG(llvm::errs() << " moving instruction to exit BB " << *Inst);
Inst->moveBefore(&*OutsideBB->begin());
} else {
LLVM_DEBUG(llvm::errs() << " cloning instruction to exit BB "
<< *Inst);
Inst->clone(&*OutsideBB->begin());
}
Changed = true;
}
}
if (Changed && !ExitBB) {
// Created clones of instruction
// Remove it from the may write set - dangling pointer
LoopSummary->MayWrites.erase(Inst);
Inst->getParent()->erase(Inst);
}
return Changed;
}
static bool sinkInstructions(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI,
InstVector &SinkDownSet) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Sink instructions attempt\n");
SmallVector<SILBasicBlock *, 8> domBlocks;
getDominatingBlocks(domBlocks, Loop, DT);
bool Changed = false;
for (auto *Inst : SinkDownSet) {
// only sink if the block is guaranteed to be executed.
if (std::find(domBlocks.begin(), domBlocks.end(), Inst->getParent()) ==
domBlocks.end()) {
continue;
}
Changed |= sinkInstruction(DT, LoopSummary, Inst, LI);
}
return Changed;
}
static void getEndAccesses(BeginAccessInst *BI,
SmallVectorImpl<EndAccessInst *> &EndAccesses) {
for (auto Use : BI->getUses()) {
auto *User = Use->getUser();
auto *EI = dyn_cast<EndAccessInst>(User);
if (!EI) {
continue;
}
EndAccesses.push_back(EI);
}
}
static bool
hoistSpecialInstruction(std::unique_ptr<LoopNestSummary> &LoopSummary,
DominanceInfo *DT, SILLoopInfo *LI, InstVector &Special) {
auto *Loop = LoopSummary->Loop;
LLVM_DEBUG(llvm::errs() << " Hoist and Sink pairs attempt\n");
auto Preheader = Loop->getLoopPreheader();
assert(Preheader && "Expected a preheader");
bool Changed = false;
for (auto *Inst : Special) {
if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
continue;
}
if (auto *BI = dyn_cast<BeginAccessInst>(Inst)) {
SmallVector<EndAccessInst *, 2> Ends;
getEndAccesses(BI, Ends);
LLVM_DEBUG(llvm::dbgs() << "Hoisted BeginAccess " << *BI);
for (auto *instSink : Ends) {
if (!sinkInstruction(DT, LoopSummary, instSink, LI)) {
llvm_unreachable("LICM: Could not perform must-sink instruction");
}
}
LLVM_DEBUG(llvm::errs() << " Successfully hoisted and sank pair\n");
} else {
LLVM_DEBUG(llvm::dbgs() << "Hoisted RefElementAddr "
<< *static_cast<RefElementAddrInst *>(Inst));
}
Changed = true;
}
return Changed;
}
/// Optimize the loop tree bottom up propagating loop's summaries up the
/// loop tree.
class LoopTreeOptimization {
llvm::DenseMap<SILLoop *, std::unique_ptr<LoopNestSummary>>
LoopNestSummaryMap;
SmallVector<SILLoop *, 8> BotUpWorkList;
SILLoopInfo *LoopInfo;
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
DominanceInfo *DomTree;
AccessedStorageAnalysis *ASA;
bool Changed;
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
bool RunsOnHighLevelSIL;
/// Instructions that we may be able to hoist up
InstSet HoistUp;
/// Instructions that we may be able to sink down
InstVector SinkDown;
/// Hoistable Instructions that need special treatment
/// e.g. begin_access
InstVector SpecialHoist;
public:
LoopTreeOptimization(SILLoop *TopLevelLoop, SILLoopInfo *LI,
AliasAnalysis *AA, SideEffectAnalysis *SEA,
DominanceInfo *DT, AccessedStorageAnalysis *ASA,
bool RunsOnHighLevelSil)
: LoopInfo(LI), AA(AA), SEA(SEA), DomTree(DT), ASA(ASA), Changed(false),
RunsOnHighLevelSIL(RunsOnHighLevelSil) {
// Collect loops for a recursive bottom-up traversal in the loop tree.
BotUpWorkList.push_back(TopLevelLoop);
for (unsigned i = 0; i < BotUpWorkList.size(); ++i) {
auto *L = BotUpWorkList[i];
for (auto *SubLoop : *L)
BotUpWorkList.push_back(SubLoop);
}
}
/// Optimize this loop tree.
bool optimize();
protected:
/// Propagate the sub-loops' summaries up to the current loop.
void propagateSummaries(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Collect a set of instructions that can be hoisted
void analyzeCurrentLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// Optimize the current loop nest.
bool optimizeLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);
};
} // end anonymous namespace
bool LoopTreeOptimization::optimize() {
// Process loops bottom up in the loop tree.
while (!BotUpWorkList.empty()) {
SILLoop *CurrentLoop = BotUpWorkList.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Processing loop " << *CurrentLoop);
// Collect all summary of all sub loops of the current loop. Since we
// process the loop tree bottom up they are guaranteed to be available in
// the map.
auto CurrLoopSummary = llvm::make_unique<LoopNestSummary>(CurrentLoop);
propagateSummaries(CurrLoopSummary);
// If the current loop changed, then we might reveal more instr to hoist
// For example, a fix_lifetime's operand, if hoisted outside,
// Might allow us to sink the instruction out of the loop
bool currChanged = false;
do {
currChanged = false;
// Analyze the current loop for instructions that can be hoisted.
analyzeCurrentLoop(CurrLoopSummary);
currChanged = optimizeLoop(CurrLoopSummary);
// Reset the data structures for next loop in the list
HoistUp.clear();
SinkDown.clear();
SpecialHoist.clear();
} while (currChanged);
// Store the summary for parent loops to use.
LoopNestSummaryMap[CurrentLoop] = std::move(CurrLoopSummary);
}
return Changed;
}
void LoopTreeOptimization::propagateSummaries(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
for (auto *SubLoop : *CurrSummary->Loop) {
assert(LoopNestSummaryMap.count(SubLoop) && "Must have data for sub loops");
CurrSummary->copySummary(*LoopNestSummaryMap[SubLoop]);
LoopNestSummaryMap.erase(SubLoop);
}
}
static bool isSafeReadOnlyApply(SideEffectAnalysis *SEA, ApplyInst *AI) {
FunctionSideEffects E;
SEA->getCalleeEffects(E, AI);
if (E.getGlobalEffects().mayRead()) {
// If we have Global effects,
// we don't know which memory is read in the callee.
// Therefore we bail for safety
return false;
}
auto MB = E.getMemBehavior(RetainObserveKind::ObserveRetains);
return (MB <= SILInstruction::MemoryBehavior::MayRead);
}
static void checkSideEffects(swift::SILInstruction &Inst, WriteSet &MayWrites) {
if (Inst.mayHaveSideEffects()) {
MayWrites.insert(&Inst);
}
}
/// Returns true if the \p Inst follows the default hoisting heuristic
static bool canHoistUpDefault(SILInstruction *inst, SILLoop *Loop,
DominanceInfo *DT, bool RunsOnHighLevelSil) {
auto Preheader = Loop->getLoopPreheader();
if (!Preheader) {
return false;
}
if (isa<TermInst>(inst) || isa<AllocationInst>(inst) ||
isa<DeallocationInst>(inst)) {
return false;
}
if (inst->getMemoryBehavior() == SILInstruction::MemoryBehavior::None) {
return true;
}
if (!RunsOnHighLevelSil) {
return false;
}
// We cant hoist everything that is hoist-able
// The canHoist method does not do all the required analysis
// Some of the work is done at COW Array Opt
// TODO: Refactor COW Array Opt + canHoist - radar 41601468
ArraySemanticsCall semCall(inst);
switch (semCall.getKind()) {
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return semCall.canHoist(Preheader->getTerminator(), DT);
default:
return false;
}
}
// Check If all the end accesses of the given begin do not prevent hoisting
// There are only two legal placements for the end access instructions:
// 1) Inside the same loop (sink to loop exists)
// Potential TODO: At loop exit block
static bool handledEndAccesses(BeginAccessInst *BI, SILLoop *Loop) {
SmallVector<EndAccessInst *, 2> AllEnds;
getEndAccesses(BI, AllEnds);
if (AllEnds.empty()) {
return false;
}
for (auto *User : AllEnds) {
auto *BB = User->getParent();
if (Loop->getBlocksSet().count(BB) != 0) {
continue;
}
return false;
}
return true;
}
static bool isCoveredByScope(BeginAccessInst *BI, DominanceInfo *DT,
SILInstruction *applyInstr) {
if (!DT->dominates(BI, applyInstr))
return false;
for (auto *EI : BI->getEndAccesses()) {
if (!DT->dominates(applyInstr, EI))
return false;
}
return true;
}
static bool analyzeBeginAccess(BeginAccessInst *BI,
SmallVector<BeginAccessInst *, 8> &BeginAccesses,
SmallVector<FullApplySite, 8> &fullApplies,
WriteSet &MayWrites,
AccessedStorageAnalysis *ASA,
DominanceInfo *DT) {
const AccessedStorage &storage =
findAccessedStorageNonNested(BI->getSource());
if (!storage) {
return false;
}
auto BIAccessedStorageNonNested = findAccessedStorageNonNested(BI);
auto safeBeginPred = [&](BeginAccessInst *OtherBI) {
if (BI == OtherBI) {
return true;
}
return BIAccessedStorageNonNested.isDistinctFrom(
findAccessedStorageNonNested(OtherBI));
};
if (!std::all_of(BeginAccesses.begin(), BeginAccesses.end(), safeBeginPred))
return false;
for (auto fullApply : fullApplies) {
FunctionAccessedStorage callSiteAccesses;
ASA->getCallSiteEffects(callSiteAccesses, fullApply);
SILAccessKind accessKind = BI->getAccessKind();
if (!callSiteAccesses.mayConflictWith(accessKind, storage))
continue;
// Check if we can ignore this conflict:
// If the apply is “sandwiched” between the begin and end access,
// theres no reason we cant hoist out of the loop.
auto *applyInstr = fullApply.getInstruction();
if (!isCoveredByScope(BI, DT, applyInstr))
return false;
}
// Check may releases
// Only class and global access that may alias would conflict
const AccessedStorage::Kind kind = storage.getKind();
if (kind != AccessedStorage::Class && kind != AccessedStorage::Global) {
return true;
}
// TODO Introduce "Pure Swift" deinitializers
// We can then make use of alias information for instr's operands
// If they don't alias - we might get away with not recording a conflict
for (auto mayWrite : MayWrites) {
// we actually compute all MayWrites in analyzeCurrentLoop
if (!mayWrite->mayRelease()) {
continue;
}
if (!isCoveredByScope(BI, DT, mayWrite))
return false;
}
return true;
}
// Analyzes current loop for hosting/sinking potential:
// Computes set of instructions we may be able to move out of the loop
// Important Note:
// We can't bail out of this method! we have to run it on all loops.
// We *need* to discover all MayWrites -
// even if the loop is otherwise skipped!
// This is because outer loops will depend on the inner loop's writes.
void LoopTreeOptimization::analyzeCurrentLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
WriteSet &MayWrites = CurrSummary->MayWrites;
SILLoop *Loop = CurrSummary->Loop;
LLVM_DEBUG(llvm::dbgs() << " Analyzing accesses.\n");
// Contains function calls in the loop, which only read from memory.
SmallVector<ApplyInst *, 8> ReadOnlyApplies;
// Contains Loads inside the loop.
SmallVector<LoadInst *, 8> Loads;
// Contains fix_lifetime, we might be able to sink them.
SmallVector<FixLifetimeInst *, 8> FixLifetimes;
// Contains begin_access, we might be able to hoist them.
SmallVector<BeginAccessInst *, 8> BeginAccesses;
// Contains all applies - used for begin_access
SmallVector<FullApplySite, 8> fullApplies;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
switch (Inst.getKind()) {
case SILInstructionKind::FixLifetimeInst: {
auto *FL = dyn_cast<FixLifetimeInst>(&Inst);
assert(FL && "Expected a FixLifetime instruction");
FixLifetimes.push_back(FL);
// We can ignore the side effects of FixLifetimes
break;
}
case SILInstructionKind::LoadInst: {
auto *LI = dyn_cast<LoadInst>(&Inst);
assert(LI && "Expected a Load instruction");
Loads.push_back(LI);
break;
}
case SILInstructionKind::BeginAccessInst: {
auto *BI = dyn_cast<BeginAccessInst>(&Inst);
assert(BI && "Expected a Begin Access");
BeginAccesses.push_back(BI);
checkSideEffects(Inst, MayWrites);
break;
}
case SILInstructionKind::RefElementAddrInst: {
auto *REA = static_cast<RefElementAddrInst *>(&Inst);
SpecialHoist.push_back(REA);
break;
}
case swift::SILInstructionKind::CondFailInst: {
// We can (and must) hoist cond_fail instructions if the operand is
// invariant. We must hoist them so that we preserve memory safety. A
// cond_fail that would have protected (executed before) a memory access
// must - after hoisting - also be executed before said access.
HoistUp.insert(&Inst);
checkSideEffects(Inst, MayWrites);
break;
}
case SILInstructionKind::ApplyInst: {
auto *AI = dyn_cast<ApplyInst>(&Inst);
assert(AI && "Expected an Apply Instruction");
if (isSafeReadOnlyApply(SEA, AI)) {
ReadOnlyApplies.push_back(AI);
}
// check for array semantics and side effects - same as default
LLVM_FALLTHROUGH;
}
default: {
if (auto fullApply = FullApplySite::isa(&Inst)) {
fullApplies.push_back(fullApply);
}
checkSideEffects(Inst, MayWrites);
if (canHoistUpDefault(&Inst, Loop, DomTree, RunsOnHighLevelSIL)) {
HoistUp.insert(&Inst);
}
break;
}
}
}
}
auto *Preheader = Loop->getLoopPreheader();
if (!Preheader) {
// Can't hoist/sink instructions
return;
}
for (auto *AI : ReadOnlyApplies) {
if (!mayWriteTo(AA, SEA, MayWrites, AI)) {
HoistUp.insert(AI);
}
}
for (auto *LI : Loads) {
if (!mayWriteTo(AA, MayWrites, LI)) {
HoistUp.insert(LI);
}
}
bool mayWritesMayRelease =
std::any_of(MayWrites.begin(), MayWrites.end(),
[&](SILInstruction *W) { return W->mayRelease(); });
for (auto *FL : FixLifetimes) {
if (!DomTree->dominates(FL->getOperand()->getParentBlock(), Preheader)) {
continue;
}
if (!mayWriteTo(AA, MayWrites, FL) || !mayWritesMayRelease) {
SinkDown.push_back(FL);
}
}
for (auto *BI : BeginAccesses) {
if (!handledEndAccesses(BI, Loop)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping: " << *BI);
LLVM_DEBUG(llvm::dbgs() << "Some end accesses can't be handled\n");
continue;
}
if (analyzeBeginAccess(BI, BeginAccesses, fullApplies, MayWrites, ASA,
DomTree)) {
SpecialHoist.push_back(BI);
}
}
}
bool LoopTreeOptimization::optimizeLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
auto *CurrentLoop = CurrSummary->Loop;
// We only support Loops with a preheader
if (!CurrentLoop->getLoopPreheader())
return false;
bool currChanged = false;
currChanged |= hoistInstructions(CurrentLoop, DomTree, HoistUp);
currChanged |= sinkInstructions(CurrSummary, DomTree, LoopInfo, SinkDown);
currChanged |=
hoistSpecialInstruction(CurrSummary, DomTree, LoopInfo, SpecialHoist);
Changed |= currChanged;
return currChanged;
}
namespace {
/// Hoist loop invariant code out of innermost loops.
///
/// Transforms are identified by type, not instance. Split this
/// Into two types: "High-level Loop Invariant Code Motion"
/// and "Loop Invariant Code Motion".
class LICM : public SILFunctionTransform {
public:
LICM(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
/// We only hoist semantic calls on high-level SIL because we can be sure that
/// e.g. an Array as SILValue is really immutable (including its content).
bool RunsOnHighLevelSil;
void run() override {
SILFunction *F = getFunction();
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *LoopInfo = LA->get(F);
if (LoopInfo->empty()) {
LLVM_DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
return;
}
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
AliasAnalysis *AA = PM->getAnalysis<AliasAnalysis>();
SideEffectAnalysis *SEA = PM->getAnalysis<SideEffectAnalysis>();
AccessedStorageAnalysis *ASA = getAnalysis<AccessedStorageAnalysis>();
DominanceInfo *DomTree = nullptr;
LLVM_DEBUG(llvm::dbgs() << "Processing loops in " << F->getName() << "\n");
bool Changed = false;
for (auto *TopLevelLoop : *LoopInfo) {
if (!DomTree) DomTree = DA->get(F);
LoopTreeOptimization Opt(TopLevelLoop, LoopInfo, AA, SEA, DomTree, ASA,
RunsOnHighLevelSil);
Changed |= Opt.optimize();
}
if (Changed) {
LA->lockInvalidation();
DA->lockInvalidation();
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
LA->unlockInvalidation();
DA->unlockInvalidation();
}
}
};
} // end anonymous namespace
SILTransform *swift::createLICM() {
return new LICM(false);
}
SILTransform *swift::createHighLevelLICM() {
return new LICM(true);
}