mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This is a large patch; I couldn't split it up further while still keeping things working. There are four things being changed at once here: - Places that call SILType::isAddressOnly()/isLoadable() now call the SILFunction overload and not the SILModule one. - SILFunction's overloads of getTypeLowering() and getLoweredType() now pass the function's resilience expansion down, instead of hardcoding ResilienceExpansion::Minimal. - Various other places with '// FIXME: Expansion' now use a better resilience expansion. - A few tests were updated to reflect SILGen's improved code generation, and some new tests are added to cover more code paths that previously were uncovered and only manifested themselves as standard library build failures while I was working on this change.
1875 lines
70 KiB
C++
1875 lines
70 KiB
C++
//===--- PredictableMemOpt.cpp - Perform predictable memory optzns --------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "predictable-memopt"
|
|
|
|
#include "PMOMemoryUseCollector.h"
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/SIL/BranchPropagatedUser.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumLoadPromoted, "Number of loads promoted");
|
|
STATISTIC(NumDestroyAddrPromoted, "Number of destroy_addrs promoted");
|
|
STATISTIC(NumAllocRemoved, "Number of allocations completely removed");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subelement Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// We can only analyze components of structs whose storage is fully accessible
|
|
// from Swift.
|
|
static StructDecl *
|
|
getFullyReferenceableStruct(SILType Ty) {
|
|
auto SD = Ty.getStructOrBoundGenericStruct();
|
|
if (!SD || SD->hasUnreferenceableStorage())
|
|
return nullptr;
|
|
return SD;
|
|
}
|
|
|
|
static unsigned getNumSubElements(SILType T, SILModule &M) {
|
|
|
|
if (auto TT = T.getAs<TupleType>()) {
|
|
unsigned NumElements = 0;
|
|
for (auto index : indices(TT.getElementTypes()))
|
|
NumElements += getNumSubElements(T.getTupleElementType(index), M);
|
|
return NumElements;
|
|
}
|
|
|
|
if (auto *SD = getFullyReferenceableStruct(T)) {
|
|
unsigned NumElements = 0;
|
|
for (auto *D : SD->getStoredProperties())
|
|
NumElements += getNumSubElements(T.getFieldType(D, M), M);
|
|
return NumElements;
|
|
}
|
|
|
|
// If this isn't a tuple or struct, it is a single element.
|
|
return 1;
|
|
}
|
|
|
|
/// getAccessPathRoot - Given an address, dive through any tuple/struct element
|
|
/// addresses to get the underlying value.
|
|
static SILValue getAccessPathRoot(SILValue pointer) {
|
|
while (true) {
|
|
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(pointer)) {
|
|
pointer = TEAI->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *SEAI = dyn_cast<StructElementAddrInst>(pointer)) {
|
|
pointer = SEAI->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *BAI = dyn_cast<BeginAccessInst>(pointer)) {
|
|
pointer = BAI->getSource();
|
|
continue;
|
|
}
|
|
|
|
return pointer;
|
|
}
|
|
}
|
|
|
|
/// Compute the subelement number indicated by the specified pointer (which is
|
|
/// derived from the root by a series of tuple/struct element addresses) by
|
|
/// treating the type as a linearized namespace with sequential elements. For
|
|
/// example, given:
|
|
///
|
|
/// root = alloc { a: { c: i64, d: i64 }, b: (i64, i64) }
|
|
/// tmp1 = struct_element_addr root, 1
|
|
/// tmp2 = tuple_element_addr tmp1, 0
|
|
///
|
|
/// This will return a subelement number of 2.
|
|
///
|
|
/// If this pointer is to within an existential projection, it returns ~0U.
|
|
static unsigned computeSubelement(SILValue Pointer,
|
|
SingleValueInstruction *RootInst) {
|
|
unsigned SubElementNumber = 0;
|
|
SILModule &M = RootInst->getModule();
|
|
|
|
while (1) {
|
|
// If we got to the root, we're done.
|
|
if (RootInst == Pointer)
|
|
return SubElementNumber;
|
|
|
|
if (auto *PBI = dyn_cast<ProjectBoxInst>(Pointer)) {
|
|
Pointer = PBI->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *BAI = dyn_cast<BeginAccessInst>(Pointer)) {
|
|
Pointer = BAI->getSource();
|
|
continue;
|
|
}
|
|
|
|
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Pointer)) {
|
|
SILType TT = TEAI->getOperand()->getType();
|
|
|
|
// Keep track of what subelement is being referenced.
|
|
for (unsigned i = 0, e = TEAI->getFieldNo(); i != e; ++i) {
|
|
SubElementNumber += getNumSubElements(TT.getTupleElementType(i), M);
|
|
}
|
|
Pointer = TEAI->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *SEAI = dyn_cast<StructElementAddrInst>(Pointer)) {
|
|
SILType ST = SEAI->getOperand()->getType();
|
|
|
|
// Keep track of what subelement is being referenced.
|
|
StructDecl *SD = SEAI->getStructDecl();
|
|
for (auto *D : SD->getStoredProperties()) {
|
|
if (D == SEAI->getField()) break;
|
|
SubElementNumber += getNumSubElements(ST.getFieldType(D, M), M);
|
|
}
|
|
|
|
Pointer = SEAI->getOperand();
|
|
continue;
|
|
}
|
|
|
|
|
|
assert(isa<InitExistentialAddrInst>(Pointer) &&
|
|
"Unknown access path instruction");
|
|
// Cannot promote loads and stores from within an existential projection.
|
|
return ~0U;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Available Value
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class AvailableValueAggregator;
|
|
|
|
struct AvailableValue {
|
|
friend class AvailableValueAggregator;
|
|
|
|
SILValue Value;
|
|
unsigned SubElementNumber;
|
|
|
|
/// If this gets too expensive in terms of copying, we can use an arena and a
|
|
/// FrozenPtrSet like we do in ARC.
|
|
SmallSetVector<StoreInst *, 1> InsertionPoints;
|
|
|
|
/// Just for updating.
|
|
SmallVectorImpl<PMOMemoryUse> *Uses;
|
|
|
|
public:
|
|
AvailableValue() = default;
|
|
|
|
/// Main initializer for available values.
|
|
///
|
|
/// *NOTE* We assume that all available values start with a singular insertion
|
|
/// point and insertion points are added by merging.
|
|
AvailableValue(SILValue Value, unsigned SubElementNumber,
|
|
StoreInst *InsertPoint)
|
|
: Value(Value), SubElementNumber(SubElementNumber), InsertionPoints() {
|
|
InsertionPoints.insert(InsertPoint);
|
|
}
|
|
|
|
/// Deleted copy constructor. This is a move only type.
|
|
AvailableValue(const AvailableValue &) = delete;
|
|
|
|
/// Deleted copy operator. This is a move only type.
|
|
AvailableValue &operator=(const AvailableValue &) = delete;
|
|
|
|
/// Move constructor.
|
|
AvailableValue(AvailableValue &&Other)
|
|
: Value(nullptr), SubElementNumber(~0), InsertionPoints() {
|
|
std::swap(Value, Other.Value);
|
|
std::swap(SubElementNumber, Other.SubElementNumber);
|
|
std::swap(InsertionPoints, Other.InsertionPoints);
|
|
}
|
|
|
|
/// Move operator.
|
|
AvailableValue &operator=(AvailableValue &&Other) {
|
|
std::swap(Value, Other.Value);
|
|
std::swap(SubElementNumber, Other.SubElementNumber);
|
|
std::swap(InsertionPoints, Other.InsertionPoints);
|
|
return *this;
|
|
}
|
|
|
|
operator bool() const { return bool(Value); }
|
|
|
|
bool operator==(const AvailableValue &Other) const {
|
|
return Value == Other.Value && SubElementNumber == Other.SubElementNumber;
|
|
}
|
|
|
|
bool operator!=(const AvailableValue &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
SILValue getValue() const { return Value; }
|
|
SILType getType() const { return Value->getType(); }
|
|
unsigned getSubElementNumber() const { return SubElementNumber; }
|
|
ArrayRef<StoreInst *> getInsertionPoints() const {
|
|
return InsertionPoints.getArrayRef();
|
|
}
|
|
|
|
void mergeInsertionPoints(const AvailableValue &Other) & {
|
|
assert(Value == Other.Value && SubElementNumber == Other.SubElementNumber);
|
|
InsertionPoints.set_union(Other.InsertionPoints);
|
|
}
|
|
|
|
void addInsertionPoint(StoreInst *I) & { InsertionPoints.insert(I); }
|
|
|
|
AvailableValue emitStructExtract(SILBuilder &B, SILLocation Loc, VarDecl *D,
|
|
unsigned SubElementNumber) const {
|
|
SILValue NewValue = B.emitStructExtract(Loc, Value, D);
|
|
return {NewValue, SubElementNumber, InsertionPoints};
|
|
}
|
|
|
|
AvailableValue emitTupleExtract(SILBuilder &B, SILLocation Loc,
|
|
unsigned EltNo,
|
|
unsigned SubElementNumber) const {
|
|
SILValue NewValue = B.emitTupleExtract(Loc, Value, EltNo);
|
|
return {NewValue, SubElementNumber, InsertionPoints};
|
|
}
|
|
|
|
AvailableValue emitBeginBorrow(SILBuilder &b, SILLocation loc) const {
|
|
// If we do not have ownership or already are guaranteed, just return a copy
|
|
// of our state.
|
|
if (!b.hasOwnership() || Value.getOwnershipKind().isCompatibleWith(
|
|
ValueOwnershipKind::Guaranteed)) {
|
|
return {Value, SubElementNumber, InsertionPoints};
|
|
}
|
|
|
|
// Otherwise, return newValue.
|
|
return {b.createBeginBorrow(loc, Value), SubElementNumber, InsertionPoints};
|
|
}
|
|
|
|
void dump() const LLVM_ATTRIBUTE_USED;
|
|
void print(llvm::raw_ostream &os) const;
|
|
|
|
private:
|
|
/// Private constructor.
|
|
AvailableValue(SILValue Value, unsigned SubElementNumber,
|
|
const decltype(InsertionPoints) &InsertPoints)
|
|
: Value(Value), SubElementNumber(SubElementNumber),
|
|
InsertionPoints(InsertPoints) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void AvailableValue::dump() const { print(llvm::dbgs()); }
|
|
|
|
void AvailableValue::print(llvm::raw_ostream &os) const {
|
|
os << "Available Value Dump. Value: ";
|
|
if (getValue()) {
|
|
os << getValue();
|
|
} else {
|
|
os << "NoValue;\n";
|
|
}
|
|
os << "SubElementNumber: " << getSubElementNumber() << "\n";
|
|
os << "Insertion Points:\n";
|
|
for (auto *I : getInsertionPoints()) {
|
|
os << *I;
|
|
}
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const AvailableValue &V) {
|
|
V.print(os);
|
|
return os;
|
|
}
|
|
|
|
} // end llvm namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subelement Extraction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Given an aggregate value and an access path, non-destructively extract the
|
|
/// value indicated by the path.
|
|
static SILValue nonDestructivelyExtractSubElement(const AvailableValue &Val,
|
|
SILBuilder &B,
|
|
SILLocation Loc) {
|
|
SILType ValTy = Val.getType();
|
|
unsigned SubElementNumber = Val.SubElementNumber;
|
|
|
|
// Extract tuple elements.
|
|
if (auto TT = ValTy.getAs<TupleType>()) {
|
|
for (unsigned EltNo : indices(TT.getElementTypes())) {
|
|
// Keep track of what subelement is being referenced.
|
|
SILType EltTy = ValTy.getTupleElementType(EltNo);
|
|
unsigned NumSubElt = getNumSubElements(EltTy, B.getModule());
|
|
if (SubElementNumber < NumSubElt) {
|
|
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
|
|
auto NewVal =
|
|
BorrowedVal.emitTupleExtract(B, Loc, EltNo, SubElementNumber);
|
|
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
|
|
// If our original value wasn't guaranteed and we did actually perform a
|
|
// borrow as a result, insert the end_borrow.
|
|
if (BorrowedVal.getValue() != Val.getValue())
|
|
B.createEndBorrow(Loc, BorrowedVal.getValue());
|
|
return result;
|
|
}
|
|
|
|
SubElementNumber -= NumSubElt;
|
|
}
|
|
|
|
llvm_unreachable("Didn't find field");
|
|
}
|
|
|
|
// Extract struct elements.
|
|
if (auto *SD = getFullyReferenceableStruct(ValTy)) {
|
|
for (auto *D : SD->getStoredProperties()) {
|
|
auto fieldType = ValTy.getFieldType(D, B.getModule());
|
|
unsigned NumSubElt = getNumSubElements(fieldType, B.getModule());
|
|
|
|
if (SubElementNumber < NumSubElt) {
|
|
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
|
|
auto NewVal =
|
|
BorrowedVal.emitStructExtract(B, Loc, D, SubElementNumber);
|
|
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
|
|
// If our original value wasn't guaranteed and we did actually perform a
|
|
// borrow as a result, insert the end_borrow.
|
|
if (BorrowedVal.getValue() != Val.getValue())
|
|
B.createEndBorrow(Loc, BorrowedVal.getValue());
|
|
return result;
|
|
}
|
|
|
|
SubElementNumber -= NumSubElt;
|
|
|
|
}
|
|
llvm_unreachable("Didn't find field");
|
|
}
|
|
|
|
// Otherwise, we're down to a scalar. If we have ownership enabled,
|
|
// we return a copy. Otherwise, there we can ignore ownership
|
|
// issues. This is ok since in [ossa] we are going to eliminate a
|
|
// load [copy] or a load [trivial], while in non-[ossa] SIL we will
|
|
// be replacing unqualified loads.
|
|
assert(SubElementNumber == 0 && "Miscalculation indexing subelements");
|
|
if (!B.hasOwnership())
|
|
return Val.getValue();
|
|
return B.emitCopyValueOperation(Loc, Val.getValue());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Available Value Aggregation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool anyMissing(unsigned StartSubElt, unsigned NumSubElts,
|
|
ArrayRef<AvailableValue> &Values) {
|
|
while (NumSubElts) {
|
|
if (!Values[StartSubElt])
|
|
return true;
|
|
++StartSubElt;
|
|
--NumSubElts;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A class that aggregates available values, loading them if they are not
|
|
/// available.
|
|
class AvailableValueAggregator {
|
|
SILModule &M;
|
|
SILBuilderWithScope B;
|
|
SILLocation Loc;
|
|
MutableArrayRef<AvailableValue> AvailableValueList;
|
|
SmallVectorImpl<PMOMemoryUse> &Uses;
|
|
DeadEndBlocks &deadEndBlocks;
|
|
bool isTake;
|
|
|
|
/// Keep track of all instructions that we have added. Once we are done
|
|
/// promoting a value, we need to make sure that if we need to balance any
|
|
/// copies (to avoid leaks), we do so. This is not used if we are performing a
|
|
/// take.
|
|
SmallVector<SILInstruction *, 16> insertedInsts;
|
|
|
|
public:
|
|
AvailableValueAggregator(SILInstruction *Inst,
|
|
MutableArrayRef<AvailableValue> AvailableValueList,
|
|
SmallVectorImpl<PMOMemoryUse> &Uses,
|
|
DeadEndBlocks &deadEndBlocks, bool isTake)
|
|
: M(Inst->getModule()), B(Inst), Loc(Inst->getLoc()),
|
|
AvailableValueList(AvailableValueList), Uses(Uses),
|
|
deadEndBlocks(deadEndBlocks), isTake(isTake) {}
|
|
|
|
// This is intended to be passed by reference only once constructed.
|
|
AvailableValueAggregator(const AvailableValueAggregator &) = delete;
|
|
AvailableValueAggregator(AvailableValueAggregator &&) = delete;
|
|
AvailableValueAggregator &
|
|
operator=(const AvailableValueAggregator &) = delete;
|
|
AvailableValueAggregator &operator=(AvailableValueAggregator &&) = delete;
|
|
|
|
SILValue aggregateValues(SILType LoadTy, SILValue Address, unsigned FirstElt,
|
|
bool isTopLevel = true);
|
|
bool canTake(SILType loadTy, unsigned firstElt) const;
|
|
|
|
/// If as a result of us copying values, we may have unconsumed destroys, find
|
|
/// the appropriate location and place the values there. Only used when
|
|
/// ownership is enabled.
|
|
SingleValueInstruction *
|
|
addMissingDestroysForCopiedValues(SingleValueInstruction *li,
|
|
SILValue newVal);
|
|
|
|
void print(llvm::raw_ostream &os) const;
|
|
void dump() const LLVM_ATTRIBUTE_USED;
|
|
private:
|
|
SILValue aggregateFullyAvailableValue(SILType loadTy, unsigned firstElt);
|
|
SILValue aggregateTupleSubElts(TupleType *tt, SILType loadTy,
|
|
SILValue address, unsigned firstElt);
|
|
SILValue aggregateStructSubElts(StructDecl *sd, SILType loadTy,
|
|
SILValue address, unsigned firstElt);
|
|
SILValue handlePrimitiveValue(SILType loadTy, SILValue address,
|
|
unsigned firstElt);
|
|
bool isFullyAvailable(SILType loadTy, unsigned firstElt) const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void AvailableValueAggregator::dump() const { print(llvm::dbgs()); }
|
|
|
|
void AvailableValueAggregator::print(llvm::raw_ostream &os) const {
|
|
os << "Available Value List, N = " << AvailableValueList.size()
|
|
<< ". Elts:\n";
|
|
for (auto &V : AvailableValueList) {
|
|
os << V;
|
|
}
|
|
}
|
|
|
|
bool AvailableValueAggregator::isFullyAvailable(SILType loadTy,
|
|
unsigned firstElt) const {
|
|
if (firstElt >= AvailableValueList.size()) { // #Elements may be zero.
|
|
return false;
|
|
}
|
|
|
|
auto &firstVal = AvailableValueList[firstElt];
|
|
|
|
// Make sure that the first element is available and is the correct type.
|
|
if (!firstVal || firstVal.getType() != loadTy)
|
|
return false;
|
|
|
|
return llvm::all_of(range(getNumSubElements(loadTy, M)),
|
|
[&](unsigned index) -> bool {
|
|
auto &val = AvailableValueList[firstElt + index];
|
|
return val.getValue() == firstVal.getValue() &&
|
|
val.getSubElementNumber() == index;
|
|
});
|
|
}
|
|
|
|
// We can only take if we never have to split a larger value to promote this
|
|
// address.
|
|
bool AvailableValueAggregator::canTake(SILType loadTy,
|
|
unsigned firstElt) const {
|
|
// If we do not have ownership, we can always take since we do not need to
|
|
// keep any ownership invariants up to date. In the future, we should be able
|
|
// to chop up larger values before they are being stored.
|
|
if (!B.hasOwnership())
|
|
return true;
|
|
|
|
// If we are trivially fully available, just return true.
|
|
if (isFullyAvailable(loadTy, firstElt))
|
|
return true;
|
|
|
|
// Otherwise see if we are an aggregate with fully available leaf types.
|
|
if (TupleType *tt = loadTy.getAs<TupleType>()) {
|
|
return llvm::all_of(indices(tt->getElements()), [&](unsigned eltNo) {
|
|
SILType eltTy = loadTy.getTupleElementType(eltNo);
|
|
unsigned numSubElt = getNumSubElements(eltTy, M);
|
|
bool success = canTake(eltTy, firstElt);
|
|
firstElt += numSubElt;
|
|
return success;
|
|
});
|
|
}
|
|
|
|
if (auto *sd = getFullyReferenceableStruct(loadTy)) {
|
|
return llvm::all_of(sd->getStoredProperties(), [&](VarDecl *decl) -> bool {
|
|
SILType eltTy = loadTy.getFieldType(decl, M);
|
|
unsigned numSubElt = getNumSubElements(eltTy, M);
|
|
bool success = canTake(eltTy, firstElt);
|
|
firstElt += numSubElt;
|
|
return success;
|
|
});
|
|
}
|
|
|
|
// Otherwise, fail. The value is not fully available at its leafs. We can not
|
|
// perform a take.
|
|
return false;
|
|
}
|
|
|
|
/// Given a bunch of primitive subelement values, build out the right aggregate
|
|
/// type (LoadTy) by emitting tuple and struct instructions as necessary.
|
|
SILValue AvailableValueAggregator::aggregateValues(SILType LoadTy,
|
|
SILValue Address,
|
|
unsigned FirstElt,
|
|
bool isTopLevel) {
|
|
// If we are performing a take, make sure that we have available values for
|
|
// /all/ of our values. Otherwise, bail.
|
|
if (isTopLevel && isTake && !canTake(LoadTy, FirstElt)) {
|
|
return SILValue();
|
|
}
|
|
|
|
// Check to see if the requested value is fully available, as an aggregate.
|
|
// This is a super-common case for single-element structs, but is also a
|
|
// general answer for arbitrary structs and tuples as well.
|
|
if (SILValue Result = aggregateFullyAvailableValue(LoadTy, FirstElt))
|
|
return Result;
|
|
|
|
// If we have a tuple type, then aggregate the tuple's elements into a full
|
|
// tuple value.
|
|
if (TupleType *TT = LoadTy.getAs<TupleType>())
|
|
return aggregateTupleSubElts(TT, LoadTy, Address, FirstElt);
|
|
|
|
// If we have a struct type, then aggregate the struct's elements into a full
|
|
// struct value.
|
|
if (auto *SD = getFullyReferenceableStruct(LoadTy))
|
|
return aggregateStructSubElts(SD, LoadTy, Address, FirstElt);
|
|
|
|
// Otherwise, we have a non-aggregate primitive. Load or extract the value.
|
|
return handlePrimitiveValue(LoadTy, Address, FirstElt);
|
|
}
|
|
|
|
// See if we have this value is fully available. In such a case, return it as an
|
|
// aggregate. This is a super-common case for single-element structs, but is
|
|
// also a general answer for arbitrary structs and tuples as well.
|
|
SILValue
|
|
AvailableValueAggregator::aggregateFullyAvailableValue(SILType loadTy,
|
|
unsigned firstElt) {
|
|
// Check if our underlying type is fully available. If it isn't, bail.
|
|
if (!isFullyAvailable(loadTy, firstElt))
|
|
return SILValue();
|
|
|
|
// Ok, grab out first value. (note: any actually will do).
|
|
auto &firstVal = AvailableValueList[firstElt];
|
|
|
|
// Ok, we know that all of our available values are all parts of the same
|
|
// value. Without ownership, we can just return the underlying first value.
|
|
if (!B.hasOwnership())
|
|
return firstVal.getValue();
|
|
|
|
// Otherwise, we need to put in a copy. This is b/c we only propagate along +1
|
|
// values and we are eliminating a load [copy].
|
|
ArrayRef<StoreInst *> insertPts = firstVal.getInsertionPoints();
|
|
if (insertPts.size() == 1) {
|
|
// Use the scope and location of the store at the insertion point.
|
|
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
|
|
SILLocation loc = insertPts[0]->getLoc();
|
|
// If we have a take, just return the value.
|
|
if (isTake)
|
|
return firstVal.getValue();
|
|
// Otherwise, return a copy of the value.
|
|
return builder.emitCopyValueOperation(loc, firstVal.getValue());
|
|
}
|
|
|
|
// If we have multiple insertion points, put copies at each point and use the
|
|
// SSA updater to get a value. The reason why this is safe is that we can only
|
|
// have multiple insertion points if we are storing exactly the same value
|
|
// implying that we can just copy firstVal at each insertion point.
|
|
SILSSAUpdater updater;
|
|
updater.Initialize(loadTy);
|
|
|
|
Optional<SILValue> singularValue;
|
|
for (auto *insertPt : insertPts) {
|
|
// Use the scope and location of the store at the insertion point.
|
|
SILBuilderWithScope builder(insertPt, &insertedInsts);
|
|
SILLocation loc = insertPt->getLoc();
|
|
SILValue eltVal = firstVal.getValue();
|
|
|
|
// If we are not taking, copy the element value.
|
|
if (!isTake) {
|
|
eltVal = builder.emitCopyValueOperation(loc, eltVal);
|
|
}
|
|
|
|
if (!singularValue.hasValue()) {
|
|
singularValue = eltVal;
|
|
} else if (*singularValue != eltVal) {
|
|
singularValue = SILValue();
|
|
}
|
|
|
|
// And then put the value into the SSA updater.
|
|
updater.AddAvailableValue(insertPt->getParent(), eltVal);
|
|
}
|
|
|
|
// If we only are tracking a singular value, we do not need to construct
|
|
// SSA. Just return that value.
|
|
if (auto val = singularValue.getValueOr(SILValue()))
|
|
return val;
|
|
|
|
// Finally, grab the value from the SSA updater.
|
|
SILValue result = updater.GetValueInMiddleOfBlock(B.getInsertionBB());
|
|
assert(result.getOwnershipKind().isCompatibleWith(ValueOwnershipKind::Owned));
|
|
return result;
|
|
}
|
|
|
|
SILValue AvailableValueAggregator::aggregateTupleSubElts(TupleType *TT,
|
|
SILType LoadTy,
|
|
SILValue Address,
|
|
unsigned FirstElt) {
|
|
SmallVector<SILValue, 4> ResultElts;
|
|
|
|
for (unsigned EltNo : indices(TT->getElements())) {
|
|
SILType EltTy = LoadTy.getTupleElementType(EltNo);
|
|
unsigned NumSubElt = getNumSubElements(EltTy, M);
|
|
|
|
// If we are missing any of the available values in this struct element,
|
|
// compute an address to load from.
|
|
SILValue EltAddr;
|
|
if (anyMissing(FirstElt, NumSubElt, AvailableValueList)) {
|
|
assert(!isTake && "When taking, values should never be missing?!");
|
|
EltAddr =
|
|
B.createTupleElementAddr(Loc, Address, EltNo, EltTy.getAddressType());
|
|
}
|
|
|
|
ResultElts.push_back(
|
|
aggregateValues(EltTy, EltAddr, FirstElt, /*isTopLevel*/ false));
|
|
FirstElt += NumSubElt;
|
|
}
|
|
|
|
return B.createTuple(Loc, LoadTy, ResultElts);
|
|
}
|
|
|
|
SILValue AvailableValueAggregator::aggregateStructSubElts(StructDecl *sd,
|
|
SILType loadTy,
|
|
SILValue address,
|
|
unsigned firstElt) {
|
|
SmallVector<SILValue, 4> resultElts;
|
|
|
|
for (auto *decl : sd->getStoredProperties()) {
|
|
SILType eltTy = loadTy.getFieldType(decl, M);
|
|
unsigned numSubElt = getNumSubElements(eltTy, M);
|
|
|
|
// If we are missing any of the available values in this struct element,
|
|
// compute an address to load from.
|
|
SILValue eltAddr;
|
|
if (anyMissing(firstElt, numSubElt, AvailableValueList)) {
|
|
assert(!isTake && "When taking, values should never be missing?!");
|
|
eltAddr =
|
|
B.createStructElementAddr(Loc, address, decl, eltTy.getAddressType());
|
|
}
|
|
|
|
resultElts.push_back(
|
|
aggregateValues(eltTy, eltAddr, firstElt, /*isTopLevel*/ false));
|
|
firstElt += numSubElt;
|
|
}
|
|
|
|
return B.createStruct(Loc, loadTy, resultElts);
|
|
}
|
|
|
|
// We have looked through all of the aggregate values and finally found a
|
|
// "primitive value". If the value is available, use it (extracting if we need
|
|
// to), otherwise emit a load of the value with the appropriate qualifier.
|
|
SILValue AvailableValueAggregator::handlePrimitiveValue(SILType loadTy,
|
|
SILValue address,
|
|
unsigned firstElt) {
|
|
auto &val = AvailableValueList[firstElt];
|
|
|
|
// If the value is not available, load the value and update our use list.
|
|
if (!val) {
|
|
assert(!isTake && "Should only take fully available values?!");
|
|
LoadInst *load = ([&]() {
|
|
if (B.hasOwnership()) {
|
|
return B.createTrivialLoadOr(Loc, address,
|
|
LoadOwnershipQualifier::Copy);
|
|
}
|
|
return B.createLoad(Loc, address, LoadOwnershipQualifier::Unqualified);
|
|
}());
|
|
Uses.emplace_back(load, PMOUseKind::Load);
|
|
return load;
|
|
}
|
|
|
|
// If we have 1 insertion point, just extract the value and return.
|
|
//
|
|
// This saves us from having to spend compile time in the SSA updater in this
|
|
// case.
|
|
ArrayRef<StoreInst *> insertPts = val.getInsertionPoints();
|
|
if (insertPts.size() == 1) {
|
|
// Use the scope and location of the store at the insertion point.
|
|
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
|
|
SILLocation loc = insertPts[0]->getLoc();
|
|
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
|
|
assert(
|
|
!builder.hasOwnership() ||
|
|
eltVal.getOwnershipKind().isCompatibleWith(ValueOwnershipKind::Owned));
|
|
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
|
|
return eltVal;
|
|
}
|
|
|
|
// If we have an available value, then we want to extract the subelement from
|
|
// the borrowed aggregate before each insertion point.
|
|
SILSSAUpdater updater;
|
|
updater.Initialize(loadTy);
|
|
|
|
Optional<SILValue> singularValue;
|
|
for (auto *i : insertPts) {
|
|
// Use the scope and location of the store at the insertion point.
|
|
SILBuilderWithScope builder(i, &insertedInsts);
|
|
SILLocation loc = i->getLoc();
|
|
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
|
|
assert(
|
|
!builder.hasOwnership() ||
|
|
eltVal.getOwnershipKind().isCompatibleWith(ValueOwnershipKind::Owned));
|
|
|
|
if (!singularValue.hasValue()) {
|
|
singularValue = eltVal;
|
|
} else if (*singularValue != eltVal) {
|
|
singularValue = SILValue();
|
|
}
|
|
|
|
updater.AddAvailableValue(i->getParent(), eltVal);
|
|
}
|
|
|
|
// If we only are tracking a singular value, we do not need to construct
|
|
// SSA. Just return that value.
|
|
if (auto val = singularValue.getValueOr(SILValue()))
|
|
return val;
|
|
|
|
// Finally, grab the value from the SSA updater.
|
|
SILValue eltVal = updater.GetValueInMiddleOfBlock(B.getInsertionBB());
|
|
assert(!B.hasOwnership() ||
|
|
eltVal.getOwnershipKind().isCompatibleWith(ValueOwnershipKind::Owned));
|
|
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
|
|
return eltVal;
|
|
}
|
|
|
|
SingleValueInstruction *
|
|
AvailableValueAggregator::addMissingDestroysForCopiedValues(
|
|
SingleValueInstruction *svi, SILValue newVal) {
|
|
// If ownership is not enabled... bail. We do not need to do this since we do
|
|
// not need to insert an extra copy unless we have ownership since without
|
|
// ownership stores do not consume.
|
|
if (!B.hasOwnership())
|
|
return svi;
|
|
|
|
SmallPtrSet<SILBasicBlock *, 8> visitedBlocks;
|
|
SmallVector<SILBasicBlock *, 8> leakingBlocks;
|
|
bool foundLoop = false;
|
|
auto loc = RegularLocation::getAutoGeneratedLocation();
|
|
while (!insertedInsts.empty()) {
|
|
auto *cvi = dyn_cast<CopyValueInst>(insertedInsts.pop_back_val());
|
|
if (!cvi)
|
|
continue;
|
|
|
|
// Clear our state.
|
|
visitedBlocks.clear();
|
|
leakingBlocks.clear();
|
|
// The linear lifetime checker doesn't care if the passed in load is
|
|
// actually a user of our copy_value. What we care about is that the load is
|
|
// guaranteed to be in the block where we have reformed the tuple in a
|
|
// consuming manner. This means if we add it as the consuming use of the
|
|
// copy, we can find the leaking places if any exist.
|
|
//
|
|
// Then perform the linear lifetime check. If we succeed, continue. We have
|
|
// no further work to do.
|
|
auto errorKind = ownership::ErrorBehaviorKind::ReturnFalse;
|
|
auto error =
|
|
valueHasLinearLifetime(cvi, {svi}, {}, visitedBlocks, deadEndBlocks,
|
|
errorKind, &leakingBlocks);
|
|
if (!error.getFoundError())
|
|
continue;
|
|
|
|
// Ok, we found some leaking blocks. Since we are using the linear lifetime
|
|
// checker with memory, we do not have any guarantees that the store is out
|
|
// side of a loop and a load is in a loop. In such a case, we want to
|
|
// replace the load with a copy_value.
|
|
foundLoop |= error.getFoundOverConsume();
|
|
|
|
// Ok, we found some leaking blocks. Insert destroys at the
|
|
// beginning of these blocks for our copy_value.
|
|
for (auto *bb : leakingBlocks) {
|
|
SILBuilderWithScope b(bb->begin());
|
|
b.emitDestroyValueOperation(loc, cvi);
|
|
}
|
|
}
|
|
|
|
// If we didn't find a loop, we are done, just return svi to get RAUWed.
|
|
if (!foundLoop) {
|
|
// If we had a load_borrow, we have created an extra copy that we are going
|
|
// to borrow at the load point. This means we need to handle the destroying
|
|
// of the value along paths reachable from the load_borrow. Luckily that
|
|
// will exactly be after the end_borrows of the load_borrow.
|
|
if (isa<LoadBorrowInst>(svi)) {
|
|
for (auto *use : svi->getUses()) {
|
|
if (auto *ebi = dyn_cast<EndBorrowInst>(use->getUser())) {
|
|
auto next = std::next(ebi->getIterator());
|
|
SILBuilderWithScope(next).emitDestroyValueOperation(ebi->getLoc(),
|
|
newVal);
|
|
}
|
|
}
|
|
}
|
|
return svi;
|
|
}
|
|
|
|
// If we found a loop, then we know that our leaking blocks are the exiting
|
|
// blocks of the loop and the value has been lifetime extended over the loop.
|
|
if (isa<LoadInst>(svi)) {
|
|
// If we have a load, we need to put in a copy so that the destroys within
|
|
// the loop are properly balanced.
|
|
newVal = SILBuilderWithScope(svi).emitCopyValueOperation(loc, newVal);
|
|
} else {
|
|
// If we have a load_borrow, we create a begin_borrow for the end_borrows in
|
|
// the loop.
|
|
assert(isa<LoadBorrowInst>(svi));
|
|
newVal = SILBuilderWithScope(svi).createBeginBorrow(svi->getLoc(), newVal);
|
|
}
|
|
|
|
svi->replaceAllUsesWith(newVal);
|
|
SILValue addr = svi->getOperand(0);
|
|
svi->eraseFromParent();
|
|
if (auto *addrI = addr->getDefiningInstruction())
|
|
recursivelyDeleteTriviallyDeadInstructions(addrI);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Available Value Dataflow
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Given a piece of memory, the memory's uses, and destroys perform a single
|
|
/// round of optimistic dataflow switching to intersection when a back edge is
|
|
/// encountered.
|
|
class AvailableValueDataflowContext {
|
|
/// The base memory we are performing dataflow upon.
|
|
AllocationInst *TheMemory;
|
|
|
|
/// The number of sub elements of our memory.
|
|
unsigned NumMemorySubElements;
|
|
|
|
/// The set of uses that we are tracking. This is only here so we can update
|
|
/// when exploding copy_addr. It would be great if we did not have to store
|
|
/// this.
|
|
SmallVectorImpl<PMOMemoryUse> &Uses;
|
|
|
|
/// The set of blocks with local definitions.
|
|
///
|
|
/// We use this to determine if we should visit a block or look at a block's
|
|
/// predecessors during dataflow.
|
|
llvm::SmallPtrSet<SILBasicBlock *, 32> HasLocalDefinition;
|
|
|
|
/// This is a map of uses that are not loads (i.e., they are Stores,
|
|
/// InOutUses, and Escapes), to their entry in Uses.
|
|
llvm::SmallDenseMap<SILInstruction *, unsigned, 16> NonLoadUses;
|
|
|
|
/// Does this value escape anywhere in the function. We use this very
|
|
/// conservatively.
|
|
bool HasAnyEscape = false;
|
|
|
|
public:
|
|
AvailableValueDataflowContext(AllocationInst *TheMemory,
|
|
unsigned NumMemorySubElements,
|
|
SmallVectorImpl<PMOMemoryUse> &Uses);
|
|
|
|
/// Try to compute available values for "TheMemory" at the instruction \p
|
|
/// StartingFrom. We only compute the values for set bits in \p
|
|
/// RequiredElts. We return the vailable values in \p Result. If any available
|
|
/// values were found, return true. Otherwise, return false.
|
|
bool computeAvailableValues(SILInstruction *StartingFrom,
|
|
unsigned FirstEltOffset,
|
|
unsigned NumLoadSubElements,
|
|
SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<AvailableValue> &Result);
|
|
|
|
/// Return true if the box has escaped at the specified instruction. We are
|
|
/// not
|
|
/// allowed to do load promotion in an escape region.
|
|
bool hasEscapedAt(SILInstruction *I);
|
|
|
|
/// Explode a copy_addr, updating the Uses at the same time.
|
|
void explodeCopyAddr(CopyAddrInst *CAI);
|
|
|
|
private:
|
|
SILModule &getModule() const { return TheMemory->getModule(); }
|
|
|
|
void updateAvailableValues(SILInstruction *Inst,
|
|
SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<AvailableValue> &Result,
|
|
SmallBitVector &ConflictingValues);
|
|
void computeAvailableValuesFrom(
|
|
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
|
|
SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<AvailableValue> &Result,
|
|
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
|
|
&VisitedBlocks,
|
|
SmallBitVector &ConflictingValues);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
AvailableValueDataflowContext::AvailableValueDataflowContext(
|
|
AllocationInst *InputTheMemory, unsigned NumMemorySubElements,
|
|
SmallVectorImpl<PMOMemoryUse> &InputUses)
|
|
: TheMemory(InputTheMemory), NumMemorySubElements(NumMemorySubElements),
|
|
Uses(InputUses) {
|
|
// The first step of processing an element is to collect information about the
|
|
// element into data structures we use later.
|
|
for (unsigned ui : indices(Uses)) {
|
|
auto &Use = Uses[ui];
|
|
assert(Use.Inst && "No instruction identified?");
|
|
|
|
// Keep track of all the uses that aren't loads.
|
|
if (Use.Kind == PMOUseKind::Load)
|
|
continue;
|
|
|
|
NonLoadUses[Use.Inst] = ui;
|
|
HasLocalDefinition.insert(Use.Inst->getParent());
|
|
|
|
if (Use.Kind == PMOUseKind::Escape) {
|
|
// Determine which blocks the value can escape from. We aren't allowed to
|
|
// promote loads in blocks reachable from an escape point.
|
|
HasAnyEscape = true;
|
|
}
|
|
}
|
|
|
|
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
|
|
// as a use so we see it in our dataflow walks.
|
|
NonLoadUses[TheMemory] = ~0U;
|
|
HasLocalDefinition.insert(TheMemory->getParent());
|
|
}
|
|
|
|
void AvailableValueDataflowContext::updateAvailableValues(
|
|
SILInstruction *Inst, SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<AvailableValue> &Result,
|
|
SmallBitVector &ConflictingValues) {
|
|
// Handle store.
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
|
|
unsigned StartSubElt = computeSubelement(SI->getDest(), TheMemory);
|
|
assert(StartSubElt != ~0U && "Store within enum projection not handled");
|
|
SILType ValTy = SI->getSrc()->getType();
|
|
|
|
for (unsigned i : range(getNumSubElements(ValTy, getModule()))) {
|
|
// If this element is not required, don't fill it in.
|
|
if (!RequiredElts[StartSubElt+i]) continue;
|
|
|
|
// This element is now provided.
|
|
RequiredElts[StartSubElt + i] = false;
|
|
|
|
// If there is no result computed for this subelement, record it. If
|
|
// there already is a result, check it for conflict. If there is no
|
|
// conflict, then we're ok.
|
|
auto &Entry = Result[StartSubElt+i];
|
|
if (!Entry) {
|
|
Entry = {SI->getSrc(), i, SI};
|
|
continue;
|
|
}
|
|
|
|
// TODO: This is /really/, /really/, conservative. This basically means
|
|
// that if we do not have an identical store, we will not promote.
|
|
if (Entry.getValue() != SI->getSrc() ||
|
|
Entry.getSubElementNumber() != i) {
|
|
ConflictingValues[StartSubElt + i] = true;
|
|
continue;
|
|
}
|
|
|
|
Entry.addInsertionPoint(SI);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// If we get here with a copy_addr, it must be storing into the element. Check
|
|
// to see if any loaded subelements are being used, and if so, explode the
|
|
// copy_addr to its individual pieces.
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
unsigned StartSubElt = computeSubelement(CAI->getDest(), TheMemory);
|
|
assert(StartSubElt != ~0U && "Store within enum projection not handled");
|
|
SILType ValTy = CAI->getDest()->getType();
|
|
|
|
bool AnyRequired = false;
|
|
for (unsigned i : range(getNumSubElements(ValTy, getModule()))) {
|
|
// If this element is not required, don't fill it in.
|
|
AnyRequired = RequiredElts[StartSubElt+i];
|
|
if (AnyRequired) break;
|
|
}
|
|
|
|
// If this is a copy addr that doesn't intersect the loaded subelements,
|
|
// just continue with an unmodified load mask.
|
|
if (!AnyRequired)
|
|
return;
|
|
|
|
// If the copyaddr is of a non-loadable type, we can't promote it. Just
|
|
// consider it to be a clobber.
|
|
if (CAI->getSrc()->getType().isLoadable(*CAI->getFunction())) {
|
|
// Otherwise, some part of the copy_addr's value is demanded by a load, so
|
|
// we need to explode it to its component pieces. This only expands one
|
|
// level of the copyaddr.
|
|
explodeCopyAddr(CAI);
|
|
|
|
// The copy_addr doesn't provide any values, but we've arranged for our
|
|
// iterators to visit the newly generated instructions, which do.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// TODO: inout apply's should only clobber pieces passed in.
|
|
|
|
// Otherwise, this is some unknown instruction, conservatively assume that all
|
|
// values are clobbered.
|
|
RequiredElts.clear();
|
|
ConflictingValues = SmallBitVector(Result.size(), true);
|
|
return;
|
|
}
|
|
|
|
bool AvailableValueDataflowContext::computeAvailableValues(
|
|
SILInstruction *StartingFrom, unsigned FirstEltOffset,
|
|
unsigned NumLoadSubElements, SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<AvailableValue> &Result) {
|
|
llvm::SmallDenseMap<SILBasicBlock*, SmallBitVector, 32> VisitedBlocks;
|
|
SmallBitVector ConflictingValues(Result.size());
|
|
|
|
computeAvailableValuesFrom(StartingFrom->getIterator(),
|
|
StartingFrom->getParent(), RequiredElts, Result,
|
|
VisitedBlocks, ConflictingValues);
|
|
// If there are no values available at this load point, then we fail to
|
|
// promote this load and there is nothing to do.
|
|
SmallBitVector AvailableValueIsPresent(NumMemorySubElements);
|
|
|
|
for (unsigned i :
|
|
range(FirstEltOffset, FirstEltOffset + NumLoadSubElements)) {
|
|
AvailableValueIsPresent[i] = Result[i].getValue();
|
|
}
|
|
|
|
// If we do not have any values available, bail.
|
|
if (AvailableValueIsPresent.none())
|
|
return false;
|
|
|
|
// Otherwise, if we have any conflicting values, explicitly mask them out of
|
|
// the result, so we don't pick one arbitrary available value.
|
|
if (ConflictingValues.none()) {
|
|
return true;
|
|
}
|
|
|
|
// At this point, we know that we have /some/ conflicting values and some
|
|
// available values.
|
|
if (AvailableValueIsPresent.reset(ConflictingValues).none())
|
|
return false;
|
|
|
|
// Otherwise, mask out the available values and return true. We have at least
|
|
// 1 available value.
|
|
int NextIter = ConflictingValues.find_first();
|
|
while (NextIter != -1) {
|
|
assert(NextIter >= 0 && "Int can not be represented?!");
|
|
unsigned Iter = NextIter;
|
|
Result[Iter] = {};
|
|
NextIter = ConflictingValues.find_next(Iter);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void AvailableValueDataflowContext::computeAvailableValuesFrom(
|
|
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
|
|
SmallBitVector &RequiredElts, SmallVectorImpl<AvailableValue> &Result,
|
|
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
|
|
&VisitedBlocks,
|
|
SmallBitVector &ConflictingValues) {
|
|
assert(!RequiredElts.none() && "Scanning with a goal of finding nothing?");
|
|
|
|
// If there is a potential modification in the current block, scan the block
|
|
// to see if the store or escape is before or after the load. If it is
|
|
// before, check to see if it produces the value we are looking for.
|
|
if (HasLocalDefinition.count(BB)) {
|
|
for (SILBasicBlock::iterator BBI = StartingFrom; BBI != BB->begin();) {
|
|
SILInstruction *TheInst = &*std::prev(BBI);
|
|
|
|
// If this instruction is unrelated to the element, ignore it.
|
|
if (!NonLoadUses.count(TheInst)) {
|
|
--BBI;
|
|
continue;
|
|
}
|
|
|
|
// Given an interesting instruction, incorporate it into the set of
|
|
// results, and filter down the list of demanded subelements that we still
|
|
// need.
|
|
updateAvailableValues(TheInst, RequiredElts, Result, ConflictingValues);
|
|
|
|
// If this satisfied all of the demanded values, we're done.
|
|
if (RequiredElts.none())
|
|
return;
|
|
|
|
// Otherwise, keep scanning the block. If the instruction we were looking
|
|
// at just got exploded, don't skip the next instruction.
|
|
if (&*std::prev(BBI) == TheInst)
|
|
--BBI;
|
|
}
|
|
}
|
|
|
|
|
|
// Otherwise, we need to scan up the CFG looking for available values.
|
|
for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) {
|
|
SILBasicBlock *PredBB = *PI;
|
|
|
|
// If the predecessor block has already been visited (potentially due to a
|
|
// cycle in the CFG), don't revisit it. We can do this safely because we
|
|
// are optimistically assuming that all incoming elements in a cycle will be
|
|
// the same. If we ever detect a conflicting element, we record it and do
|
|
// not look at the result.
|
|
auto Entry = VisitedBlocks.insert({PredBB, RequiredElts});
|
|
if (!Entry.second) {
|
|
// If we are revisiting a block and asking for different required elements
|
|
// then anything that isn't agreeing is in conflict.
|
|
const auto &PrevRequired = Entry.first->second;
|
|
if (PrevRequired != RequiredElts) {
|
|
ConflictingValues |= (PrevRequired ^ RequiredElts);
|
|
|
|
RequiredElts &= ~ConflictingValues;
|
|
if (RequiredElts.none())
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Make sure to pass in the same set of required elements for each pred.
|
|
SmallBitVector Elts = RequiredElts;
|
|
computeAvailableValuesFrom(PredBB->end(), PredBB, Elts, Result,
|
|
VisitedBlocks, ConflictingValues);
|
|
|
|
// If we have any conflicting values, don't bother searching for them.
|
|
RequiredElts &= ~ConflictingValues;
|
|
if (RequiredElts.none())
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Explode a copy_addr instruction of a loadable type into lower level
|
|
/// operations like loads, stores, retains, releases, retain_value, etc.
|
|
void AvailableValueDataflowContext::explodeCopyAddr(CopyAddrInst *CAI) {
|
|
LLVM_DEBUG(llvm::dbgs() << " -- Exploding copy_addr: " << *CAI << "\n");
|
|
|
|
SILType ValTy = CAI->getDest()->getType().getObjectType();
|
|
|
|
SILFunction *F = CAI->getFunction();
|
|
auto &TL = F->getTypeLowering(ValTy);
|
|
|
|
// Keep track of the new instructions emitted.
|
|
SmallVector<SILInstruction *, 4> NewInsts;
|
|
SILBuilder B(CAI, &NewInsts);
|
|
B.setCurrentDebugScope(CAI->getDebugScope());
|
|
|
|
// Use type lowering to lower the copyaddr into a load sequence + store
|
|
// sequence appropriate for the type.
|
|
SILValue StoredValue =
|
|
TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(), CAI->isTakeOfSrc());
|
|
|
|
TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(),
|
|
CAI->isInitializationOfDest());
|
|
|
|
// Update our internal state for this being gone.
|
|
NonLoadUses.erase(CAI);
|
|
|
|
// Remove the copy_addr from Uses. A single copy_addr can appear multiple
|
|
// times if the source and dest are to elements within a single aggregate, but
|
|
// we only want to pick up the CopyAddrKind from the store.
|
|
PMOMemoryUse LoadUse, StoreUse;
|
|
for (auto &Use : Uses) {
|
|
if (Use.Inst != CAI)
|
|
continue;
|
|
|
|
if (Use.Kind == PMOUseKind::Load) {
|
|
assert(LoadUse.isInvalid());
|
|
LoadUse = Use;
|
|
} else {
|
|
assert(StoreUse.isInvalid());
|
|
StoreUse = Use;
|
|
}
|
|
|
|
Use.Inst = nullptr;
|
|
|
|
// Keep scanning in case the copy_addr appears multiple times.
|
|
}
|
|
|
|
assert((LoadUse.isValid() || StoreUse.isValid()) &&
|
|
"we should have a load or a store, possibly both");
|
|
assert(StoreUse.isInvalid() || StoreUse.Kind == Assign ||
|
|
StoreUse.Kind == Initialization || StoreUse.Kind == InitOrAssign);
|
|
|
|
// Now that we've emitted a bunch of instructions, including a load and store
|
|
// but also including other stuff, update the internal state of
|
|
// LifetimeChecker to reflect them.
|
|
|
|
// Update the instructions that touch the memory. NewInst can grow as this
|
|
// iterates, so we can't use a foreach loop.
|
|
for (auto *NewInst : NewInsts) {
|
|
switch (NewInst->getKind()) {
|
|
default:
|
|
NewInst->dump();
|
|
llvm_unreachable("Unknown instruction generated by copy_addr lowering");
|
|
|
|
case SILInstructionKind::StoreInst:
|
|
// If it is a store to the memory object (as oppose to a store to
|
|
// something else), track it as an access.
|
|
if (StoreUse.isValid()) {
|
|
StoreUse.Inst = NewInst;
|
|
// If our store use by the copy_addr is an assign, then we know that
|
|
// before we store the new value, we loaded the old value implying that
|
|
// our store is technically initializing memory when it occurs. So
|
|
// change the kind to Initialization.
|
|
if (StoreUse.Kind == Assign)
|
|
StoreUse.Kind = Initialization;
|
|
NonLoadUses[NewInst] = Uses.size();
|
|
Uses.push_back(StoreUse);
|
|
}
|
|
continue;
|
|
|
|
case SILInstructionKind::LoadInst:
|
|
// If it is a load from the memory object (as oppose to a load from
|
|
// something else), track it as an access. We need to explicitly check to
|
|
// see if the load accesses "TheMemory" because it could either be a load
|
|
// for the copy_addr source, or it could be a load corresponding to the
|
|
// "assign" operation on the destination of the copyaddr.
|
|
if (LoadUse.isValid() &&
|
|
getAccessPathRoot(NewInst->getOperand(0)) == TheMemory) {
|
|
LoadUse.Inst = NewInst;
|
|
Uses.push_back(LoadUse);
|
|
}
|
|
continue;
|
|
|
|
case SILInstructionKind::RetainValueInst:
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::ReleaseValueInst: // Destroy overwritten value
|
|
// These are ignored.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Next, remove the copy_addr itself.
|
|
CAI->eraseFromParent();
|
|
}
|
|
|
|
bool AvailableValueDataflowContext::hasEscapedAt(SILInstruction *I) {
|
|
// Return true if the box has escaped at the specified instruction. We are
|
|
// not allowed to do load promotion in an escape region.
|
|
|
|
// FIXME: This is not an aggressive implementation. :)
|
|
|
|
// TODO: At some point, we should special case closures that just *read* from
|
|
// the escaped value (by looking at the body of the closure). They should not
|
|
// prevent load promotion, and will allow promoting values like X in regions
|
|
// dominated by "... && X != 0".
|
|
return HasAnyEscape;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Allocation Optimization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SILType getMemoryType(AllocationInst *memory) {
|
|
// Compute the type of the memory object.
|
|
if (auto *abi = dyn_cast<AllocBoxInst>(memory)) {
|
|
assert(abi->getBoxType()->getLayout()->getFields().size() == 1 &&
|
|
"optimizing multi-field boxes not implemented");
|
|
return abi->getBoxType()->getFieldType(abi->getModule(), 0);
|
|
}
|
|
|
|
assert(isa<AllocStackInst>(memory));
|
|
return cast<AllocStackInst>(memory)->getElementType();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This performs load promotion and deletes synthesized allocations if all
|
|
/// loads can be removed.
|
|
class AllocOptimize {
|
|
|
|
SILModule &Module;
|
|
|
|
/// This is either an alloc_box or alloc_stack instruction.
|
|
AllocationInst *TheMemory;
|
|
|
|
/// This is the SILType of the memory object.
|
|
SILType MemoryType;
|
|
|
|
/// The number of primitive subelements across all elements of this memory
|
|
/// value.
|
|
unsigned NumMemorySubElements;
|
|
|
|
SmallVectorImpl<PMOMemoryUse> &Uses;
|
|
SmallVectorImpl<SILInstruction *> &Releases;
|
|
|
|
DeadEndBlocks &deadEndBlocks;
|
|
|
|
/// A structure that we use to compute our available values.
|
|
AvailableValueDataflowContext DataflowContext;
|
|
|
|
public:
|
|
AllocOptimize(AllocationInst *memory, SmallVectorImpl<PMOMemoryUse> &uses,
|
|
SmallVectorImpl<SILInstruction *> &releases,
|
|
DeadEndBlocks &deadEndBlocks)
|
|
: Module(memory->getModule()), TheMemory(memory),
|
|
MemoryType(getMemoryType(memory)),
|
|
NumMemorySubElements(getNumSubElements(MemoryType, Module)), Uses(uses),
|
|
Releases(releases), deadEndBlocks(deadEndBlocks),
|
|
DataflowContext(TheMemory, NumMemorySubElements, uses) {}
|
|
|
|
bool optimizeMemoryAccesses();
|
|
bool tryToRemoveDeadAllocation();
|
|
|
|
private:
|
|
bool promoteLoad(SILInstruction *Inst);
|
|
void promoteDestroyAddr(DestroyAddrInst *dai,
|
|
MutableArrayRef<AvailableValue> values);
|
|
bool canPromoteDestroyAddr(DestroyAddrInst *dai,
|
|
SmallVectorImpl<AvailableValue> &availableValues);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// If we are able to optimize \p Inst, return the source address that
|
|
/// instruction is loading from. If we can not optimize \p Inst, then just
|
|
/// return an empty SILValue.
|
|
static SILValue tryFindSrcAddrForLoad(SILInstruction *i) {
|
|
// We can always promote a load_borrow.
|
|
if (auto *lbi = dyn_cast<LoadBorrowInst>(i))
|
|
return lbi->getOperand();
|
|
|
|
// We only handle load [copy], load [trivial], load and copy_addr right
|
|
// now. Notably we do not support load [take] when promoting loads.
|
|
if (auto *li = dyn_cast<LoadInst>(i))
|
|
if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Take)
|
|
return li->getOperand();
|
|
|
|
// If this is a CopyAddr, verify that the element type is loadable. If not,
|
|
// we can't explode to a load.
|
|
auto *cai = dyn_cast<CopyAddrInst>(i);
|
|
if (!cai || !cai->getSrc()->getType().isLoadable(*cai->getFunction()))
|
|
return SILValue();
|
|
return cai->getSrc();
|
|
}
|
|
|
|
/// At this point, we know that this element satisfies the definitive init
|
|
/// requirements, so we can try to promote loads to enable SSA-based dataflow
|
|
/// analysis. We know that accesses to this element only access this element,
|
|
/// cross element accesses have been scalarized.
|
|
///
|
|
/// This returns true if the load has been removed from the program.
|
|
bool AllocOptimize::promoteLoad(SILInstruction *Inst) {
|
|
// Note that we intentionally don't support forwarding of weak pointers,
|
|
// because the underlying value may drop be deallocated at any time. We would
|
|
// have to prove that something in this function is holding the weak value
|
|
// live across the promoted region and that isn't desired for a stable
|
|
// diagnostics pass this like one.
|
|
|
|
// First attempt to find a source addr for our "load" instruction. If we fail
|
|
// to find a valid value, just return.
|
|
SILValue SrcAddr = tryFindSrcAddrForLoad(Inst);
|
|
if (!SrcAddr)
|
|
return false;
|
|
|
|
// If the box has escaped at this instruction, we can't safely promote the
|
|
// load.
|
|
if (DataflowContext.hasEscapedAt(Inst))
|
|
return false;
|
|
|
|
SILType LoadTy = SrcAddr->getType().getObjectType();
|
|
|
|
// If this is a load/copy_addr from a struct field that we want to promote,
|
|
// compute the access path down to the field so we can determine precise
|
|
// def/use behavior.
|
|
unsigned FirstElt = computeSubelement(SrcAddr, TheMemory);
|
|
|
|
// If this is a load from within an enum projection, we can't promote it since
|
|
// we don't track subelements in a type that could be changing.
|
|
if (FirstElt == ~0U)
|
|
return false;
|
|
|
|
unsigned NumLoadSubElements = getNumSubElements(LoadTy, Module);
|
|
|
|
// Set up the bitvector of elements being demanded by the load.
|
|
SmallBitVector RequiredElts(NumMemorySubElements);
|
|
RequiredElts.set(FirstElt, FirstElt+NumLoadSubElements);
|
|
|
|
SmallVector<AvailableValue, 8> AvailableValues;
|
|
AvailableValues.resize(NumMemorySubElements);
|
|
|
|
// Find out if we have any available values. If no bits are demanded, we
|
|
// trivially succeed. This can happen when there is a load of an empty struct.
|
|
if (NumLoadSubElements != 0 &&
|
|
!DataflowContext.computeAvailableValues(
|
|
Inst, FirstElt, NumLoadSubElements, RequiredElts, AvailableValues))
|
|
return false;
|
|
|
|
// Ok, we have some available values. If we have a copy_addr, explode it now,
|
|
// exposing the load operation within it. Subsequent optimization passes will
|
|
// see the load and propagate the available values into it.
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
DataflowContext.explodeCopyAddr(CAI);
|
|
|
|
// This is removing the copy_addr, but explodeCopyAddr takes care of
|
|
// removing the instruction from Uses for us, so we return false.
|
|
return false;
|
|
}
|
|
|
|
assert((isa<LoadBorrowInst>(Inst) || isa<LoadInst>(Inst)) &&
|
|
"Unhandled instruction for this code path!");
|
|
|
|
// Aggregate together all of the subelements into something that has the same
|
|
// type as the load did, and emit smaller loads for any subelements that were
|
|
// not available. We are "propagating" a +1 available value from the store
|
|
// points.
|
|
auto *load = dyn_cast<SingleValueInstruction>(Inst);
|
|
AvailableValueAggregator agg(load, AvailableValues, Uses, deadEndBlocks,
|
|
false /*isTake*/);
|
|
SILValue newVal = agg.aggregateValues(LoadTy, load->getOperand(0), FirstElt);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *load << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal << "\n");
|
|
|
|
// If we inserted any copies, we created the copies at our stores. We know
|
|
// that in our load block, we will reform the aggregate as appropriate at the
|
|
// load implying that the value /must/ be fully consumed. If we promoted a +0
|
|
// value, we created dominating destroys along those paths. Thus any leaking
|
|
// blocks that we may have can be found by performing a linear lifetime check
|
|
// over all copies that we found using the load as the "consuming uses" (just
|
|
// for the purposes of identifying the consuming block).
|
|
auto *oldLoad = agg.addMissingDestroysForCopiedValues(load, newVal);
|
|
|
|
++NumLoadPromoted;
|
|
|
|
// If we are returned the load, eliminate it. Otherwise, it was already
|
|
// handled for us... so return true.
|
|
if (!oldLoad)
|
|
return true;
|
|
|
|
// If our load was a +0 value, borrow the value and the RAUW. We reuse the
|
|
// end_borrows of our load_borrow.
|
|
if (isa<LoadBorrowInst>(oldLoad)) {
|
|
newVal = SILBuilderWithScope(oldLoad).createBeginBorrow(oldLoad->getLoc(),
|
|
newVal);
|
|
}
|
|
oldLoad->replaceAllUsesWith(newVal);
|
|
SILValue addr = oldLoad->getOperand(0);
|
|
oldLoad->eraseFromParent();
|
|
if (auto *addrI = addr->getDefiningInstruction())
|
|
recursivelyDeleteTriviallyDeadInstructions(addrI);
|
|
return true;
|
|
}
|
|
|
|
/// Return true if we can promote the given destroy.
|
|
bool AllocOptimize::canPromoteDestroyAddr(
|
|
DestroyAddrInst *dai, SmallVectorImpl<AvailableValue> &availableValues) {
|
|
SILValue address = dai->getOperand();
|
|
|
|
// We cannot promote destroys of address-only types, because we can't expose
|
|
// the load.
|
|
SILType loadTy = address->getType().getObjectType();
|
|
if (loadTy.isAddressOnly(*dai->getFunction()))
|
|
return false;
|
|
|
|
// If the box has escaped at this instruction, we can't safely promote the
|
|
// load.
|
|
if (DataflowContext.hasEscapedAt(dai))
|
|
return false;
|
|
|
|
// Compute the access path down to the field so we can determine precise
|
|
// def/use behavior.
|
|
unsigned firstElt = computeSubelement(address, TheMemory);
|
|
assert(firstElt != ~0U && "destroy within enum projection is not valid");
|
|
unsigned numLoadSubElements = getNumSubElements(loadTy, Module);
|
|
|
|
// Find out if we have any available values. If no bits are demanded, we
|
|
// trivially succeed. This can happen when there is a load of an empty struct.
|
|
if (numLoadSubElements == 0)
|
|
return true;
|
|
|
|
// Set up the bitvector of elements being demanded by the load.
|
|
SmallBitVector requiredElts(NumMemorySubElements);
|
|
requiredElts.set(firstElt, firstElt + numLoadSubElements);
|
|
|
|
// Compute our available values. If we do not have any available values,
|
|
// return false. We have nothing further to do.
|
|
SmallVector<AvailableValue, 8> tmpList;
|
|
tmpList.resize(NumMemorySubElements);
|
|
if (!DataflowContext.computeAvailableValues(dai, firstElt, numLoadSubElements,
|
|
requiredElts, tmpList))
|
|
return false;
|
|
|
|
// Now check that we can perform a take upon our available values. This
|
|
// implies today that our value is fully available. If the value is not fully
|
|
// available, we would need to split stores to promote this destroy_addr. We
|
|
// do not support that yet.
|
|
AvailableValueAggregator agg(dai, tmpList, Uses, deadEndBlocks,
|
|
true /*isTake*/);
|
|
if (!agg.canTake(loadTy, firstElt))
|
|
return false;
|
|
|
|
// Ok, we can promote this destroy_addr... move the temporary lists contents
|
|
// into the final AvailableValues list.
|
|
std::move(tmpList.begin(), tmpList.end(),
|
|
std::back_inserter(availableValues));
|
|
|
|
return true;
|
|
}
|
|
|
|
// DestroyAddr is a composed operation merging load [take] + destroy_value. If
|
|
// the implicit load's value is available, explode it.
|
|
//
|
|
// NOTE: We only do this if we have a fully available value.
|
|
//
|
|
// Note that we handle the general case of a destroy_addr of a piece of the
|
|
// memory object, not just destroy_addrs of the entire thing.
|
|
void AllocOptimize::promoteDestroyAddr(
|
|
DestroyAddrInst *dai, MutableArrayRef<AvailableValue> availableValues) {
|
|
SILValue address = dai->getOperand();
|
|
SILType loadTy = address->getType().getObjectType();
|
|
|
|
// Compute the access path down to the field so we can determine precise
|
|
// def/use behavior.
|
|
unsigned firstElt = computeSubelement(address, TheMemory);
|
|
|
|
// Aggregate together all of the subelements into something that has the same
|
|
// type as the load did, and emit smaller) loads for any subelements that were
|
|
// not available.
|
|
AvailableValueAggregator agg(dai, availableValues, Uses, deadEndBlocks,
|
|
true /*isTake*/);
|
|
SILValue newVal = agg.aggregateValues(loadTy, address, firstElt);
|
|
|
|
++NumDestroyAddrPromoted;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " *** Promoting destroy_addr: " << *dai << "\n");
|
|
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal << "\n");
|
|
|
|
SILBuilderWithScope(dai).emitDestroyValueOperation(dai->getLoc(), newVal);
|
|
dai->eraseFromParent();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct DestroyAddrPromotionState {
|
|
ArrayRef<SILInstruction *> destroys;
|
|
SmallVector<unsigned, 8> destroyAddrIndices;
|
|
SmallVector<AvailableValue, 32> availableValueList;
|
|
SmallVector<unsigned, 8> availableValueStartOffsets;
|
|
|
|
DestroyAddrPromotionState(ArrayRef<SILInstruction *> destroys)
|
|
: destroys(destroys) {}
|
|
|
|
unsigned size() const {
|
|
return destroyAddrIndices.size();
|
|
}
|
|
|
|
void initializeForDestroyAddr(unsigned destroyAddrIndex) {
|
|
availableValueStartOffsets.push_back(availableValueList.size());
|
|
destroyAddrIndices.push_back(destroyAddrIndex);
|
|
}
|
|
|
|
std::pair<DestroyAddrInst *, MutableArrayRef<AvailableValue>>
|
|
getData(unsigned index) {
|
|
unsigned destroyAddrIndex = destroyAddrIndices[index];
|
|
unsigned startOffset = availableValueStartOffsets[index];
|
|
unsigned count;
|
|
|
|
if ((availableValueStartOffsets.size() - 1) != index) {
|
|
count = availableValueStartOffsets[index + 1] - startOffset;
|
|
} else {
|
|
count = availableValueList.size() - startOffset;
|
|
}
|
|
|
|
MutableArrayRef<AvailableValue> values(&availableValueList[startOffset],
|
|
count);
|
|
auto *dai = cast<DestroyAddrInst>(destroys[destroyAddrIndex]);
|
|
return {dai, values};
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// If the allocation is an autogenerated allocation that is only stored to
|
|
/// (after load promotion) then remove it completely.
|
|
bool AllocOptimize::tryToRemoveDeadAllocation() {
|
|
assert((isa<AllocBoxInst>(TheMemory) || isa<AllocStackInst>(TheMemory)) &&
|
|
"Unhandled allocation case");
|
|
|
|
auto *f = TheMemory->getFunction();
|
|
|
|
// We don't want to remove allocations that are required for useful debug
|
|
// information at -O0. As such, we only remove allocations if:
|
|
//
|
|
// 1. They are in a transparent function.
|
|
// 2. They are in a normal function, but didn't come from a VarDecl, or came
|
|
// from one that was autogenerated or inlined from a transparent function.
|
|
SILLocation loc = TheMemory->getLoc();
|
|
if (!f->isTransparent() &&
|
|
loc.getAsASTNode<VarDecl>() && !loc.isAutoGenerated() &&
|
|
!loc.is<MandatoryInlinedLocation>())
|
|
return false;
|
|
|
|
// Check the uses list to see if there are any non-store uses left over after
|
|
// load promotion and other things PMO does.
|
|
for (auto &u : Uses) {
|
|
// Ignore removed instructions.
|
|
if (u.Inst == nullptr)
|
|
continue;
|
|
|
|
switch (u.Kind) {
|
|
case PMOUseKind::Assign:
|
|
// Until we can promote the value being destroyed by the assign, we can
|
|
// not remove deallocations with such assigns.
|
|
return false;
|
|
case PMOUseKind::InitOrAssign:
|
|
break; // These don't prevent removal.
|
|
case PMOUseKind::Initialization:
|
|
if (!isa<ApplyInst>(u.Inst) &&
|
|
// A copy_addr that is not a take affects the retain count
|
|
// of the source.
|
|
(!isa<CopyAddrInst>(u.Inst) ||
|
|
cast<CopyAddrInst>(u.Inst)->isTakeOfSrc()))
|
|
break;
|
|
// FALL THROUGH.
|
|
LLVM_FALLTHROUGH;
|
|
case PMOUseKind::Load:
|
|
case PMOUseKind::IndirectIn:
|
|
case PMOUseKind::InOutUse:
|
|
case PMOUseKind::Escape:
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: "
|
|
"kept alive by: "
|
|
<< *u.Inst);
|
|
return false; // These do prevent removal.
|
|
}
|
|
}
|
|
|
|
// If our memory is trivially typed, we can just remove it without needing to
|
|
// consider if the stored value needs to be destroyed. So at this point,
|
|
// delete the memory!
|
|
if (MemoryType.isTrivial(*f)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated trivial allocation: "
|
|
<< *TheMemory);
|
|
|
|
// If it is safe to remove, do it. Recursively remove all instructions
|
|
// hanging off the allocation instruction, then return success. Let the
|
|
// caller remove the allocation itself to avoid iterator invalidation.
|
|
eraseUsesOfInstruction(TheMemory);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Otherwise removing the deallocation will drop any releases. Check that
|
|
// there is nothing preventing removal.
|
|
DestroyAddrPromotionState state(Releases);
|
|
|
|
for (auto p : llvm::enumerate(Releases)) {
|
|
auto *r = p.value();
|
|
if (r == nullptr)
|
|
continue;
|
|
|
|
// We stash all of the destroy_addr that we see.
|
|
if (auto *dai = dyn_cast<DestroyAddrInst>(r)) {
|
|
state.initializeForDestroyAddr(p.index() /*destroyAddrIndex*/);
|
|
// Make sure we can actually promote this destroy addr. If we can not,
|
|
// then we must bail. In order to not gather available values twice, we
|
|
// gather the available values here that we will use to promote the
|
|
// values.
|
|
if (!canPromoteDestroyAddr(dai, state.availableValueList))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** Failed to remove autogenerated non-trivial alloc: "
|
|
"kept alive by release: "
|
|
<< *r);
|
|
return false;
|
|
}
|
|
|
|
// If we reached this point, we can promote all of our destroy_addr.
|
|
for (unsigned i : range(state.size())) {
|
|
DestroyAddrInst *dai;
|
|
MutableArrayRef<AvailableValue> values;
|
|
std::tie(dai, values) = state.getData(i);
|
|
promoteDestroyAddr(dai, values);
|
|
// We do not need to unset releases, since we are going to exit here.
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated non-trivial alloc: "
|
|
<< *TheMemory);
|
|
|
|
// If it is safe to remove, do it. Recursively remove all instructions
|
|
// hanging off the allocation instruction, then return success. Let the
|
|
// caller remove the allocation itself to avoid iterator invalidation.
|
|
eraseUsesOfInstruction(TheMemory);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AllocOptimize::optimizeMemoryAccesses() {
|
|
bool changed = false;
|
|
|
|
// If we've successfully checked all of the definitive initialization
|
|
// requirements, try to promote loads. This can explode copy_addrs, so the
|
|
// use list may change size.
|
|
for (unsigned i = 0; i != Uses.size(); ++i) {
|
|
auto &use = Uses[i];
|
|
// Ignore entries for instructions that got expanded along the way.
|
|
if (use.Inst && use.Kind == PMOUseKind::Load) {
|
|
if (promoteLoad(use.Inst)) {
|
|
Uses[i].Inst = nullptr; // remove entry if load got deleted.
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static AllocationInst *getOptimizableAllocation(SILInstruction *i) {
|
|
if (!isa<AllocBoxInst>(i) && !isa<AllocStackInst>(i)) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto *alloc = cast<AllocationInst>(i);
|
|
|
|
// If our aggregate has unreferencable storage, we can't optimize. Return
|
|
// nullptr.
|
|
if (getMemoryType(alloc).aggregateHasUnreferenceableStorage())
|
|
return nullptr;
|
|
|
|
// Otherwise we are good to go. Lets try to optimize this memory!
|
|
return alloc;
|
|
}
|
|
|
|
static bool optimizeMemoryAccesses(SILFunction &fn) {
|
|
bool changed = false;
|
|
DeadEndBlocks deadEndBlocks(&fn);
|
|
|
|
for (auto &bb : fn) {
|
|
auto i = bb.begin(), e = bb.end();
|
|
while (i != e) {
|
|
// First see if i is an allocation that we can optimize. If not, skip it.
|
|
AllocationInst *alloc = getOptimizableAllocation(&*i);
|
|
if (!alloc) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "*** PMO Optimize Memory Accesses looking at: "
|
|
<< *alloc << "\n");
|
|
PMOMemoryObjectInfo memInfo(alloc);
|
|
|
|
// Set up the datastructure used to collect the uses of the allocation.
|
|
SmallVector<PMOMemoryUse, 16> uses;
|
|
SmallVector<SILInstruction *, 4> destroys;
|
|
|
|
// Walk the use list of the pointer, collecting them. If we are not able
|
|
// to optimize, skip this value. *NOTE* We may still scalarize values
|
|
// inside the value.
|
|
if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks);
|
|
changed |= allocOptimize.optimizeMemoryAccesses();
|
|
|
|
// Move onto the next instruction. We know this is safe since we do not
|
|
// eliminate allocations here.
|
|
++i;
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
static bool eliminateDeadAllocations(SILFunction &fn) {
|
|
bool changed = false;
|
|
DeadEndBlocks deadEndBlocks(&fn);
|
|
|
|
for (auto &bb : fn) {
|
|
auto i = bb.begin(), e = bb.end();
|
|
while (i != e) {
|
|
// First see if i is an allocation that we can optimize. If not, skip it.
|
|
AllocationInst *alloc = getOptimizableAllocation(&*i);
|
|
if (!alloc) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "*** PMO Dead Allocation Elimination looking at: " << *alloc
|
|
<< "\n");
|
|
PMOMemoryObjectInfo memInfo(alloc);
|
|
|
|
// Set up the datastructure used to collect the uses of the allocation.
|
|
SmallVector<PMOMemoryUse, 16> uses;
|
|
SmallVector<SILInstruction *, 4> destroys;
|
|
|
|
// Walk the use list of the pointer, collecting them. If we are not able
|
|
// to optimize, skip this value. *NOTE* We may still scalarize values
|
|
// inside the value.
|
|
if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks);
|
|
changed |= allocOptimize.tryToRemoveDeadAllocation();
|
|
|
|
// Move onto the next instruction. We know this is safe since we do not
|
|
// eliminate allocations here.
|
|
++i;
|
|
if (alloc->use_empty()) {
|
|
alloc->eraseFromParent();
|
|
++NumAllocRemoved;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class PredictableMemoryAccessOptimizations : public SILFunctionTransform {
|
|
/// The entry point to the transformation.
|
|
///
|
|
/// FIXME: This pass should not need to rerun on deserialized
|
|
/// functions. Nothing should have changed in the upstream pipeline after
|
|
/// deserialization. However, rerunning does improve some benchmarks. This
|
|
/// either indicates that this pass missing some opportunities the first time,
|
|
/// or has a pass order dependency on other early passes.
|
|
void run() override {
|
|
// TODO: Can we invalidate here just instructions?
|
|
if (optimizeMemoryAccesses(*getFunction()))
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
};
|
|
|
|
class PredictableDeadAllocationElimination : public SILFunctionTransform {
|
|
void run() override {
|
|
if (eliminateDeadAllocations(*getFunction()))
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createPredictableMemoryAccessOptimizations() {
|
|
return new PredictableMemoryAccessOptimizations();
|
|
}
|
|
|
|
SILTransform *swift::createPredictableDeadAllocationElimination() {
|
|
return new PredictableDeadAllocationElimination();
|
|
}
|