Files
swift-mirror/lib/SILOptimizer/Transforms/ArrayElementValuePropagation.cpp
Slava Pestov 16d5716e71 SIL: Use the best resilience expansion when lowering types
This is a large patch; I couldn't split it up further while still
keeping things working. There are four things being changed at
once here:

- Places that call SILType::isAddressOnly()/isLoadable() now call
  the SILFunction overload and not the SILModule one.

- SILFunction's overloads of getTypeLowering() and getLoweredType()
  now pass the function's resilience expansion down, instead of
  hardcoding ResilienceExpansion::Minimal.

- Various other places with '// FIXME: Expansion' now use a better
  resilience expansion.

- A few tests were updated to reflect SILGen's improved code
  generation, and some new tests are added to cover more code paths
  that previously were uncovered and only manifested themselves as
  standard library build failures while I was working on this change.
2019-04-26 22:47:59 -04:00

401 lines
13 KiB
C++

//===--- ArrayElementValuePropagation.cpp - Propagate values of arrays ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "array-element-propagation"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
/// Propagate the elements of array values to calls of the array's get_element
/// method, and replace calls of append(contentsOf:) with append(element:).
///
/// Array literal construction and array initialization of array values
/// associates element values with the array value. These values can be
/// propagated to the get_element method if we can prove that the array value
/// has not changed until reading the array value's element. These values can
/// also be used to replace append(contentsOf:) with multiple append(element:)
/// calls.
///
/// Propagation of the elements of one array allocation.
///
/// We propagate the elements associated with calls of
///
/// * Array.init(count:repeatedValue:)
/// The 'repeatedValue'.
/// TODO: this is not yet implemented.
///
/// * Array._adoptStorage(storage:count:)
/// The stores on the returned array element buffer pointer.
///
namespace {
/// Utility class for analysis array literal initializations.
///
/// Array literals are initialized by allocating an array buffer, and storing
/// the elements into it.
/// This class analysis all the code which does the array literal
/// initialization. It also collects uses of the array, like getElement calls
/// and append(contentsOf) calls.
class ArrayAllocation {
/// The array value returned by the allocation call.
SILValue ArrayValue;
/// The calls to Array get_element that use this array allocation.
llvm::SmallSetVector<ApplyInst *, 16> GetElementCalls;
/// The calls to Array append_contentsOf that use this array allocation.
llvm::SmallVector<ApplyInst *, 4> AppendContentsOfCalls;
/// A map of Array indices to element values
llvm::DenseMap<uint64_t, SILValue> ElementValueMap;
bool mapInitializationStores(SILValue ElementBuffer);
bool recursivelyCollectUses(ValueBase *Def);
bool replacementsAreValid();
// After approx. this many elements, it's faster to use append(contentsOf:)
static constexpr unsigned APPEND_CONTENTSOF_REPLACEMENT_VALUES_MAX = 6;
public:
ArrayAllocation() {}
/// Analyzes an array allocation call.
///
/// Returns true if \p Alloc is the allocation of an array literal (or a
/// similar pattern) and the array values can be used to replace get_element
/// or append(contentof) calls.
bool analyze(ApplyInst *Alloc);
/// Replace getElement calls with the actual values.
bool replaceGetElements();
/// Replace append(contentsOf:) with multiple append(element:)
bool replaceAppendContentOf();
};
/// Map the indices of array element initialization stores to their values.
bool ArrayAllocation::mapInitializationStores(SILValue ElementBuffer) {
assert(ElementBuffer &&
"Must have identified an array element storage pointer");
// Match initialization stores.
// %83 = struct_extract %element_buffer : $UnsafeMutablePointer<Int>
// %84 = pointer_to_address %83 : $Builtin.RawPointer to strict $*Int
// store %85 to %84 : $*Int
// %87 = integer_literal $Builtin.Word, 1
// %88 = index_addr %84 : $*Int, %87 : $Builtin.Word
// store %some_value to %88 : $*Int
auto *UnsafeMutablePointerExtract =
dyn_cast_or_null<StructExtractInst>(getSingleNonDebugUser(ElementBuffer));
if (!UnsafeMutablePointerExtract)
return false;
auto *PointerToAddress = dyn_cast_or_null<PointerToAddressInst>(
getSingleNonDebugUser(UnsafeMutablePointerExtract));
if (!PointerToAddress)
return false;
// Match the stores. We can have either a store directly to the address or
// to an index_addr projection.
for (auto *Op : PointerToAddress->getUses()) {
auto *Inst = Op->getUser();
// Store to the base.
auto *SI = dyn_cast<StoreInst>(Inst);
if (SI && SI->getDest() == PointerToAddress) {
// We have already seen an entry for this index bail.
if (ElementValueMap.count(0))
return false;
ElementValueMap[0] = SI->getSrc();
continue;
} else if (SI)
return false;
// Store an index_addr projection.
auto *IndexAddr = dyn_cast<IndexAddrInst>(Inst);
if (!IndexAddr)
return false;
SI = dyn_cast_or_null<StoreInst>(getSingleNonDebugUser(IndexAddr));
if (!SI || SI->getDest() != IndexAddr)
return false;
auto *Index = dyn_cast<IntegerLiteralInst>(IndexAddr->getIndex());
if (!Index)
return false;
auto IndexVal = Index->getValue();
// Let's not blow up our map.
if (IndexVal.getActiveBits() > 16)
return false;
// Already saw an entry.
if (ElementValueMap.count(IndexVal.getZExtValue()))
return false;
ElementValueMap[IndexVal.getZExtValue()] = SI->getSrc();
}
return !ElementValueMap.empty();
}
bool ArrayAllocation::replacementsAreValid() {
unsigned ElementCount = ElementValueMap.size();
if (ElementCount > APPEND_CONTENTSOF_REPLACEMENT_VALUES_MAX)
return false;
// Bail if elements aren't contiguous
for (unsigned i = 0; i < ElementCount; ++i)
if (!ElementValueMap.count(i))
return false;
return true;
}
/// Recursively look at all uses of this definition. Abort if the array value
/// could escape or be changed. Collect all uses that are calls to array.count.
bool ArrayAllocation::recursivelyCollectUses(ValueBase *Def) {
for (auto *Opd : Def->getUses()) {
auto *User = Opd->getUser();
// Ignore reference counting and debug instructions.
if (isa<RefCountingInst>(User) ||
isa<DebugValueInst>(User))
continue;
// Array value projection.
if (auto *SEI = dyn_cast<StructExtractInst>(User)) {
if (!recursivelyCollectUses(SEI))
return false;
continue;
}
// Check array semantic calls.
ArraySemanticsCall ArrayOp(User);
if (ArrayOp) {
if (ArrayOp.getKind() == ArrayCallKind::kAppendContentsOf) {
AppendContentsOfCalls.push_back(ArrayOp);
continue;
} else if (ArrayOp.getKind() == ArrayCallKind::kGetElement) {
GetElementCalls.insert(ArrayOp);
continue;
} else if (ArrayOp.doesNotChangeArray()) {
continue;
}
}
// An operation that escapes or modifies the array value.
return false;
}
return true;
}
bool ArrayAllocation::analyze(ApplyInst *Alloc) {
GetElementCalls.clear();
AppendContentsOfCalls.clear();
ElementValueMap.clear();
ArraySemanticsCall Uninitialized(Alloc, "array.uninitialized");
if (!Uninitialized)
return false;
ArrayValue = Uninitialized.getArrayValue();
if (!ArrayValue)
return false;
SILValue ElementBuffer = Uninitialized.getArrayElementStoragePointer();
if (!ElementBuffer)
return false;
// Figure out all stores to the array.
if (!mapInitializationStores(ElementBuffer))
return false;
// Check if the array value was stored or has escaped.
if (!recursivelyCollectUses(ArrayValue))
return false;
return true;
}
/// Replace getElement calls with the actual values.
///
/// \code
/// store %x to %element_address
/// ...
/// %e = apply %getElement(%array, %constant_index)
/// \endcode
/// The value %e is replaced with %x.
bool ArrayAllocation::replaceGetElements() {
bool Changed = false;
for (auto *GetElementCall : GetElementCalls) {
ArraySemanticsCall GetElement(GetElementCall);
assert(GetElement.getKind() == ArrayCallKind::kGetElement);
auto ConstantIndex = GetElement.getConstantIndex();
if (ConstantIndex == None)
continue;
assert(*ConstantIndex >= 0 && "Must have a positive index");
auto EltValueIt = ElementValueMap.find(*ConstantIndex);
if (EltValueIt == ElementValueMap.end())
continue;
Changed |= GetElement.replaceByValue(EltValueIt->second);
}
return Changed;
}
/// Replace append(contentsOf:) with multiple append(element:)
///
/// \code
/// store %x to %source_array_element_address_0
/// store %y to %source_array_element_address_1
/// ...
/// apply %append_contentsOf(%dest_array, %source_array)
/// \endcode
/// is replaced by
/// \code
/// store %x to %source_array_element_address_0
/// store %y to %source_array_element_address_1
/// ...
/// apply %reserveCapacityForAppend(%dest_array, %number_of_values)
/// apply %append_element(%dest_array, %x)
/// apply %append_element(%dest_array, %y)
/// ...
/// \endcode
/// The source_array and its initialization code can then be deleted (if not
/// used otherwise).
bool ArrayAllocation::replaceAppendContentOf() {
if (AppendContentsOfCalls.empty())
return false;
if (ElementValueMap.empty())
return false;
// Check if there is a store to each element.
if (!replacementsAreValid())
return false;
llvm::SmallVector<SILValue, 4> ElementValueVector;
for (unsigned i = 0; i < ElementValueMap.size(); ++i) {
SILValue V = ElementValueMap[i];
ElementValueVector.push_back(V);
}
SILFunction *Fn = AppendContentsOfCalls[0]->getFunction();
SILModule &M = Fn->getModule();
ASTContext &Ctx = M.getASTContext();
LLVM_DEBUG(llvm::dbgs() << "Array append contentsOf calls replaced in "
<< Fn->getName() << "\n");
// Get the needed Array helper functions.
FuncDecl *AppendFnDecl = Ctx.getArrayAppendElementDecl();
if (!AppendFnDecl)
return false;
FuncDecl *ReserveFnDecl = Ctx.getArrayReserveCapacityDecl();
if (!ReserveFnDecl)
return false;
auto Mangled = SILDeclRef(AppendFnDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *AppendFn = M.findFunction(Mangled, SILLinkage::PublicExternal);
if (!AppendFn)
return false;
Mangled = SILDeclRef(ReserveFnDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *ReserveFn = M.findFunction(Mangled, SILLinkage::PublicExternal);
if (!ReserveFn)
return false;
bool Changed = false;
// Usually there is only a single append(contentsOf:) call. But there might
// be multiple - with the same source array to append.
for (ApplyInst *AppendContentOfCall : AppendContentsOfCalls) {
ArraySemanticsCall AppendContentsOf(AppendContentOfCall);
assert(AppendContentsOf && "Must be AppendContentsOf call");
NominalTypeDecl *AppendSelfArray = AppendContentsOf.getSelf()->getType().
getASTType()->getAnyNominal();
// In case if it's not an Array, but e.g. an ContiguousArray
if (AppendSelfArray != Ctx.getArrayDecl())
continue;
SILType ArrayType = ArrayValue->getType();
auto *NTD = ArrayType.getASTType()->getAnyNominal();
SubstitutionMap ArraySubMap = ArrayType.getASTType()
->getContextSubstitutionMap(M.getSwiftModule(), NTD);
AppendContentsOf.replaceByAppendingValues(AppendFn, ReserveFn,
ElementValueVector,
ArraySubMap);
Changed = true;
}
return Changed;
}
// =============================================================================
// Driver
// =============================================================================
class ArrayElementPropagation : public SILFunctionTransform {
public:
ArrayElementPropagation() {}
void run() override {
auto &Fn = *getFunction();
// FIXME: Update for ownership.
if (Fn.hasOwnership())
return;
bool Changed = false;
for (auto &BB :Fn) {
for (auto &Inst : BB) {
if (auto *Apply = dyn_cast<ApplyInst>(&Inst)) {
ArrayAllocation ALit;
if (!ALit.analyze(Apply))
continue;
// First optimization: replace getElemente calls.
if (ALit.replaceGetElements()) {
Changed = true;
// Re-do the analysis if the SIL changed.
if (!ALit.analyze(Apply))
continue;
}
// Second optimization: replace append(contentsOf:) calls.
Changed |= ALit.replaceAppendContentOf();
}
}
}
if (Changed) {
PM->invalidateAnalysis(
&Fn, SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createArrayElementPropagation() {
return new ArrayElementPropagation();
}