mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The ownership kind is Any for trivial types, or Owned otherwise, but whether a type is trivial or not will soon depend on the resilience expansion. This means that a SILModule now uniques two SILUndefs per type instead of one, and serialization uses two distinct sentinel IDs for this purpose as well. For now, the resilience expansion is not actually used here, so this change is NFC, other than changing the module format.
697 lines
23 KiB
C++
697 lines
23 KiB
C++
//===--- DeadCodeElimination.cpp - Delete dead code ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-dce"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumBranchesPromoted, "Number of dead branches promoted to jumps");
|
|
STATISTIC(NumDeletedInsts, "Number of instructions deleted");
|
|
|
|
namespace {
|
|
|
|
// Without any complex analysis, does this instruction seem like
|
|
// something that we need to keep?
|
|
// FIXME: Reconcile the similarities between this and
|
|
// isInstructionTriviallyDead.
|
|
static bool seemsUseful(SILInstruction *I) {
|
|
if (I->mayHaveSideEffects())
|
|
return true;
|
|
|
|
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
|
|
// Although the onFastPath builtin has no side-effects we don't want to
|
|
// remove it.
|
|
return BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath;
|
|
}
|
|
|
|
if (isa<UnreachableInst>(I))
|
|
return true;
|
|
if (auto TI = dyn_cast<TermInst>(I)) {
|
|
if (TI->isFunctionExiting())
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// We map from post-dominator tree node to a ControllingInfo struct
|
|
// which contains the post-dominator tree level of this node, along
|
|
// with the direct predecessors that this node is control-dependent
|
|
// on, and the minimum level number of any predecessor in the subtree
|
|
// below this node in the post-dominator tree.
|
|
struct ControllingInfo {
|
|
typedef std::pair<SILBasicBlock *, unsigned> PredInfo;
|
|
|
|
SILBasicBlock *Block;
|
|
// The post-dominator tree level for this node.
|
|
unsigned Level;
|
|
llvm::SmallVector<PredInfo, 2> ControllingPreds;
|
|
unsigned MinTreePredLevel;
|
|
};
|
|
|
|
class DCE : public SILFunctionTransform {
|
|
typedef llvm::DomTreeNodeBase<SILBasicBlock> PostDomTreeNode;
|
|
|
|
llvm::SmallPtrSet<SILNode *, 16> LiveValues;
|
|
llvm::SmallPtrSet<SILBasicBlock *, 16> LiveBlocks;
|
|
llvm::SmallVector<SILInstruction *, 64> Worklist;
|
|
PostDominanceInfo *PDT;
|
|
llvm::DenseMap<SILBasicBlock *, ControllingInfo> ControllingInfoMap;
|
|
|
|
// Maps instructions which produce a failing condition (like overflow
|
|
// builtins) to the actual cond_fail instructions which handle the failure.
|
|
|
|
// Dependencies which go in the reverse direction. Usually for a pair
|
|
// %1 = inst_a
|
|
// inst_b(%1)
|
|
// the dependency goes from inst_b to inst_a: if inst_b is alive then also
|
|
// inst_a is alive.
|
|
// For some instructions the dependency is exactly the other way round, e.g.
|
|
// %1 = inst_which_can_fail
|
|
// cond_fail(%1)
|
|
// In this case cond_fail is alive only if inst_which_can_fail is alive.
|
|
// The key of this map is the source of the dependency (inst_a), the
|
|
// value is the destination (inst_b).
|
|
llvm::DenseMap<SILInstruction *, SILInstruction *> ReverseDependencies;
|
|
|
|
/// Tracks if the pass changed branches.
|
|
bool BranchesChanged;
|
|
/// Tracks if the pass changed ApplyInsts.
|
|
bool CallsChanged;
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
BranchesChanged = false;
|
|
CallsChanged = false;
|
|
|
|
SILFunction *F = getFunction();
|
|
|
|
// FIXME: Support ownership.
|
|
if (F->hasOwnership())
|
|
return;
|
|
|
|
auto *DA = PM->getAnalysis<PostDominanceAnalysis>();
|
|
PDT = DA->get(F);
|
|
|
|
// If we have a function that consists of nothing but a
|
|
// structurally infinite loop like:
|
|
// while true {}
|
|
// we'll have an empty post dominator tree.
|
|
if (!PDT->getRootNode())
|
|
return;
|
|
|
|
LLVM_DEBUG(F->dump());
|
|
LLVM_DEBUG(PDT->print(llvm::dbgs()));
|
|
|
|
assert(Worklist.empty() && LiveValues.empty() && LiveBlocks.empty() &&
|
|
ControllingInfoMap.empty() && ReverseDependencies.empty() &&
|
|
"Expected to start with empty data structures!");
|
|
|
|
if (!precomputeControlInfo(*F)) {
|
|
LiveValues.clear();
|
|
LiveBlocks.clear();
|
|
ControllingInfoMap.clear();
|
|
ReverseDependencies.clear();
|
|
return;
|
|
}
|
|
|
|
markLive(*F);
|
|
if (removeDead(*F)) {
|
|
using InvalidationKind = SILAnalysis::InvalidationKind;
|
|
|
|
unsigned Inv = InvalidationKind::Instructions;
|
|
if (CallsChanged) Inv |= (unsigned) InvalidationKind::Calls;
|
|
if (BranchesChanged) Inv |= (unsigned) InvalidationKind::Branches;
|
|
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind(Inv));
|
|
}
|
|
|
|
LiveValues.clear();
|
|
LiveBlocks.clear();
|
|
ControllingInfoMap.clear();
|
|
ReverseDependencies.clear();
|
|
}
|
|
|
|
bool precomputeControlInfo(SILFunction &F);
|
|
void markLive(SILFunction &F);
|
|
void addReverseDependency(SILInstruction *From, SILInstruction *To);
|
|
bool removeDead(SILFunction &F);
|
|
|
|
void computeLevelNumbers(PostDomTreeNode *Node, unsigned Level);
|
|
bool hasInfiniteLoops(SILFunction &F);
|
|
void computePredecessorDependence(SILFunction &F);
|
|
unsigned computeMinPredecessorLevels(PostDomTreeNode *Node);
|
|
void insertControllingInfo(SILBasicBlock *Block, unsigned Level);
|
|
|
|
void markValueLive(SILNode *V);
|
|
void markTerminatorArgsLive(SILBasicBlock *Pred, SILBasicBlock *Succ,
|
|
size_t ArgIndex);
|
|
void markControllingTerminatorsLive(SILBasicBlock *Block);
|
|
void propagateLiveBlockArgument(SILArgument *Arg);
|
|
void propagateLiveness(SILInstruction *I);
|
|
void collectControllingBlocksInTree(ControllingInfo &QueryInfo,
|
|
PostDomTreeNode *Node,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling);
|
|
void collectControllingBlocks(SILBasicBlock *Block,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &);
|
|
SILBasicBlock *nearestUsefulPostDominator(SILBasicBlock *Block);
|
|
void replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block);
|
|
|
|
};
|
|
|
|
// Keep track of the fact that V is live and add it to our worklist
|
|
// so that we can process the values it depends on.
|
|
void DCE::markValueLive(SILNode *V) {
|
|
V = V->getRepresentativeSILNodeInObject();
|
|
if (LiveValues.count(V) || isa<SILUndef>(V))
|
|
return;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Marking as live:\n");
|
|
LLVM_DEBUG(V->dump());
|
|
|
|
LiveValues.insert(V);
|
|
|
|
if (auto *Def = dyn_cast<SILInstruction>(V)) {
|
|
markControllingTerminatorsLive(Def->getParent());
|
|
Worklist.push_back(Def);
|
|
return;
|
|
}
|
|
|
|
// TODO: MultiValueInstruction
|
|
|
|
assert(isa<SILArgument>(V) &&
|
|
"Only expected instructions and arguments!");
|
|
|
|
auto *Arg = cast<SILArgument>(V);
|
|
markControllingTerminatorsLive(Arg->getParent());
|
|
propagateLiveBlockArgument(Arg);
|
|
}
|
|
|
|
/// Gets the producing instruction of a cond_fail condition. Currently these
|
|
/// are overflow builtins but may be extended to other instructions in the
|
|
/// future.
|
|
static SILInstruction *getProducer(CondFailInst *CFI) {
|
|
// Check for the pattern:
|
|
// %1 = builtin "some_operation_with_overflow"
|
|
// %2 = tuple_extract %1
|
|
// %3 = cond_fail %2
|
|
SILValue FailCond = CFI->getOperand();
|
|
if (auto *TEI = dyn_cast<TupleExtractInst>(FailCond)) {
|
|
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand())) {
|
|
return BI;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Determine which instructions from this function we need to keep.
|
|
void DCE::markLive(SILFunction &F) {
|
|
|
|
// Find the initial set of instructions in this function that appear
|
|
// to be live in the sense that they are not trivially something we
|
|
// can delete by examining only that instruction.
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB) {
|
|
if (auto *CFI = dyn_cast<CondFailInst>(&I)) {
|
|
// A cond_fail is only alive if its (identifiable) producer is alive.
|
|
if (SILInstruction *Prod = getProducer(CFI)) {
|
|
addReverseDependency(Prod, CFI);
|
|
} else {
|
|
markValueLive(CFI);
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *FLI = dyn_cast<FixLifetimeInst>(&I)) {
|
|
// A fix_lifetime (with a non-address type) is only alive if it's
|
|
// definition is alive.
|
|
SILValue Op = FLI->getOperand();
|
|
auto *OpInst = Op->getDefiningInstruction();
|
|
if (OpInst && !Op->getType().isAddress()) {
|
|
addReverseDependency(OpInst, FLI);
|
|
} else {
|
|
markValueLive(FLI);
|
|
}
|
|
continue;
|
|
}
|
|
if (seemsUseful(&I))
|
|
markValueLive(&I);
|
|
}
|
|
}
|
|
|
|
// Now propagate liveness backwards from each instruction in our
|
|
// worklist, adding new instructions to the worklist as we discover
|
|
// more that we need to keep.
|
|
while (!Worklist.empty()) {
|
|
auto *I = Worklist.pop_back_val();
|
|
propagateLiveness(I);
|
|
}
|
|
}
|
|
|
|
// Records a reverse dependency. See DCE::ReverseDependencies.
|
|
void DCE::addReverseDependency(SILInstruction *From, SILInstruction *To) {
|
|
assert(!ReverseDependencies.lookup(To) &&
|
|
"Target of reverse dependency already in map");
|
|
SILInstruction *&Target = ReverseDependencies[From];
|
|
SILInstruction *ExistingTarget = Target;
|
|
Target = To;
|
|
if (ExistingTarget) {
|
|
// Create a single linked chain if From has multiple targets.
|
|
ReverseDependencies[To] = ExistingTarget;
|
|
}
|
|
}
|
|
|
|
// Mark as live the terminator argument at index ArgIndex in Pred that
|
|
// targets Succ.
|
|
void DCE::markTerminatorArgsLive(SILBasicBlock *Pred,
|
|
SILBasicBlock *Succ,
|
|
size_t ArgIndex) {
|
|
auto *Term = Pred->getTerminator();
|
|
|
|
// If the arguments are live, we need to keep the terminator that
|
|
// delivers those arguments.
|
|
markValueLive(Term);
|
|
|
|
switch (Term->getTermKind()) {
|
|
case TermKind::ReturnInst:
|
|
case TermKind::ThrowInst:
|
|
case TermKind::UnwindInst:
|
|
case TermKind::YieldInst:
|
|
|
|
case TermKind::UnreachableInst:
|
|
case TermKind::SwitchValueInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
llvm_unreachable("Unexpected argument for terminator kind!");
|
|
break;
|
|
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
case TermKind::CheckedCastValueBranchInst:
|
|
assert(ArgIndex == 0 && "Expected a single argument!");
|
|
|
|
// We do not need to do anything with these. If the resulting
|
|
// argument is used at the destination these terminators will end
|
|
// up live, and then our normal liveness propagation will mark the
|
|
// single operand of these instructions as live.
|
|
break;
|
|
|
|
case TermKind::BranchInst:
|
|
markValueLive(cast<BranchInst>(Term)->getArg(ArgIndex));
|
|
break;
|
|
|
|
case TermKind::CondBranchInst: {
|
|
auto *CondBr = cast<CondBranchInst>(Term);
|
|
|
|
if (CondBr->getTrueBB() == Succ) {
|
|
auto TrueArgs = CondBr->getTrueArgs();
|
|
markValueLive(TrueArgs[ArgIndex]);
|
|
}
|
|
|
|
if (CondBr->getFalseBB() == Succ) {
|
|
auto FalseArgs = CondBr->getFalseArgs();
|
|
markValueLive(FalseArgs[ArgIndex]);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case TermKind::TryApplyInst: {
|
|
assert(ArgIndex == 0 && "Expect a single argument!");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Propagate liveness back from Arg to the terminator arguments that
|
|
// supply its value.
|
|
void DCE::propagateLiveBlockArgument(SILArgument *Arg) {
|
|
// Conceptually, the dependency from a debug instruction to its definition
|
|
// is in reverse direction: Only if its definition (the Arg) is alive, also
|
|
// the debug_value instruction is alive.
|
|
for (Operand *DU : getDebugUses(Arg))
|
|
markValueLive(DU->getUser());
|
|
|
|
if (isa<SILFunctionArgument>(Arg))
|
|
return;
|
|
|
|
auto *Block = Arg->getParent();
|
|
auto ArgIndex = Arg->getIndex();
|
|
|
|
for (auto Pred : Block->getPredecessorBlocks())
|
|
markTerminatorArgsLive(Pred, Block, ArgIndex);
|
|
}
|
|
|
|
// Given an instruction which is considered live, propagate that liveness
|
|
// back to the instructions that produce values it consumes.
|
|
void DCE::propagateLiveness(SILInstruction *I) {
|
|
if (!isa<TermInst>(I)) {
|
|
for (auto &O : I->getAllOperands())
|
|
markValueLive(O.get());
|
|
|
|
// Conceptually, the dependency from a debug instruction to its definition
|
|
// is in reverse direction: Only if its definition is alive, also the
|
|
// debug_value instruction is alive.
|
|
for (auto result : I->getResults())
|
|
for (Operand *DU : getDebugUses(result))
|
|
markValueLive(DU->getUser());
|
|
|
|
// Handle all other reverse-dependency instructions, like cond_fail and
|
|
// fix_lifetime. Only if the definition is alive, the user itself is alive.
|
|
if (SILInstruction *DepInst = ReverseDependencies.lookup(I)) {
|
|
markValueLive(DepInst);
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (cast<TermInst>(I)->getTermKind()) {
|
|
case TermKind::BranchInst:
|
|
case TermKind::UnreachableInst:
|
|
case TermKind::UnwindInst:
|
|
return;
|
|
|
|
case TermKind::ReturnInst:
|
|
case TermKind::ThrowInst:
|
|
case TermKind::CondBranchInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
case TermKind::CheckedCastValueBranchInst:
|
|
markValueLive(I->getOperand(0));
|
|
return;
|
|
|
|
case TermKind::TryApplyInst:
|
|
case TermKind::SwitchValueInst:
|
|
case TermKind::YieldInst:
|
|
for (auto &O : I->getAllOperands())
|
|
markValueLive(O.get());
|
|
return;
|
|
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
markValueLive(I->getOperand(0));
|
|
markValueLive(I->getOperand(1));
|
|
return;
|
|
}
|
|
llvm_unreachable("corrupt instruction!");
|
|
}
|
|
|
|
SILBasicBlock *DCE::nearestUsefulPostDominator(SILBasicBlock *Block) {
|
|
// Find the nearest post-dominator that has useful instructions.
|
|
auto *PostDomNode = PDT->getNode(Block)->getIDom();
|
|
while (PostDomNode && !LiveBlocks.count(PostDomNode->getBlock()))
|
|
PostDomNode = PostDomNode->getIDom();
|
|
|
|
if (PostDomNode)
|
|
return PostDomNode->getBlock();
|
|
return nullptr;
|
|
}
|
|
|
|
// Replace the given conditional branching instruction with a plain
|
|
// jump (aka unconditional branch) to the destination block.
|
|
void DCE::replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block) {
|
|
++NumBranchesPromoted;
|
|
|
|
assert(Block && "Expected a destination block!");
|
|
|
|
assert((isa<CondBranchInst>(Inst) ||
|
|
isa<SwitchValueInst>(Inst) ||
|
|
isa<SwitchEnumInst>(Inst) ||
|
|
isa<SwitchEnumAddrInst>(Inst) ||
|
|
isa<DynamicMethodBranchInst>(Inst) ||
|
|
isa<CheckedCastBranchInst>(Inst)) &&
|
|
"Unexpected dead terminator kind!");
|
|
|
|
SILInstruction *Branch;
|
|
if (!Block->args_empty()) {
|
|
std::vector<SILValue> Args;
|
|
auto E = Block->args_end();
|
|
for (auto A = Block->args_begin(); A != E; ++A) {
|
|
assert(!LiveValues.count(*A) && "Unexpected live block argument!");
|
|
Args.push_back(SILUndef::get((*A)->getType(), *(*A)->getFunction()));
|
|
}
|
|
Branch =
|
|
SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block, Args);
|
|
} else {
|
|
Branch = SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block);
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Inserted unconditional branch:\n");
|
|
LLVM_DEBUG(Branch->dump());
|
|
(void)Branch;
|
|
}
|
|
|
|
// Remove the instructions that are not potentially useful.
|
|
bool DCE::removeDead(SILFunction &F) {
|
|
bool Changed = false;
|
|
|
|
for (auto &BB : F) {
|
|
for (auto I = BB.args_begin(), E = BB.args_end(); I != E;) {
|
|
auto Inst = *I++;
|
|
if (LiveValues.count(Inst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Removing dead argument:\n");
|
|
LLVM_DEBUG(Inst->dump());
|
|
|
|
Inst->replaceAllUsesWithUndef();
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
for (auto I = BB.begin(), E = BB.end(); I != E; ) {
|
|
auto *Inst = &*I;
|
|
I++;
|
|
if (LiveValues.count(Inst) || isa<BranchInst>(Inst))
|
|
continue;
|
|
|
|
// We want to replace dead terminators with unconditional branches to
|
|
// the nearest post-dominator that has useful instructions.
|
|
if (isa<TermInst>(Inst)) {
|
|
SILBasicBlock *postDom = nearestUsefulPostDominator(Inst->getParent());
|
|
if (!postDom)
|
|
continue;
|
|
|
|
replaceBranchWithJump(Inst, postDom);
|
|
Inst->eraseFromParent();
|
|
BranchesChanged = true;
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
++NumDeletedInsts;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Removing dead instruction:\n");
|
|
LLVM_DEBUG(Inst->dump());
|
|
|
|
Inst->replaceAllUsesOfAllResultsWithUndef();
|
|
|
|
if (isa<ApplyInst>(Inst))
|
|
CallsChanged = true;
|
|
|
|
Inst->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Precompute some information from the post-dominator tree to aid us
|
|
// in determining control dependence without generating a complete
|
|
// control dependence graph. Inspired by:
|
|
// Optimal control dependence and the Roman chariots problem
|
|
// TOPLAS, v19, issue 3, 1997
|
|
// http://dx.doi.org/10.1145/256167.256217
|
|
//
|
|
// For each node in the post-dominator tree we will compute:
|
|
// -- A level number.
|
|
//
|
|
// -- The list of immediate predecessors that this block is
|
|
// control-dependent on along with the level number in the
|
|
// post-dominator tree of each of those predecessors.
|
|
//
|
|
// -- The lowest level number of any predecessor below the given node
|
|
// in the post-dominator tree. This will be used to exit early in
|
|
// later control-dependence queries.
|
|
//
|
|
// Returns true upon success, false if nodes that are not present in the
|
|
// post-dominator tree are detected.
|
|
bool DCE::precomputeControlInfo(SILFunction &F) {
|
|
computeLevelNumbers(PDT->getRootNode(), 0);
|
|
if (hasInfiniteLoops(F))
|
|
return false;
|
|
computePredecessorDependence(F);
|
|
computeMinPredecessorLevels(PDT->getRootNode());
|
|
return true;
|
|
}
|
|
|
|
void DCE::insertControllingInfo(SILBasicBlock *Block, unsigned Level) {
|
|
assert(ControllingInfoMap.find(Block) == ControllingInfoMap.end() &&
|
|
"Unexpected map entry for node!");
|
|
|
|
ControllingInfo Info;
|
|
Info.Block = Block;
|
|
Info.Level = Level;
|
|
Info.MinTreePredLevel = -1;
|
|
|
|
ControllingInfoMap[Block] = Info;
|
|
}
|
|
|
|
// Assign a level number to each node in the post-dominator tree, and
|
|
void DCE::computeLevelNumbers(PostDomTreeNode *Node, unsigned Level) {
|
|
insertControllingInfo(Node->getBlock(), Level);
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
computeLevelNumbers(*Child, Level + 1);
|
|
}
|
|
|
|
// Structurally infinite loops like:
|
|
// bb1:
|
|
// br bb1
|
|
// are not present in the post-dominator tree. Their presence
|
|
// requires significant modifications to the way the rest of the
|
|
// algorithm works. They should be rare, so for now we'll do the most
|
|
// conservative thing and completely bail out, doing no dead code
|
|
// elimination. Note this will also hit for unreachable code, but
|
|
// presumably we'll run DCE at some point after removing unreachable
|
|
// code.
|
|
bool DCE::hasInfiniteLoops(SILFunction &F) {
|
|
for (auto &BB : F)
|
|
if (ControllingInfoMap.find(&BB) == ControllingInfoMap.end())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// For each block, create a list of the direct predecessors that the
|
|
// block is control-dependent on. With each predecessor, also keep the
|
|
// level number of the predecessor in the post-dominator tree.
|
|
void DCE::computePredecessorDependence(SILFunction &F) {
|
|
for (auto &BB : F) {
|
|
assert(ControllingInfoMap.find(&BB) != ControllingInfoMap.end()
|
|
&& "Expected to already have a map entry for block!");
|
|
|
|
for (auto Pred : BB.getPredecessorBlocks())
|
|
if (!PDT->properlyDominates(&BB, Pred)) {
|
|
assert(ControllingInfoMap.find(Pred) != ControllingInfoMap.end() &&
|
|
"Expected to already have a map entry for block!");
|
|
|
|
auto PredLevel = ControllingInfoMap[Pred].Level;
|
|
auto PredInfo = std::make_pair(Pred, PredLevel);
|
|
|
|
auto &MapElement = ControllingInfoMap[&BB];
|
|
MapElement.ControllingPreds.push_back(PredInfo);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the minimum post-dominator tree level of any of the
|
|
// direct controlling predecessors of this node or any child.
|
|
unsigned DCE::computeMinPredecessorLevels(PostDomTreeNode *Node) {
|
|
unsigned Min = -1;
|
|
|
|
auto *Block = Node->getBlock();
|
|
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected to have map entry for node!");
|
|
|
|
auto &MapElement = ControllingInfoMap[Block];
|
|
for (auto &PredInfo : MapElement.ControllingPreds)
|
|
Min = std::min(Min, PredInfo.second);
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
Min = std::min(Min, computeMinPredecessorLevels(*Child));
|
|
|
|
MapElement.MinTreePredLevel = Min;
|
|
|
|
return Min;
|
|
}
|
|
|
|
void DCE::collectControllingBlocksInTree(ControllingInfo &QueryInfo,
|
|
PostDomTreeNode *Node,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
|
|
auto *Block = Node->getBlock();
|
|
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected to have map entry for node!");
|
|
|
|
auto &MapEntry = ControllingInfoMap[Block];
|
|
if (MapEntry.MinTreePredLevel > QueryInfo.Level)
|
|
return;
|
|
|
|
for (auto &PredInfo : MapEntry.ControllingPreds)
|
|
if (PredInfo.second <= QueryInfo.Level) {
|
|
assert(PDT->properlyDominates(
|
|
PDT->getNode(PredInfo.first)->getIDom()->getBlock(),
|
|
QueryInfo.Block) &&
|
|
"Expected predecessor's post-dominator to post-dominate node.");
|
|
Controlling.insert(PredInfo.first);
|
|
}
|
|
|
|
for (auto Child = Node->begin(), End = Node->end(); Child != End; ++Child)
|
|
collectControllingBlocksInTree(QueryInfo, (*Child), Controlling);
|
|
}
|
|
|
|
// Walk the post-dominator tree from the query block down, building
|
|
// the set of blocks that the given block is control-dependent on. To
|
|
// determine control dependence we use some precomputed information
|
|
// about the direct predecessors that control each block, along with
|
|
// the level numbers in the post-dominator tree of those controlling
|
|
// predecessors. We can use the latter to terminate the walk down the
|
|
// dominator tree early.
|
|
void DCE::collectControllingBlocks(SILBasicBlock *Block,
|
|
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
|
|
// First add the blocks that QueryNode is directly control-dependent on.
|
|
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
|
|
"Expected map entry for node!");
|
|
auto &MapEntry = ControllingInfoMap[Block];
|
|
|
|
// Now walk the children looking for nodes that have controlling
|
|
// predecessors that have the same or lower level number in the
|
|
// post-dominator tree.
|
|
collectControllingBlocksInTree(MapEntry, PDT->getNode(Block), Controlling);
|
|
}
|
|
|
|
void DCE::markControllingTerminatorsLive(SILBasicBlock *Block) {
|
|
if (LiveBlocks.count(Block))
|
|
return;
|
|
|
|
LiveBlocks.insert(Block);
|
|
|
|
llvm::SmallPtrSet<SILBasicBlock *, 4> ControllingBlocks;
|
|
collectControllingBlocks(Block, ControllingBlocks);
|
|
|
|
for (auto BB : ControllingBlocks)
|
|
markValueLive(BB->getTerminator());
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDCE() {
|
|
return new DCE();
|
|
}
|