mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Actually: generate the array of (key, value) tuples in the data section, which is then passed to Dictionary.init(dictionaryLiteral:) We already do this for simple arrays, e.g. arrays with trivial element types. The only change needed for dictionary literals is to support tuple types in the ObjectOutliner. The effect of this optimization is a significant reduction in code size for dictionary literals - and an increase in data size. But in most cases there is a considerable net win for code+data size in total.
572 lines
21 KiB
C++
572 lines
21 KiB
C++
//===--- ObjectOutliner.cpp - Outline heap objects -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "objectoutliner"
|
|
#include "swift/AST/ASTMangler.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
namespace {
|
|
|
|
class ObjectOutliner {
|
|
SILOptFunctionBuilder &FunctionBuilder;
|
|
NominalTypeDecl *ArrayDecl = nullptr;
|
|
int GlobIdx = 0;
|
|
|
|
// Instructions to be deleted.
|
|
llvm::SmallVector<SILInstruction *, 4> ToRemove;
|
|
|
|
bool isCOWType(SILType type) {
|
|
return type.getNominalOrBoundGenericNominal() == ArrayDecl;
|
|
}
|
|
|
|
bool isValidUseOfObject(SILInstruction *Val,
|
|
bool isCOWObject,
|
|
ApplyInst **FindStringCall = nullptr);
|
|
|
|
bool getObjectInitVals(SILValue Val,
|
|
llvm::DenseMap<VarDecl *, StoreInst *> &MemberStores,
|
|
llvm::SmallVectorImpl<StoreInst *> &TailStores,
|
|
unsigned NumTailTupleElements,
|
|
ApplyInst **FindStringCall);
|
|
bool handleTailAddr(int TailIdx, SILInstruction *I, unsigned NumTailTupleElements,
|
|
llvm::SmallVectorImpl<StoreInst *> &TailStores);
|
|
|
|
bool optimizeObjectAllocation(AllocRefInst *ARI);
|
|
void replaceFindStringCall(ApplyInst *FindStringCall);
|
|
|
|
public:
|
|
ObjectOutliner(SILOptFunctionBuilder &FunctionBuilder,
|
|
NominalTypeDecl *ArrayDecl)
|
|
: FunctionBuilder(FunctionBuilder), ArrayDecl(ArrayDecl) { }
|
|
|
|
bool run(SILFunction *F);
|
|
};
|
|
|
|
bool ObjectOutliner::run(SILFunction *F) {
|
|
bool hasChanged = false;
|
|
|
|
for (auto &BB : *F) {
|
|
auto Iter = BB.begin();
|
|
|
|
while (Iter != BB.end()) {
|
|
SILInstruction *I = &*Iter;
|
|
Iter++;
|
|
if (auto *ARI = dyn_cast<AllocRefInst>(I)) {
|
|
unsigned GarbageSize = ToRemove.size();
|
|
|
|
// Try to replace the alloc_ref with a static object.
|
|
if (optimizeObjectAllocation(ARI)) {
|
|
hasChanged = true;
|
|
} else {
|
|
// No transformation was made. Restore the original state of the garbage list.
|
|
assert(GarbageSize <= ToRemove.size());
|
|
ToRemove.resize(GarbageSize);
|
|
}
|
|
}
|
|
}
|
|
// Delaying the deallocation of instructions avoids problems with iterator invalidation in the
|
|
// instruction loop above.
|
|
for (auto *I : ToRemove)
|
|
I->eraseFromParent();
|
|
ToRemove.clear();
|
|
}
|
|
return hasChanged;
|
|
}
|
|
|
|
/// Get all stored properties of a class, including it's super classes.
|
|
static void getFields(ClassDecl *Cl, SmallVectorImpl<VarDecl *> &Fields) {
|
|
if (ClassDecl *SuperCl = Cl->getSuperclassDecl()) {
|
|
getFields(SuperCl, Fields);
|
|
}
|
|
for (VarDecl *Field : Cl->getStoredProperties()) {
|
|
Fields.push_back(Field);
|
|
}
|
|
}
|
|
|
|
/// Check if \p V is a valid instruction for a static initializer, including
|
|
/// all its operands.
|
|
static bool isValidInitVal(SILValue V) {
|
|
if (auto I = dyn_cast<SingleValueInstruction>(V)) {
|
|
if (!SILGlobalVariable::isValidStaticInitializerInst(I, I->getModule()))
|
|
return false;
|
|
|
|
for (Operand &Op : I->getAllOperands()) {
|
|
if (!isValidInitVal(Op.get()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check if a use of an object may prevent outlining the object.
|
|
///
|
|
/// If \p isCOWObject is true, then the object reference is wrapped into a
|
|
/// COW container. Currently this is just Array<T>.
|
|
/// If a use is a call to the findStringSwitchCase semantic call, the apply
|
|
/// is returned in \p FindStringCall.
|
|
bool ObjectOutliner::isValidUseOfObject(SILInstruction *I, bool isCOWObject,
|
|
ApplyInst **FindStringCall) {
|
|
switch (I->getKind()) {
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::DebugValueInst:
|
|
case SILInstructionKind::LoadInst:
|
|
case SILInstructionKind::DeallocRefInst:
|
|
case SILInstructionKind::StrongRetainInst:
|
|
case SILInstructionKind::StrongReleaseInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::SetDeallocatingInst:
|
|
return true;
|
|
|
|
case SILInstructionKind::ReturnInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::PartialApplyInst:
|
|
case SILInstructionKind::StoreInst:
|
|
/// We don't have a representation for COW objects in SIL, so we do some
|
|
/// ad-hoc testing: We can ignore uses of a COW object if any use after
|
|
/// this will do a uniqueness checking before the object is modified.
|
|
return isCOWObject;
|
|
|
|
case SILInstructionKind::ApplyInst:
|
|
if (!isCOWObject)
|
|
return false;
|
|
// There should only be a single call to findStringSwitchCase. But even
|
|
// if there are multiple calls, it's not problem - we'll just optimize the
|
|
// last one we find.
|
|
if (cast<ApplyInst>(I)->hasSemantics("findStringSwitchCase"))
|
|
*FindStringCall = cast<ApplyInst>(I);
|
|
return true;
|
|
|
|
case SILInstructionKind::StructInst:
|
|
if (isCOWType(cast<StructInst>(I)->getType())) {
|
|
// The object is wrapped into a COW container.
|
|
isCOWObject = true;
|
|
}
|
|
break;
|
|
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
assert(!isCOWObject && "instruction cannot have a COW object as operand");
|
|
break;
|
|
|
|
case SILInstructionKind::TupleInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::EnumInst:
|
|
break;
|
|
|
|
case SILInstructionKind::StructExtractInst:
|
|
// To be on the safe side we don't consider the object as COW if it is
|
|
// extracted again from the COW container: the uniqueness check may be
|
|
// optimized away in this case.
|
|
isCOWObject = false;
|
|
break;
|
|
|
|
case SILInstructionKind::BuiltinInst: {
|
|
// Handle the case for comparing addresses. This occurs when the Array
|
|
// comparison function is inlined.
|
|
auto *BI = cast<BuiltinInst>(I);
|
|
BuiltinValueKind K = BI->getBuiltinInfo().ID;
|
|
if (K == BuiltinValueKind::ICMP_EQ || K == BuiltinValueKind::ICMP_NE)
|
|
return true;
|
|
if (K == BuiltinValueKind::DestroyArray) {
|
|
// We must not try to delete the tail allocated values. Although this would be a no-op
|
|
// (because we only handle trivial types), it would be semantically wrong to apply this
|
|
// builtin on the outlined object.
|
|
ToRemove.push_back(BI);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
auto SVI = cast<SingleValueInstruction>(I);
|
|
for (Operand *Use : getNonDebugUses(SVI)) {
|
|
if (!isValidUseOfObject(Use->getUser(), isCOWObject, FindStringCall))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Handle the address of a tail element.
|
|
bool ObjectOutliner::handleTailAddr(int TailIdx, SILInstruction *TailAddr,
|
|
unsigned NumTailTupleElements,
|
|
llvm::SmallVectorImpl<StoreInst *> &TailStores) {
|
|
if (NumTailTupleElements > 0) {
|
|
if (auto *TEA = dyn_cast<TupleElementAddrInst>(TailAddr)) {
|
|
unsigned TupleIdx = TEA->getFieldNo();
|
|
assert(TupleIdx < NumTailTupleElements);
|
|
for (Operand *Use : TEA->getUses()) {
|
|
if (!handleTailAddr(TailIdx * NumTailTupleElements + TupleIdx, Use->getUser(), 0,
|
|
TailStores))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
} else {
|
|
if (TailIdx >= 0 && TailIdx < (int)TailStores.size()) {
|
|
if (auto *SI = dyn_cast<StoreInst>(TailAddr)) {
|
|
if (!isValidInitVal(SI->getSrc()) || TailStores[TailIdx])
|
|
return false;
|
|
TailStores[TailIdx] = SI;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return isValidUseOfObject(TailAddr, /*isCOWObject*/false);
|
|
}
|
|
|
|
/// Get the init values for an object's stored properties and its tail elements.
|
|
bool ObjectOutliner::getObjectInitVals(SILValue Val,
|
|
llvm::DenseMap<VarDecl *, StoreInst *> &MemberStores,
|
|
llvm::SmallVectorImpl<StoreInst *> &TailStores,
|
|
unsigned NumTailTupleElements,
|
|
ApplyInst **FindStringCall) {
|
|
for (Operand *Use : Val->getUses()) {
|
|
SILInstruction *User = Use->getUser();
|
|
if (auto *UC = dyn_cast<UpcastInst>(User)) {
|
|
// Upcast is transparent.
|
|
if (!getObjectInitVals(UC, MemberStores, TailStores, NumTailTupleElements, FindStringCall))
|
|
return false;
|
|
} else if (auto *REA = dyn_cast<RefElementAddrInst>(User)) {
|
|
// The address of a stored property.
|
|
for (Operand *ElemAddrUse : REA->getUses()) {
|
|
SILInstruction *ElemAddrUser = ElemAddrUse->getUser();
|
|
if (auto *SI = dyn_cast<StoreInst>(ElemAddrUser)) {
|
|
if (!isValidInitVal(SI->getSrc()) || MemberStores[REA->getField()])
|
|
return false;
|
|
MemberStores[REA->getField()] = SI;
|
|
} else if (!isValidUseOfObject(ElemAddrUser, /*isCOWObject*/false)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (auto *RTA = dyn_cast<RefTailAddrInst>(User)) {
|
|
// The address of a tail element.
|
|
for (Operand *TailUse : RTA->getUses()) {
|
|
SILInstruction *TailUser = TailUse->getUser();
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(TailUser)) {
|
|
// An index_addr yields the address of any tail element. Only if the
|
|
// second operand (the index) is an integer literal we can figure out
|
|
// which tail element is refereneced.
|
|
int TailIdx = -1;
|
|
if (auto *Index = dyn_cast<IntegerLiteralInst>(IA->getIndex()))
|
|
TailIdx = Index->getValue().getZExtValue();
|
|
|
|
for (Operand *IAUse : IA->getUses()) {
|
|
if (!handleTailAddr(TailIdx, IAUse->getUser(), NumTailTupleElements, TailStores))
|
|
return false;
|
|
}
|
|
// Without an index_addr it's the first tail element.
|
|
} else if (!handleTailAddr(/*TailIdx*/0, TailUser, NumTailTupleElements, TailStores)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (!isValidUseOfObject(User, /*isCOWObject*/false, FindStringCall)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class GlobalVariableMangler : public Mangle::ASTMangler {
|
|
public:
|
|
std::string mangleOutlinedVariable(SILFunction *F, int &uniqueIdx) {
|
|
std::string GlobName;
|
|
do {
|
|
beginManglingWithoutPrefix();
|
|
appendOperator(F->getName());
|
|
appendOperator("Tv", Index(uniqueIdx++));
|
|
GlobName = finalize();
|
|
} while (F->getModule().lookUpGlobalVariable(GlobName));
|
|
|
|
return GlobName;
|
|
}
|
|
};
|
|
|
|
/// Try to convert an object allocation into a statically initialized object.
|
|
///
|
|
/// In general this works for any class, but in practice it will only kick in
|
|
/// for array buffer objects. The use cases are array literals in a function.
|
|
/// For example:
|
|
/// func getarray() -> [Int] {
|
|
/// return [1, 2, 3]
|
|
/// }
|
|
bool ObjectOutliner::optimizeObjectAllocation(AllocRefInst *ARI) {
|
|
if (ARI->isObjC())
|
|
return false;
|
|
|
|
// Check how many tail allocated elements are on the object.
|
|
ArrayRef<Operand> TailCounts = ARI->getTailAllocatedCounts();
|
|
SILType TailType;
|
|
unsigned NumTailElems = 0;
|
|
|
|
// We only support a single tail allocated arrays.
|
|
// Stdlib's tail allocated arrays don't have any side-effects in the
|
|
// constructor if the element type is trivial.
|
|
// TODO: also exclude custom tail allocated arrays which might have
|
|
// side-effects in the destructor.
|
|
if (TailCounts.size() != 1)
|
|
return false;
|
|
|
|
// The number of tail allocated elements must be constant.
|
|
if (auto *ILI = dyn_cast<IntegerLiteralInst>(TailCounts[0].get())) {
|
|
if (ILI->getValue().getActiveBits() > 20)
|
|
return false;
|
|
NumTailElems = ILI->getValue().getZExtValue();
|
|
TailType = ARI->getTailAllocatedTypes()[0];
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
SILType Ty = ARI->getType();
|
|
ClassDecl *Cl = Ty.getClassOrBoundGenericClass();
|
|
if (!Cl)
|
|
return false;
|
|
llvm::SmallVector<VarDecl *, 16> Fields;
|
|
getFields(Cl, Fields);
|
|
|
|
llvm::DenseMap<VarDecl *, StoreInst *> MemberStores;
|
|
|
|
// A store for each element of the tail allocated array. In case of a tuple, there is a store
|
|
// for each tuple element. For example, a 3 element array of 2-element tuples
|
|
// [ (i0, i1), (i2, i3), (i4, i5) ]
|
|
// results in following store instructions, collected in TailStores:
|
|
// [ store i0, store i1, store i2, store i3, store i4, store i5 ]
|
|
llvm::SmallVector<StoreInst *, 16> TailStores;
|
|
|
|
unsigned NumStores = NumTailElems;
|
|
unsigned NumTailTupleElems = 0;
|
|
if (auto Tuple = TailType.getAs<TupleType>()) {
|
|
NumTailTupleElems = Tuple->getNumElements();
|
|
if (NumTailTupleElems == 0)
|
|
return false;
|
|
NumStores *= NumTailTupleElems;
|
|
}
|
|
|
|
TailStores.resize(NumStores);
|
|
ApplyInst *FindStringCall = nullptr;
|
|
|
|
// Get the initialization stores of the object's properties and tail
|
|
// allocated elements. Also check if there are any "bad" uses of the object.
|
|
if (!getObjectInitVals(ARI, MemberStores, TailStores, NumTailTupleElems, &FindStringCall))
|
|
return false;
|
|
|
|
// Is there a store for all the class properties?
|
|
if (MemberStores.size() != Fields.size())
|
|
return false;
|
|
|
|
// Is there a store for all tail allocated elements?
|
|
for (auto V : TailStores) {
|
|
if (!V)
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Outline global variable in "
|
|
<< ARI->getFunction()->getName() << '\n');
|
|
|
|
SILModule *Module = &ARI->getFunction()->getModule();
|
|
// FIXME: Expansion
|
|
assert(!Cl->isResilient(Module->getSwiftModule(),
|
|
ResilienceExpansion::Minimal) &&
|
|
"constructor call of resilient class should prevent static allocation");
|
|
|
|
// Create a name for the outlined global variable.
|
|
GlobalVariableMangler Mangler;
|
|
std::string GlobName =
|
|
Mangler.mangleOutlinedVariable(ARI->getFunction(), GlobIdx);
|
|
|
|
SILGlobalVariable *Glob =
|
|
SILGlobalVariable::create(*Module, SILLinkage::Private, IsNotSerialized,
|
|
GlobName, ARI->getType());
|
|
|
|
// Schedule all init values for cloning into the initializer of Glob.
|
|
StaticInitCloner Cloner(Glob);
|
|
for (VarDecl *Field : Fields) {
|
|
StoreInst *MemberStore = MemberStores[Field];
|
|
Cloner.add(cast<SingleValueInstruction>(MemberStore->getSrc()));
|
|
}
|
|
for (StoreInst *TailStore : TailStores) {
|
|
Cloner.add(cast<SingleValueInstruction>(TailStore->getSrc()));
|
|
}
|
|
|
|
// Create the class property initializers
|
|
llvm::SmallVector<SILValue, 16> ObjectArgs;
|
|
for (VarDecl *Field : Fields) {
|
|
StoreInst *MemberStore = MemberStores[Field];
|
|
assert(MemberStore);
|
|
ObjectArgs.push_back(Cloner.clone(
|
|
cast<SingleValueInstruction>(MemberStore->getSrc())));
|
|
ToRemove.push_back(MemberStore);
|
|
}
|
|
unsigned NumBaseElements = ObjectArgs.size();
|
|
|
|
// Create the initializers for the tail elements.
|
|
if (NumTailTupleElems == 0) {
|
|
// The non-tuple element case.
|
|
for (StoreInst *TailStore : TailStores) {
|
|
ObjectArgs.push_back(Cloner.clone(
|
|
cast<SingleValueInstruction>(TailStore->getSrc())));
|
|
ToRemove.push_back(TailStore);
|
|
}
|
|
} else {
|
|
// The elements are tuples: combine NumTailTupleElems elements from TailStores to a single tuple
|
|
// instruction.
|
|
for (unsigned EIdx = 0; EIdx < NumTailElems; EIdx++) {
|
|
SmallVector<SILValue, 8> TupleElems;
|
|
for (unsigned TIdx = 0; TIdx < NumTailTupleElems; TIdx++) {
|
|
StoreInst *TailStore = TailStores[EIdx * NumTailTupleElems + TIdx];
|
|
SILValue V = Cloner.clone(cast<SingleValueInstruction>(TailStore->getSrc()));
|
|
TupleElems.push_back(V);
|
|
ToRemove.push_back(TailStore);
|
|
}
|
|
auto *TI = Cloner.getBuilder().createTuple(ARI->getLoc(), TailType, TupleElems);
|
|
ObjectArgs.push_back(TI);
|
|
}
|
|
}
|
|
|
|
// Create the initializer for the object itself.
|
|
SILBuilder StaticInitBuilder(Glob);
|
|
StaticInitBuilder.createObject(ArtificialUnreachableLocation(),
|
|
ARI->getType(), ObjectArgs, NumBaseElements);
|
|
|
|
// Replace the alloc_ref by global_value + strong_retain instructions.
|
|
SILBuilder B(ARI);
|
|
GlobalValueInst *GVI = B.createGlobalValue(ARI->getLoc(), Glob);
|
|
B.createStrongRetain(ARI->getLoc(), GVI, B.getDefaultAtomicity());
|
|
llvm::SmallVector<Operand *, 8> Worklist(ARI->use_begin(), ARI->use_end());
|
|
while (!Worklist.empty()) {
|
|
auto *Use = Worklist.pop_back_val();
|
|
SILInstruction *User = Use->getUser();
|
|
switch (User->getKind()) {
|
|
case SILInstructionKind::SetDeallocatingInst:
|
|
// set_deallocating is a replacement for a strong_release. Therefore
|
|
// we have to insert a strong_release to balance the strong_retain which
|
|
// we inserted after the global_value instruction.
|
|
B.setInsertionPoint(User);
|
|
B.createStrongRelease(User->getLoc(), GVI, B.getDefaultAtomicity());
|
|
LLVM_FALLTHROUGH;
|
|
case SILInstructionKind::DeallocRefInst:
|
|
ToRemove.push_back(User);
|
|
break;
|
|
default:
|
|
Use->set(GVI);
|
|
}
|
|
}
|
|
if (FindStringCall && NumTailElems > 16) {
|
|
assert(&*std::next(ARI->getIterator()) != FindStringCall &&
|
|
"FindStringCall must not be the next instruction after ARI because "
|
|
"deleting it would invalidate the instruction iterator");
|
|
replaceFindStringCall(FindStringCall);
|
|
}
|
|
|
|
ToRemove.push_back(ARI);
|
|
return true;
|
|
}
|
|
|
|
/// Replaces a call to _findStringSwitchCase with a call to
|
|
/// _findStringSwitchCaseWithCache which builds a cache (e.g. a Dictionary) and
|
|
/// stores it into a global variable. Then subsequent calls to this function can
|
|
/// do a fast lookup using the cache.
|
|
void ObjectOutliner::replaceFindStringCall(ApplyInst *FindStringCall) {
|
|
// Find the replacement function in the swift stdlib.
|
|
SmallVector<ValueDecl *, 1> results;
|
|
SILModule *Module = &FindStringCall->getFunction()->getModule();
|
|
Module->getASTContext().lookupInSwiftModule("_findStringSwitchCaseWithCache",
|
|
results);
|
|
if (results.size() != 1)
|
|
return;
|
|
|
|
auto *FD = dyn_cast<FuncDecl>(results.front());
|
|
if (!FD)
|
|
return;
|
|
|
|
SILDeclRef declRef(FD, SILDeclRef::Kind::Func);
|
|
SILFunction *replacementFunc = FunctionBuilder.getOrCreateFunction(
|
|
FindStringCall->getLoc(), declRef, NotForDefinition);
|
|
|
|
SILFunctionType *FTy = replacementFunc->getLoweredFunctionType();
|
|
if (FTy->getNumParameters() != 3)
|
|
return;
|
|
|
|
SILType cacheType = FTy->getParameters()[2].getSILStorageType().getObjectType();
|
|
NominalTypeDecl *cacheDecl = cacheType.getNominalOrBoundGenericNominal();
|
|
if (!cacheDecl)
|
|
return;
|
|
|
|
|
|
// FIXME: Expansion
|
|
assert(!cacheDecl->isResilient(Module->getSwiftModule(),
|
|
ResilienceExpansion::Minimal));
|
|
|
|
SILType wordTy = cacheType.getFieldType(
|
|
cacheDecl->getStoredProperties().front(), *Module);
|
|
|
|
GlobalVariableMangler Mangler;
|
|
std::string GlobName =
|
|
Mangler.mangleOutlinedVariable(FindStringCall->getFunction(), GlobIdx);
|
|
|
|
// Create an "opaque" global variable which is passed as inout to
|
|
// _findStringSwitchCaseWithCache and into which the function stores the
|
|
// "cache".
|
|
SILGlobalVariable *CacheVar =
|
|
SILGlobalVariable::create(*Module, SILLinkage::Private, IsNotSerialized,
|
|
GlobName, cacheType);
|
|
|
|
SILLocation Loc = FindStringCall->getLoc();
|
|
SILBuilder StaticInitBuilder(CacheVar);
|
|
auto *Zero = StaticInitBuilder.createIntegerLiteral(Loc, wordTy, 0);
|
|
StaticInitBuilder.createStruct(ArtificialUnreachableLocation(), cacheType,
|
|
{Zero, Zero});
|
|
|
|
SILBuilder B(FindStringCall);
|
|
GlobalAddrInst *CacheAddr = B.createGlobalAddr(FindStringCall->getLoc(),
|
|
CacheVar);
|
|
FunctionRefInst *FRI = B.createFunctionRef(FindStringCall->getLoc(),
|
|
replacementFunc);
|
|
ApplyInst *NewCall = B.createApply(FindStringCall->getLoc(), FRI,
|
|
FindStringCall->getSubstitutionMap(),
|
|
{ FindStringCall->getArgument(0),
|
|
FindStringCall->getArgument(1),
|
|
CacheAddr },
|
|
FindStringCall->isNonThrowing());
|
|
|
|
FindStringCall->replaceAllUsesWith(NewCall);
|
|
FindStringCall->eraseFromParent();
|
|
}
|
|
|
|
class ObjectOutlinerPass : public SILFunctionTransform {
|
|
void run() override {
|
|
SILFunction *F = getFunction();
|
|
SILOptFunctionBuilder FuncBuilder(*this);
|
|
ObjectOutliner Outliner(FuncBuilder,
|
|
F->getModule().getASTContext().getArrayDecl());
|
|
if (Outliner.run(F)) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createObjectOutliner() {
|
|
return new ObjectOutlinerPass();
|
|
}
|