Files
swift-mirror/test/SILOptimizer/predictable_memopt.sil
Michael Gottesman ac1f956ac0 Split predictable mem opts into two different passes, one that runs before diagnostics and one that runs after diagnostics.
I discovered while updating PMO for ownership that for ~5 years there has been a
bug where we were treating copy_addr of trivial values like an "Assign" (in PMO
terminology) of a non-trivial value and thus stopping allocation
elimination. When I fixed this I discovered that this caused us to no longer
emit diagnostics in a predictable way. Specifically, consider the following
swift snippet:

  var _: UInt = (-1) >> 0

Today, we emit a diagnostic that -1 can not be put into a UInt. This occurs
since even though the underlying allocation is only stored into, the copy_addr
assign keeps it alive, causing the diagnostics pass to see the conversion. With
my fix though, we see that we are only storing into the allocation, causing the
allocation to be eliminated before the constant propagation diagnostic pass
runs, causing the diagnostic to no longer be emitted.

We should truly not be performing this type of DCE before we emit such
diagnostics. So in this commit, I split the pass into two parts:

1. A load promotion pass that performs the SSA formation needed for SSA based
diagnostics to actually work.

2. An allocation elimination passes that run /after/ SSA based diagnostics.

This should be NFC since the constant propagation SSA based diagnostics do not
create memory operations so the output should be the same.
2019-01-17 14:48:03 -08:00

961 lines
34 KiB
Plaintext

// RUN: %target-sil-opt -enable-sil-verify-all %s -predictable-memaccess-opts -predictable-deadalloc-elim | %FileCheck %s
import Builtin
import Swift
// CHECK-LABEL: sil @simple_reg_promotion
// CHECK: bb0(%0 : $Int):
// CHECK-NEXT: return %0 : $Int
sil @simple_reg_promotion : $@convention(thin) (Int) -> Int {
bb0(%0 : $Int):
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <Int>, 0
store %0 to %1a : $*Int
%3 = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
%3a = project_box %3 : $<τ_0_0> { var τ_0_0 } <Int>, 0
%4 = load %1a : $*Int
store %4 to %3a : $*Int
%6 = load %3a : $*Int
strong_release %3 : $<τ_0_0> { var τ_0_0 } <Int>
strong_release %1 : $<τ_0_0> { var τ_0_0 } <Int>
return %6 : $Int
}
// Verify that promotion has promoted the tuple load away, and we know that
// %0 is being returned through scalar instructions in SSA form.
//
// CHECK-LABEL: sil @tuple_reg_promotion
// CHECK: bb0(%0 : $Int):
// CHECK-NEXT: [[TUPLE:%[0-9]+]] = tuple ({{.*}} : $Int, {{.*}} : $Int)
// CHECK-NEXT: [[TUPLE_ELT:%[0-9]+]] = tuple_extract [[TUPLE]] : $(Int, Int), 0
// CHECK-NEXT: return [[TUPLE_ELT]] : $Int
sil @tuple_reg_promotion : $@convention(thin) (Int) -> Int {
bb0(%0 : $Int):
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <(Int, Int)>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <(Int, Int)>, 0
%a = tuple_element_addr %1a : $*(Int, Int), 0
%b = tuple_element_addr %1a : $*(Int, Int), 1
store %0 to %a : $*Int
store %0 to %b : $*Int
%c = load %1a : $*(Int, Int)
%d = tuple_extract %c : $(Int, Int), 0
strong_release %1 : $<τ_0_0> { var τ_0_0 } <(Int, Int)>
return %d : $Int
}
// In this example we create two boxes. The first box is initialized and then
// taken from to initialize the second box. This means that the first box must
// be dealloc_boxed (since its underlying memory is considered invalid). In
// contrast, the 2nd box must be released so that we destroy the underlying
// input object.
//
// CHECK-LABEL: sil @simple_reg_promotion_nontrivial_memory : $@convention(thin) (@owned Builtin.NativeObject) -> () {
// CHECK: strong_release
// CHECK-NOT: dealloc_box
// CHECK: } // end sil function 'simple_reg_promotion_nontrivial_memory'
sil @simple_reg_promotion_nontrivial_memory : $@convention(thin) (@owned Builtin.NativeObject) -> () {
bb0(%0 : $Builtin.NativeObject):
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>, 0
store %0 to %1a : $*Builtin.NativeObject
%3 = alloc_box $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%3a = project_box %3 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>, 0
%4 = load %1a : $*Builtin.NativeObject
store %4 to %3a : $*Builtin.NativeObject
strong_release %3 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
dealloc_box %1 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%9999 = tuple()
return %9999 : $()
}
// Same as the last test but with release_value to be defensive in the cast that
// someone passes us such SIL.
//
// CHECK-LABEL: sil @simple_reg_promotion_nontrivial_memory_release_value : $@convention(thin) (@owned Builtin.NativeObject) -> () {
// The retain value is on the dealloc_box.
// CHECK-NOT: retain_value
// CHECK: release_value
// CHECK-NOT: dealloc_box
// CHECK: } // end sil function 'simple_reg_promotion_nontrivial_memory_release_value'
sil @simple_reg_promotion_nontrivial_memory_release_value : $@convention(thin) (@owned Builtin.NativeObject) -> () {
bb0(%0 : $Builtin.NativeObject):
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>, 0
store %0 to %1a : $*Builtin.NativeObject
// Also verify that we skip a retain_value on the dealloc_box.
retain_value %1 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%3 = alloc_box $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%3a = project_box %3 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>, 0
%4 = load %1a : $*Builtin.NativeObject
store %4 to %3a : $*Builtin.NativeObject
release_value %3 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
dealloc_box %1 : $<τ_0_0> { var τ_0_0 } <Builtin.NativeObject>
%9999 = tuple()
return %9999 : $()
}
sil @takes_Int_inout : $@convention(thin) (@inout Int) -> ()
sil @takes_NativeObject_inout : $@convention(thin) (@inout Builtin.NativeObject) -> ()
// Verify that load promotion works properly with inout arguments.
//
// func used_by_inout(a : Int) -> (Int, Int) {
// var t = a
// takes_Int_inout(&a)
// return (t, a)
//}
//
// CHECK-LABEL: sil @used_by_inout : $@convention(thin) (Int) -> (Int, Int) {
// CHECK: bb0([[ARG:%.*]] : $Int):
sil @used_by_inout : $@convention(thin) (Int) -> (Int, Int) {
bb0(%0 : $Int):
// This alloc_stack can't be removed since it is used by an inout call.
// CHECK: [[BOX:%.*]] = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
// CHECK: [[PB_BOX:%.*]] = project_box [[BOX]]
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <Int>, 0
store %0 to %1a : $*Int
// This load should be eliminated.
// CHECK-NOT: load
// CHECK: [[FUNC:%.*]] = function_ref @takes_Int_inout : $@convention(thin) (@inout Int) -> ()
// CHECK: apply [[FUNC]]([[PB_BOX]])
%3 = load %1a : $*Int
%5 = function_ref @takes_Int_inout : $@convention(thin) (@inout Int) -> ()
%6 = apply %5(%1a) : $@convention(thin) (@inout Int) -> ()
// This load is needed in case the callee modifies the allocation.
// CHECK: [[RES:%[0-9]+]] = load [[PB_BOX]]
%7 = load %1a : $*Int
// This should use the incoming argument to the function.
// CHECK: tuple ([[ARG]] : $Int, [[RES]] : $Int)
%8 = tuple (%3 : $Int, %7 : $Int)
strong_release %1 : $<τ_0_0> { var τ_0_0 } <Int>
return %8 : $(Int, Int)
}
struct AddressOnlyStruct {
var a : Any
var b : Int
}
/// returns_generic_struct - This returns a struct by reference.
sil @returns_generic_struct : $@convention(thin) () -> @out AddressOnlyStruct
sil @takes_closure : $@convention(thin) (@callee_owned () -> ()) -> ()
sil @closure0 : $@convention(thin) (@owned <τ_0_0> { var τ_0_0 } <Int>) -> ()
// CHECK-LABEL: sil @closure_test2
sil @closure_test2 : $@convention(thin) (Int) -> Int {
bb0(%1 : $Int):
%0 = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
%0a = project_box %0 : $<τ_0_0> { var τ_0_0 } <Int>, 0
store %1 to %0a : $*Int // CHECK: store
%5 = function_ref @takes_closure : $@convention(thin) (@callee_owned () -> ()) -> ()
%6 = function_ref @closure0 : $@convention(thin) (@owned <τ_0_0> { var τ_0_0 } <Int>) -> ()
strong_retain %0 : $<τ_0_0> { var τ_0_0 } <Int>
%8 = partial_apply %6(%0) : $@convention(thin) (@owned <τ_0_0> { var τ_0_0 } <Int>) -> ()
%9 = apply %5(%8) : $@convention(thin) (@callee_owned () -> ()) -> ()
strong_release %0 : $<τ_0_0> { var τ_0_0 } <Int>
store %1 to %0a : $*Int // CHECK: store
// In an escape region, we should not promote loads.
%r = load %0a : $*Int // CHECK: load
return %r : $Int
}
class SomeClass {}
sil @getSomeClass : $@convention(thin) () -> @owned SomeClass
// CHECK-LABEL: sil @assign_test_trivial
sil @assign_test_trivial : $@convention(thin) (Int) -> Int {
bb0(%0 : $Int):
%1 = alloc_box $<τ_0_0> { var τ_0_0 } <Int>
%1a = project_box %1 : $<τ_0_0> { var τ_0_0 } <Int>, 0
store %0 to %1a : $*Int
store %0 to %1a : $*Int
store %0 to %1a : $*Int
%2 = load %1a : $*Int
strong_release %1 : $<τ_0_0> { var τ_0_0 } <Int>
// Verify that the load got forwarded from an assign.
return %2 : $Int // CHECK: return %0 : $Int
}
struct ContainsNativeObject {
var x : Builtin.NativeObject
var y : Int32
var z : Builtin.NativeObject
}
// CHECK-LABEL: sil @multiple_level_extract_1 : $@convention(thin) (@owned ContainsNativeObject) -> Builtin.Int32 {
// CHECK: bb0([[ARG:%.*]] : $ContainsNativeObject):
// CHECK: [[FIELD1:%.*]] = struct_extract [[ARG]] : $ContainsNativeObject, #ContainsNativeObject.y
// CHECK: [[FIELD2:%.*]] = struct_extract [[FIELD1]] : $Int32, #Int32._value
// CHECK: release_value [[ARG]]
// CHECK: return [[FIELD2]]
// CHECK: } // end sil function 'multiple_level_extract_1'
sil @multiple_level_extract_1 : $@convention(thin) (@owned ContainsNativeObject) -> Builtin.Int32 {
bb0(%0 : $ContainsNativeObject):
%1 = alloc_stack $ContainsNativeObject
store %0 to %1 : $*ContainsNativeObject
%2 = struct_element_addr %1 : $*ContainsNativeObject, #ContainsNativeObject.y
%3 = struct_element_addr %2 : $*Int32, #Int32._value
%4 = load %3 : $*Builtin.Int32
destroy_addr %1 : $*ContainsNativeObject
dealloc_stack %1 : $*ContainsNativeObject
return %4 : $Builtin.Int32
}
struct ComplexStruct {
var f1 : Builtin.NativeObject
var f2 : ContainsNativeObject
var f3 : Builtin.Int32
}
// CHECK-LABEL: sil @multiple_level_extract_2 : $@convention(thin) (@owned ComplexStruct) -> (@owned Builtin.NativeObject, @owned Builtin.NativeObject, Builtin.Int32) {
// CHECK: bb0([[ARG:%.*]] : $ComplexStruct):
// CHECK: [[f1:%.*]] = struct_extract [[ARG]] : $ComplexStruct, #ComplexStruct.f3
// CHECK: [[f2:%.*]] = struct_extract [[ARG]] : $ComplexStruct, #ComplexStruct.f2
// CHECK: [[f2_x:%.*]] = struct_extract [[f2]] : $ContainsNativeObject, #ContainsNativeObject.x
// CHECK: [[f3:%.*]] = struct_extract [[ARG]] : $ComplexStruct, #ComplexStruct.f1
// CHECK-NEXT: strong_retain [[f3]]
// CHECK-NEXT: strong_retain [[f2_x]]
// CHECK-NEXT: release_value [[ARG]]
// CHECK: [[RESULT:%.*]] = tuple ([[f3]] : $Builtin.NativeObject, [[f2_x]] : $Builtin.NativeObject, [[f1]] : $Builtin.Int32)
// CHECK: return [[RESULT]]
// CHECK: } // end sil function 'multiple_level_extract_2'
sil @multiple_level_extract_2 : $@convention(thin) (@owned ComplexStruct) -> (@owned Builtin.NativeObject, @owned Builtin.NativeObject, Builtin.Int32) {
bb0(%0 : $ComplexStruct):
%1 = alloc_stack $ComplexStruct
store %0 to %1 : $*ComplexStruct
%2 = struct_element_addr %1 : $*ComplexStruct, #ComplexStruct.f1
%3 = struct_element_addr %1 : $*ComplexStruct, #ComplexStruct.f2
%4 = struct_element_addr %3 : $*ContainsNativeObject, #ContainsNativeObject.x
%5 = struct_element_addr %1 : $*ComplexStruct, #ComplexStruct.f3
%6 = load %2 : $*Builtin.NativeObject
strong_retain %6 : $Builtin.NativeObject
%7 = load %4 : $*Builtin.NativeObject
strong_retain %7 : $Builtin.NativeObject
%8 = load %5 : $*Builtin.Int32
destroy_addr %1 : $*ComplexStruct
dealloc_stack %1 : $*ComplexStruct
%9 = tuple(%6 : $Builtin.NativeObject, %7 : $Builtin.NativeObject, %8 : $Builtin.Int32)
return %9 : $(Builtin.NativeObject, Builtin.NativeObject, Builtin.Int32)
}
var int_global : Int
// CHECK-LABEL: sil @promote_alloc_stack
sil @promote_alloc_stack : $@convention(thin) (Int32) -> Builtin.Int32 {
bb0(%0 : $Int32):
%5 = integer_literal $Builtin.Int32, 1
// CHECK: [[IL:%[0-9]+]] = integer_literal
%18 = struct $Int32 (%5 : $Builtin.Int32)
%22 = alloc_stack $Int32
// CHECK-NOT: alloc_stack
store %18 to %22 : $*Int32
%24 = struct_element_addr %22 : $*Int32, #Int32._value
%25 = load %24 : $*Builtin.Int32
dealloc_stack %22 : $*Int32
// CHECK-NEXT: return [[IL]]
return %25 : $Builtin.Int32
}
// CHECK-LABEL: sil @copy_addr_to_load
sil @copy_addr_to_load : $@convention(thin) (Int) -> Int {
bb0(%0 : $Int): // CHECK: bb0(%0 : $Int):
%1 = alloc_stack $Int
store %0 to %1 : $*Int
%2 = alloc_stack $Int
copy_addr %1 to [initialization] %2 : $*Int
%3 = load %2 : $*Int
dealloc_stack %2 : $*Int
dealloc_stack %1 : $*Int
// CHECK-NEXT: return %0
return %3 : $Int
}
// rdar://15170149
// CHECK-LABEL: sil @store_to_copyaddr
sil @store_to_copyaddr : $(Bool) -> Bool {
bb0(%0 : $Bool): // CHECK: bb0(%0 :
%1 = alloc_stack $Bool
store %0 to %1 : $*Bool
%3 = alloc_stack $Bool
copy_addr %1 to [initialization] %3 : $*Bool
%5 = load %3 : $*Bool
copy_addr %3 to %1 : $*Bool
%12 = load %1 : $*Bool
dealloc_stack %3 : $*Bool
dealloc_stack %1 : $*Bool
return %12 : $Bool // CHECK-NEXT: return %0
}
// CHECK-LABEL: sil @cross_block_load_promotion
sil @cross_block_load_promotion : $@convention(thin) (Int) -> Int {
bb0(%0 : $Int):
%1 = alloc_stack $Int
store %0 to %1 : $*Int
%11 = integer_literal $Builtin.Int1, 1
cond_br %11, bb1, bb2
bb1:
br bb5
bb2:
br bb5
bb5:
%15 = load %1 : $*Int
dealloc_stack %1 : $*Int
return %15 : $Int
// CHECK: return %0 : $Int
}
struct XYStruct { var x, y : Int }
sil @init_xy_struct : $@convention(thin) () -> XYStruct
// CHECK-LABEL: sil @cross_block_load_promotion_struct
sil @cross_block_load_promotion_struct : $@convention(thin) (Int, Int) -> Int {
bb0(%0 : $Int, %2 : $Int):
%1 = alloc_stack $XYStruct
%7 = function_ref @init_xy_struct : $@convention(thin) () -> XYStruct
%9 = apply %7() : $@convention(thin) () -> XYStruct
store %9 to %1 : $*XYStruct
%11 = struct_element_addr %1 : $*XYStruct, #XYStruct.y
store %0 to %11 : $*Int
%12 = integer_literal $Builtin.Int1, 1 // user: %3
cond_br %12, bb1, bb2
bb1: // Preds: bb3
%13 = struct_element_addr %1 : $*XYStruct, #XYStruct.x
store %2 to %13 : $*Int
br bb5
bb2: // Preds: bb0
br bb5
bb5: // Preds: bb4
%15 = load %11 : $*Int
dealloc_stack %1 : $*XYStruct
return %15 : $Int
// CHECK: return %0 : $Int
}
// CHECK-LABEL: sil @cross_block_load_promotion_struct2
sil @cross_block_load_promotion_struct2 : $@convention(thin) (Int, Int) -> Int {
bb0(%0 : $Int, %2 : $Int):
%1 = alloc_stack $XYStruct
%7 = function_ref @init_xy_struct : $@convention(thin) () -> XYStruct
%9 = apply %7() : $@convention(thin) () -> XYStruct
store %9 to %1 : $*XYStruct
%11 = struct_element_addr %1 : $*XYStruct, #XYStruct.x
store %0 to %11 : $*Int
%12 = integer_literal $Builtin.Int1, 1 // user: %3
cond_br %12, bb1, bb2
bb1: // Preds: bb3
%13 = struct_element_addr %1 : $*XYStruct, #XYStruct.x
store %0 to %13 : $*Int
br bb5
bb2: // Preds: bb0
br bb5
bb5: // Preds: bb4
%15 = load %11 : $*Int
dealloc_stack %1 : $*XYStruct
return %15 : $Int
// CHECK: return %0 : $Int
}
// CHECK-LABEL: sil @destroy_addr_test
sil @destroy_addr_test : $@convention(method) (@owned SomeClass) -> @owned SomeClass {
bb0(%0 : $SomeClass):
%1 = alloc_stack $SomeClass
%2 = tuple ()
store %0 to %1 : $*SomeClass
%7 = load %1 : $*SomeClass
strong_retain %7 : $SomeClass
strong_release %7 : $SomeClass
%12 = load %1 : $*SomeClass // users: %16, %13
strong_retain %12 : $SomeClass // id: %13
destroy_addr %1 : $*SomeClass // id: %14
dealloc_stack %1 : $*SomeClass // id: %15
return %12 : $SomeClass // id: %16
}
protocol P {}
class C : P {}
sil @use : $@convention(thin) (@in P) -> ()
// rdar://15492647
// CHECK-LABEL: sil @destroy_addr_removed
sil @destroy_addr_removed : $@convention(thin) () -> () {
bb0:
%3 = alloc_stack $SomeClass
%f = function_ref @getSomeClass : $@convention(thin) () -> @owned SomeClass
%9 = apply %f() : $@convention(thin) () -> @owned SomeClass
// CHECK: [[CVAL:%[0-9]+]] = apply
store %9 to %3 : $*SomeClass
destroy_addr %3 : $*SomeClass
dealloc_stack %3 : $*SomeClass
%15 = tuple ()
return %15 : $()
// CHECK-NEXT: strong_release [[CVAL]]
}
// <rdar://problem/17755462> Predictable memory opts removes refcount operation
// CHECK-LABEL: sil @dead_allocation_1
sil @dead_allocation_1 : $@convention(thin) (Optional<AnyObject>) -> () {
bb0(%0 : $Optional<AnyObject>):
// CHECK: retain_value %0
%1 = alloc_stack $Optional<AnyObject>
%2 = alloc_stack $Optional<AnyObject>
store %0 to %2 : $*Optional<AnyObject>
// CHECK-NOT: copy_addr
copy_addr %2 to [initialization] %1 : $*Optional<AnyObject>
dealloc_stack %2 : $*Optional<AnyObject>
dealloc_stack %1 : $*Optional<AnyObject>
%3 = tuple ()
return %3 : $()
}
// CHECK-LABEL: sil @dead_allocation_2
sil @dead_allocation_2 : $@convention(thin) (Optional<AnyObject>) -> () {
bb0(%0 : $Optional<AnyObject>):
// CHECK: retain_value %0
// CHECK-NOT: alloc_stack
%1 = alloc_stack $Optional<AnyObject>
%2 = alloc_stack $Optional<AnyObject>
store %0 to %1 : $*Optional<AnyObject>
// CHECK-NOT: copy_addr
copy_addr %1 to [initialization] %2 : $*Optional<AnyObject>
dealloc_stack %2 : $*Optional<AnyObject>
dealloc_stack %1 : $*Optional<AnyObject>
%3 = tuple ()
return %3 : $()
}
enum IndirectCase {
indirect case X(Int)
}
// CHECK-LABEL: sil @indirect_enum_box
sil @indirect_enum_box : $@convention(thin) (Int) -> IndirectCase {
// CHECK: bb0([[X:%.*]] : $Int):
entry(%x : $Int):
// CHECK: [[BOX:%.*]] = alloc_box ${ var Int }
%b = alloc_box ${ var Int }
// CHECK: [[PB:%.*]] = project_box [[BOX]]
%ba = project_box %b : ${ var Int }, 0
// CHECK: store [[X]] to [[PB]]
store %x to %ba : $*Int
// CHECK: [[E:%.*]] = enum $IndirectCase, #IndirectCase.X!enumelt.1, [[BOX]] : ${ var Int }
%e = enum $IndirectCase, #IndirectCase.X!enumelt.1, %b : ${ var Int }
// CHECK: return [[E]]
return %e : $IndirectCase
}
sil @write_to_bool : $@convention(c) (UnsafeMutablePointer<Bool>) -> Int32
// CHECK-LABEL: sil @escaping_address
sil @escaping_address : $@convention(thin) () -> Bool {
bb0:
// CHECK: [[A:%[0-9]+]] = alloc_stack
%a = alloc_stack $Bool
%f = function_ref @write_to_bool : $@convention(c) (UnsafeMutablePointer<Bool>) -> Int32
%a2p = address_to_pointer %a : $*Bool to $Builtin.RawPointer
%ump = struct $UnsafeMutablePointer<Bool> (%a2p : $Builtin.RawPointer)
%0 = integer_literal $Builtin.Int1, 0
%b0 = struct $Bool (%0 : $Builtin.Int1)
// CHECK: [[BV:%[0-9]+]] = struct_element_addr [[A]]
%bv = struct_element_addr %a : $*Bool, #Bool._value
store %b0 to %a : $*Bool
// CHECK: apply
%ap = apply %f(%ump) : $@convention(c) (UnsafeMutablePointer<Bool>) -> Int32
// CHECK: [[L:%[0-9]+]] = load [[BV]]
%l = load %bv : $*Builtin.Int1
// CHECK: [[R:%[0-9]+]] = struct $Bool ([[L]]
%r = struct $Bool (%l : $Builtin.Int1)
dealloc_stack %a : $*Bool
// CHECK: return [[R]]
return %r : $Bool
}
///////////////////
// Diamond Tests //
///////////////////
struct NativeObjectPair {
var f1: Builtin.NativeObject
var f2: Builtin.NativeObject
}
// These tests ensure that we insert all gep operations, before the stores and
// any new load operations at the location where the old load was. It also
// ensures that we are able to handle values that are provided with multilple
// available values from different stores. Today the tests use the exact same
// value since pred mem opts is so conservative (it will not support having
// different available values from different blocks due to the predicate it uses
// while merging).
// We should just remove the stores here.
// CHECK-LABEL: sil @diamond_test_1 : $@convention(thin) (@owned Builtin.NativeObject) -> () {
// CHECK-NOT: alloc_stack
// CHECK-NOT: store
// CHECK-NOT: load
// CHECK: } // end sil function 'diamond_test_1'
sil @diamond_test_1 : $@convention(thin) (@owned Builtin.NativeObject) -> () {
bb0(%0 : $Builtin.NativeObject):
%1 = alloc_stack $Builtin.NativeObject
cond_br undef, bb1, bb2
bb1:
store %0 to %1 : $*Builtin.NativeObject
br bb3
bb2:
store %0 to %1 : $*Builtin.NativeObject
br bb3
bb3:
%2 = load %1 : $*Builtin.NativeObject
strong_retain %2 : $Builtin.NativeObject
strong_release %2 : $Builtin.NativeObject
dealloc_stack %1 : $*Builtin.NativeObject
%9999 = tuple()
return %9999 : $()
}
// This test makes sure that we insert the tuple_extracts that we need before
// the store in bb0, not at the load block.
// CHECK-LABEL: sil @diamond_test_2 : $@convention(thin) (@owned NativeObjectPair) -> @owned Builtin.NativeObject {
// CHECK: bb0([[ARG:%.*]] : $NativeObjectPair):
// CHECK: [[LHS1:%.*]] = struct_extract [[ARG]] : $NativeObjectPair, #NativeObjectPair.f1
// CHECK: [[LHS2:%.*]] = struct_extract [[ARG]] : $NativeObjectPair, #NativeObjectPair.f1
// CHECK: cond_br undef, bb1, bb2
//
// CHECK: bb1:
// CHECK: strong_retain [[LHS2]]
// CHECK: br bb3([[LHS2]] :
//
// CHECK: bb2:
// CHECK: strong_retain [[LHS1]] : $Builtin.NativeObject
// CHECK: br bb3([[LHS1]] :
//
// CHECK: bb3([[PHI:%.*]] :
// CHECK: release_value [[ARG]]
// CHECK: return [[PHI]]
// CHECK: } // end sil function 'diamond_test_2'
sil @diamond_test_2 : $@convention(thin) (@owned NativeObjectPair) -> @owned Builtin.NativeObject {
bb0(%0 : $NativeObjectPair):
%1 = alloc_stack $NativeObjectPair
store %0 to %1 : $*NativeObjectPair
cond_br undef, bb1, bb2
bb1:
%2 = struct_element_addr %1 : $*NativeObjectPair, #NativeObjectPair.f1
%3 = load %2 : $*Builtin.NativeObject
strong_retain %3 : $Builtin.NativeObject
br bb3(%3 : $Builtin.NativeObject)
bb2:
%4 = struct_element_addr %1 : $*NativeObjectPair, #NativeObjectPair.f1
%5 = load %4 : $*Builtin.NativeObject
strong_retain %5 : $Builtin.NativeObject
br bb3(%5 : $Builtin.NativeObject)
bb3(%6 : $Builtin.NativeObject):
destroy_addr %1 : $*NativeObjectPair
dealloc_stack %1 : $*NativeObjectPair
return %6 : $Builtin.NativeObject
}
// We should be able to promote all memory operations here.
//
// CHECK-LABEL: sil @diamond_test_3 : $@convention(thin) (@owned Builtin.NativeObject, @owned Builtin.NativeObject) -> @owned Builtin.NativeObject {
// CHECK-NOT: alloc_stack
// CHECK-NOT: load
// CHECK-NOT: store
// CHECK: } // end sil function 'diamond_test_3'
sil @diamond_test_3 : $@convention(thin) (@owned Builtin.NativeObject, @owned Builtin.NativeObject) -> @owned Builtin.NativeObject {
bb0(%0 : $Builtin.NativeObject, %1 : $Builtin.NativeObject):
%2 = alloc_stack $NativeObjectPair
%3 = struct_element_addr %2 : $*NativeObjectPair, #NativeObjectPair.f1
%4 = struct_element_addr %2 : $*NativeObjectPair, #NativeObjectPair.f2
store %0 to %3 : $*Builtin.NativeObject
store %1 to %4 : $*Builtin.NativeObject
cond_br undef, bb1, bb2
bb1:
%tup_addr_1 = struct_element_addr %2 : $*NativeObjectPair, #NativeObjectPair.f1
%tup_val_1 = load %tup_addr_1 : $*Builtin.NativeObject
strong_retain %tup_val_1 : $Builtin.NativeObject
br bb3(%tup_val_1 : $Builtin.NativeObject)
bb2:
%tup_addr_2 = struct_element_addr %2 : $*NativeObjectPair, #NativeObjectPair.f1
%tup_val_2 = load %tup_addr_2 : $*Builtin.NativeObject
strong_retain %tup_val_2 : $Builtin.NativeObject
br bb3(%tup_val_2 : $Builtin.NativeObject)
bb3(%result : $Builtin.NativeObject):
destroy_addr %2 : $*NativeObjectPair
dealloc_stack %2 : $*NativeObjectPair
return %result : $Builtin.NativeObject
}
struct NativeObjectTriple {
var f1: Builtin.NativeObject
var f2: NativeObjectPair
}
// Make sure we insert the struct_extracts in bb1, bb2.
//
// CHECK-LABEL: sil @diamond_test_4 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair) -> @owned Builtin.NativeObject {
// CHECK: bb0([[ARG0:%.*]] : $Builtin.NativeObject, [[ARG1:%.*]] : $NativeObjectPair):
// CHECK: cond_br undef, bb1, bb2
//
// CHECK: bb1:
// CHECK-NEXT: [[PAIR_LHS:%.*]] = struct_extract [[ARG1]]
// CHECK-NEXT: br bb3([[PAIR_LHS]] :
//
// CHECK: bb2:
// CHECK-NEXT: [[PAIR_LHS:%.*]] = struct_extract [[ARG1]]
// CHECK-NEXT: br bb3([[PAIR_LHS]] :
//
// CHECK: bb3([[PHI:%.*]] : $Builtin.NativeObject):
// CHECK-NOT: struct_extract
// CHECK: strong_retain [[PHI]]
// CHECK-NOT: struct_extract
// CHECK: [[REFORMED:%.*]] = struct $NativeObjectTriple ([[ARG0]] : {{.*}}, [[ARG1]] : {{.*}})
// CHECK-NOT: struct_extract
// CHECK: release_value [[REFORMED]]
// CHECK-NOT: struct_extract
// CHECK: return [[PHI]]
// CHECK: } // end sil function 'diamond_test_4'
sil @diamond_test_4 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair) -> @owned Builtin.NativeObject {
bb0(%0 : $Builtin.NativeObject, %1 : $NativeObjectPair):
%2 = alloc_stack $NativeObjectTriple
cond_br undef, bb1, bb2
bb1:
%3 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f1
%4 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
store %0 to %3 : $*Builtin.NativeObject
store %1 to %4 : $*NativeObjectPair
br bb3
bb2:
%5 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f1
%6 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
store %0 to %5 : $*Builtin.NativeObject
store %1 to %6 : $*NativeObjectPair
br bb3
bb3:
%11 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
%12 = struct_element_addr %11 : $*NativeObjectPair, #NativeObjectPair.f1
%13 = load %12 : $*Builtin.NativeObject
strong_retain %13 : $Builtin.NativeObject
destroy_addr %2 : $*NativeObjectTriple
dealloc_stack %2 : $*NativeObjectTriple
return %13 : $Builtin.NativeObject
}
// Make sure that we do the right thing if our definite init value is partially
// overridden along one path
//
// CHECK-LABEL: sil @diamond_test_5 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair, @owned Builtin.NativeObject) -> @owned NativeObjectPair {
// CHECK: bb0([[ARG0:%.*]] : $Builtin.NativeObject, [[ARG1:%.*]] : $NativeObjectPair, [[ARG2:%.*]] : $Builtin.NativeObject):
// CHECK: [[BOX:%.*]] = alloc_stack $NativeObjectTriple
// CHECK: br bb1
//
// CHECK: bb1:
// CHECK: [[TRIPLE_LHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f1
// CHECK: [[TRIPLE_RHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f2
// CHECK: store [[ARG0]] to [[TRIPLE_LHS]]
// CHECK: [[TRIPLE_RHS_RHS_VAL:%.*]] = struct_extract [[ARG1]] : $NativeObjectPair, #NativeObjectPair.f2
// CHECK: store [[ARG1]] to [[TRIPLE_RHS]]
// CHECK: cond_br undef, bb2, bb3
//
// CHECK: bb2:
// CHECK: [[TRIPLE_RHS_LHS:%.*]] = struct_element_addr [[TRIPLE_RHS]]
// CHECK: store [[ARG2]] to [[TRIPLE_RHS_LHS]]
// CHECK: br bb4
//
// CHECK: bb3:
// CHECK: br bb4
//
// CHECK: bb4:
// CHECK: [[TRIPLE_RHS_LHS:%.*]] = struct_element_addr [[TRIPLE_RHS]] : $*NativeObjectPair, #NativeObjectPair.f1
// CHECK: [[TRIPLE_RHS_LHS_VAL:%.*]] = load [[TRIPLE_RHS_LHS]] : $*Builtin.NativeObject
// CHECK: [[STRUCT:%.*]] = struct $NativeObjectPair ([[TRIPLE_RHS_LHS_VAL]] : {{.*}}, [[TRIPLE_RHS_RHS_VAL]] : {{.*}})
// CHECK: retain_value [[STRUCT]]
// CHECK: destroy_addr [[BOX]]
// CHECK: return [[STRUCT]]
// CHECK: } // end sil function 'diamond_test_5'
sil @diamond_test_5 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair, @owned Builtin.NativeObject) -> @owned NativeObjectPair {
bb0(%0 : $Builtin.NativeObject, %1 : $NativeObjectPair, %arg2 : $Builtin.NativeObject):
%2 = alloc_stack $NativeObjectTriple
br bb1
bb1:
%5 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f1
%6 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
store %0 to %5 : $*Builtin.NativeObject
store %1 to %6 : $*NativeObjectPair
cond_br undef, bb2, bb3
bb2:
%11 = struct_element_addr %6 : $*NativeObjectPair, #NativeObjectPair.f1
store %arg2 to %11 : $*Builtin.NativeObject
br bb4
bb3:
br bb4
bb4:
%13 = load %6 : $*NativeObjectPair
retain_value %13 : $NativeObjectPair
destroy_addr %2 : $*NativeObjectTriple
dealloc_stack %2 : $*NativeObjectTriple
return %13 : $NativeObjectPair
}
// CHECK-LABEL: sil @diamond_test_6 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair, @owned Builtin.NativeObject) -> @owned NativeObjectPair {
// CHECK: bb0([[ARG0:%.*]] : $Builtin.NativeObject, [[ARG1:%.*]] : $NativeObjectPair, [[ARG2:%.*]] : $Builtin.NativeObject):
// CHECK: [[BOX:%.*]] = alloc_stack $NativeObjectTriple
// CHECK: cond_br undef, bb1, bb2
//
// CHECK: bb1:
// CHECK: [[TRIPLE_LHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f1
// CHECK: [[TRIPLE_RHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f2
// CHECK: store [[ARG0]] to [[TRIPLE_LHS]]
// CHECK: [[TRIPLE_RHS_RHS_VAL:%.*]] = struct_extract [[ARG1]] : $NativeObjectPair, #NativeObjectPair.f2
// CHECK: store [[ARG1]] to [[TRIPLE_RHS]]
// CHECK: cond_br undef, bb3([[TRIPLE_RHS_RHS_VAL]] : {{.*}}), bb4([[TRIPLE_RHS_RHS_VAL]] : {{.*}})
//
// CHECK: bb2:
// CHECK: [[TRIPLE_LHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f1
// CHECK: [[TRIPLE_RHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f2
// CHECK: store [[ARG0]] to [[TRIPLE_LHS]]
// CHECK: [[TRIPLE_RHS_RHS_VAL:%.*]] = struct_extract [[ARG1]] : $NativeObjectPair, #NativeObjectPair.f2
// CHECK: store [[ARG1]] to [[TRIPLE_RHS]]
// CHECK: cond_br undef, bb3([[TRIPLE_RHS_RHS_VAL]] : {{.*}}), bb4([[TRIPLE_RHS_RHS_VAL]] : {{.*}})
//
// CHECK: bb3([[PHI1:%.*]] : $Builtin.NativeObject):
// CHECK: [[TRIPLE_RHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f2
// CHECK: [[TRIPLE_RHS_LHS:%.*]] = struct_element_addr [[TRIPLE_RHS]]
// CHECK: store [[ARG2]] to [[TRIPLE_RHS_LHS]]
// CHECK: br bb5([[PHI1:%.*]] : $Builtin.NativeObject)
//
// CHECK: bb4([[PHI:%.*]] : $Builtin.NativeObject):
// CHECK: br bb5([[PHI]] : {{.*}})
//
// CHECK: bb5([[PHI:%.*]] : $Builtin.NativeObject
// CHECK: [[TRIPLE_RHS:%.*]] = struct_element_addr [[BOX]] : $*NativeObjectTriple, #NativeObjectTriple.f2
// CHECK: [[TRIPLE_RHS_LHS:%.*]] = struct_element_addr [[TRIPLE_RHS]] : $*NativeObjectPair, #NativeObjectPair.f1
// CHECK: [[TRIPLE_RHS_LHS_VAL:%.*]] = load [[TRIPLE_RHS_LHS]] : $*Builtin.NativeObject
// CHECK: [[STRUCT:%.*]] = struct $NativeObjectPair ([[TRIPLE_RHS_LHS_VAL]] : {{.*}}, [[PHI]] : {{.*}})
// CHECK: retain_value [[STRUCT]]
// CHECK: destroy_addr [[BOX]]
// CHECK: return [[STRUCT]]
// CHECK: } // end sil function 'diamond_test_6'
sil @diamond_test_6 : $@convention(thin) (@owned Builtin.NativeObject, @owned NativeObjectPair, @owned Builtin.NativeObject) -> @owned NativeObjectPair {
bb0(%0 : $Builtin.NativeObject, %1 : $NativeObjectPair, %arg2 : $Builtin.NativeObject):
%2 = alloc_stack $NativeObjectTriple
cond_br undef, bb1, bb2
bb1:
%5 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f1
%6 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
store %0 to %5 : $*Builtin.NativeObject
store %1 to %6 : $*NativeObjectPair
cond_br undef, bb3, bb4
bb2:
%7 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f1
%8 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
store %0 to %7 : $*Builtin.NativeObject
store %1 to %8 : $*NativeObjectPair
cond_br undef, bb3, bb4
bb3:
%11 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
%12 = struct_element_addr %11 : $*NativeObjectPair, #NativeObjectPair.f1
store %arg2 to %12 : $*Builtin.NativeObject
br bb5
bb4:
br bb5
bb5:
%13 = struct_element_addr %2 : $*NativeObjectTriple, #NativeObjectTriple.f2
%14 = load %13 : $*NativeObjectPair
retain_value %14 : $NativeObjectPair
destroy_addr %2 : $*NativeObjectTriple
dealloc_stack %2 : $*NativeObjectTriple
return %14 : $NativeObjectPair
}
///////////////////////
// Unreachable Tests //
///////////////////////
// Make sure that we can handle a dead allocation with a destroy_addr in an
// unreachable block.
//
// TODO: We can support this with trivial changes to canPromoteDestroyAddr. We
// just need to distinguish a promotion failure around lack of availability vs
// promotion failure for other reasons.
//
//
// CHECK-LABEL: sil @dead_allocation_with_unreachable_destroy_addr : $@convention(thin) (@owned Builtin.NativeObject) -> () {
// CHECK: bb0([[ARG:%.*]] : $Builtin.NativeObject):
// CHECK-NEXT: alloc_stack
// CHECK-NEXT: store
// CHECK-NEXT: br bb1
//
// CHECK: bb1:
// CHECK-NEXT: destroy_addr
// CHECK-NEXT: dealloc_stack
// CHECK-NEXT: tuple
// CHECK-NEXT: return
//
// CHECK: bb2:
// CHECK-NEXT: destroy_addr
// CHECK-NEXT: unreachable
// CHECK: } // end sil function 'dead_allocation_with_unreachable_destroy_addr'
sil @dead_allocation_with_unreachable_destroy_addr : $@convention(thin) (@owned Builtin.NativeObject) -> () {
bb0(%0 : $Builtin.NativeObject):
%1 = alloc_stack $Builtin.NativeObject
store %0 to %1 : $*Builtin.NativeObject
br bb1
bb1:
destroy_addr %1 : $*Builtin.NativeObject
dealloc_stack %1 : $*Builtin.NativeObject
%9999 = tuple()
return %9999 : $()
bb2:
destroy_addr %1 : $*Builtin.NativeObject
unreachable
}
class K {
init()
}
sil @init_k : $@convention(thin) () -> @out K
struct S {
var k: K
}
// CHECK-LABEL: sil @recursive_struct_destroy_with_apply : $@convention(thin) () -> S {
// CHECK: alloc_stack
// CHECK: } // end sil function 'recursive_struct_destroy_with_apply'
sil @recursive_struct_destroy_with_apply : $@convention(thin) () -> S {
bb0:
%0 = alloc_stack $S
%1 = struct_element_addr %0 : $*S, #S.k
%2 = function_ref @init_k : $@convention(thin) () -> @out K
%3 = apply %2(%1) : $@convention(thin) () -> @out K
%4 = load %0 : $*S
dealloc_stack %0 : $*S
return %4 : $S
}
struct SWithOpt {
var k: Optional<K>
}
// CHECK-LABEL: sil @recursive_struct_destroy_with_enum_init : $@convention(thin) (@owned K) -> @owned SWithOpt {
// CHECK: alloc_stack
// CHECK: } // end sil function 'recursive_struct_destroy_with_enum_init'
sil @recursive_struct_destroy_with_enum_init : $@convention(thin) (@owned K) -> @owned SWithOpt {
bb0(%arg : $K):
%0 = alloc_stack $SWithOpt
%1 = struct_element_addr %0 : $*SWithOpt, #SWithOpt.k
%2 = init_enum_data_addr %1 : $*Optional<K>, #Optional.some!enumelt.1
store %arg to %2 : $*K
inject_enum_addr %1 : $*Optional<K>, #Optional.some!enumelt.1
%4 = load %0 : $*SWithOpt
dealloc_stack %0 : $*SWithOpt
return %4 : $SWithOpt
}
// We do not support this now, so make sure we do not do anything.
//
// CHECK-LABEL: sil @promote_init_enum_data_addr : $@convention(thin)
// CHECK: alloc_stack
// CHECK: load
// CHECK: [[RESULT:%.*]] = load
// CHECK: return [[RESULT]]
// CHECK: } // end sil function 'promote_init_enum_data_addr'
sil @promote_init_enum_data_addr : $@convention(thin) (@in Int) -> Int {
bb0(%0 : $*Int):
%1 = alloc_stack $Optional<Int>
%2 = load %0 : $*Int
%3 = init_enum_data_addr %1 : $*Optional<Int>, #Optional.some!enumelt.1
store %2 to %3 : $*Int
inject_enum_addr %1 : $*Optional<Int>, #Optional.some!enumelt.1
%4 = load %3 : $*Int
dealloc_stack %1 : $*Optional<Int>
return %4 : $Int
}