Files
swift-mirror/test/stdlib/Accelerate_vDSPFourierTransform.swift
Steve (Numerics) Canon d4b90f4837 Temporarily disable all the Accelerate tests.
These are testing for bitwise identical results, but don't guarantee that
the buffers being used always have identical alignment. This will result
in small rounding differences when vector codepaths are used for different
elements of some results.

This is partially an underlying bug in Accelerate (which is outside the
scope of this project to fix), and partly a test bug (which we can address
by adopting approximate comparisons here). In the short term, though, I'm
going to disable these.
2019-05-03 09:12:30 -04:00

740 lines
30 KiB
Swift

// RUN: %target-run-simple-swift
// REQUIRES: executable_test
// REQUIRES: rdar50301438
// REQUIRES: objc_interop
// UNSUPPORTED: OS=watchos
import StdlibUnittest
import Accelerate
var Accelerate_vDSPFourierTransformTests = TestSuite("Accelerate_vDSPFourierTransform")
//===----------------------------------------------------------------------===//
//
// vDSP discrete Fourier transform tests; single-precision
//
//===----------------------------------------------------------------------===//
if #available(iOS 9999, macOS 9999, tvOS 9999, watchOS 9999, *) {
let n = 2048
let tau: Float = .pi * 2
let frequencies: [Float] = [1, 5, 25, 30, 75, 100,
300, 500, 512, 1023]
let inputReal: [Float] = (0 ..< n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Float(index) / Float(n)
return accumulator + sin(normalizedIndex * frequency * tau)
}
}
let inputImag: [Float] = (0 ..< n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Float(index) / Float(n)
return accumulator + sin(normalizedIndex * 1/frequency * tau)
}
}
Accelerate_vDSPFourierTransformTests.test("vDSP/SinglePrecisionForwardComplexComplex") {
let fwdDFT = vDSP.DFT(count: n,
direction: .forward,
transformType: .complexComplex,
ofType: Float.self)!
var outputReal = [Float](repeating: 0, count: n)
var outputImag = [Float](repeating: 0, count: n)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zop_CreateSetup(nil,
vDSP_Length(n),
.FORWARD)!
var legacyOutputReal = [Float](repeating: -1, count: n)
var legacyOutputImag = [Float](repeating: -1, count: n)
vDSP_DFT_Execute(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/SinglePrecisionInverseComplexComplex") {
let fwdDFT = vDSP.DFT(count: n,
direction: .inverse,
transformType: .complexComplex,
ofType: Float.self)!
var outputReal = [Float](repeating: 0, count: n)
var outputImag = [Float](repeating: 0, count: n)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zop_CreateSetup(nil,
vDSP_Length(n),
.INVERSE)!
var legacyOutputReal = [Float](repeating: -1, count: n)
var legacyOutputImag = [Float](repeating: -1, count: n)
vDSP_DFT_Execute(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/SinglePrecisionForwardComplexReal") {
let fwdDFT = vDSP.DFT(count: n,
direction: .forward,
transformType: .complexReal,
ofType: Float.self)!
var outputReal = [Float](repeating: 0, count: n / 2)
var outputImag = [Float](repeating: 0, count: n / 2)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zrop_CreateSetup(nil,
vDSP_Length(n),
.FORWARD)!
var legacyOutputReal = [Float](repeating: -1, count: n / 2)
var legacyOutputImag = [Float](repeating: -1, count: n / 2)
vDSP_DFT_Execute(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/SinglePrecisionInverseComplexReal") {
let fwdDFT = vDSP.DFT(count: n,
direction: .inverse,
transformType: .complexReal,
ofType: Float.self)!
var outputReal = [Float](repeating: 0, count: n / 2)
var outputImag = [Float](repeating: 0, count: n / 2)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zrop_CreateSetup(nil,
vDSP_Length(n),
.INVERSE)!
var legacyOutputReal = [Float](repeating: -1, count: n / 2)
var legacyOutputImag = [Float](repeating: -1, count: n / 2)
vDSP_DFT_Execute(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
}
//===----------------------------------------------------------------------===//
//
// vDSP discrete Fourier transform tests; double-precision
//
//===----------------------------------------------------------------------===//
if #available(iOS 9999, macOS 9999, tvOS 9999, watchOS 9999, *) {
let n = 2048
let tau: Double = .pi * 2
let frequencies: [Double] = [1, 5, 25, 30, 75, 100,
300, 500, 512, 1023]
let inputReal: [Double] = (0 ..< n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Double(index) / Double(n)
return accumulator + sin(normalizedIndex * frequency * tau)
}
}
let inputImag: [Double] = (0 ..< n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Double(index) / Double(n)
return accumulator + sin(normalizedIndex * 1/frequency * tau)
}
}
Accelerate_vDSPFourierTransformTests.test("vDSP/DoublePrecisionForwardComplexComplex") {
let fwdDFT = vDSP.DFT(count: n,
direction: .forward,
transformType: .complexComplex,
ofType: Double.self)!
var outputReal = [Double](repeating: 0, count: n)
var outputImag = [Double](repeating: 0, count: n)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zop_CreateSetupD(nil,
vDSP_Length(n),
.FORWARD)!
var legacyOutputReal = [Double](repeating: -1, count: n)
var legacyOutputImag = [Double](repeating: -1, count: n)
vDSP_DFT_ExecuteD(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/DoublePrecisionInverseComplexComplex") {
let fwdDFT = vDSP.DFT(count: n,
direction: .inverse,
transformType: .complexComplex,
ofType: Double.self)!
var outputReal = [Double](repeating: 0, count: n)
var outputImag = [Double](repeating: 0, count: n)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zop_CreateSetupD(nil,
vDSP_Length(n),
.INVERSE)!
var legacyOutputReal = [Double](repeating: -1, count: n)
var legacyOutputImag = [Double](repeating: -1, count: n)
vDSP_DFT_ExecuteD(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/DoublePrecisionForwardComplexReal") {
let fwdDFT = vDSP.DFT(count: n,
direction: .forward,
transformType: .complexReal,
ofType: Double.self)!
var outputReal = [Double](repeating: 0, count: n / 2)
var outputImag = [Double](repeating: 0, count: n / 2)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zrop_CreateSetupD(nil,
vDSP_Length(n),
.FORWARD)!
var legacyOutputReal = [Double](repeating: -1, count: n / 2)
var legacyOutputImag = [Double](repeating: -1, count: n / 2)
vDSP_DFT_ExecuteD(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/DoublePrecisionInverseComplexReal") {
let fwdDFT = vDSP.DFT(count: n,
direction: .inverse,
transformType: .complexReal,
ofType: Double.self)!
var outputReal = [Double](repeating: 0, count: n / 2)
var outputImag = [Double](repeating: 0, count: n / 2)
fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag,
outputReal: &outputReal,
outputImaginary: &outputImag)
// legacy...
let legacySetup = vDSP_DFT_zrop_CreateSetupD(nil,
vDSP_Length(n),
.INVERSE)!
var legacyOutputReal = [Double](repeating: -1, count: n / 2)
var legacyOutputImag = [Double](repeating: -1, count: n / 2)
vDSP_DFT_ExecuteD(legacySetup,
inputReal,
inputImag,
&legacyOutputReal,
&legacyOutputImag)
expectTrue(outputReal.elementsEqual(legacyOutputReal))
expectTrue(outputImag.elementsEqual(legacyOutputImag))
let returnedResult = fwdDFT.transform(inputReal: inputReal,
inputImaginary: inputImag)
expectTrue(outputReal.elementsEqual(returnedResult.real))
expectTrue(outputImag.elementsEqual(returnedResult.imaginary))
}
}
//===----------------------------------------------------------------------===//
//
// vDSP Fast Fourier Transform Tests
//
//===----------------------------------------------------------------------===//
if #available(iOS 9999, macOS 9999, tvOS 9999, watchOS 9999, *) {
Accelerate_vDSPFourierTransformTests.test("vDSP/SinglePrecisionComplexConversions") {
func convert(splitComplexVector: DSPSplitComplex,
toInterleavedComplexVector interleavedComplexVector: inout [DSPComplex]) {
withUnsafePointer(to: splitComplexVector) {
vDSP_ztoc($0, 1,
&interleavedComplexVector, 2,
vDSP_Length(interleavedComplexVector.count))
}
}
func convert(interleavedComplexVector: [DSPComplex],
toSplitComplexVector splitComplexVector: inout DSPSplitComplex) {
vDSP_ctoz(interleavedComplexVector, 2,
&splitComplexVector, 1,
vDSP_Length(interleavedComplexVector.count))
}
var realSrc: [Float] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
var imagSrc: [Float] = realSrc.reversed()
let splitSrc = DSPSplitComplex(realp: &realSrc,
imagp: &imagSrc)
var interleavedDest = [DSPComplex](repeating: DSPComplex(),
count: realSrc.count)
convert(splitComplexVector: splitSrc,
toInterleavedComplexVector: &interleavedDest)
var realDest = [Float](repeating: .nan, count: realSrc.count)
var imagDest = [Float](repeating: .nan, count: realSrc.count)
var splitDest = DSPSplitComplex(realp: &realDest,
imagp: &imagDest)
convert(interleavedComplexVector: interleavedDest,
toSplitComplexVector: &splitDest)
expectTrue(realSrc.elementsEqual(realDest))
expectTrue(imagSrc.elementsEqual(imagDest))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/DoublePrecisionComplexConversions") {
func convert(splitComplexVector: DSPDoubleSplitComplex,
toInterleavedComplexVector interleavedComplexVector: inout [DSPDoubleComplex]) {
withUnsafePointer(to: splitComplexVector) {
vDSP_ztocD($0, 1,
&interleavedComplexVector, 2,
vDSP_Length(interleavedComplexVector.count))
}
}
func convert(interleavedComplexVector: [DSPDoubleComplex],
toSplitComplexVector splitComplexVector: inout DSPDoubleSplitComplex) {
vDSP_ctozD(interleavedComplexVector, 2,
&splitComplexVector, 1,
vDSP_Length(interleavedComplexVector.count))
}
var realSrc: [Double] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
var imagSrc: [Double] = realSrc.reversed()
let splitSrc = DSPDoubleSplitComplex(realp: &realSrc,
imagp: &imagSrc)
var interleavedDest = [DSPDoubleComplex](repeating: DSPDoubleComplex(),
count: realSrc.count)
convert(splitComplexVector: splitSrc,
toInterleavedComplexVector: &interleavedDest)
var realDest = [Double](repeating: .nan, count: realSrc.count)
var imagDest = [Double](repeating: .nan, count: realSrc.count)
var splitDest = DSPDoubleSplitComplex(realp: &realDest,
imagp: &imagDest)
convert(interleavedComplexVector: interleavedDest,
toSplitComplexVector: &splitDest)
expectTrue(realSrc.elementsEqual(realDest))
expectTrue(imagSrc.elementsEqual(imagDest))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/2DSinglePrecision") {
let width = 256
let height = 256
let pixelCount = width * height
let n = pixelCount / 2
let pixels: [Float] = (0 ..< pixelCount).map { i in
return abs(sin(Float(i) * 0.001 * 2))
}
var sourceImageReal = [Float](repeating: 0, count: n)
var sourceImageImaginary = [Float](repeating: 0, count: n)
var sourceImage = DSPSplitComplex(fromInputArray: pixels,
realParts: &sourceImageReal,
imaginaryParts: &sourceImageImaginary)
let pixelsRecreated = [Float](fromSplitComplex: sourceImage,
scale: 1, count: pixelCount)
expectTrue(pixelsRecreated.elementsEqual(pixels))
// Create FFT2D object
let fft2D = vDSP.FFT2D(width: 256,
height: 256,
ofType: DSPSplitComplex.self)!
// New style transform
var transformedImageReal = [Float](repeating: 0,
count: n)
var transformedImageImaginary = [Float](repeating: 0,
count: n)
var transformedImage = DSPSplitComplex(
realp: &transformedImageReal,
imagp: &transformedImageImaginary)
fft2D.transform(input: sourceImage,
output: &transformedImage,
direction: .forward)
// Legacy 2D FFT
let log2n = vDSP_Length(log2(Float(width * height)))
let legacySetup = vDSP_create_fftsetup(
log2n,
FFTRadix(kFFTRadix2))!
var legacyTransformedImageReal = [Float](repeating: -1,
count: n)
var legacyTransformedImageImaginary = [Float](repeating: -1,
count: n)
var legacyTransformedImage = DSPSplitComplex(
realp: &legacyTransformedImageReal,
imagp: &legacyTransformedImageImaginary)
vDSP_fft2d_zrop(legacySetup,
&sourceImage, 1, 0,
&legacyTransformedImage, 1, 0,
vDSP_Length(log2(Float(width))),
vDSP_Length(log2(Float(height))),
FFTDirection(kFFTDirection_Forward))
expectTrue(transformedImageReal.elementsEqual(legacyTransformedImageReal))
expectTrue(transformedImageImaginary.elementsEqual(legacyTransformedImageImaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/2DDoublePrecision") {
let width = 256
let height = 256
let pixelCount = width * height
let n = pixelCount / 2
let pixels: [Double] = (0 ..< pixelCount).map { i in
return abs(sin(Double(i) * 0.001 * 2))
}
var sourceImageReal = [Double](repeating: 0, count: n)
var sourceImageImaginary = [Double](repeating: 0, count: n)
var sourceImage = DSPDoubleSplitComplex(fromInputArray: pixels,
realParts: &sourceImageReal,
imaginaryParts: &sourceImageImaginary)
let pixelsRecreated = [Double](fromSplitComplex: sourceImage,
scale: 1, count: pixelCount)
expectTrue(pixelsRecreated.elementsEqual(pixels))
// Create FFT2D object
let fft2D = vDSP.FFT2D(width: width,
height: height,
ofType: DSPDoubleSplitComplex.self)!
// New style transform
var transformedImageReal = [Double](repeating: 0,
count: n)
var transformedImageImaginary = [Double](repeating: 0,
count: n)
var transformedImage = DSPDoubleSplitComplex(
realp: &transformedImageReal,
imagp: &transformedImageImaginary)
fft2D.transform(input: sourceImage,
output: &transformedImage,
direction: .forward)
// Legacy 2D FFT
let log2n = vDSP_Length(log2(Float(width * height)))
let legacySetup = vDSP_create_fftsetupD(
log2n,
FFTRadix(kFFTRadix2))!
var legacyTransformedImageReal = [Double](repeating: -1,
count: n)
var legacyTransformedImageImaginary = [Double](repeating: -1,
count: n)
var legacyTransformedImage = DSPDoubleSplitComplex(
realp: &legacyTransformedImageReal,
imagp: &legacyTransformedImageImaginary)
vDSP_fft2d_zropD(legacySetup,
&sourceImage, 1, 0,
&legacyTransformedImage, 1, 0,
vDSP_Length(log2(Float(width))),
vDSP_Length(log2(Float(height))),
FFTDirection(kFFTDirection_Forward))
expectTrue(transformedImageReal.elementsEqual(legacyTransformedImageReal))
expectTrue(transformedImageImaginary.elementsEqual(legacyTransformedImageImaginary))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/1DSinglePrecision") {
let n = vDSP_Length(2048)
let frequencies: [Float] = [1, 5, 25, 30, 75, 100,
300, 500, 512, 1023]
let tau: Float = .pi * 2
let signal: [Float] = (0 ... n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Float(index) / Float(n)
return accumulator + sin(normalizedIndex * frequency * tau)
}
}
let halfN = Int(n / 2)
var forwardInputReal = [Float](repeating: 0, count: halfN)
var forwardInputImag = [Float](repeating: 0, count: halfN)
var forwardInput = DSPSplitComplex(fromInputArray: signal,
realParts: &forwardInputReal,
imaginaryParts: &forwardInputImag)
let log2n = vDSP_Length(log2(Float(n)))
// New API
guard let fft = vDSP.FFT(log2n: log2n,
radix: .radix2,
ofType: DSPSplitComplex.self) else {
fatalError("Can't create FFT.")
}
var outputReal = [Float](repeating: 0, count: halfN)
var outputImag = [Float](repeating: 0, count: halfN)
var forwardOutput = DSPSplitComplex(realp: &outputReal,
imagp: &outputImag)
fft.transform(input: forwardInput,
output: &forwardOutput,
direction: .forward)
// Legacy Style
let legacySetup = vDSP_create_fftsetup(log2n,
FFTRadix(kFFTRadix2))!
var legacyoutputReal = [Float](repeating: -1, count: halfN)
var legacyoutputImag = [Float](repeating: -1, count: halfN)
var legacyForwardOutput = DSPSplitComplex(realp: &legacyoutputReal,
imagp: &legacyoutputImag)
vDSP_fft_zrop(legacySetup,
&forwardInput, 1,
&legacyForwardOutput, 1,
log2n,
FFTDirection(kFFTDirection_Forward))
expectTrue(outputReal.elementsEqual(legacyoutputReal))
expectTrue(outputImag.elementsEqual(legacyoutputImag))
}
Accelerate_vDSPFourierTransformTests.test("vDSP/1DDoublePrecision") {
let n = vDSP_Length(2048)
let frequencies: [Double] = [1, 5, 25, 30, 75, 100,
300, 500, 512, 1023]
let tau: Double = .pi * 2
let signal: [Double] = (0 ... n).map { index in
frequencies.reduce(0) { accumulator, frequency in
let normalizedIndex = Double(index) / Double(n)
return accumulator + sin(normalizedIndex * frequency * tau)
}
}
let halfN = Int(n / 2)
var forwardInputReal = [Double](repeating: 0, count: halfN)
var forwardInputImag = [Double](repeating: 0, count: halfN)
var forwardInput = DSPDoubleSplitComplex(fromInputArray: signal,
realParts: &forwardInputReal,
imaginaryParts: &forwardInputImag)
let log2n = vDSP_Length(log2(Double(n)))
// New API
guard let fft = vDSP.FFT(log2n: log2n,
radix: .radix2,
ofType: DSPDoubleSplitComplex.self) else {
fatalError("Can't create FFT.")
}
var outputReal = [Double](repeating: 0, count: halfN)
var outputImag = [Double](repeating: 0, count: halfN)
var forwardOutput = DSPDoubleSplitComplex(realp: &outputReal,
imagp: &outputImag)
fft.transform(input: forwardInput,
output: &forwardOutput,
direction: .forward)
// Legacy Style
let legacySetup = vDSP_create_fftsetupD(log2n,
FFTRadix(kFFTRadix2))!
var legacyoutputReal = [Double](repeating: 0, count: halfN)
var legacyoutputImag = [Double](repeating: 0, count: halfN)
var legacyForwardOutput = DSPDoubleSplitComplex(realp: &legacyoutputReal,
imagp: &legacyoutputImag)
vDSP_fft_zropD(legacySetup,
&forwardInput, 1,
&legacyForwardOutput, 1,
log2n,
FFTDirection(kFFTDirection_Forward))
expectTrue(outputReal.elementsEqual(legacyoutputReal))
expectTrue(outputImag.elementsEqual(legacyoutputImag))
}
}
runAllTests()