mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This implements the protocols and static functions proposed in SE-0246, plus some initial test coverage. It also has some rough accompanying cleanup of tgmath. It does not include the globals (on scalars or SIMD types) nor does it deprecate much in tgmath.h.
248 lines
11 KiB
Swift
248 lines
11 KiB
Swift
//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// -*- swift -*-
|
|
// RUN: %empty-directory(%t)
|
|
// RUN: %gyb %s -o %t/tgmath.swift
|
|
// RUN: %line-directive %t/tgmath.swift -- %target-build-swift %t/tgmath.swift -o %t/a.out
|
|
// RUN: %target-codesign %t/a.out
|
|
// RUN: %line-directive %t/tgmath.swift -- %target-run %t/a.out
|
|
// REQUIRES: executable_test
|
|
|
|
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
|
|
import Darwin.C.tgmath
|
|
#elseif os(Linux) || os(FreeBSD) || os(PS4) || os(Android) || os(Cygwin) || os(Haiku)
|
|
import Glibc
|
|
#elseif os(Windows)
|
|
import MSVCRT
|
|
#else
|
|
#error("Unsupported platform")
|
|
#endif
|
|
|
|
#if (arch(i386) || arch(x86_64)) && !os(Windows)
|
|
typealias TestLiteralType = Float80
|
|
#else
|
|
typealias TestLiteralType = Double
|
|
#endif
|
|
|
|
import StdlibUnittest
|
|
|
|
let MathTests = TestSuite("TGMath")
|
|
|
|
func expectEqualWithTolerance<T>(_ expected: TestLiteralType, _ actual: T,
|
|
ulps allowed: T = 3,
|
|
file: String = #file, line: UInt = #line)
|
|
where T: BinaryFloatingPoint {
|
|
if actual == T(expected) || actual.isNaN && expected.isNaN {
|
|
return
|
|
}
|
|
// Compute error in ulp, compare to tolerance.
|
|
let absoluteError = T(abs(TestLiteralType(actual) - expected))
|
|
let ulpError = absoluteError / T(expected).ulp
|
|
expectTrue(ulpError <= allowed,
|
|
"\(actual) != \(expected) as \(T.self)" +
|
|
"\n \(ulpError)-ulp error exceeds \(allowed)-ulp tolerance.",
|
|
file: file, line: line)
|
|
}
|
|
|
|
%{
|
|
unary = [
|
|
'acos', 'asin', 'atan',
|
|
'cos', 'sin', 'tan',
|
|
'acosh', 'asinh', 'atanh',
|
|
'cosh', 'sinh', 'tanh',
|
|
'exp', 'exp2', 'expm1',
|
|
'log', 'log2', 'log1p', 'log10', 'logb',
|
|
'fabs', 'cbrt', 'sqrt',
|
|
'erf', 'erfc',
|
|
'tgamma',
|
|
'ceil', 'floor', 'nearbyint', 'rint', 'trunc',
|
|
]
|
|
binary = [
|
|
'atan2', 'hypot', 'pow', 'fmod', 'copysign', 'nextafter',
|
|
'fdim', 'fmin', 'fmax'
|
|
]
|
|
}%
|
|
|
|
internal protocol TGMath: BinaryFloatingPoint {
|
|
%for f in unary:
|
|
static func _${f}(_ x: Self) -> Self
|
|
%end
|
|
%for f in binary:
|
|
static func _${f}(_ x: Self, _ y: Self) -> Self
|
|
%end
|
|
static func _remquo(_ x: Self, _ y: Self) -> (Self, Int)
|
|
static func _fma(_ x: Self, _ y: Self, _ z: Self) -> Self
|
|
#if !os(Windows)
|
|
static func _lgamma(_ x: Self) -> (Self, Int)
|
|
#endif
|
|
static func _modf(_ x: Self) -> (Self, Self)
|
|
static func _scalbn(_ x: Self, _ n: Int) -> Self
|
|
static func _frexp(_ x: Self) -> (Self, Int)
|
|
static func _ilogb(_ x: Self) -> Int
|
|
}
|
|
|
|
internal extension TGMath {
|
|
static func allTests() {
|
|
/* Default tolerance is 3 ulps unless specified otherwise. It's OK to relax
|
|
* this as needed for new platforms, as these tests are *not* intended to
|
|
* validate the math library--they are only intended to check that the
|
|
* Swift bindings are calling the right functions in the math library. */
|
|
expectEqualWithTolerance(1.1863995522992575361931268186727044683, Self._acos(0.375))
|
|
expectEqualWithTolerance(0.3843967744956390830381948729670469737, Self._asin(0.375))
|
|
expectEqualWithTolerance(0.3587706702705722203959200639264604997, Self._atan(0.375))
|
|
expectEqualWithTolerance(0.9305076219123142911494767922295555080, Self._cos(0.375))
|
|
expectEqualWithTolerance(0.3662725290860475613729093517162641571, Self._sin(0.375))
|
|
expectEqualWithTolerance(0.3936265759256327582294137871012180981, Self._tan(0.375))
|
|
expectEqualWithTolerance(0.4949329230945269058895630995767185785, Self._acosh(1.125))
|
|
expectEqualWithTolerance(0.9670596312833237113713762009167286709, Self._asinh(1.125))
|
|
expectEqualWithTolerance(0.7331685343967135223291211023213964500, Self._atanh(0.625))
|
|
expectEqualWithTolerance(1.0711403467045867672994980155670160493, Self._cosh(0.375))
|
|
expectEqualWithTolerance(0.3838510679136145687542956764205024589, Self._sinh(0.375))
|
|
expectEqualWithTolerance(0.3583573983507859463193602315531580424, Self._tanh(0.375))
|
|
expectEqualWithTolerance(1.4549914146182013360537936919875185083, Self._exp(0.375))
|
|
expectEqualWithTolerance(1.2968395546510096659337541177924511598, Self._exp2(0.375))
|
|
expectEqualWithTolerance(0.4549914146182013360537936919875185083, Self._expm1(0.375))
|
|
expectEqualWithTolerance(-0.980829253011726236856451127452003999, Self._log(0.375))
|
|
expectEqualWithTolerance(-1.415037499278843818546261056052183491, Self._log2(0.375))
|
|
expectEqualWithTolerance(0.3184537311185346158102472135905995955, Self._log1p(0.375))
|
|
expectEqualWithTolerance(-0.425968732272281148346188780918363771, Self._log10(0.375))
|
|
expectEqual(-2, Self._logb(0.375))
|
|
expectEqual(0.375, Self._fabs(-0.375))
|
|
expectEqualWithTolerance(0.7211247851537041911608191553900547941, Self._cbrt(0.375))
|
|
expectEqualWithTolerance(0.6123724356957945245493210186764728479, Self._sqrt(0.375))
|
|
expectEqualWithTolerance(0.4041169094348222983238250859191217675, Self._erf(0.375))
|
|
expectEqualWithTolerance(0.5958830905651777016761749140808782324, Self._erfc(0.375))
|
|
expectEqualWithTolerance(2.3704361844166009086464735041766525098, Self._tgamma(0.375))
|
|
#if !os(Windows)
|
|
expectEqualWithTolerance( -0.11775527074107877445136203331798850, Self._lgamma(1.375).0, ulps: 16)
|
|
expectEqual(1, Self._lgamma(1.375).1)
|
|
#endif
|
|
expectEqual(1, Self._ceil(0.375))
|
|
expectEqual(0, Self._floor(0.375))
|
|
expectEqual(0, Self._nearbyint(0.375))
|
|
expectEqual(0, Self._rint(0.375))
|
|
expectEqual(0, Self._trunc(0.375))
|
|
expectEqual(0, Self._ceil(-0.625))
|
|
expectEqual(-1, Self._floor(-0.625))
|
|
expectEqual(-1, Self._nearbyint(-0.625))
|
|
expectEqual(-1, Self._rint(-0.625))
|
|
expectEqual(0, Self._trunc(-0.625))
|
|
expectEqual(0, Self._ceil(-0.5))
|
|
expectEqual(-1, Self._floor(-0.5))
|
|
expectEqual(-0.0, Self._nearbyint(-0.5))
|
|
expectEqual(-0.0, Self._rint(-0.5))
|
|
expectEqual(0, Self._trunc(-0.5))
|
|
expectEqualWithTolerance(0.54041950027058415544357836460859991, Self._atan2(0.375, 0.625))
|
|
expectEqualWithTolerance(0.72886898685566255885926910969319788, Self._hypot(0.375, 0.625))
|
|
expectEqualWithTolerance(0.54171335479545025876069682133938570, Self._pow(0.375, 0.625))
|
|
expectEqual(0.375, Self._fmod(1, 0.625))
|
|
expectEqual(-0.375, Self._copysign(0.375, -0.625))
|
|
expectEqual(Self(0.375).nextUp, Self._nextafter(0.375, 1))
|
|
expectEqual(Self(0.375).nextDown, Self._nextafter(0.375, 0))
|
|
expectEqual(0, Self._fdim(0.375, 0.625))
|
|
expectEqual(0.375, Self._fmin(0.375, 0.625))
|
|
expectEqual(0.625, Self._fmax(0.375, 0.625))
|
|
expectEqual(-Self.ulpOfOne*Self.ulpOfOne,
|
|
Self._fma(1 + .ulpOfOne, 1 - .ulpOfOne, -1))
|
|
expectEqual((1.0, 0.125), Self._modf(1.125))
|
|
expectEqual(2.5, Self._scalbn(0.625, 2))
|
|
expectEqual((0.625, 2), Self._frexp(2.5))
|
|
expectEqual(1, Self._ilogb(2.5))
|
|
#if os(Linux) && arch(x86_64)
|
|
// double-precision remquo is broken in the glibc in 14.04. Disable this
|
|
// test for all Linux in the short-term to un-FAIL the build. SR-7234.
|
|
if Self.significandBitCount != 52 {
|
|
expectEqual(-0.25, Self._remquo(16, 0.625).0)
|
|
expectEqual(2, Self._remquo(16, 0.625).1 & 7)
|
|
}
|
|
#else
|
|
expectEqual(-0.25, Self._remquo(16, 0.625).0)
|
|
expectEqual(2, Self._remquo(16, 0.625).1 & 7)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
%for T in ['Float', 'Double', 'CGFloat', 'Float80']:
|
|
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !os(Windows)
|
|
% elif T == 'CGFloat':
|
|
#if canImport(CoreGraphics)
|
|
import CoreGraphics
|
|
% end
|
|
|
|
extension ${T}: TGMath {
|
|
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
|
|
% Module = 'CoreGraphics' if T == 'CGFloat' else 'Darwin'
|
|
% for f in unary:
|
|
static func _${f}(_ x: ${T}) -> ${T} { return ${Module}.${f}(x) }
|
|
% end
|
|
%for f in binary:
|
|
static func _${f}(_ x: ${T}, _ y: ${T}) -> ${T} { return ${Module}.${f}(x, y) }
|
|
%end
|
|
static func _remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) { return ${Module}.remquo(x, y) }
|
|
static func _fma(_ x: ${T}, _ y: ${T}, _ z: ${T}) -> ${T} { return ${Module}.fma(x, y, z) }
|
|
static func _lgamma(_ x: ${T}) -> (${T}, Int) { return ${Module}.lgamma(x) }
|
|
static func _modf(_ x: ${T}) -> (${T}, ${T}) { return ${Module}.modf(x) }
|
|
static func _scalbn(_ x: ${T}, _ n: Int) -> ${T} { return ${Module}.scalbn(x, n) }
|
|
static func _frexp(_ x: ${T}) -> (${T}, Int) { return ${Module}.frexp(x) }
|
|
static func _ilogb(_ x: ${T}) -> Int { return ${Module}.ilogb(x) }
|
|
#elseif os(Linux) || os(FreeBSD) || os(PS4) || os(Android) || os(Cygwin) || os(Haiku)
|
|
% for f in unary:
|
|
static func _${f}(_ x: ${T}) -> ${T} { return Glibc.${f}(x) }
|
|
% end
|
|
%for f in binary:
|
|
static func _${f}(_ x: ${T}, _ y: ${T}) -> ${T} { return Glibc.${f}(x, y) }
|
|
%end
|
|
static func _remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) { return Glibc.remquo(x, y) }
|
|
static func _fma(_ x: ${T}, _ y: ${T}, _ z: ${T}) -> ${T} { return Glibc.fma(x, y, z) }
|
|
static func _lgamma(_ x: ${T}) -> (${T}, Int) { return Glibc.lgamma(x) }
|
|
static func _modf(_ x: ${T}) -> (${T}, ${T}) { return Glibc.modf(x) }
|
|
static func _scalbn(_ x: ${T}, _ n: Int) -> ${T} { return Glibc.scalbn(x, n) }
|
|
static func _frexp(_ x: ${T}) -> (${T}, Int) { return Glibc.frexp(x) }
|
|
static func _ilogb(_ x: ${T}) -> Int { return Glibc.ilogb(x) }
|
|
#elseif os(Windows)
|
|
% for f in unary:
|
|
static func _${f}(_ x: ${T}) -> ${T} { return MSVCRT.${f}(x) }
|
|
% end
|
|
%for f in binary:
|
|
static func _${f}(_ x: ${T}, _ y: ${T}) -> ${T} { return MSVCRT.${f}(x, y) }
|
|
%end
|
|
static func _remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) { return MSVCRT.remquo(x, y) }
|
|
static func _fma(_ x: ${T}, _ y: ${T}, _ z: ${T}) -> ${T} { return MSVCRT.fma(x, y, z) }
|
|
static func _modf(_ x: ${T}) -> (${T}, ${T}) { return MSVCRT.modf(x) }
|
|
static func _scalbn(_ x: ${T}, _ n: Int) -> ${T} { return MSVCRT.scalbn(x, n) }
|
|
static func _frexp(_ x: ${T}) -> (${T}, Int) { return MSVCRT.frexp(x) }
|
|
static func _ilogb(_ x: ${T}) -> Int { return MSVCRT.ilogb(x) }
|
|
#endif
|
|
}
|
|
|
|
MathTests.test("${T}") {
|
|
${T}.allTests()
|
|
% if T in ['Double','CGFloat']:
|
|
// Functions that are defined only for Double and CGFloat
|
|
expectEqualWithTolerance(0.99750156206604, j0(0.1), ulps: 16)
|
|
expectEqualWithTolerance(0.049937526036242, j1(0.1), ulps: 16)
|
|
expectEqualWithTolerance(1.2229926610356451e-22, jn(11, 0.1), ulps: 16)
|
|
expectEqualWithTolerance(-1.5342386513503667, y0(0.1), ulps: 16)
|
|
expectEqualWithTolerance(-6.458951094702027, y1(0.1), ulps: 16)
|
|
expectEqualWithTolerance(-2.3662012944869576e+20, yn(11, 0.1), ulps: 16)
|
|
% end
|
|
}
|
|
|
|
% if T in ['CGFloat', 'Float80']:
|
|
#endif
|
|
% end
|
|
%end
|
|
|
|
runAllTests()
|