mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
1271 lines
52 KiB
C++
1271 lines
52 KiB
C++
//===--- GenKeyPath.cpp - IRGen support for key path objects --------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains code for emitting key path patterns, which can be used
|
|
// by the standard library to instantiate key path objects.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Callee.h"
|
|
#include "ConstantBuilder.h"
|
|
#include "Explosion.h"
|
|
#include "GenClass.h"
|
|
#include "GenDecl.h"
|
|
#include "GenMeta.h"
|
|
#include "GenProto.h"
|
|
#include "GenStruct.h"
|
|
#include "GenType.h"
|
|
#include "GenericRequirement.h"
|
|
#include "IRGenDebugInfo.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "MetadataLayout.h"
|
|
#include "ProtocolInfo.h"
|
|
#include "StructLayout.h"
|
|
#include "TypeInfo.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILLocation.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "swift/ABI/KeyPath.h"
|
|
#include "swift/ABI/HeapObject.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticEngine.h"
|
|
#include "swift/AST/DiagnosticsIRGen.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/ParameterList.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/IRGen/Linking.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
enum KeyPathAccessor {
|
|
Getter,
|
|
Setter,
|
|
Equals,
|
|
Hash,
|
|
};
|
|
|
|
static void
|
|
bindPolymorphicArgumentsFromComponentIndices(IRGenFunction &IGF,
|
|
const KeyPathPatternComponent &component,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements,
|
|
llvm::Value *args,
|
|
llvm::Value *size,
|
|
bool hasSubscriptIndices) {
|
|
if (!genericEnv)
|
|
return;
|
|
|
|
// The generic environment is marshaled into the end of the component
|
|
// argument area inside the instance. Bind the generic information out of
|
|
// the buffer.
|
|
if (hasSubscriptIndices) {
|
|
auto genericArgsSize = llvm::ConstantInt::get(IGF.IGM.SizeTy,
|
|
requirements.size() * IGF.IGM.getPointerSize().getValue());
|
|
|
|
auto genericArgsOffset = IGF.Builder.CreateSub(size, genericArgsSize);
|
|
args = IGF.Builder.CreateInBoundsGEP(args, genericArgsOffset);
|
|
}
|
|
bindFromGenericRequirementsBuffer(IGF, requirements,
|
|
Address(args, IGF.IGM.getPointerAlignment()),
|
|
MetadataState::Complete,
|
|
[&](CanType t) {
|
|
return genericEnv->mapTypeIntoContext(t)->getCanonicalType();
|
|
});
|
|
}
|
|
|
|
static llvm::Function *
|
|
getAccessorForComputedComponent(IRGenModule &IGM,
|
|
const KeyPathPatternComponent &component,
|
|
KeyPathAccessor whichAccessor,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements,
|
|
bool hasSubscriptIndices) {
|
|
SILFunction *accessor;
|
|
switch (whichAccessor) {
|
|
case Getter:
|
|
accessor = component.getComputedPropertyGetter();
|
|
break;
|
|
case Setter:
|
|
accessor = component.getComputedPropertySetter();
|
|
break;
|
|
case Equals:
|
|
accessor = component.getSubscriptIndexEquals();
|
|
break;
|
|
case Hash:
|
|
accessor = component.getSubscriptIndexHash();
|
|
break;
|
|
}
|
|
|
|
auto accessorFn = IGM.getAddrOfSILFunction(accessor, NotForDefinition);
|
|
|
|
// If the accessor is not generic, we can use it as is.
|
|
if (requirements.empty()) {
|
|
return accessorFn;
|
|
}
|
|
|
|
auto accessorFnTy = cast<llvm::FunctionType>(
|
|
accessorFn->getType()->getPointerElementType());;
|
|
|
|
// Otherwise, we need a thunk to unmarshal the generic environment from the
|
|
// argument area. It'd be nice to have a good way to represent this
|
|
// directly in SIL, of course...
|
|
const char *thunkName;
|
|
unsigned numArgsToForward;
|
|
|
|
switch (whichAccessor) {
|
|
case Getter:
|
|
thunkName = "keypath_get";
|
|
numArgsToForward = 2;
|
|
break;
|
|
case Setter:
|
|
thunkName = "keypath_set";
|
|
numArgsToForward = 2;
|
|
break;
|
|
case Equals:
|
|
thunkName = "keypath_equals";
|
|
numArgsToForward = 2;
|
|
break;
|
|
case Hash:
|
|
thunkName = "keypath_hash";
|
|
numArgsToForward = 1;
|
|
break;
|
|
}
|
|
|
|
SmallVector<llvm::Type *, 4> thunkParams;
|
|
for (unsigned i = 0; i < numArgsToForward; ++i)
|
|
thunkParams.push_back(accessorFnTy->getParamType(i));
|
|
|
|
switch (whichAccessor) {
|
|
case Getter:
|
|
case Setter:
|
|
thunkParams.push_back(IGM.Int8PtrTy);
|
|
break;
|
|
case Equals:
|
|
case Hash:
|
|
break;
|
|
}
|
|
thunkParams.push_back(IGM.SizeTy);
|
|
|
|
auto thunkType = llvm::FunctionType::get(accessorFnTy->getReturnType(),
|
|
thunkParams,
|
|
/*vararg*/ false);
|
|
|
|
auto accessorThunk = llvm::Function::Create(thunkType,
|
|
llvm::GlobalValue::PrivateLinkage, thunkName, IGM.getModule());
|
|
accessorThunk->setAttributes(IGM.constructInitialAttributes());
|
|
accessorThunk->setCallingConv(IGM.SwiftCC);
|
|
|
|
switch (whichAccessor) {
|
|
case Getter:
|
|
// Original accessor's args should be @in or @out, meaning they won't be
|
|
// captured or aliased.
|
|
accessorThunk->addAttribute(1, llvm::Attribute::NoCapture);
|
|
accessorThunk->addAttribute(1, llvm::Attribute::NoAlias);
|
|
accessorThunk->addAttribute(2, llvm::Attribute::NoCapture);
|
|
accessorThunk->addAttribute(2, llvm::Attribute::NoAlias);
|
|
// Output is sret.
|
|
accessorThunk->addAttribute(1, llvm::Attribute::StructRet);
|
|
break;
|
|
case Setter:
|
|
// Original accessor's args should be @in or @out, meaning they won't be
|
|
// captured or aliased.
|
|
accessorThunk->addAttribute(1, llvm::Attribute::NoCapture);
|
|
accessorThunk->addAttribute(1, llvm::Attribute::NoAlias);
|
|
accessorThunk->addAttribute(2, llvm::Attribute::NoCapture);
|
|
accessorThunk->addAttribute(2, llvm::Attribute::NoAlias);
|
|
break;
|
|
case Equals:
|
|
case Hash:
|
|
break;
|
|
}
|
|
|
|
{
|
|
IRGenFunction IGF(IGM, accessorThunk);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, accessorThunk);
|
|
|
|
auto params = IGF.collectParameters();
|
|
Explosion forwardedArgs;
|
|
forwardedArgs.add(params.claim(numArgsToForward));
|
|
|
|
llvm::Value *componentArgsBuf;
|
|
switch (whichAccessor) {
|
|
case Getter:
|
|
case Setter:
|
|
// The component arguments are passed alongside the base being projected.
|
|
componentArgsBuf = params.claimNext();
|
|
// Pass the argument pointer down to the underlying function, if it
|
|
// wants it.
|
|
if (hasSubscriptIndices) {
|
|
forwardedArgs.add(componentArgsBuf);
|
|
}
|
|
break;
|
|
case Equals:
|
|
case Hash:
|
|
// We're operating directly on the component argument buffer.
|
|
componentArgsBuf = forwardedArgs.getAll()[0];
|
|
break;
|
|
}
|
|
auto componentArgsBufSize = params.claimNext();
|
|
bindPolymorphicArgumentsFromComponentIndices(IGF, component,
|
|
genericEnv, requirements,
|
|
componentArgsBuf,
|
|
componentArgsBufSize,
|
|
hasSubscriptIndices);
|
|
|
|
// Use the bound generic metadata to form a call to the original generic
|
|
// accessor.
|
|
WitnessMetadata ignoreWitnessMetadata;
|
|
auto forwardingSubs = genericEnv->getGenericSignature()->getSubstitutionMap(
|
|
genericEnv->getForwardingSubstitutions());
|
|
emitPolymorphicArguments(IGF, accessor->getLoweredFunctionType(),
|
|
forwardingSubs,
|
|
&ignoreWitnessMetadata,
|
|
forwardedArgs);
|
|
auto fnPtr = FunctionPointer::forDirect(IGM, accessorFn,
|
|
accessor->getLoweredFunctionType());
|
|
auto call = IGF.Builder.CreateCall(fnPtr, forwardedArgs.claimAll());
|
|
|
|
if (call->getType()->isVoidTy())
|
|
IGF.Builder.CreateRetVoid();
|
|
else
|
|
IGF.Builder.CreateRet(call);
|
|
}
|
|
|
|
return accessorThunk;
|
|
}
|
|
|
|
static llvm::Constant *
|
|
getLayoutFunctionForComputedComponent(IRGenModule &IGM,
|
|
const KeyPathPatternComponent &component,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements) {
|
|
// Generate a function that returns the expected size and alignment necessary
|
|
// to store captured generic context and subscript index arguments.
|
|
auto retTy = llvm::StructType::get(IGM.getLLVMContext(),
|
|
{IGM.SizeTy, IGM.SizeTy});
|
|
auto fnTy = llvm::FunctionType::get(
|
|
retTy, { IGM.Int8PtrTy }, /*vararg*/ false);
|
|
|
|
auto layoutFn = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage, "keypath_get_arg_layout", IGM.getModule());
|
|
|
|
{
|
|
IRGenFunction IGF(IGM, layoutFn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, layoutFn);
|
|
// Unmarshal the generic environment from the argument buffer.
|
|
auto parameters = IGF.collectParameters();
|
|
auto args = parameters.claimNext();
|
|
|
|
if (genericEnv) {
|
|
bindFromGenericRequirementsBuffer(IGF, requirements,
|
|
Address(args, IGF.IGM.getPointerAlignment()),
|
|
MetadataState::Complete,
|
|
[&](CanType t) {
|
|
return genericEnv->mapTypeIntoContext(t)->getCanonicalType();
|
|
});
|
|
}
|
|
|
|
// Run through the captured index types to determine the size and alignment
|
|
// needed. Start with pointer alignment for the generic environment.
|
|
llvm::Value *size = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
llvm::Value *alignMask = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
|
|
for (auto &index : component.getSubscriptIndices()) {
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(), index.LoweredType)
|
|
: index.LoweredType;
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
auto indexSize = ti.getSize(IGF, ty);
|
|
auto indexAlign = ti.getAlignmentMask(IGF, ty);
|
|
|
|
auto notIndexAlign = IGF.Builder.CreateNot(indexAlign);
|
|
|
|
size = IGF.Builder.CreateAdd(size, indexAlign);
|
|
size = IGF.Builder.CreateAnd(size, notIndexAlign);
|
|
size = IGF.Builder.CreateAdd(size, indexSize);
|
|
|
|
alignMask = IGF.Builder.CreateOr(alignMask, indexAlign);
|
|
}
|
|
|
|
// If there's generic environment to capture, then it's stored as a block
|
|
// of pointer-aligned words after the captured values.
|
|
|
|
auto genericsSize = llvm::ConstantInt::get(IGM.SizeTy,
|
|
IGM.getPointerSize().getValue() * requirements.size());
|
|
auto genericsAlign = llvm::ConstantInt::get(IGM.SizeTy,
|
|
IGM.getPointerAlignment().getValue() - 1);
|
|
auto notGenericsAlign = llvm::ConstantExpr::getNot(genericsAlign);
|
|
size = IGF.Builder.CreateAdd(size, genericsAlign);
|
|
size = IGF.Builder.CreateAnd(size, notGenericsAlign);
|
|
size = IGF.Builder.CreateAdd(size, genericsSize);
|
|
alignMask = IGF.Builder.CreateOr(alignMask, genericsAlign);
|
|
|
|
llvm::Value *retValue = IGF.Builder.CreateInsertValue(
|
|
llvm::UndefValue::get(retTy), size, 0);
|
|
retValue = IGF.Builder.CreateInsertValue(
|
|
retValue, alignMask, 1);
|
|
|
|
IGF.Builder.CreateRet(retValue);
|
|
}
|
|
|
|
return layoutFn;
|
|
}
|
|
|
|
static llvm::Constant *
|
|
getWitnessTableForComputedComponent(IRGenModule &IGM,
|
|
const KeyPathPatternComponent &component,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements) {
|
|
// If the only thing we're capturing is generic environment, then we can
|
|
// use a prefab witness table from the runtime.
|
|
if (component.getSubscriptIndices().empty()) {
|
|
if (auto existing =
|
|
IGM.Module.getNamedGlobal("swift_keyPathGenericWitnessTable"))
|
|
return existing;
|
|
|
|
auto linkInfo = LinkInfo::get(UniversalLinkageInfo(IGM),
|
|
"swift_keyPathGenericWitnessTable",
|
|
SILLinkage::PublicExternal, NotForDefinition,
|
|
/*weak imported*/ false);
|
|
|
|
return createVariable(IGM, linkInfo,
|
|
IGM.Int8PtrTy, IGM.getPointerAlignment());
|
|
}
|
|
|
|
// Are the index values trivial?
|
|
bool isTrivial = true;
|
|
for (auto &component : component.getSubscriptIndices()) {
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(), component.LoweredType)
|
|
: component.LoweredType;
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
isTrivial &= ti.isPOD(ResilienceExpansion::Minimal);
|
|
}
|
|
|
|
llvm::Constant *destroy;
|
|
llvm::Constant *copy;
|
|
if (isTrivial) {
|
|
// We can use prefab witnesses for handling trivial copying and destruction.
|
|
// A null destructor witness signals that the payload is trivial.
|
|
destroy = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
|
|
copy = IGM.getCopyKeyPathTrivialIndicesFn();
|
|
} else {
|
|
// Generate a destructor for this set of indices.
|
|
{
|
|
auto destroyType = llvm::FunctionType::get(IGM.VoidTy,
|
|
{IGM.Int8PtrTy, IGM.SizeTy},
|
|
/*vararg*/ false);
|
|
auto destroyFn = llvm::Function::Create(destroyType,
|
|
llvm::GlobalValue::PrivateLinkage, "keypath_destroy", IGM.getModule());
|
|
destroy = destroyFn;
|
|
|
|
IRGenFunction IGF(IGM, destroyFn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, destroyFn);
|
|
|
|
auto params = IGF.collectParameters();
|
|
auto componentArgsBuf = params.claimNext();
|
|
auto componentArgsBufSize = params.claimNext();
|
|
bindPolymorphicArgumentsFromComponentIndices(IGF, component,
|
|
genericEnv, requirements,
|
|
componentArgsBuf,
|
|
componentArgsBufSize,
|
|
!component.getSubscriptIndices().empty());
|
|
|
|
llvm::Value *offset = nullptr;
|
|
for (auto &component : component.getSubscriptIndices()) {
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(),
|
|
component.LoweredType)
|
|
: component.LoweredType;
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
if (offset) {
|
|
auto align = ti.getAlignmentMask(IGF, ty);
|
|
auto notAlign = IGF.Builder.CreateNot(align);
|
|
offset = IGF.Builder.CreateAdd(offset, align);
|
|
offset = IGF.Builder.CreateAnd(offset, notAlign);
|
|
} else {
|
|
offset = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
}
|
|
auto elt = IGF.Builder.CreateInBoundsGEP(componentArgsBuf, offset);
|
|
auto eltAddr = ti.getAddressForPointer(
|
|
IGF.Builder.CreateBitCast(elt, ti.getStorageType()->getPointerTo()));
|
|
ti.destroy(IGF, eltAddr, ty,
|
|
true /*witness table: need it to be fast*/);
|
|
auto size = ti.getSize(IGF, ty);
|
|
offset = IGF.Builder.CreateAdd(offset, size);
|
|
}
|
|
IGF.Builder.CreateRetVoid();
|
|
}
|
|
// Generate a copier for this set of indices.
|
|
{
|
|
auto copyType = llvm::FunctionType::get(IGM.VoidTy,
|
|
{IGM.Int8PtrTy, IGM.Int8PtrTy,
|
|
IGM.SizeTy},
|
|
/*vararg*/ false);
|
|
auto copyFn = llvm::Function::Create(copyType,
|
|
llvm::GlobalValue::PrivateLinkage, "keypath_copy", IGM.getModule());
|
|
copy = copyFn;
|
|
|
|
IRGenFunction IGF(IGM, copyFn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, copyFn);
|
|
|
|
auto params = IGF.collectParameters();
|
|
auto sourceArgsBuf = params.claimNext();
|
|
auto destArgsBuf = params.claimNext();
|
|
auto componentArgsBufSize = params.claimNext();
|
|
bindPolymorphicArgumentsFromComponentIndices(IGF, component,
|
|
genericEnv, requirements,
|
|
sourceArgsBuf,
|
|
componentArgsBufSize,
|
|
!component.getSubscriptIndices().empty());
|
|
|
|
// Copy over the index values.
|
|
llvm::Value *offset = nullptr;
|
|
for (auto &component : component.getSubscriptIndices()) {
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(),
|
|
component.LoweredType)
|
|
: component.LoweredType;
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
if (offset) {
|
|
auto align = ti.getAlignmentMask(IGF, ty);
|
|
auto notAlign = IGF.Builder.CreateNot(align);
|
|
offset = IGF.Builder.CreateAdd(offset, align);
|
|
offset = IGF.Builder.CreateAnd(offset, notAlign);
|
|
} else {
|
|
offset = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
}
|
|
auto sourceElt = IGF.Builder.CreateInBoundsGEP(sourceArgsBuf, offset);
|
|
auto destElt = IGF.Builder.CreateInBoundsGEP(destArgsBuf, offset);
|
|
auto sourceEltAddr = ti.getAddressForPointer(
|
|
IGF.Builder.CreateBitCast(sourceElt,
|
|
ti.getStorageType()->getPointerTo()));
|
|
auto destEltAddr = ti.getAddressForPointer(
|
|
IGF.Builder.CreateBitCast(destElt,
|
|
ti.getStorageType()->getPointerTo()));
|
|
|
|
ti.initializeWithCopy(IGF, destEltAddr, sourceEltAddr, ty, false);
|
|
auto size = ti.getSize(IGF, ty);
|
|
offset = IGF.Builder.CreateAdd(offset, size);
|
|
}
|
|
|
|
// Copy over the generic environment.
|
|
if (genericEnv) {
|
|
auto envAlignMask = llvm::ConstantInt::get(IGM.SizeTy,
|
|
IGM.getPointerAlignment().getMaskValue());
|
|
auto notAlignMask = IGF.Builder.CreateNot(envAlignMask);
|
|
offset = IGF.Builder.CreateAdd(offset, envAlignMask);
|
|
offset = IGF.Builder.CreateAnd(offset, notAlignMask);
|
|
|
|
auto sourceEnv = IGF.Builder.CreateInBoundsGEP(sourceArgsBuf, offset);
|
|
auto destEnv = IGF.Builder.CreateInBoundsGEP(destArgsBuf, offset);
|
|
|
|
IGF.Builder.CreateMemCpy(destEnv, sourceEnv,
|
|
IGM.getPointerSize().getValue() * requirements.size(),
|
|
IGM.getPointerAlignment().getValue());
|
|
}
|
|
|
|
IGF.Builder.CreateRetVoid();
|
|
}
|
|
}
|
|
|
|
auto equals = getAccessorForComputedComponent(IGM, component, Equals,
|
|
genericEnv, requirements,
|
|
!component.getSubscriptIndices().empty());
|
|
auto hash = getAccessorForComputedComponent(IGM, component, Hash,
|
|
genericEnv, requirements,
|
|
!component.getSubscriptIndices().empty());
|
|
|
|
auto witnesses = llvm::ConstantStruct::getAnon({destroy, copy, equals, hash});
|
|
return new llvm::GlobalVariable(IGM.Module, witnesses->getType(),
|
|
/*constant*/ true,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
witnesses,
|
|
"keypath_witnesses");
|
|
}
|
|
|
|
/// Information about each index operand for a key path pattern that is used
|
|
/// to lay out and consume the argument packet.
|
|
struct KeyPathIndexOperand {
|
|
SILType LoweredType;
|
|
const KeyPathPatternComponent *LastUser;
|
|
};
|
|
|
|
static llvm::Constant *
|
|
getInitializerForComputedComponent(IRGenModule &IGM,
|
|
const KeyPathPatternComponent &component,
|
|
ArrayRef<KeyPathIndexOperand> operands,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements) {
|
|
auto fnTy = llvm::FunctionType::get(IGM.VoidTy,
|
|
{ /*src*/ IGM.Int8PtrTy,
|
|
/*dest*/ IGM.Int8PtrTy }, /*vararg*/ false);
|
|
|
|
auto initFn = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage, "keypath_arg_init", IGM.getModule());
|
|
|
|
{
|
|
IRGenFunction IGF(IGM, initFn);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, initFn);
|
|
|
|
auto params = IGF.collectParameters();
|
|
// Pointer to the argument packet passed into swift_getKeyPath
|
|
auto src = params.claimNext();
|
|
// Pointer to the destination component's argument buffer
|
|
auto dest = params.claimNext();
|
|
|
|
SmallVector<Address, 4> srcAddresses;
|
|
int lastOperandNeeded = -1;
|
|
for (auto &index : component.getSubscriptIndices()) {
|
|
lastOperandNeeded = std::max(lastOperandNeeded, (int)index.Operand);
|
|
}
|
|
|
|
llvm::Value *offset;
|
|
|
|
if (genericEnv) {
|
|
// We'll copy over the generic environment after we copy in the indexes.
|
|
offset = llvm::ConstantInt::get(IGM.SizeTy,
|
|
IGM.getPointerSize().getValue() * requirements.size());
|
|
|
|
// Bind the generic environment from the argument buffer.
|
|
bindFromGenericRequirementsBuffer(IGF, requirements,
|
|
Address(src, IGF.IGM.getPointerAlignment()),
|
|
MetadataState::Complete,
|
|
[&](CanType t) {
|
|
return genericEnv->mapTypeIntoContext(t)->getCanonicalType();
|
|
});
|
|
|
|
} else {
|
|
offset = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
}
|
|
|
|
// Figure out the offsets of the operands in the source buffer.
|
|
for (int i = 0; i <= lastOperandNeeded; ++i) {
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(),
|
|
operands[i].LoweredType)
|
|
: operands[i].LoweredType;
|
|
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
|
|
if (i != 0 || genericEnv) {
|
|
auto alignMask = ti.getAlignmentMask(IGF, ty);
|
|
auto notAlignMask = IGF.Builder.CreateNot(alignMask);
|
|
offset = IGF.Builder.CreateAdd(offset, alignMask);
|
|
offset = IGF.Builder.CreateAnd(offset, notAlignMask);
|
|
}
|
|
|
|
auto ptr = IGF.Builder.CreateInBoundsGEP(src, offset);
|
|
auto addr = ti.getAddressForPointer(IGF.Builder.CreateBitCast(
|
|
ptr, ti.getStorageType()->getPointerTo()));
|
|
srcAddresses.push_back(addr);
|
|
|
|
auto size = ti.getSize(IGF, ty);
|
|
offset = IGF.Builder.CreateAdd(offset, size);
|
|
}
|
|
|
|
offset = llvm::ConstantInt::get(IGM.SizeTy, 0);
|
|
|
|
// Transfer the operands we want into the destination buffer.
|
|
for (unsigned i : indices(component.getSubscriptIndices())) {
|
|
auto &index = component.getSubscriptIndices()[i];
|
|
|
|
auto ty = genericEnv
|
|
? genericEnv->mapTypeIntoContext(IGM.getSILModule(),
|
|
index.LoweredType)
|
|
: index.LoweredType;
|
|
|
|
auto &ti = IGM.getTypeInfo(ty);
|
|
|
|
if (i != 0) {
|
|
auto alignMask = ti.getAlignmentMask(IGF, ty);
|
|
auto notAlignMask = IGF.Builder.CreateNot(alignMask);
|
|
offset = IGF.Builder.CreateAdd(offset, alignMask);
|
|
offset = IGF.Builder.CreateAnd(offset, notAlignMask);
|
|
}
|
|
|
|
auto ptr = IGF.Builder.CreateInBoundsGEP(dest, offset);
|
|
auto destAddr = ti.getAddressForPointer(IGF.Builder.CreateBitCast(
|
|
ptr, ti.getStorageType()->getPointerTo()));
|
|
|
|
// The last component using an operand can move the value out of the
|
|
// buffer.
|
|
if (&component == operands[index.Operand].LastUser) {
|
|
ti.initializeWithTake(IGF, destAddr, srcAddresses[index.Operand], ty,
|
|
false);
|
|
} else {
|
|
ti.initializeWithCopy(IGF, destAddr, srcAddresses[index.Operand], ty,
|
|
false);
|
|
}
|
|
auto size = ti.getSize(IGF, ty);
|
|
offset = IGF.Builder.CreateAdd(offset, size);
|
|
}
|
|
|
|
// Transfer the generic environment.
|
|
// External components don't need to store the key path environment (and
|
|
// can't), since they need to already have enough information to function
|
|
// independently of any context using the component.
|
|
if (genericEnv &&
|
|
component.getKind() != KeyPathPatternComponent::Kind::External) {
|
|
auto destGenericEnv = dest;
|
|
if (!component.getSubscriptIndices().empty()) {
|
|
auto genericEnvAlignMask = llvm::ConstantInt::get(IGM.SizeTy,
|
|
IGM.getPointerAlignment().getMaskValue());
|
|
auto notGenericEnvAlignMask = IGF.Builder.CreateNot(genericEnvAlignMask);
|
|
offset = IGF.Builder.CreateAdd(offset, genericEnvAlignMask);
|
|
offset = IGF.Builder.CreateAnd(offset, notGenericEnvAlignMask);
|
|
destGenericEnv = IGF.Builder.CreateInBoundsGEP(dest, offset);
|
|
}
|
|
|
|
IGF.Builder.CreateMemCpy(destGenericEnv, src,
|
|
IGM.getPointerSize().getValue() * requirements.size(),
|
|
IGM.getPointerAlignment().getValue());
|
|
}
|
|
IGF.Builder.CreateRetVoid();
|
|
}
|
|
return initFn;
|
|
}
|
|
|
|
/// Emit a generator function to produce a reference to a type or
|
|
/// protocol conformance metadata record.
|
|
/// TODO: It would be much better to emit typeref strings and use runtime
|
|
/// demangling here.
|
|
static llvm::Function *
|
|
emitGeneratorForKeyPath(IRGenModule &IGM,
|
|
StringRef name, CanType type, llvm::Type *returnType,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements,
|
|
llvm::function_ref<void(IRGenFunction&,CanType)> emit) {
|
|
// TODO: Use the standard metadata accessor when there are no arguments
|
|
// and the metadata accessor is defined.
|
|
|
|
// Build a stub that loads the necessary bindings from the key path's
|
|
// argument buffer then fetches the metadata.
|
|
auto fnTy = llvm::FunctionType::get(returnType,
|
|
{IGM.Int8PtrTy}, /*vararg*/ false);
|
|
auto accessorThunk = llvm::Function::Create(fnTy,
|
|
llvm::GlobalValue::PrivateLinkage,
|
|
name, IGM.getModule());
|
|
accessorThunk->setAttributes(IGM.constructInitialAttributes());
|
|
{
|
|
IRGenFunction IGF(IGM, accessorThunk);
|
|
if (IGM.DebugInfo)
|
|
IGM.DebugInfo->emitArtificialFunction(IGF, accessorThunk);
|
|
|
|
if (type->hasTypeParameter()) {
|
|
auto bindingsBufPtr = IGF.collectParameters().claimNext();
|
|
|
|
bindFromGenericRequirementsBuffer(IGF, requirements,
|
|
Address(bindingsBufPtr, IGM.getPointerAlignment()),
|
|
MetadataState::Complete,
|
|
[&](CanType t) {
|
|
return genericEnv->mapTypeIntoContext(t)->getCanonicalType();
|
|
});
|
|
|
|
type = genericEnv->mapTypeIntoContext(type)->getCanonicalType();
|
|
}
|
|
emit(IGF, type);
|
|
}
|
|
return accessorThunk;
|
|
}
|
|
|
|
static llvm::Function *
|
|
emitMetadataGeneratorForKeyPath(IRGenModule &IGM,
|
|
CanType type,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements) {
|
|
// TODO: Use the standard metadata accessor when there are no arguments
|
|
// and the metadata accessor is defined.
|
|
return emitGeneratorForKeyPath(IGM, "keypath_get_type", type,
|
|
IGM.TypeMetadataPtrTy,
|
|
genericEnv, requirements,
|
|
[&](IRGenFunction &IGF, CanType substType) {
|
|
auto ret = IGF.emitTypeMetadataRef(substType);
|
|
IGF.Builder.CreateRet(ret);
|
|
});
|
|
};
|
|
|
|
static llvm::Function *
|
|
emitWitnessTableGeneratorForKeyPath(IRGenModule &IGM,
|
|
CanType type,
|
|
ProtocolConformanceRef conformance,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements) {
|
|
// TODO: Use the standard conformance accessor when there are no arguments
|
|
// and the conformance accessor is defined.
|
|
return emitGeneratorForKeyPath(IGM, "keypath_get_witness_table", type,
|
|
IGM.WitnessTablePtrTy,
|
|
genericEnv, requirements,
|
|
[&](IRGenFunction &IGF, CanType substType) {
|
|
if (type->hasTypeParameter())
|
|
conformance = conformance.subst(type,
|
|
QueryInterfaceTypeSubstitutions(genericEnv),
|
|
LookUpConformanceInSignature(*genericEnv->getGenericSignature()));
|
|
auto ret = emitWitnessTableRef(IGF, substType, conformance);
|
|
IGF.Builder.CreateRet(ret);
|
|
});
|
|
}
|
|
|
|
|
|
static void
|
|
emitKeyPathComponent(IRGenModule &IGM,
|
|
ConstantStructBuilder &fields,
|
|
const KeyPathPatternComponent &component,
|
|
bool isInstantiableInPlace,
|
|
GenericEnvironment *genericEnv,
|
|
ArrayRef<GenericRequirement> requirements,
|
|
CanType baseTy,
|
|
ArrayRef<KeyPathIndexOperand> operands,
|
|
bool hasSubscriptIndices) {
|
|
assert(fields.getNextOffsetFromGlobal() % IGM.getPointerAlignment() == Size(0)
|
|
&& "must be pointer-aligned here");
|
|
|
|
SILType loweredBaseTy;
|
|
GenericContextScope scope(IGM,
|
|
genericEnv ? genericEnv->getGenericSignature()->getCanonicalSignature()
|
|
: nullptr);
|
|
loweredBaseTy = IGM.getLoweredType(AbstractionPattern::getOpaque(),
|
|
baseTy->getWithoutSpecifierType());
|
|
switch (auto kind = component.getKind()) {
|
|
case KeyPathPatternComponent::Kind::External: {
|
|
fields.addInt32(KeyPathComponentHeader::forExternalComponent().getData());
|
|
// Emit accessors for all of the external declaration's necessary
|
|
// bindings.
|
|
SmallVector<llvm::Constant*, 4> descriptorArgs;
|
|
auto componentSig = component.getExternalDecl()->getInnermostDeclContext()
|
|
->getGenericSignatureOfContext();
|
|
auto subs = component.getExternalSubstitutions();
|
|
enumerateGenericSignatureRequirements(
|
|
componentSig->getCanonicalSignature(),
|
|
[&](GenericRequirement reqt) {
|
|
auto substType = reqt.TypeParameter.subst(subs)
|
|
->getCanonicalType();
|
|
if (!reqt.Protocol) {
|
|
// Type requirement.
|
|
descriptorArgs.push_back(
|
|
emitMetadataGeneratorForKeyPath(IGM, substType,
|
|
genericEnv, requirements));
|
|
} else {
|
|
// Protocol requirement.
|
|
auto conformance = subs.lookupConformance(
|
|
reqt.TypeParameter->getCanonicalType(), reqt.Protocol);
|
|
descriptorArgs.push_back(
|
|
emitWitnessTableGeneratorForKeyPath(IGM, substType,
|
|
*conformance,
|
|
genericEnv, requirements));
|
|
}
|
|
});
|
|
// If instantiable in-place, pad out the argument count here to ensure
|
|
// there's room enough to instantiate a settable computed property
|
|
// with two captured words in-place. The runtime instantiation of the
|
|
// external component will ignore the padding, and this will make in-place
|
|
// instantiation more likely to avoid needing an allocation.
|
|
unsigned argSize = descriptorArgs.size();
|
|
if (isInstantiableInPlace) {
|
|
argSize = std::max(argSize, 3u);
|
|
}
|
|
|
|
fields.addInt32(argSize);
|
|
fields.add(IGM.getAddrOfPropertyDescriptor(component.getExternalDecl()));
|
|
|
|
// Add an initializer function that copies generic arguments out of the
|
|
// pattern argument buffer into the instantiated object, along with the
|
|
// index equality/hash operations we have from our perspective, or null
|
|
// if there are no arguments.
|
|
if (component.getSubscriptIndices().empty()) {
|
|
fields.addInt(IGM.IntPtrTy, 0);
|
|
fields.addInt(IGM.IntPtrTy, 0);
|
|
fields.addInt(IGM.IntPtrTy, 0);
|
|
} else {
|
|
fields.add(getInitializerForComputedComponent(IGM, component,
|
|
operands,
|
|
genericEnv,
|
|
requirements));
|
|
fields.add(IGM.getAddrOfSILFunction(component.getSubscriptIndexEquals(),
|
|
NotForDefinition));
|
|
fields.add(IGM.getAddrOfSILFunction(component.getSubscriptIndexHash(),
|
|
NotForDefinition));
|
|
}
|
|
|
|
// Add the generic arguments for the external context.
|
|
for (auto arg : descriptorArgs)
|
|
fields.add(arg);
|
|
|
|
// Add padding.
|
|
for (unsigned i = descriptorArgs.size(); i < argSize; ++i)
|
|
fields.addInt(IGM.IntPtrTy, 0);
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::StoredProperty: {
|
|
auto property = cast<VarDecl>(component.getStoredPropertyDecl());
|
|
|
|
auto addFixedOffset = [&](bool isStruct, llvm::Constant *offset) {
|
|
if (auto offsetInt = dyn_cast_or_null<llvm::ConstantInt>(offset)) {
|
|
auto offsetValue = offsetInt->getValue().getZExtValue();
|
|
if (KeyPathComponentHeader::offsetCanBeInline(offsetValue)) {
|
|
auto header = isStruct
|
|
? KeyPathComponentHeader
|
|
::forStructComponentWithInlineOffset(offsetValue)
|
|
: KeyPathComponentHeader
|
|
::forClassComponentWithInlineOffset(offsetValue);
|
|
fields.addInt32(header.getData());
|
|
return;
|
|
}
|
|
}
|
|
auto header = isStruct
|
|
? KeyPathComponentHeader::forStructComponentWithOutOfLineOffset()
|
|
: KeyPathComponentHeader::forClassComponentWithOutOfLineOffset();
|
|
fields.addInt32(header.getData());
|
|
fields.add(llvm::ConstantExpr::getTruncOrBitCast(offset, IGM.Int32Ty));
|
|
};
|
|
|
|
// For a struct stored property, we may know the fixed offset of the field,
|
|
// or we may need to fetch it out of the type's metadata at instantiation
|
|
// time.
|
|
if (auto theStruct = loweredBaseTy.getStructOrBoundGenericStruct()) {
|
|
if (auto offset = emitPhysicalStructMemberFixedOffset(IGM,
|
|
loweredBaseTy,
|
|
property)) {
|
|
// We have a known constant fixed offset.
|
|
addFixedOffset(/*struct*/ true, offset);
|
|
break;
|
|
}
|
|
|
|
// If the offset isn't fixed, try instead to get the field offset out
|
|
// of the type metadata at instantiation time.
|
|
auto &metadataLayout = IGM.getMetadataLayout(theStruct);
|
|
auto fieldOffset = metadataLayout.getStaticFieldOffset(property);
|
|
|
|
auto header = KeyPathComponentHeader
|
|
::forStructComponentWithUnresolvedFieldOffset();
|
|
fields.addInt32(header.getData());
|
|
fields.addInt32(fieldOffset.getValue());
|
|
break;
|
|
}
|
|
|
|
// For a class, we may know the fixed offset of a field at compile time,
|
|
// or we may need to fetch it at instantiation time. Depending on the
|
|
// ObjC-ness and resilience of the class hierarchy, there might be a few
|
|
// different ways we need to go about this.
|
|
if (loweredBaseTy.getClassOrBoundGenericClass()) {
|
|
switch (getClassFieldAccess(IGM, loweredBaseTy, property)) {
|
|
case FieldAccess::ConstantDirect: {
|
|
// Known constant fixed offset.
|
|
auto offset = tryEmitConstantClassFragilePhysicalMemberOffset(IGM,
|
|
loweredBaseTy,
|
|
property);
|
|
assert(offset && "no constant offset for ConstantDirect field?!");
|
|
addFixedOffset(/*struct*/ false, offset);
|
|
break;
|
|
}
|
|
case FieldAccess::NonConstantDirect: {
|
|
// A constant offset that's determined at class realization time.
|
|
// We have to load the offset from a global ivar.
|
|
auto header = KeyPathComponentHeader
|
|
::forClassComponentWithUnresolvedIndirectOffset();
|
|
fields.addInt32(header.getData());
|
|
fields.addAlignmentPadding(IGM.getPointerAlignment());
|
|
auto offsetVar = IGM.getAddrOfFieldOffset(property, NotForDefinition);
|
|
fields.add(cast<llvm::Constant>(offsetVar.getAddress()));
|
|
break;
|
|
}
|
|
case FieldAccess::ConstantIndirect: {
|
|
// An offset that depends on the instance's generic parameterization,
|
|
// but whose field offset is at a known vtable offset.
|
|
auto header =
|
|
KeyPathComponentHeader::forClassComponentWithUnresolvedFieldOffset();
|
|
fields.addInt32(header.getData());
|
|
auto fieldOffset =
|
|
getClassFieldOffsetOffset(IGM,
|
|
loweredBaseTy.getClassOrBoundGenericClass(),
|
|
property);
|
|
fields.addInt32(fieldOffset.getValue());
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
llvm_unreachable("not struct or class");
|
|
}
|
|
case KeyPathPatternComponent::Kind::GettableProperty:
|
|
case KeyPathPatternComponent::Kind::SettableProperty: {
|
|
// Encode the settability.
|
|
bool settable = kind == KeyPathPatternComponent::Kind::SettableProperty;
|
|
KeyPathComponentHeader::ComputedPropertyKind componentKind;
|
|
if (settable) {
|
|
componentKind = component.isComputedSettablePropertyMutating()
|
|
? KeyPathComponentHeader::SettableMutating
|
|
: KeyPathComponentHeader::SettableNonmutating;
|
|
} else {
|
|
componentKind = KeyPathComponentHeader::GetOnly;
|
|
}
|
|
|
|
// Lower the id reference.
|
|
auto id = component.getComputedPropertyId();
|
|
KeyPathComponentHeader::ComputedPropertyIDKind idKind;
|
|
llvm::Constant *idValue;
|
|
bool idResolved;
|
|
switch (id.getKind()) {
|
|
case KeyPathPatternComponent::ComputedPropertyId::Function:
|
|
idKind = KeyPathComponentHeader::Pointer;
|
|
idValue = IGM.getAddrOfSILFunction(id.getFunction(), NotForDefinition);
|
|
idResolved = true;
|
|
break;
|
|
case KeyPathPatternComponent::ComputedPropertyId::DeclRef: {
|
|
auto declRef = id.getDeclRef();
|
|
|
|
// Foreign method refs identify using a selector
|
|
// reference, which is doubly-indirected and filled in with a unique
|
|
// pointer by dyld.
|
|
if (declRef.isForeign) {
|
|
assert(IGM.ObjCInterop && "foreign keypath component w/o objc interop?!");
|
|
idKind = KeyPathComponentHeader::Pointer;
|
|
idValue = IGM.getAddrOfObjCSelectorRef(declRef);
|
|
idResolved = false;
|
|
} else {
|
|
idKind = KeyPathComponentHeader::VTableOffset;
|
|
auto dc = declRef.getDecl()->getDeclContext();
|
|
if (isa<ClassDecl>(dc) && !cast<ClassDecl>(dc)->isForeign()) {
|
|
auto overridden = declRef.getOverriddenVTableEntry();
|
|
auto declaringClass =
|
|
cast<ClassDecl>(overridden.getDecl()->getDeclContext());
|
|
auto &metadataLayout = IGM.getClassMetadataLayout(declaringClass);
|
|
// FIXME: Resilience. We don't want vtable layout to be ABI, so this
|
|
// should be encoded as a reference to the method dispatch thunk
|
|
// instead.
|
|
auto offset = metadataLayout.getStaticMethodOffset(overridden);
|
|
idValue = llvm::ConstantInt::get(IGM.SizeTy, offset.getValue());
|
|
idResolved = true;
|
|
} else if (auto methodProto = dyn_cast<ProtocolDecl>(dc)) {
|
|
// FIXME: Resilience. We don't want witness table layout to be ABI,
|
|
// so this should be encoded as a reference to the method dispatch
|
|
// thunk instead.
|
|
auto &protoInfo = IGM.getProtocolInfo(methodProto);
|
|
auto index = protoInfo.getFunctionIndex(
|
|
cast<AbstractFunctionDecl>(declRef.getDecl()));
|
|
idValue = llvm::ConstantInt::get(IGM.SizeTy, -index.getValue());
|
|
idResolved = true;
|
|
} else {
|
|
llvm_unreachable("neither a class nor protocol dynamic method?");
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::ComputedPropertyId::Property:
|
|
// Use the index of the stored property within the aggregate to key
|
|
// the property.
|
|
auto property = id.getProperty();
|
|
idKind = KeyPathComponentHeader::StoredPropertyIndex;
|
|
if (auto struc = baseTy->getStructOrBoundGenericStruct()) {
|
|
// Scan the stored properties of the struct to find the index. We should
|
|
// only ever use a struct field as a uniquing key from inside the
|
|
// struct's own module, so this is OK.
|
|
idResolved = true;
|
|
Optional<unsigned> structIdx;
|
|
unsigned i = 0;
|
|
for (auto storedProp : struc->getStoredProperties()) {
|
|
if (storedProp == property) {
|
|
structIdx = i;
|
|
break;
|
|
}
|
|
++i;
|
|
}
|
|
assert(structIdx && "not a stored property of the struct?!");
|
|
idValue = llvm::ConstantInt::get(IGM.SizeTy, structIdx.getValue());
|
|
} else if (baseTy->getClassOrBoundGenericClass()) {
|
|
// TODO: This field index would require runtime resolution with Swift
|
|
// native class resilience. We never directly access ObjC-imported
|
|
// ivars so we can disregard ObjC ivar resilience for this computation
|
|
// and start counting at the Swift native root.
|
|
switch (getClassFieldAccess(IGM, loweredBaseTy, property)) {
|
|
case FieldAccess::ConstantDirect:
|
|
case FieldAccess::ConstantIndirect:
|
|
case FieldAccess::NonConstantDirect:
|
|
idResolved = true;
|
|
idValue = llvm::ConstantInt::get(IGM.SizeTy,
|
|
getClassFieldIndex(IGM,
|
|
SILType::getPrimitiveAddressType(baseTy), property));
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
llvm_unreachable("neither struct nor class");
|
|
}
|
|
break;
|
|
}
|
|
|
|
auto header = KeyPathComponentHeader::forComputedProperty(componentKind,
|
|
idKind, !isInstantiableInPlace, idResolved);
|
|
|
|
fields.addInt32(header.getData());
|
|
fields.addAlignmentPadding(IGM.getPointerAlignment());
|
|
fields.add(idValue);
|
|
|
|
if (isInstantiableInPlace) {
|
|
// No generic arguments or indexes, so we can invoke the
|
|
// getter/setter as is.
|
|
fields.add(IGM.getAddrOfSILFunction(component.getComputedPropertyGetter(),
|
|
NotForDefinition));
|
|
if (settable)
|
|
fields.add(IGM.getAddrOfSILFunction(component.getComputedPropertySetter(),
|
|
NotForDefinition));
|
|
} else {
|
|
// If there's generic context or subscript indexes, embed as
|
|
// arguments in the component. Thunk the SIL-level accessors to give the
|
|
// runtime implementation a polymorphically-callable interface.
|
|
|
|
// Push the accessors, possibly thunked to marshal generic environment.
|
|
fields.add(getAccessorForComputedComponent(IGM, component, Getter,
|
|
genericEnv, requirements,
|
|
hasSubscriptIndices));
|
|
if (settable)
|
|
fields.add(getAccessorForComputedComponent(IGM, component, Setter,
|
|
genericEnv, requirements,
|
|
hasSubscriptIndices));
|
|
|
|
fields.add(getLayoutFunctionForComputedComponent(IGM, component,
|
|
genericEnv, requirements));
|
|
|
|
// Set up a "witness table" for the component that handles copying,
|
|
// destroying, equating, and hashing the captured contents of the
|
|
// component.
|
|
// If there are only generic parameters, we can use a prefab witness
|
|
// table from the runtime.
|
|
// For subscripts we generate functions that dispatch out to
|
|
// the copy/destroy/equals/hash functionality of the subscript indexes.
|
|
fields.add(getWitnessTableForComputedComponent(IGM, component,
|
|
genericEnv, requirements));
|
|
|
|
// Add an initializer function that copies generic arguments out of the
|
|
// pattern argument buffer into the instantiated object.
|
|
fields.add(getInitializerForComputedComponent(IGM, component, operands,
|
|
genericEnv, requirements));
|
|
}
|
|
break;
|
|
}
|
|
case KeyPathPatternComponent::Kind::OptionalChain:
|
|
fields.addInt32(KeyPathComponentHeader::forOptionalChain().getData());
|
|
break;
|
|
case KeyPathPatternComponent::Kind::OptionalForce:
|
|
fields.addInt32(KeyPathComponentHeader::forOptionalForce().getData());
|
|
break;
|
|
case KeyPathPatternComponent::Kind::OptionalWrap:
|
|
fields.addInt32(KeyPathComponentHeader::forOptionalWrap().getData());
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::Constant *
|
|
IRGenModule::getAddrOfKeyPathPattern(KeyPathPattern *pattern,
|
|
SILLocation diagLoc) {
|
|
// See if we already emitted this.
|
|
auto found = KeyPathPatterns.find(pattern);
|
|
if (found != KeyPathPatterns.end())
|
|
return found->second;
|
|
|
|
// Gather type arguments from the root and leaf types of the key path.
|
|
auto rootTy = pattern->getRootType();
|
|
auto valueTy = pattern->getValueType();
|
|
|
|
// Check for parameterization, whether by subscript indexes or by the generic
|
|
// environment. If there isn't any, we can instantiate the pattern in-place.
|
|
bool isInstantiableInPlace = pattern->getNumOperands() == 0
|
|
&& !pattern->getGenericSignature();
|
|
|
|
// Collect the required parameters for the keypath's generic environment.
|
|
SmallVector<GenericRequirement, 4> requirements;
|
|
|
|
GenericEnvironment *genericEnv = nullptr;
|
|
if (auto sig = pattern->getGenericSignature()) {
|
|
genericEnv = sig->createGenericEnvironment();
|
|
enumerateGenericSignatureRequirements(pattern->getGenericSignature(),
|
|
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
|
|
}
|
|
|
|
// Start building the key path pattern.
|
|
ConstantInitBuilder builder(*this);
|
|
ConstantStructBuilder fields = builder.beginStruct();
|
|
fields.setPacked(true);
|
|
// Add a zero-initialized header we can use for lazy initialization.
|
|
fields.add(llvm::ConstantInt::get(SizeTy, 0));
|
|
|
|
#ifndef NDEBUG
|
|
auto startOfObject = fields.getNextOffsetFromGlobal();
|
|
#endif
|
|
|
|
// Store references to metadata generator functions to generate the metadata
|
|
// for the root and leaf. These sit in the "isa" and object header parts of
|
|
// the final object.
|
|
fields.add(emitMetadataGeneratorForKeyPath(*this, rootTy,
|
|
genericEnv, requirements));
|
|
fields.add(emitMetadataGeneratorForKeyPath(*this, valueTy,
|
|
genericEnv, requirements));
|
|
|
|
#ifndef NDEBUG
|
|
auto endOfObjectHeader = fields.getNextOffsetFromGlobal();
|
|
unsigned expectedObjectHeaderSize;
|
|
if (SizeTy == Int64Ty)
|
|
expectedObjectHeaderSize = SWIFT_ABI_HEAP_OBJECT_HEADER_SIZE_64;
|
|
else if (SizeTy == Int32Ty)
|
|
expectedObjectHeaderSize = SWIFT_ABI_HEAP_OBJECT_HEADER_SIZE_32;
|
|
else
|
|
llvm_unreachable("unexpected pointer size");
|
|
assert((endOfObjectHeader - startOfObject).getValue()
|
|
== expectedObjectHeaderSize
|
|
&& "key path pattern header size doesn't match heap object header size");
|
|
#endif
|
|
|
|
// Add a pointer to the ObjC KVC compatibility string, if there is one, or
|
|
// null otherwise.
|
|
llvm::Constant *objcString;
|
|
if (!pattern->getObjCString().empty()) {
|
|
objcString = getAddrOfGlobalString(pattern->getObjCString());
|
|
} else {
|
|
objcString = llvm::ConstantPointerNull::get(Int8PtrTy);
|
|
}
|
|
fields.add(objcString);
|
|
|
|
// Leave a placeholder for the buffer header, since we need to know the full
|
|
// buffer size to fill it in.
|
|
auto headerPlaceholder = fields.addPlaceholderWithSize(Int32Ty);
|
|
fields.addAlignmentPadding(getPointerAlignment());
|
|
|
|
auto startOfKeyPathBuffer = fields.getNextOffsetFromGlobal();
|
|
|
|
// Build out the components.
|
|
auto baseTy = rootTy;
|
|
|
|
// Collect the order and types of any captured index operands, which will
|
|
// determine the layout of the buffer that gets passed to the initializer
|
|
// for each component.
|
|
SmallVector<KeyPathIndexOperand, 4> operands;
|
|
operands.resize(pattern->getNumOperands());
|
|
for (auto &component : pattern->getComponents()) {
|
|
switch (component.getKind()) {
|
|
case KeyPathPatternComponent::Kind::GettableProperty:
|
|
case KeyPathPatternComponent::Kind::SettableProperty:
|
|
case KeyPathPatternComponent::Kind::External:
|
|
for (auto &index : component.getSubscriptIndices()) {
|
|
operands[index.Operand].LoweredType = index.LoweredType;
|
|
operands[index.Operand].LastUser = &component;
|
|
}
|
|
break;
|
|
case KeyPathPatternComponent::Kind::StoredProperty:
|
|
case KeyPathPatternComponent::Kind::OptionalChain:
|
|
case KeyPathPatternComponent::Kind::OptionalForce:
|
|
case KeyPathPatternComponent::Kind::OptionalWrap:
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (unsigned i : indices(pattern->getComponents())) {
|
|
auto &component = pattern->getComponents()[i];
|
|
|
|
emitKeyPathComponent(*this, fields, component, isInstantiableInPlace,
|
|
genericEnv, requirements,
|
|
baseTy, operands,
|
|
!component.getSubscriptIndices().empty());
|
|
|
|
// For all but the last component, we pack in the type of the component.
|
|
if (i + 1 != pattern->getComponents().size()) {
|
|
fields.addAlignmentPadding(getPointerAlignment());
|
|
fields.add(
|
|
emitMetadataGeneratorForKeyPath(*this, component.getComponentType(),
|
|
genericEnv, requirements));
|
|
}
|
|
baseTy = component.getComponentType();
|
|
}
|
|
|
|
// Save the total size of the buffer.
|
|
Size componentSize = fields.getNextOffsetFromGlobal()
|
|
- startOfKeyPathBuffer;
|
|
|
|
// We now have enough info to build the header.
|
|
KeyPathBufferHeader header(componentSize.getValue(), isInstantiableInPlace,
|
|
/*reference prefix*/ false);
|
|
// Add the header, followed by the components.
|
|
fields.fillPlaceholder(headerPlaceholder,
|
|
llvm::ConstantInt::get(Int32Ty, header.getData()));
|
|
|
|
// Create the global variable.
|
|
// TODO: The pattern could be immutable if
|
|
// it isn't instantiable in place, and if we made the type metadata accessor
|
|
// references private, it could go in true-const memory.
|
|
auto patternVar = fields.finishAndCreateGlobal("keypath",
|
|
getPointerAlignment(),
|
|
/*constant*/ false,
|
|
llvm::GlobalVariable::PrivateLinkage);
|
|
KeyPathPatterns.insert({pattern, patternVar});
|
|
return patternVar;
|
|
}
|
|
|
|
void IRGenModule::emitSILProperty(SILProperty *prop) {
|
|
ConstantInitBuilder builder(*this);
|
|
ConstantStructBuilder fields = builder.beginStruct();
|
|
fields.setPacked(true);
|
|
|
|
bool hasSubscriptIndices = false;
|
|
bool isInstantiableInPlace = true;
|
|
if (prop->getDecl()->getInnermostDeclContext()->isGenericContext()) {
|
|
isInstantiableInPlace = false;
|
|
}
|
|
|
|
if (auto subscript = dyn_cast<SubscriptDecl>(prop->getDecl())) {
|
|
hasSubscriptIndices = subscript->getIndices()->size() != 0;
|
|
isInstantiableInPlace &= !hasSubscriptIndices;
|
|
}
|
|
|
|
auto genericEnv = prop->getDecl()->getInnermostDeclContext()
|
|
->getGenericEnvironmentOfContext();
|
|
SmallVector<GenericRequirement, 4> requirements;
|
|
CanGenericSignature genericSig;
|
|
if (genericEnv) {
|
|
genericSig = prop->getDecl()->getInnermostDeclContext()
|
|
->getGenericSignatureOfContext()
|
|
->getCanonicalSignature();
|
|
enumerateGenericSignatureRequirements(genericSig,
|
|
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
|
|
}
|
|
|
|
emitKeyPathComponent(*this, fields, prop->getComponent(),
|
|
isInstantiableInPlace, genericEnv, requirements,
|
|
prop->getDecl()->getInnermostDeclContext()
|
|
->getInnermostTypeContext()
|
|
->getSelfInterfaceType()
|
|
->getCanonicalType(genericSig),
|
|
{},
|
|
hasSubscriptIndices);
|
|
|
|
auto size = fields.getNextOffsetFromGlobal();
|
|
|
|
auto var = cast<llvm::GlobalVariable>(
|
|
getAddrOfPropertyDescriptor(prop->getDecl(),
|
|
fields.finishAndCreateFuture()));
|
|
var->setConstant(true);
|
|
// A simple stored component descriptor can fit in four bytes. Anything else
|
|
// needs pointer alignment.
|
|
if (size <= Size(4))
|
|
var->setAlignment(4);
|
|
else
|
|
var->setAlignment(getPointerAlignment().getValue());
|
|
}
|