Files
swift-mirror/lib/AST/NameLookup.cpp
Eli Friedman 26159b59ee First draft of some code to make the general unqualified lookup able to perform lookup into local scopes. Normally, name-binding doesn't need this because the parser can resolve references to locals, but we need this sort of lookup to handle cases involving local types. It's also likely this will be generally useful for tools consuming the AST, typo-correction, etc.
We probably need to add some sort of data structure to represent this information, but as a proof of concept the current code appears to work.  I'm still working out how to make sure the parser doesn't prematurely bind names and how to make name-binding use it where appropriate (and avoid it when we don't need it, because no matter how efficient we make it, it will still be relatively expensive).



Swift SVN r2112
2012-06-02 01:26:58 +00:00

475 lines
16 KiB
C++

//===--- NameLookup.cpp - Swift Name Lookup Routines ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements interfaces for performing name lookup.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTVisitor.h"
using namespace swift;
MemberLookup::MemberLookup(Type BaseTy, Identifier Name, Module &M) {
MemberName = Name;
VisitedSet Visited;
doIt(BaseTy, M, Visited);
}
/// doIt - Lookup a member 'Name' in 'BaseTy' within the context
/// of a given module 'M'. This operation corresponds to a standard "dot"
/// lookup operation like "a.b" where 'this' is the type of 'a'. This
/// operation is only valid after name binding.
void MemberLookup::doIt(Type BaseTy, Module &M, VisitedSet &Visited) {
typedef MemberLookupResult Result;
// Just look through l-valueness. It doesn't affect name lookup.
if (LValueType *LV = BaseTy->getAs<LValueType>())
BaseTy = LV->getObjectType();
// Type check metatype references, as in "some_type.some_member". These are
// special and can't have extensions.
if (MetaTypeType *MTT = BaseTy->getAs<MetaTypeType>()) {
// The metatype represents an arbitrary named type: dig through to the
// declared type to see what we're dealing with.
Type Ty = MTT->getTypeDecl()->getDeclaredType();
// Just perform normal dot lookup on the type with the specified
// member name to see if we find extensions or anything else. For example,
// type SomeTy.SomeMember can look up static functions, and can even look
// up non-static functions as well (thus getting the address of the member).
doIt(Ty, M, Visited);
return;
}
// Lookup module references, as on some_module.some_member. These are
// special and can't have extensions.
if (ModuleType *MT = BaseTy->getAs<ModuleType>()) {
SmallVector<ValueDecl*, 8> Decls;
MT->getModule()->lookupValue(Module::AccessPathTy(), MemberName,
NLKind::QualifiedLookup, Decls);
for (ValueDecl *VD : Decls)
Results.push_back(Result::getMetatypeMember(VD));
return;
}
// If the base is a protocol, see if this is a reference to a declared
// protocol member.
if (ProtocolType *PT = BaseTy->getAs<ProtocolType>()) {
if (!Visited.insert(PT->getDecl()))
return;
for (auto Inherited : PT->getDecl()->getInherited())
doIt(Inherited, M, Visited);
for (auto Member : PT->getDecl()->getMembers()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(Member)) {
if (VD->getName() != MemberName) continue;
if (isa<VarDecl>(VD) || isa<SubscriptDecl>(VD) || isa<FuncDecl>(VD)) {
Results.push_back(Result::getExistentialMember(VD));
} else {
assert(isa<TypeDecl>(VD) && "Unhandled protocol member");
Results.push_back(Result::getMetatypeMember(VD));
}
}
}
return;
}
// If the base is a protocol composition, see if this is a reference to a
// declared protocol member in any of the protocols.
if (auto PC = BaseTy->getAs<ProtocolCompositionType>()) {
for (auto Proto : PC->getProtocols())
doIt(Proto, M, Visited);
return;
}
// Check to see if this is a reference to a tuple field.
if (TupleType *TT = BaseTy->getAs<TupleType>()) {
// If the field name exists, we win. Otherwise, if the field name is a
// dollarident like $4, process it as a field index.
int FieldNo = TT->getNamedElementId(MemberName);
if (FieldNo != -1) {
Results.push_back(MemberLookupResult::getTupleElement(FieldNo));
} else {
StringRef NameStr = MemberName.str();
if (NameStr.startswith("$")) {
unsigned Value = 0;
if (!NameStr.substr(1).getAsInteger(10, Value) &&
Value < TT->getFields().size())
Results.push_back(MemberLookupResult::getTupleElement(Value));
}
}
}
// Look in any extensions that add methods to the base type.
SmallVector<ValueDecl*, 8> ExtensionMethods;
M.lookupMembers(BaseTy, MemberName, ExtensionMethods);
for (ValueDecl *VD : ExtensionMethods) {
if (TypeDecl *TAD = dyn_cast<TypeDecl>(VD)) {
Results.push_back(Result::getMetatypeMember(TAD));
continue;
}
if (FuncDecl *FD = dyn_cast<FuncDecl>(VD)) {
if (FD->isStatic())
Results.push_back(Result::getMetatypeMember(FD));
else
Results.push_back(Result::getMemberFunction(FD));
continue;
}
if (OneOfElementDecl *OOED = dyn_cast<OneOfElementDecl>(VD)) {
Results.push_back(Result::getMetatypeMember(OOED));
continue;
}
assert((isa<VarDecl>(VD) || isa<SubscriptDecl>(VD)) &&
"Unexpected extension member");
Results.push_back(Result::getMemberProperty(VD));
}
}
static Type makeSimilarLValue(Type objectType, Type lvalueType,
ASTContext &Context) {
LValueType::Qual qs = cast<LValueType>(lvalueType)->getQualifiers();
return LValueType::get(objectType, qs, Context);
}
static Expr *buildTupleElementExpr(Expr *Base, SourceLoc DotLoc,
SourceLoc NameLoc, unsigned FieldIndex,
ASTContext &Context) {
Type BaseTy = Base->getType();
bool IsLValue = false;
if (LValueType *LV = BaseTy->getAs<LValueType>()) {
IsLValue = true;
BaseTy = LV->getObjectType();
}
Type FieldType = BaseTy->castTo<TupleType>()->getElementType(FieldIndex);
if (IsLValue)
FieldType = makeSimilarLValue(FieldType, Base->getType(), Context);
if (DotLoc.isValid())
return new (Context) SyntacticTupleElementExpr(Base, DotLoc, FieldIndex,
NameLoc, FieldType);
return new (Context) ImplicitThisTupleElementExpr(Base, FieldIndex, NameLoc,
FieldType);
}
/// createResultAST - Build an AST to represent this lookup, with the
/// specified base expression.
Expr *MemberLookup::createResultAST(Expr *Base, SourceLoc DotLoc,
SourceLoc NameLoc, ASTContext &Context) {
assert(isSuccess() && "Can't create a result if we didn't find anything");
// Handle the case when we found exactly one result.
if (Results.size() == 1) {
MemberLookupResult R = Results[0];
bool IsMetatypeBase = Base->getType()->is<MetaTypeType>();
switch (R.Kind) {
case MemberLookupResult::TupleElement:
if (IsMetatypeBase)
break;
return buildTupleElementExpr(Base, DotLoc, NameLoc, R.TupleFieldNo,
Context);
case MemberLookupResult::MemberFunction: {
if (IsMetatypeBase) {
Expr *RHS = new (Context) DeclRefExpr(R.D, NameLoc,
R.D->getTypeOfReference());
return new (Context) DotSyntaxBaseIgnoredExpr(Base, DotLoc, RHS);
}
Expr *Fn = new (Context) DeclRefExpr(R.D, NameLoc,
R.D->getTypeOfReference());
return new (Context) DotSyntaxCallExpr(Fn, DotLoc, Base);
}
case MemberLookupResult::MemberProperty: {
if (IsMetatypeBase)
break;
VarDecl *Var = cast<VarDecl>(R.D);
return new (Context) MemberRefExpr(Base, DotLoc, Var, NameLoc);
}
case MemberLookupResult::MetatypeMember: {
Expr *RHS = new (Context) DeclRefExpr(R.D, NameLoc,
R.D->getTypeOfReference());
return new (Context) DotSyntaxBaseIgnoredExpr(Base, DotLoc, RHS);
}
case MemberLookupResult::ExistentialMember:
return new (Context) ExistentialMemberRefExpr(Base, DotLoc, R.D, NameLoc);
}
Expr *BadExpr = new (Context) UnresolvedDotExpr(Base, DotLoc,
MemberName, NameLoc);
return BadExpr;
}
// If we have an ambiguous result, build an overload set.
SmallVector<ValueDecl*, 8> ResultSet;
// This is collecting a mix of static and normal functions. We won't know
// until after overload resolution whether we actually need 'this'.
for (MemberLookupResult X : Results) {
assert(X.Kind != MemberLookupResult::TupleElement);
ResultSet.push_back(X.D);
}
return OverloadedMemberRefExpr::createWithCopy(Base, DotLoc, ResultSet,
NameLoc);
}
struct FindLocalVal : public StmtVisitor<FindLocalVal> {
SourceLoc Loc;
Identifier Name;
ValueDecl *MatchingValue;
FindLocalVal(SourceLoc Loc, Identifier Name)
: Loc(Loc), Name(Name), MatchingValue(nullptr) {}
bool IntersectsRange(SourceRange R) {
return R.Start.Value.getPointer() <= Loc.Value.getPointer() &&
R.End.Value.getPointer() >= Loc.Value.getPointer();
}
void checkValueDecl(ValueDecl *D) {
if (D->getName() == Name) {
assert(!MatchingValue);
MatchingValue = D;
}
}
void checkPattern(Pattern *Pat) {
switch (Pat->getKind()) {
case PatternKind::Tuple:
for (auto &field : cast<TuplePattern>(Pat)->getFields())
checkPattern(field.getPattern());
return;
case PatternKind::Paren:
return checkPattern(cast<ParenPattern>(Pat)->getSubPattern());
case PatternKind::Typed:
return checkPattern(cast<TypedPattern>(Pat)->getSubPattern());
case PatternKind::Named:
return checkValueDecl(cast<NamedPattern>(Pat)->getDecl());
// Handle non-vars.
case PatternKind::Any:
return;
}
}
void checkTranslationUnit(TranslationUnit *TU) {
for (Decl *D : TU->Decls) {
if (TopLevelCodeDecl *TLCD = dyn_cast<TopLevelCodeDecl>(D)) {
if (Stmt *S = TLCD->getBody().dyn_cast<Stmt*>())
visit(S);
}
}
}
void visitBreakStmt(BreakStmt *) {}
void visitContinueStmt(ContinueStmt *) {}
void visitSemiStmt(SemiStmt *) {}
void visitErrorStmt(ErrorStmt *) {}
void visitAssignStmt(AssignStmt *) {}
void visitReturnStmt(ReturnStmt *) {}
void visitIfStmt(IfStmt * S) {
visit(S->getThenStmt());
if (S->getElseStmt())
visit(S->getElseStmt());
}
void visitWhileStmt (WhileStmt *S) {
visit(S->getBody());
}
void visitForStmt (ForStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
visit(S->getBody());
if (MatchingValue)
return;
for (Decl *D : S->getInitializerVarDecls()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD);
}
}
void visitForEachStmt (ForEachStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
visit(S->getBody());
if (MatchingValue)
return;
checkPattern(S->getPattern());
}
void visitBraceStmt(BraceStmt *S) {
if (!IntersectsRange(S->getSourceRange()))
return;
for (auto elem : S->getElements()) {
if (Stmt *S = elem.dyn_cast<Stmt*>())
visit(S);
}
if (MatchingValue)
return;
for (auto elem : S->getElements()) {
if (Decl *D = elem.dyn_cast<Decl*>()) {
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
checkValueDecl(VD);
}
}
}
};
UnqualifiedLookup::UnqualifiedLookup(Identifier Name, DeclContext *DC,
SourceLoc Loc) {
typedef UnqualifiedLookupResult Result;
DeclContext *ModuleDC = DC;
while (!ModuleDC->isModuleContext())
ModuleDC = ModuleDC->getParent();
Module &M = *cast<Module>(ModuleDC);
// If we are inside of a method, check to see if there are any ivars in scope,
// and if so, whether this is a reference to one of them.
while (!DC->isModuleContext()) {
ValueDecl *BaseDecl = 0;
Type ExtendedType;
if (FuncExpr *FE = dyn_cast<FuncExpr>(DC)) {
// Look for local variables; normally, the parser resolves these
// for us, but it can't do the right thing inside local types.
if (Loc.isValid()) {
FindLocalVal localVal(Loc, Name);
localVal.visit(FE->getBody());
if (!localVal.MatchingValue) {
for (Pattern *P : FE->getParamPatterns())
localVal.checkPattern(P);
}
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
FuncDecl *FD = FE->getDecl();
if (FD && FD->getExtensionType() && !FD->isStatic()) {
ExtendedType = FD->getExtensionType();
BaseDecl = FD->getImplicitThisDecl();
DC = DC->getParent();
}
} else if (ExtensionDecl *ED = dyn_cast<ExtensionDecl>(DC)) {
ExtendedType = ED->getExtendedType();
BaseDecl = ExtendedType->castTo<NominalType>()->getDecl();
} else if (NominalTypeDecl *ND = dyn_cast<NominalTypeDecl>(DC)) {
ExtendedType = ND->getDeclaredType();
BaseDecl = ND;
}
if (BaseDecl) {
MemberLookup Lookup(ExtendedType, Name, M);
for (auto Result : Lookup.Results) {
switch (Result.Kind) {
case MemberLookupResult::MemberProperty:
Results.push_back(Result::getMemberProperty(BaseDecl, Result.D));
break;
case MemberLookupResult::MemberFunction:
Results.push_back(Result::getMemberFunction(BaseDecl, Result.D));
break;
case MemberLookupResult::MetatypeMember:
Results.push_back(Result::getMetatypeMember(BaseDecl, Result.D));
break;
case MemberLookupResult::ExistentialMember:
Results.push_back(Result::getExistentialMember(BaseDecl, Result.D));
break;
case MemberLookupResult::TupleElement:
llvm_unreachable("Can't have context with tuple type");
}
}
if (Lookup.isSuccess())
return;
}
DC = DC->getParent();
}
if (Loc.isValid()) {
if (TranslationUnit *TU = dyn_cast<TranslationUnit>(&M)) {
// Look for local variables in top-level code; normally, the parser
// resolves these for us, but it can't do the right thing for
// local types.
// FIXME: Need to suppress this for cases in name binding where we know
// it's a waste of time.
FindLocalVal localVal(Loc, Name);
localVal.checkTranslationUnit(TU);
if (localVal.MatchingValue) {
Results.push_back(Result::getLocalDecl(localVal.MatchingValue));
return;
}
}
}
// Do a local lookup within the current module.
llvm::SmallVector<ValueDecl*, 4> CurModuleResults;
M.lookupValue(Module::AccessPathTy(), Name, NLKind::UnqualifiedLookup,
CurModuleResults);
for (ValueDecl *VD : CurModuleResults)
Results.push_back(Result::getModuleMember(VD));
// The builtin module has no imports.
if (isa<BuiltinModule>(M)) return;
TranslationUnit &TU = cast<TranslationUnit>(M);
bool NameBindingLookup = TU.ASTStage == Module::Parsed;
llvm::SmallPtrSet<CanType, 8> CurModuleTypes;
for (ValueDecl *VD : CurModuleResults) {
// If we find a type in the current module, don't look into any
// imported modules.
if (isa<TypeDecl>(VD))
return;
if (!NameBindingLookup)
CurModuleTypes.insert(VD->getType()->getCanonicalType());
}
// Scrape through all of the imports looking for additional results.
// FIXME: Implement DAG-based shadowing rules.
llvm::SmallPtrSet<Module *, 16> Visited;
for (auto &ImpEntry : TU.getImportedModules()) {
if (!Visited.insert(ImpEntry.second))
continue;
SmallVector<ValueDecl*, 8> ImportedModuleResults;
ImpEntry.second->lookupValue(ImpEntry.first, Name, NLKind::UnqualifiedLookup,
ImportedModuleResults);
for (ValueDecl *VD : ImportedModuleResults) {
if (NameBindingLookup || isa<TypeDecl>(VD) ||
!CurModuleTypes.count(VD->getType()->getCanonicalType())) {
Results.push_back(Result::getModuleMember(VD));
}
}
}
for (const auto &ImpEntry : TU.getImportedModules())
if (ImpEntry.second->Name == Name) {
Results.push_back(Result::getModuleName(ImpEntry.second));
break;
}
}
TypeDecl* UnqualifiedLookup::getSingleTypeResult() {
if (Results.size() != 1 || !Results.back().hasValueDecl() ||
!isa<TypeDecl>(Results.back().getValueDecl()))
return nullptr;
return cast<TypeDecl>(Results.back().getValueDecl());
}