mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
To compute the expected type of a call pattern (which is the return type of the function if that call pattern is being used), we called `getTypeForCompletion` for the entire call, in the same way that we do for the code completion token. However, this pattern does not generally work. For the code completion token it worked because the code completion expression doesn’t have an inherent type and it inherits the type solely from its context. Calls, however, have an inherent return type and that type gets assigned as the `typeForCompletion`. Implement targeted checks for the two most common cases where an expected type exists: If the call that we suggest call patterns for is itself an argument to another function or if it is used in a place that has a contextual type in the constraint system (eg. a variable binding or a `return` statement). This means that we no longer return `Convertible` for call patterns in some more complex scenarios. But given that this information was computed based on incorrect results and that in those cases all call patterns had a `Convertible` type relation, I think that’s acceptable. Fixing this would require recording more information in the constraints system, which is out-of-scope for now.
428 lines
16 KiB
C++
428 lines
16 KiB
C++
//===--- ArgumentCompletion.cpp ---------------------------------------===//
|
||
//
|
||
// This source file is part of the Swift.org open source project
|
||
//
|
||
// Copyright (c) 2022 Apple Inc. and the Swift project authors
|
||
// Licensed under Apache License v2.0 with Runtime Library Exception
|
||
//
|
||
// See https://swift.org/LICENSE.txt for license information
|
||
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "swift/IDE/ArgumentCompletion.h"
|
||
#include "swift/IDE/CodeCompletion.h"
|
||
#include "swift/IDE/CompletionLookup.h"
|
||
#include "swift/IDE/SelectedOverloadInfo.h"
|
||
#include "swift/Sema/ConstraintSystem.h"
|
||
#include "swift/Sema/IDETypeChecking.h"
|
||
|
||
using namespace swift;
|
||
using namespace swift::ide;
|
||
using namespace swift::constraints;
|
||
|
||
bool ArgumentTypeCheckCompletionCallback::addPossibleParams(
|
||
const ArgumentTypeCheckCompletionCallback::Result &Res,
|
||
SmallVectorImpl<PossibleParamInfo> &Params, SmallVectorImpl<Type> &Types) {
|
||
if (!Res.ParamIdx || !Res.FuncTy) {
|
||
// We don't really know much here. Suggest global results without a specific
|
||
// expected type.
|
||
return true;
|
||
}
|
||
|
||
if (Res.HasLabel) {
|
||
// We already have a parameter label, suggest types
|
||
Types.push_back(Res.ExpectedType);
|
||
return true;
|
||
}
|
||
|
||
ArrayRef<AnyFunctionType::Param> ParamsToPass = Res.FuncTy->getParams();
|
||
|
||
bool ShowGlobalCompletions = false;
|
||
for (auto Idx : range(*Res.ParamIdx, ParamsToPass.size())) {
|
||
bool IsCompletion = (Idx == Res.ParamIdx);
|
||
|
||
// Stop at the first param claimed by other arguments.
|
||
if (!IsCompletion && Res.ClaimedParamIndices.count(Idx) > 0) {
|
||
break;
|
||
}
|
||
|
||
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
|
||
bool Required = !Res.DeclParamIsOptional[Idx];
|
||
|
||
if (Res.FirstTrailingClosureIndex && Idx > *Res.FirstTrailingClosureIndex &&
|
||
!TypeParam->getPlainType()
|
||
->lookThroughAllOptionalTypes()
|
||
->is<AnyFunctionType>()) {
|
||
// We are completing an argument after the first trailing closure, i.e.
|
||
// a multitple trailing closure label but the parameter is not a function
|
||
// type. Since we only allow labeled trailing closures after the first
|
||
// trailing closure, we cannot pass an argument for this parameter.
|
||
// If the parameter is required, stop here since we cannot pass an argument
|
||
// for the parameter. If it's optional, keep looking for more trailing
|
||
// closures that can be passed.
|
||
if (Required) {
|
||
break;
|
||
} else {
|
||
continue;
|
||
}
|
||
}
|
||
|
||
if (TypeParam->hasLabel() && !(IsCompletion && Res.IsNoninitialVariadic)) {
|
||
// Suggest parameter label if parameter has label, we are completing in it
|
||
// and it is not a variadic parameter that already has arguments
|
||
PossibleParamInfo PP(TypeParam, Required);
|
||
if (!llvm::is_contained(Params, PP)) {
|
||
Params.push_back(std::move(PP));
|
||
}
|
||
} else {
|
||
// We have a parameter that doesn't require a label. Suggest global
|
||
// results for that type.
|
||
ShowGlobalCompletions = true;
|
||
Types.push_back(TypeParam->getPlainType());
|
||
}
|
||
if (Required) {
|
||
// The user should only be suggested the first required param. Stop.
|
||
break;
|
||
}
|
||
}
|
||
return ShowGlobalCompletions;
|
||
}
|
||
|
||
/// Returns whether `E` has a parent expression with arguments.
|
||
static bool hasParentCallLikeExpr(Expr *E, ConstraintSystem &CS) {
|
||
E = CS.getParentExpr(E);
|
||
while (E) {
|
||
if (E->getArgs() || isa<ParenExpr>(E) || isa<TupleExpr>(E) || isa<CollectionExpr>(E)) {
|
||
return true;
|
||
}
|
||
E = CS.getParentExpr(E);
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void ArgumentTypeCheckCompletionCallback::sawSolutionImpl(const Solution &S) {
|
||
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
|
||
|
||
auto &CS = S.getConstraintSystem();
|
||
|
||
Expr *ParentCall = CompletionExpr;
|
||
while (ParentCall && ParentCall->getArgs() == nullptr) {
|
||
ParentCall = CS.getParentExpr(ParentCall);
|
||
}
|
||
if (auto TV = S.getType(CompletionExpr)->getAs<TypeVariableType>()) {
|
||
auto Locator = TV->getImpl().getLocator();
|
||
if (Locator->isLastElement<LocatorPathElt::PatternMatch>()) {
|
||
// The code completion token is inside a pattern, which got rewritten from
|
||
// a call by ResolvePattern. Thus, we aren't actually inside a call.
|
||
// Rest 'ParentCall' to nullptr to reflect that.
|
||
ParentCall = nullptr;
|
||
}
|
||
}
|
||
|
||
if (!ParentCall || ParentCall == CompletionExpr) {
|
||
// We might not have a call that contains the code completion expression if
|
||
// we type-checked the fallback code completion expression that only
|
||
// contains the code completion token, but not the surrounding call.
|
||
return;
|
||
}
|
||
|
||
auto ArgInfo = getCompletionArgInfo(ParentCall, CS);
|
||
if (!ArgInfo) {
|
||
assert(false && "bad parent call match?");
|
||
return;
|
||
}
|
||
auto ArgIdx = ArgInfo->completionIdx;
|
||
|
||
Type ExpectedCallType;
|
||
if (auto ArgLoc = S.getConstraintSystem().getArgumentLocator(ParentCall)) {
|
||
if (auto FuncArgApplyInfo = S.getFunctionArgApplyInfo(ArgLoc)) {
|
||
Type ParamType = FuncArgApplyInfo->getParamInterfaceType();
|
||
ExpectedCallType = S.simplifyTypeForCodeCompletion(ParamType);
|
||
}
|
||
}
|
||
if (!ExpectedCallType) {
|
||
if (auto ContextualType = S.getContextualType(ParentCall)) {
|
||
ExpectedCallType = ContextualType;
|
||
}
|
||
}
|
||
if (ExpectedCallType && ExpectedCallType->hasUnresolvedType()) {
|
||
ExpectedCallType = Type();
|
||
}
|
||
|
||
auto *CallLocator = CS.getConstraintLocator(ParentCall);
|
||
auto *CalleeLocator = S.getCalleeLocator(CallLocator);
|
||
|
||
auto Info = getSelectedOverloadInfo(S, CalleeLocator);
|
||
if (Info.getValue() && Info.getValue()->shouldHideFromEditor()) {
|
||
return;
|
||
}
|
||
// Disallow invalid initializer references
|
||
for (auto Fix : S.Fixes) {
|
||
if (Fix->getLocator() == CalleeLocator &&
|
||
Fix->getKind() == FixKind::AllowInvalidInitRef) {
|
||
return;
|
||
}
|
||
}
|
||
|
||
// Find the parameter the completion was bound to (if any), as well as which
|
||
// parameters are already bound (so we don't suggest them even when the args
|
||
// are out of order).
|
||
std::optional<unsigned> ParamIdx;
|
||
std::set<unsigned> ClaimedParams;
|
||
bool IsNoninitialVariadic = false;
|
||
|
||
ConstraintLocator *ArgumentLocator;
|
||
ArgumentLocator =
|
||
CS.getConstraintLocator(CallLocator, ConstraintLocator::ApplyArgument);
|
||
auto ArgMatchChoices = S.argumentMatchingChoices.find(ArgumentLocator);
|
||
if (ArgMatchChoices != S.argumentMatchingChoices.end()) {
|
||
// We might not have argument matching choices when applying a subscript
|
||
// found via @dynamicMemberLookup.
|
||
auto Bindings = ArgMatchChoices->second.parameterBindings;
|
||
|
||
for (auto i : indices(Bindings)) {
|
||
bool Claimed = false;
|
||
for (auto j : Bindings[i]) {
|
||
if (j == ArgIdx) {
|
||
assert(!ParamIdx);
|
||
ParamIdx = i;
|
||
IsNoninitialVariadic = llvm::any_of(
|
||
Bindings[i], [j](unsigned other) { return other < j; });
|
||
}
|
||
// Synthesized args don't count.
|
||
if (j < ArgInfo->argCount) {
|
||
Claimed = true;
|
||
}
|
||
}
|
||
if (Claimed) {
|
||
ClaimedParams.insert(i);
|
||
}
|
||
}
|
||
}
|
||
|
||
bool HasLabel = false;
|
||
std::optional<unsigned> FirstTrailingClosureIndex = std::nullopt;
|
||
if (auto PE = CS.getParentExpr(CompletionExpr)) {
|
||
if (auto Args = PE->getArgs()) {
|
||
HasLabel = !Args->getLabel(ArgIdx).empty();
|
||
FirstTrailingClosureIndex = Args->getFirstTrailingClosureIndex();
|
||
}
|
||
}
|
||
|
||
bool IsAsync = isContextAsync(S, DC);
|
||
|
||
// If this is a duplicate of any other result, ignore this solution.
|
||
if (llvm::any_of(Results, [&](const Result &R) {
|
||
return R.FuncD == Info.getValue() &&
|
||
nullableTypesEqual(R.FuncTy, Info.ValueTy) &&
|
||
nullableTypesEqual(R.BaseType, Info.BaseTy) &&
|
||
R.ParamIdx == ParamIdx &&
|
||
R.IsNoninitialVariadic == IsNoninitialVariadic;
|
||
})) {
|
||
return;
|
||
}
|
||
|
||
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
|
||
getSolutionSpecificVarTypes(S, SolutionSpecificVarTypes);
|
||
|
||
AnyFunctionType *FuncTy = nullptr;
|
||
if (Info.ValueTy) {
|
||
FuncTy = Info.ValueTy->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
|
||
}
|
||
|
||
// Determine which parameters are optional. We need to do this in
|
||
// `sawSolutionImpl` because it accesses the substitution map in
|
||
// `Info.ValueRef`. This substitution map might contain type variables that
|
||
// are allocated in the constraint system's arena and are freed once we reach
|
||
// `deliverResults`.
|
||
llvm::BitVector DeclParamIsOptional;
|
||
if (FuncTy) {
|
||
ArrayRef<AnyFunctionType::Param> ParamsToPass = FuncTy->getParams();
|
||
for (auto Idx : range(0, ParamsToPass.size())) {
|
||
bool Optional = false;
|
||
if (Info.ValueRef) {
|
||
if (Info.ValueRef.getDecl()->isInstanceMember() &&
|
||
!doesMemberRefApplyCurriedSelf(Info.BaseTy,
|
||
Info.ValueRef.getDecl())) {
|
||
// We are completing in an unapplied instance function, eg.
|
||
// struct TestStatic {
|
||
// func method() -> Void {}
|
||
// }
|
||
// TestStatic.method(#^STATIC^#)
|
||
// The 'self' parameter is never optional, so don't enter the check
|
||
// below (which always assumes that self has been applied).
|
||
} else if (const ParamDecl *DeclParam =
|
||
getParameterAt(Info.ValueRef, Idx)) {
|
||
Optional |= DeclParam->isDefaultArgument();
|
||
Optional |= DeclParam->getInterfaceType()->is<PackExpansionType>();
|
||
}
|
||
}
|
||
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
|
||
Optional |= TypeParam->isVariadic();
|
||
DeclParamIsOptional.push_back(Optional);
|
||
}
|
||
}
|
||
|
||
bool IncludeSignature = false;
|
||
if (ParentCall->getArgs()->getUnlabeledUnaryExpr() == CompletionExpr) {
|
||
// If the code completion expression is the only expression in the call
|
||
// and the code completion token doesn’t have a label, we have a case like
|
||
// `Point(|)`. Suggest the entire function signature.
|
||
IncludeSignature = true;
|
||
} else if (!ParentCall->getArgs()->empty() &&
|
||
ParentCall->getArgs()->getExpr(0) == CompletionExpr &&
|
||
!ParentCall->getArgs()->get(0).hasLabel()) {
|
||
if (hasParentCallLikeExpr(ParentCall, CS)) {
|
||
// We are completing in cases like `bar(arg: foo(|, option: 1)`
|
||
// In these cases, we don’t know if `option` belongs to the call to `foo`
|
||
// or `bar`. Be defensive and also suggest the signature.
|
||
IncludeSignature = true;
|
||
}
|
||
}
|
||
|
||
Results.push_back(
|
||
{ExpectedTy, ExpectedCallType, isa<SubscriptExpr>(ParentCall),
|
||
Info.getValue(), FuncTy, ArgIdx, ParamIdx, std::move(ClaimedParams),
|
||
IsNoninitialVariadic, IncludeSignature, Info.BaseTy, HasLabel, FirstTrailingClosureIndex,
|
||
IsAsync, DeclParamIsOptional, SolutionSpecificVarTypes});
|
||
}
|
||
|
||
void ArgumentTypeCheckCompletionCallback::computeShadowedDecls(
|
||
SmallPtrSetImpl<ValueDecl *> &ShadowedDecls) {
|
||
for (size_t i = 0; i < Results.size(); ++i) {
|
||
auto &ResultA = Results[i];
|
||
for (size_t j = i + 1; j < Results.size(); ++j) {
|
||
auto &ResultB = Results[j];
|
||
if (!ResultA.FuncD || !ResultB.FuncD || !ResultA.FuncTy ||
|
||
!ResultB.FuncTy) {
|
||
continue;
|
||
}
|
||
if (ResultA.FuncD->getName() != ResultB.FuncD->getName()) {
|
||
continue;
|
||
}
|
||
if (!ResultA.FuncTy->isEqual(ResultB.FuncTy)) {
|
||
continue;
|
||
}
|
||
ProtocolDecl *inProtocolExtensionA =
|
||
ResultA.FuncD->getDeclContext()->getExtendedProtocolDecl();
|
||
ProtocolDecl *inProtocolExtensionB =
|
||
ResultB.FuncD->getDeclContext()->getExtendedProtocolDecl();
|
||
|
||
if (inProtocolExtensionA && !inProtocolExtensionB) {
|
||
ShadowedDecls.insert(ResultA.FuncD);
|
||
} else if (!inProtocolExtensionA && inProtocolExtensionB) {
|
||
ShadowedDecls.insert(ResultB.FuncD);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void ArgumentTypeCheckCompletionCallback::collectResults(
|
||
bool IsLabeledTrailingClosure, SourceLoc Loc,
|
||
DeclContext *DC, ide::CodeCompletionContext &CompletionCtx) {
|
||
ASTContext &Ctx = DC->getASTContext();
|
||
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
|
||
&CompletionCtx);
|
||
|
||
SmallPtrSet<ValueDecl *, 4> ShadowedDecls;
|
||
computeShadowedDecls(ShadowedDecls);
|
||
|
||
// Perform global completion as a fallback if we don't have any results.
|
||
bool shouldPerformGlobalCompletion = Results.empty();
|
||
SmallVector<Type, 4> ExpectedCallTypes;
|
||
for (auto &Result : Results) {
|
||
ExpectedCallTypes.push_back(Result.ExpectedCallType);
|
||
}
|
||
|
||
SmallVector<Type, 8> ExpectedTypes;
|
||
SmallVector<PossibleParamInfo, 8> Params;
|
||
|
||
for (auto &Result : Results) {
|
||
if (Result.IncludeSignature) {
|
||
Lookup.setHaveLParen(true);
|
||
Lookup.setExpectedTypes(ExpectedCallTypes, /*isImpliedResult=*/false);
|
||
|
||
auto SemanticContext = SemanticContextKind::None;
|
||
NominalTypeDecl *BaseNominal = nullptr;
|
||
if (Result.BaseType) {
|
||
Type BaseTy = Result.BaseType;
|
||
if (auto InstanceTy = BaseTy->getMetatypeInstanceType()) {
|
||
BaseTy = InstanceTy;
|
||
}
|
||
if ((BaseNominal = BaseTy->getAnyNominal())) {
|
||
SemanticContext = SemanticContextKind::CurrentNominal;
|
||
if (Result.FuncD &&
|
||
Result.FuncD->getDeclContext()->getSelfNominalTypeDecl() !=
|
||
BaseNominal) {
|
||
SemanticContext = SemanticContextKind::Super;
|
||
}
|
||
} else if (BaseTy->is<TupleType>() || BaseTy->is<SubstitutableType>()) {
|
||
SemanticContext = SemanticContextKind::CurrentNominal;
|
||
}
|
||
}
|
||
if (SemanticContext == SemanticContextKind::None && Result.FuncD) {
|
||
if (Result.FuncD->getDeclContext()->isTypeContext()) {
|
||
SemanticContext = SemanticContextKind::CurrentNominal;
|
||
} else if (Result.FuncD->getDeclContext()->isLocalContext()) {
|
||
SemanticContext = SemanticContextKind::Local;
|
||
} else if (Result.FuncD->getModuleContext() == DC->getParentModule()) {
|
||
SemanticContext = SemanticContextKind::CurrentModule;
|
||
}
|
||
}
|
||
if (Result.FuncTy) {
|
||
if (auto FuncTy = Result.FuncTy) {
|
||
if (ShadowedDecls.count(Result.FuncD) == 0) {
|
||
// Don't show call pattern completions if the function is
|
||
// overridden.
|
||
if (Result.IsSubscript) {
|
||
assert(SemanticContext != SemanticContextKind::None);
|
||
auto *SD = dyn_cast_or_null<SubscriptDecl>(Result.FuncD);
|
||
Lookup.addSubscriptCallPattern(FuncTy, SD, SemanticContext);
|
||
} else {
|
||
auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(Result.FuncD);
|
||
Lookup.addFunctionCallPattern(FuncTy, FD, SemanticContext);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
Lookup.setHaveLParen(false);
|
||
// We didn't find any function signatures. Perform global completion as a fallback.
|
||
shouldPerformGlobalCompletion |=
|
||
!Lookup.FoundFunctionCalls || Lookup.FoundFunctionsWithoutFirstKeyword;
|
||
} else {
|
||
shouldPerformGlobalCompletion |=
|
||
addPossibleParams(Result, Params, ExpectedTypes);
|
||
}
|
||
}
|
||
Lookup.addCallArgumentCompletionResults(Params, IsLabeledTrailingClosure);
|
||
|
||
if (shouldPerformGlobalCompletion) {
|
||
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
|
||
if (!Results.empty()) {
|
||
SolutionSpecificVarTypes = Results[0].SolutionSpecificVarTypes;
|
||
}
|
||
|
||
WithSolutionSpecificVarTypesRAII VarTypes(SolutionSpecificVarTypes);
|
||
|
||
for (auto &Result : Results) {
|
||
ExpectedTypes.push_back(Result.ExpectedType);
|
||
Lookup.setSolutionSpecificVarTypes(Result.SolutionSpecificVarTypes);
|
||
}
|
||
Lookup.setExpectedTypes(ExpectedTypes, false);
|
||
bool IsInAsyncContext = llvm::any_of(
|
||
Results, [](const Result &Res) { return Res.IsInAsyncContext; });
|
||
Lookup.setCanCurrDeclContextHandleAsync(IsInAsyncContext);
|
||
Lookup.getValueCompletionsInDeclContext(Loc);
|
||
Lookup.getSelfTypeCompletionInDeclContext(Loc, /*isForDeclResult=*/false);
|
||
|
||
// Add any keywords that can be used in an argument expr position.
|
||
addSuperKeyword(CompletionCtx.getResultSink(), DC);
|
||
addExprKeywords(CompletionCtx.getResultSink(), DC);
|
||
}
|
||
|
||
collectCompletionResults(CompletionCtx, Lookup, DC,
|
||
*Lookup.getExpectedTypeContext(),
|
||
Lookup.canCurrDeclContextHandleAsync());
|
||
}
|