Files
swift-mirror/lib/SILPasses/SimplifyCFG.cpp
Nadav Rotem 27a1a63134 Remove unneeded empty virtual destructors.
Swift SVN r13599
2014-02-06 22:24:33 +00:00

540 lines
18 KiB
C++

//===--- SimplifyCFG.cpp - Clean up the SIL CFG ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify-cfg"
#include "swift/SILPasses/Passes.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILPasses/Transforms.h"
#include "swift/SILPasses/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumBlocksDeleted, "Number of unreachable blocks removed");
STATISTIC(NumBlocksMerged, "Number of blocks merged together");
STATISTIC(NumJumpThreads, "Number of jumps threaded");
STATISTIC(NumConstantFolded, "Number of terminators constant folded");
//===----------------------------------------------------------------------===//
// alloc_box Promotion
//===----------------------------------------------------------------------===//
namespace {
class SimplifyCFG {
SILFunction &Fn;
// WorklistList is the actual list that we iterate over (for determinism).
// Slots may be null, which should be ignored.
SmallVector<SILBasicBlock*, 32> WorklistList;
// WorklistMap keeps track of which slot a BB is in, allowing efficient
// containment query, and allows efficient removal.
llvm::SmallDenseMap<SILBasicBlock*, unsigned, 32> WorklistMap;
public:
SimplifyCFG(SILFunction &Fn) : Fn(Fn) {}
void run();
private:
/// popWorklist - Return the next basic block to look at, or null if the
/// worklist is empty. This handles skipping over null entries in the
/// worklist.
SILBasicBlock *popWorklist() {
while (!WorklistList.empty())
if (auto *BB = WorklistList.pop_back_val()) {
WorklistMap.erase(BB);
return BB;
}
return nullptr;
}
/// addToWorklist - Add the specified block to the work list if it isn't
/// already present.
void addToWorklist(SILBasicBlock *BB) {
unsigned &Entry = WorklistMap[BB];
if (Entry != 0) return;
WorklistList.push_back(BB);
Entry = WorklistList.size();
}
/// removeFromWorklist - Remove the specified block from the worklist if
/// present.
void removeFromWorklist(SILBasicBlock *BB) {
assert(BB && "Cannot add null pointer to the worklist");
auto It = WorklistMap.find(BB);
if (It == WorklistMap.end()) return;
// If the BB is in the worklist, null out its entry.
if (It->second) {
assert(WorklistList[It->second-1] == BB && "Consistency error");
WorklistList[It->second-1] = nullptr;
}
// Remove it from the map as well.
WorklistMap.erase(It);
}
/// \brief Remove the basic block if it has no predecessors. Returns true
/// If the block was removed.
bool removeIfDead(SILBasicBlock *BB);
bool tryJumpThreading(BranchInst *BI);
void simplifyAfterDroppingPredecessor(SILBasicBlock *BB);
void simplifyBranchOperands(OperandValueArrayRef Operands);
void simplifyBranchBlock(BranchInst *BI);
void simplifyCondBrBlock(CondBranchInst *BI);
void simplifySwitchEnumBlock(SwitchEnumInst *SEI);
};
} // end anonymous namespace
bool SimplifyCFG::removeIfDead(SILBasicBlock *BB) {
if (!BB->pred_empty() || BB == &*Fn.begin())
return false;
removeFromWorklist(BB);
// Add successor blocks to the worklist since their predecessor list is about
// to change.
for (auto &S : BB->getSuccs())
addToWorklist(S);
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!BB->empty()) {
auto *Inst = &BB->getInstList().back();
// Replace any non-dead results with SILUndef values.
for (unsigned i = 0, e = Inst->getNumTypes(); i != e; ++i)
if (!SILValue(Inst, i).use_empty())
SILValue(Inst, i).replaceAllUsesWith(SILUndef::get(Inst->getType(i),
BB->getModule()));
BB->getInstList().pop_back();
}
BB->eraseFromParent();
++NumBlocksDeleted;
return true;
}
/// This is called when a predecessor of a block is dropped, to simplify the
/// block and add it to the worklist.
void SimplifyCFG::simplifyAfterDroppingPredecessor(SILBasicBlock *BB) {
// TODO: If BB has only one predecessor and has bb args, fold them away, then
// use instsimplify on all the users of those values - even ones outside that
// block.
// Make sure that DestBB is in the worklist, as well as its remaining
// predecessors, since they may not be able to be simplified.
addToWorklist(BB);
for (auto *P : BB->getPreds())
addToWorklist(P);
}
/// Return true if there are any users of V outside the specified block.
static bool isUsedOutsideOfBlock(SILValue V, SILBasicBlock *BB) {
for (auto UI : V.getUses())
if (UI->getUser()->getParent() != BB)
return true;
return false;
}
/// couldSimplifyUsers - Check to see if any simplifications are possible if
/// "Val" is substituted for BBArg. If so, return true, if nothing obvious
/// is possible, return false.
static bool couldSimplifyUsers(SILArgument *BBArg, SILValue Val) {
assert(!isa<IntegerLiteralInst>(Val) && !isa<FloatLiteralInst>(Val) &&
"Obvious constants shouldn't reach here");
// If the value being substituted is an enum, check to see if there are any
// switches on it.
if (isa<EnumInst>(Val)) {
for (auto UI : BBArg->getUses()) {
auto *User = UI->getUser();
if (isa<SwitchEnumInst>(User))
return true;
}
return false;
}
return false;
}
namespace {
class ThreadingCloner : public SILCloner<ThreadingCloner> {
friend class SILVisitor<ThreadingCloner>;
friend class SILCloner<ThreadingCloner>;
SILBasicBlock *FromBB, *DestBB;
public:
ThreadingCloner(BranchInst *BI)
: SILCloner(*BI->getFunction()),
FromBB(BI->getDestBB()), DestBB(BI->getParent()) {
// Populate the value map so that uses of the BBArgs in the DestBB are
// replaced with the branch's values.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
ValueMap[FromBB->getBBArg(i)] = BI->getArg(i);
}
void process(SILInstruction *I) { visit(I); }
SILBasicBlock *remapBasicBlock(SILBasicBlock *BB) { return BB; }
SILValue remapValue(SILValue Value) {
// If this is a use of an instruction in another block, then just use it.
if (auto SI = dyn_cast<SILInstruction>(Value)) {
if (SI->getParent() != FromBB) return Value;
} else if (auto BBArg = dyn_cast<SILArgument>(Value)) {
if (BBArg->getParent() != FromBB) return Value;
} else {
assert(isa<SILUndef>(Value) && "Unexpected Value kind");
return Value;
}
return SILCloner<ThreadingCloner>::remapValue(Value);
}
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
DestBB->getInstList().push_back(Cloned);
SILCloner<ThreadingCloner>::postProcess(Orig, Cloned);
}
};
} // end anonymous namespace
/// tryJumpThreading - Check to see if it looks profitable to duplicate the
/// destination of an unconditional jump into the bottom of this block.
bool SimplifyCFG::tryJumpThreading(BranchInst *BI) {
auto *DestBB = BI->getDestBB();
// If the destination block ends with a return, we don't want to duplicate it.
// We want to maintain the canonical form of a single return where possible.
if (isa<ReturnInst>(DestBB->getTerminator()))
return false;
// This code is intentionally simple, and cannot thread if the BBArgs of the
// destination are used outside the DestBB.
for (auto Arg : DestBB->getBBArgs())
if (isUsedOutsideOfBlock(Arg, DestBB))
return false;
// We don't have a great cost model at the SIL level, so we don't want to
// blissly duplicate tons of code with a goal of improved performance (we'll
// leave that to LLVM). However, doing limited code duplication can lead to
// major second order simplifications. Here we only do it if there are
// "constant" arguments to the branch or if we know how to fold something
// given the duplication.
bool WantToThread = false;
for (auto V : BI->getArgs()) {
if (isa<IntegerLiteralInst>(V) || isa<FloatLiteralInst>(V)) {
WantToThread = true;
break;
}
}
if (!WantToThread) {
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
if (couldSimplifyUsers(DestBB->getBBArg(i), BI->getArg(i))) {
WantToThread = true;
break;
}
}
// If we don't have anything that we can simplify, don't do it.
if (!WantToThread) return false;
// If it looks potentially interesting, decide whether we *can* do the
// operation and whether the block is small enough to be worth duplicating.
unsigned Cost = 0;
for (auto &Inst : DestBB->getInstList()) {
// This is a really trivial cost model, which is only intended as a starting
// point.
if (++Cost == 4) return false;
// If there is an instruction in the block that has used outside the block,
// duplicating it would require constructing SSA, which we're not prepared
// to do.
if (isUsedOutsideOfBlock(&Inst, DestBB)) return false;
}
// Okay, it looks like we want to do this and we can. Duplicate the
// destination block into this one, rewriting uses of the BBArgs to use the
// branch arguments as we go.
ThreadingCloner Cloner(BI);
for (auto &I : *DestBB)
Cloner.process(&I);
// Once all the instructions are copied, we can nuke BI itself. We also add
// this block back to the worklist now that the terminator (likely) can be
// simplified.
addToWorklist(BI->getParent());
BI->eraseFromParent();
// We may be able to simplify DestBB now that it has one fewer predecessor.
simplifyAfterDroppingPredecessor(DestBB);
++NumJumpThreads;
return true;
}
/// simplifyBranchOperands - Simplify operands of branches, since it can
/// result in exposing opportunities for CFG simplification.
void SimplifyCFG::simplifyBranchOperands(OperandValueArrayRef Operands) {
for (auto O = Operands.begin(), E = Operands.end(); O != E; ++O)
if (auto *I = dyn_cast<SILInstruction>(*O))
if (SILValue Result = simplifyInstruction(I)) {
SILValue(I, 0).replaceAllUsesWith(Result.getDef());
if (isInstructionTriviallyDead(I))
I->eraseFromParent();
}
}
bool isTrampolineBlock(SILBasicBlock *SBB) {
// Ignore blocks with more than one instruction.
if (SBB->getTerminator() != SBB->begin())
return false;
BranchInst *BI = dyn_cast<BranchInst>(SBB->getTerminator());
if (!BI)
return false;
// Disallow infinite loops.
if (BI->getDestBB() == SBB)
return false;
auto BrArgs = BI->getArgs();
if (BrArgs.size() != SBB->getNumBBArg())
return false;
// Check that the arguments are the same and in the right order.
for (int i = 0, e = SBB->getNumBBArg(); i < e; ++i)
if (BrArgs[i] != SBB->getBBArg(i))
return false;
return true;
}
/// simplifyBranchBlock - Simplify a basic block that ends with an unconditional
/// branch.
void SimplifyCFG::simplifyBranchBlock(BranchInst *BI) {
// First simplify instructions generating branch operands since that
// can expose CFG simplifications.
simplifyBranchOperands(BI->getArgs());
auto *ThisBB = BI->getParent();
auto *BB = BI->getParent(), *DestBB = BI->getDestBB();
// If this block branches to a block with a single predecessor (us), then
// merge the DestBB into this BB.
if (std::next(DestBB->pred_begin()) == DestBB->pred_end()) {
// If there are any BB arguments in the destination, replace them with the
// branch operands, since they must dominate the dest block.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
SILValue(DestBB->getBBArg(i)).replaceAllUsesWith(BI->getArg(i));
// Zap BI and move all of the instructions from DestBB into this one.
BI->eraseFromParent();
BB->getInstList().splice(BB->end(), DestBB->getInstList(),
DestBB->begin(), DestBB->end());
// Revisit this block now that we've changed it and remove the DestBB.
addToWorklist(BB);
removeFromWorklist(DestBB);
DestBB->eraseFromParent();
++NumBlocksMerged;
return;
}
// If the destination block is a simple trampoline (jump to another block)
// then jump directly.
if (isTrampolineBlock(DestBB)) {
BranchInst* Br = dyn_cast<BranchInst>(DestBB->getTerminator());
SILBuilder(BI).createBranch(BI->getLoc(), Br->getDestBB(), BI->getArgs());
BI->eraseFromParent();
removeIfDead(DestBB);
addToWorklist(ThisBB);
return;
}
// If this unconditional branch has BBArgs, check to see if duplicating the
// destination would allow it to be simplified. This is a simple form of jump
// threading.
if (!BI->getArgs().empty() &&
tryJumpThreading(BI))
return;
}
/// simplifyCondBrBlock - Simplify a basic block that ends with a conditional
/// branch.
void SimplifyCFG::simplifyCondBrBlock(CondBranchInst *BI) {
// First simplify instructions generating branch operands since that
// can expose CFG simplifications.
simplifyBranchOperands(BI->getTrueArgs());
simplifyBranchOperands(BI->getFalseArgs());
auto *ThisBB = BI->getParent();
// If the condition is an integer literal, we can constant fold the branch.
if (auto *IL = dyn_cast<IntegerLiteralInst>(BI->getCondition())) {
bool isFalse = !IL->getValue();
auto LiveArgs = isFalse ? BI->getFalseArgs() : BI->getTrueArgs();
auto *LiveBlock = isFalse ? BI->getFalseBB() : BI->getTrueBB();
auto *DeadBlock = !isFalse ? BI->getFalseBB() : BI->getTrueBB();
auto *ThisBB = BI->getParent();
SILBuilder(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
BI->eraseFromParent();
if (IL->use_empty()) IL->eraseFromParent();
addToWorklist(ThisBB);
simplifyAfterDroppingPredecessor(DeadBlock);
addToWorklist(LiveBlock);
++NumConstantFolded;
return;
}
// If the destination block is a simple trampoline (jump to another block)
// then jump directly.
SILBasicBlock *TrueSide = BI->getTrueBB();
SILBasicBlock *FalseSide = BI->getFalseBB();
if (isTrampolineBlock(TrueSide)) {
BranchInst* Br = cast<BranchInst>(TrueSide->getTerminator());
SILBuilder(BI).createCondBranch(BI->getLoc(), BI->getCondition(),
Br->getDestBB(), BI->getTrueArgs(),
BI->getFalseBB(), BI->getFalseArgs());
BI->eraseFromParent();
removeIfDead(TrueSide);
addToWorklist(ThisBB);
return;
}
if (isTrampolineBlock(FalseSide)) {
BranchInst* Br = cast<BranchInst>(FalseSide->getTerminator());
SILBuilder(BI).createCondBranch(BI->getLoc(), BI->getCondition(),
BI->getTrueBB(), BI->getTrueArgs(),
Br->getDestBB(), BI->getFalseArgs());
BI->eraseFromParent();
removeIfDead(FalseSide);
addToWorklist(ThisBB);
return;
}
// Simplify cond_br where both sides jump to the same blocks with the same
// args.
TrueSide = BI->getTrueBB();
FalseSide = BI->getFalseBB();
if (TrueSide == FalseSide) {
auto TrueArgs = BI->getTrueArgs();
auto FalseArgs = BI->getFalseArgs();
assert(TrueArgs.size() == FalseArgs.size() && "Invalid args!");
bool SameArgs = true;
for (int i = 0, e = TrueArgs.size(); i < e; i++)
if (TrueArgs[i] != FalseArgs[i]){
SameArgs = false;
break;
}
if (SameArgs) {
SILBuilder(BI).createBranch(BI->getLoc(), TrueSide, TrueArgs);
BI->eraseFromParent();
addToWorklist(ThisBB);
addToWorklist(TrueSide);
++NumConstantFolded;
return;
}
}
}
/// simplifySwitchEnumBlock - Simplify a basic block that ends with a
/// switch_enum instruction.
void SimplifyCFG::simplifySwitchEnumBlock(SwitchEnumInst *SEI) {
if (auto *EI = dyn_cast<EnumInst>(SEI->getOperand())) {
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
auto *ThisBB = SEI->getParent();
bool DroppedLiveBlock = false;
// Copy the successors into a vector, dropping one entry for the liveblock.
SmallVector<SILBasicBlock*, 4> Dests;
for (auto &S : SEI->getSuccessors()) {
if (S == LiveBlock && !DroppedLiveBlock)
DroppedLiveBlock = true;
else
Dests.push_back(S);
}
SILBuilder(SEI).createBranch(SEI->getLoc(), LiveBlock);
SEI->eraseFromParent();
if (EI->use_empty()) EI->eraseFromParent();
addToWorklist(ThisBB);
for (auto B : Dests)
simplifyAfterDroppingPredecessor(B);
addToWorklist(LiveBlock);
++NumConstantFolded;
return;
}
}
void SimplifyCFG::run() {
// Add all of the blocks to the function.
for (auto &BB : Fn)
addToWorklist(&BB);
// Iteratively simplify while there is still work to do.
while (SILBasicBlock *BB = popWorklist()) {
// If the block is dead, remove it.
if (removeIfDead(BB))
continue;
// Otherwise, try to simplify the terminator.
TermInst *TI = BB->getTerminator();
if (auto *BI = dyn_cast<BranchInst>(TI))
simplifyBranchBlock(BI);
else if (auto *CBI = dyn_cast<CondBranchInst>(TI))
simplifyCondBrBlock(CBI);
else if (auto *SII = dyn_cast<SwitchIntInst>(TI))
(void)SII;
else if (auto *SEI = dyn_cast<SwitchEnumInst>(TI))
simplifySwitchEnumBlock(SEI);
}
}
class SimplifyCFGPass : public SILFunctionTransform {
/// The entry point to the transformation.
void run() {
SimplifyCFG(*getFunction()).run();
invalidateAnalysis(SILAnalysis::InvalidationKind::CFG);
}
};
SILTransform *swift::createSimplifyCFG() {
return new SimplifyCFGPass();
}