Files
swift-mirror/stdlib/public/Concurrency/Task.cpp
Konrad `ktoso` Malawski 29d95cef85 [Concurrency] Fix ptrauth value for __ptrauth_swift_escalation_notification_function
Previously these records were not used at all, so changing this has no
impact on existing runtimes. Note that we changedd the FunctionType
because the previous one was slightly incorrect -- the context comes
LAST in the type, not first.
2025-02-08 17:18:59 +09:00

1873 lines
68 KiB
C++

//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "Error.h"
#include "TaskGroupPrivate.h"
#include "TaskLocal.h"
#include "TaskPrivate.h"
#include "Tracing.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Heap.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#include <unordered_set>
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
#if defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
#include <Availability.h>
#include <TargetConditionals.h>
#if TARGET_OS_WATCH
// Bitcode compilation for the watch device precludes defining the following asm
// symbols, so we don't use them... but simulators are okay.
#if TARGET_OS_SIMULATOR
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
#ifdef __APPLE__
#if __POINTER_WIDTH__ == 64
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x1000000000000000");
#elif __ARM64_ARCH_8_32__
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x10000000");
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#endif // __APPLE__
#endif // !defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;
Metadata swift::TaskAllocatorSlabMetadata;
const void *const swift::_swift_concurrency_debug_asyncTaskSlabMetadata =
&TaskAllocatorSlabMetadata;
bool swift::_swift_concurrency_debug_supportsPriorityEscalation =
SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION;
uint32_t swift::_swift_concurrency_debug_internal_layout_version = 1;
void FutureFragment::destroy() {
auto queueHead = waitQueue.load(std::memory_order_acquire);
switch (queueHead.getStatus()) {
case Status::Executing:
swift_unreachable("destroying a task that never completed");
case Status::Success:
resultType.vw_destroy(getStoragePtr());
break;
case Status::Error:
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
swift_errorRelease(getError());
#endif
break;
}
}
FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask,
AsyncContext *waitingTaskContext,
TaskContinuationFunction *resumeFn,
AsyncContext *callerContext,
OpaqueValue *result) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
// NOTE: this acquire synchronizes with `completeFuture`.
auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
bool contextInitialized = false;
while (true) {
switch (queueHead.getStatus()) {
case Status::Error:
case Status::Success:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, completed immediately",
waitingTask, this);
_swift_tsan_acquire(static_cast<Job *>(this));
if (contextInitialized) waitingTask->flagAsRunning();
// The task is done; we don't need to wait.
return queueHead.getStatus();
case Status::Executing:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, going to sleep",
waitingTask, this);
_swift_tsan_release(static_cast<Job *>(waitingTask));
concurrency::trace::task_wait(
waitingTask, this, static_cast<uintptr_t>(queueHead.getStatus()));
// Task is not complete. We'll need to add ourselves to the queue.
break;
}
if (!contextInitialized) {
contextInitialized = true;
auto context =
reinterpret_cast<TaskFutureWaitAsyncContext *>(waitingTaskContext);
context->errorResult = nullptr;
context->successResultPointer = result;
context->ResumeParent = resumeFn;
context->Parent = callerContext;
waitingTask->flagAsSuspendedOnTask(this);
}
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task to thread model, we will execute the task that we are waiting
// on, on the current thread itself. As a result, do not bother adding the
// waitingTask to any thread queue. Instead, we will clear the old task, run
// the new one and then reattempt to continue running the old task
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, this);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(this, SerialExecutorRef::generic());
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", this, oldTask);
// We now are back in the context of the waiting task and need to reevaluate
// our state
_swift_task_setCurrent(oldTask);
queueHead = fragment->waitQueue.load(std::memory_order_acquire);
continue;
#else
// Put the waiting task at the beginning of the wait queue.
// NOTE: this acquire-release synchronizes with `completeFuture`.
waitingTask->getNextWaitingTask() = queueHead.getTask();
auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
if (fragment->waitQueue.compare_exchange_weak(
queueHead, newQueueHead,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
_swift_task_clearCurrent();
return FutureFragment::Status::Executing;
}
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
}
// Implemented in Swift because we need to obtain the user-defined flags on the executor ref.
//
// We could inline this with effort, though.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
extern "C" SWIFT_CC(swift)
TaskExecutorRef _task_taskExecutor_getTaskExecutorRef(
HeapObject *executor, const Metadata *selfType,
const TaskExecutorWitnessTable *wtable);
#pragma clang diagnostic pop
TaskExecutorRef
InitialTaskExecutorOwnedPreferenceTaskOptionRecord::getExecutorRefFromUnownedTaskExecutor() const {
TaskExecutorRef executorRef = _task_taskExecutor_getTaskExecutorRef(
Identity,
/*selfType=*/swift_getObjectType(Identity),
/*wtable=*/WitnessTable);
return executorRef;
}
void NullaryContinuationJob::process(Job *_job) {
auto *job = cast<NullaryContinuationJob>(_job);
auto *continuation = job->Continuation;
swift_cxx_deleteObject(job);
auto *context =
static_cast<ContinuationAsyncContext*>(continuation->ResumeContext);
context->setErrorResult(nullptr);
swift_continuation_resume(continuation);
}
void AsyncTask::completeFuture(AsyncContext *context) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
SWIFT_TASK_DEBUG_LOG("complete future = %p", this);
assert(isFuture());
auto fragment = futureFragment();
// If an error was thrown, save it in the future fragment.
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
fragment->getError() = errorObject;
if (errorObject) {
hadErrorResult = true;
}
_swift_tsan_release(static_cast<Job *>(this));
// Update the status to signal completion.
auto newQueueHead = WaitQueueItem::get(
hadErrorResult ? Status::Error : Status::Success,
nullptr
);
// NOTE: this acquire-release synchronizes with `waitFuture`.
auto queueHead = fragment->waitQueue.exchange(
newQueueHead, std::memory_order_acq_rel);
assert(queueHead.getStatus() == Status::Executing);
// If this is task group child, notify the parent group about the completion.
if (hasGroupChildFragment()) {
// then we must offer into the parent group that we completed,
// so it may `next()` poll completed child tasks in completion order.
auto group = groupChildFragment()->getGroup();
group->offer(this, context);
}
// Schedule every waiting task on the executor.
auto waitingTask = queueHead.getTask();
if (!waitingTask) {
SWIFT_TASK_DEBUG_LOG("task %p had no waiting tasks", this);
} else {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
assert(false && "Task should have no waiters in task-to-thread model");
#endif
}
while (waitingTask) {
// Find the next waiting task before we invalidate it by resuming
// the task.
auto nextWaitingTask = waitingTask->getNextWaitingTask();
SWIFT_TASK_DEBUG_LOG("waking task %p from future of task %p", waitingTask,
this);
// Fill in the return context.
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
if (hadErrorResult) {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
waitingContext->fillWithError(fragment);
#endif
} else {
waitingContext->fillWithSuccess(fragment);
}
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
concurrency::trace::task_resume(waitingTask);
// Enqueue the waiter on the global executor.
// TODO: allow waiters to fill in a suggested executor
waitingTask->flagAsAndEnqueueOnExecutor(SerialExecutorRef::generic());
// Move to the next task.
waitingTask = nextWaitingTask;
}
}
SWIFT_CC(swift)
static void destroyJob(SWIFT_CONTEXT HeapObject *obj) {
assert(false && "A non-task job should never be destroyed as heap metadata.");
}
AsyncTask::~AsyncTask() {
flagAsDestroyed();
// For a future, destroy the result.
if (isFuture()) {
futureFragment()->destroy();
}
Private.destroy();
concurrency::trace::task_destroy(this);
}
void AsyncTask::setTaskId() {
static std::atomic<uint64_t> NextId(1);
// We want the 32-bit Job::Id to be non-zero, so loop if we happen upon zero.
uint64_t Fetched;
do {
Fetched = NextId.fetch_add(1, std::memory_order_relaxed);
Id = Fetched & 0xffffffff;
} while (Id == 0);
_private().Id = (Fetched >> 32) & 0xffffffff;
}
uint64_t AsyncTask::getTaskId() {
// Reconstitute a full 64-bit task ID from the 32-bit job ID and the upper
// 32 bits held in _private().
return ((uint64_t)_private().Id << 32) | (uint64_t)Id;
}
SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
auto task = static_cast<AsyncTask*>(obj);
task->~AsyncTask();
// The task execution itself should always hold a reference to it, so
// if we get here, we know the task has finished running, which means
// swift_task_complete should have been run, which will have torn down
// the task-local allocator. There's actually nothing else to clean up
// here.
SWIFT_TASK_DEBUG_LOG("Destroyed task %p", task);
free(task);
}
#if !SWIFT_CONCURRENCY_EMBEDDED
static SerialExecutorRef executorForEnqueuedJob(Job *job) {
#if !SWIFT_CONCURRENCY_ENABLE_DISPATCH
return SerialExecutorRef::generic();
#else
void *jobQueue = job->SchedulerPrivate[Job::DispatchQueueIndex];
if (jobQueue == DISPATCH_QUEUE_GLOBAL_EXECUTOR) {
return SerialExecutorRef::generic();
}
if (auto identity = reinterpret_cast<HeapObject *>(jobQueue)) {
return SerialExecutorRef::forOrdinary(
identity, _swift_task_getDispatchQueueSerialExecutorWitnessTable());
}
return SerialExecutorRef::generic();
#endif
}
static void jobInvoke(void *obj, void *unused, uint32_t flags) {
(void)unused;
Job *job = reinterpret_cast<Job *>(obj);
swift_job_run(job, executorForEnqueuedJob(job));
}
// Magic constant to identify Swift Job vtables to Dispatch.
static const unsigned long dispatchSwiftObjectType = 1;
static FullMetadata<DispatchClassMetadata> jobHeapMetadata = {
{
{
/*type layout*/ nullptr,
},
{
&destroyJob
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Job,
dispatchSwiftObjectType,
jobInvoke
}
};
/// Heap metadata for an asynchronous task.
static FullMetadata<DispatchClassMetadata> taskHeapMetadata = {
{
{
/*type layout*/ nullptr
},
{
&destroyTask
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Task,
dispatchSwiftObjectType,
jobInvoke
}
};
const void *const swift::_swift_concurrency_debug_jobMetadata =
static_cast<Metadata *>(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
static_cast<Metadata *>(&taskHeapMetadata);
const HeapMetadata *swift::jobHeapMetadataPtr =
static_cast<HeapMetadata *>(&jobHeapMetadata);
const HeapMetadata *swift::taskHeapMetadataPtr =
static_cast<HeapMetadata *>(&taskHeapMetadata);
#else // SWIFT_CONCURRENCY_EMBEDDED
// This matches the embedded class metadata layout in IRGen and in
// EmbeddedRuntime.swift.
typedef struct EmbeddedClassMetadata {
void *superclass;
HeapObjectDestroyer *__ptrauth_swift_heap_object_destructor destroy;
void *ivar_destroyer;
} EmbeddedHeapObject;
static EmbeddedClassMetadata jobHeapMetadata = {
0, &destroyJob, 0,
};
static EmbeddedClassMetadata taskHeapMetadata = {
0, &destroyTask, 0,
};
const void *const swift::_swift_concurrency_debug_jobMetadata =
(Metadata *)(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
(Metadata *)(&taskHeapMetadata);
const HeapMetadata *swift::jobHeapMetadataPtr =
(HeapMetadata *)(&jobHeapMetadata);
const HeapMetadata *swift::taskHeapMetadataPtr =
(HeapMetadata *)(&taskHeapMetadata);
#endif
static void completeTaskImpl(AsyncTask *task,
AsyncContext *context,
SwiftError *error) {
assert(task && "completing task, but there is no active task registered");
// Store the error result.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
asyncContextPrefix->errorResult = error;
task->Private.complete(task);
SWIFT_TASK_DEBUG_LOG("task %p completed", task);
// Complete the future.
// Warning: This deallocates the task in case it's an async let task.
// The task must not be accessed afterwards.
if (task->isFuture()) {
task->completeFuture(context);
}
// TODO: set something in the status?
// if (task->hasChildFragment()) {
// TODO: notify the parent somehow?
// TODO: remove this task from the child-task chain?
// }
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTaskAndRelease(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
// Release the task, balancing the retain that a running task has on itself.
// If it was a group child task, it will remain until the group returns it.
swift_release(task);
}
/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Release the closure context.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
swift_release((HeapObject *)asyncContextPrefix->closureContext);
// Clean up the rest of the task.
return completeTaskAndRelease(context, error);
}
/// The function that we put in the context of an inline task to handle the
/// final return.
///
/// Because inline tasks can't produce errors, this function doesn't have an
/// error parameter.
///
/// Because inline tasks' closures are noescaping, their closure contexts are
/// stack allocated; so this function doesn't release them.
SWIFT_CC(swiftasync)
static void completeInlineTask(SWIFT_ASYNC_CONTEXT AsyncContext *context) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, /*error=*/nullptr);
}
SWIFT_CC(swiftasync)
static void non_future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(AsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
_context, asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(FutureAsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
asyncContextPrefix->indirectResult, _context,
asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void task_wait_throwing_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(context->ResumeParent);
#pragma clang diagnostic pop
return resumeWithError(context->Parent, context->errorResult);
}
SWIFT_CC(swiftasync)
static void
task_future_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
return _context->ResumeParent(_context->Parent);
}
const void *const swift::_swift_concurrency_debug_non_future_adapter =
reinterpret_cast<void *>(non_future_adapter);
const void *const swift::_swift_concurrency_debug_future_adapter =
reinterpret_cast<void *>(future_adapter);
const void
*const swift::_swift_concurrency_debug_task_wait_throwing_resume_adapter =
reinterpret_cast<void *>(task_wait_throwing_resume_adapter);
const void
*const swift::_swift_concurrency_debug_task_future_wait_resume_adapter =
reinterpret_cast<void *>(task_future_wait_resume_adapter);
const void *AsyncTask::getResumeFunctionForLogging(bool isStarting) {
const void *result = reinterpret_cast<const void *>(ResumeTask);
if (ResumeTask == non_future_adapter) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) - sizeof(AsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
} else if (ResumeTask == future_adapter) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) -
sizeof(FutureAsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
}
// Future contexts may not be valid if the task was already running before.
if (isStarting) {
if (ResumeTask == task_wait_throwing_resume_adapter) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(ResumeContext);
result = reinterpret_cast<const void *>(context->ResumeParent);
} else if (ResumeTask == task_future_wait_resume_adapter) {
result = reinterpret_cast<const void *>(ResumeContext->ResumeParent);
}
}
return __ptrauth_swift_runtime_function_entry_strip(result);
}
JobPriority swift::swift_task_currentPriority(AsyncTask *task) {
// This is racey but this is to be used in an API is inherently racey anyways.
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
return oldStatus.getStoredPriority();
}
JobPriority swift::swift_task_basePriority(AsyncTask *task) {
JobPriority pri = task->_private().BasePriority;
SWIFT_TASK_DEBUG_LOG("Task %p has base priority = %zu", task, pri);
return pri;
}
JobPriority swift::swift_concurrency_jobPriority(Job *job) {
return job->getPriority();
}
static inline bool isUnspecified(JobPriority priority) {
return priority == JobPriority::Unspecified;
}
static inline bool taskIsStructured(JobFlags jobFlags) {
return jobFlags.task_isAsyncLetTask() || jobFlags.task_isGroupChildTask();
}
static inline bool taskIsUnstructured(TaskCreateFlags createFlags, JobFlags jobFlags) {
return !taskIsStructured(jobFlags) && !createFlags.isInlineTask();
}
static inline bool taskIsDetached(TaskCreateFlags createFlags, JobFlags jobFlags) {
return taskIsUnstructured(createFlags, jobFlags) && !createFlags.copyTaskLocals();
}
static std::pair<size_t, size_t> amountToAllocateForHeaderAndTask(
const AsyncTask *parent, const TaskGroup *group,
ResultTypeInfo futureResultType, size_t initialContextSize) {
// Figure out the size of the header.
size_t headerSize = sizeof(AsyncTask);
if (parent) {
headerSize += sizeof(AsyncTask::ChildFragment);
}
if (group) {
headerSize += sizeof(AsyncTask::GroupChildFragment);
}
if (!futureResultType.isNull()) {
headerSize += FutureFragment::fragmentSize(headerSize, futureResultType);
// Add the future async context prefix.
headerSize += sizeof(FutureAsyncContextPrefix);
} else {
// Add the async context prefix.
headerSize += sizeof(AsyncContextPrefix);
}
headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
// Allocate the initial context together with the job.
// This means that we never get rid of this allocation.
size_t amountToAllocate = headerSize + initialContextSize;
assert(amountToAllocate % MaximumAlignment == 0);
return {headerSize, amountToAllocate};
}
/// Implementation of task creation.
SWIFT_CC(swift)
static AsyncTaskAndContext
swift_task_create_commonImpl(size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultTypeMetadata,
TaskContinuationFunction *function,
void *closureContext, size_t initialContextSize) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
JobFlags jobFlags(JobKind::Task, JobPriority::Unspecified);
// Propagate task-creation flags to job flags as appropriate.
jobFlags.task_setIsChildTask(taskCreateFlags.isChildTask());
ResultTypeInfo futureResultType;
#if !SWIFT_CONCURRENCY_EMBEDDED
futureResultType.metadata = futureResultTypeMetadata;
#endif
// Collect the options we know about.
SerialExecutorRef serialExecutor = SerialExecutorRef::generic();
TaskExecutorRef taskExecutor = TaskExecutorRef::undefined();
bool taskExecutorIsOwned = false;
TaskGroup *group = nullptr;
AsyncLet *asyncLet = nullptr;
bool hasAsyncLetResultBuffer = false;
RunInlineTaskOptionRecord *runInlineOption = nullptr;
for (auto option = options; option; option = option->getParent()) {
switch (option->getKind()) {
case TaskOptionRecordKind::InitialSerialExecutor:
serialExecutor = cast<InitialSerialExecutorTaskOptionRecord>(option)
->getExecutorRef();
break;
case TaskOptionRecordKind::InitialTaskExecutorUnowned:
taskExecutor = cast<InitialTaskExecutorRefPreferenceTaskOptionRecord>(option)
->getExecutorRef();
jobFlags.task_setHasInitialTaskExecutorPreference(true);
taskExecutorIsOwned = false;
break;
case TaskOptionRecordKind::InitialTaskExecutorOwned:
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("owned TaskExecutor cannot be used in embedded Swift");
#else
taskExecutor = cast<InitialTaskExecutorOwnedPreferenceTaskOptionRecord>(option)
->getExecutorRefFromUnownedTaskExecutor();
taskExecutorIsOwned = true;
jobFlags.task_setHasInitialTaskExecutorPreference(true);
#endif
break;
case TaskOptionRecordKind::TaskGroup:
group = cast<TaskGroupTaskOptionRecord>(option)->getGroup();
assert(group && "Missing group");
jobFlags.task_setIsGroupChildTask(true);
break;
case TaskOptionRecordKind::AsyncLet:
asyncLet = cast<AsyncLetTaskOptionRecord>(option)->getAsyncLet();
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
case TaskOptionRecordKind::AsyncLetWithBuffer: {
auto *aletRecord = cast<AsyncLetWithBufferTaskOptionRecord>(option);
asyncLet = aletRecord->getAsyncLet();
// TODO: Actually digest the result buffer into the async let task
// context, so that we can emplace the eventual result there instead
// of in a FutureFragment.
hasAsyncLetResultBuffer = true;
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
}
case TaskOptionRecordKind::RunInline: {
runInlineOption = cast<RunInlineTaskOptionRecord>(option);
// TODO (rokhinip): We seem to be creating runInline tasks like detached
// tasks but they need to maintain the voucher and priority of calling
// thread and therefore need to behave a bit more like SC child tasks.
break;
}
case TaskOptionRecordKind::ResultTypeInfo: {
#if SWIFT_CONCURRENCY_EMBEDDED
auto *typeInfo = cast<ResultTypeInfoTaskOptionRecord>(option);
futureResultType = {
.size = typeInfo->size,
.alignMask = typeInfo->alignMask,
.initializeWithCopy = typeInfo->initializeWithCopy,
.storeEnumTagSinglePayload = typeInfo->storeEnumTagSinglePayload,
.destroy = typeInfo->destroy,
};
break;
#else
swift_unreachable("ResultTypeInfo in non-embedded");
#endif
}
}
}
#if SWIFT_CONCURRENCY_EMBEDDED
assert(!futureResultType.isNull());
#endif
if (!futureResultType.isNull()) {
jobFlags.task_setIsFuture(true);
assert(initialContextSize >= sizeof(FutureAsyncContext));
}
AsyncTask *currentTask = swift_task_getCurrent();
AsyncTask *parent = jobFlags.task_isChildTask() ? currentTask : nullptr;
if (group) {
assert(parent && "a task created in a group must be a child task");
// Add to the task group, if requested.
if (taskCreateFlags.addPendingGroupTaskUnconditionally()) {
assert(group && "Missing group");
swift_taskGroup_addPending(group, /*unconditionally=*/true);
}
}
// Start with user specified priority at creation time (if any)
JobPriority basePriority = (taskCreateFlags.getRequestedPriority());
if (taskCreateFlags.isInlineTask()) {
SWIFT_TASK_DEBUG_LOG("Creating an inline task from %p", currentTask);
// We'll take the current priority and set it as base and escalated
// priority of the task. No UI->IN downgrade needed.
basePriority = swift_task_getCurrentThreadPriority();
} else if (taskIsDetached(taskCreateFlags, jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating a detached task from %p", currentTask);
// Case 1: No priority specified
// Base priority = UN
// Escalated priority = UN
// Case 2: Priority specified
// Base priority = user specified priority
// Escalated priority = UN
//
// Task will be created with max priority = max(base priority, UN) = base
// priority. We shouldn't need to do any additional manipulations here since
// basePriority should already be the right value
} else if (taskIsUnstructured(taskCreateFlags, jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating an unstructured task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = UN
if (currentTask) {
basePriority = currentTask->_private().BasePriority;
} else {
basePriority = swift_task_getCurrentThreadPriority();
}
basePriority = withUserInteractivePriorityDowngrade(basePriority);
} else {
// Case 2: User specified a priority
// Base priority = user specified priority
// Escalated priority = UN
}
// Task will be created with max priority = max(base priority, UN) = base
// priority
} else {
// Is a structured concurrency child task. Must have a parent.
assert((asyncLet || group) && parent);
SWIFT_TASK_DEBUG_LOG("Creating an structured concurrency task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
JobPriority parentBasePri = parent->_private().BasePriority;
basePriority = withUserInteractivePriorityDowngrade(parentBasePri);
} else {
// Case 2: User priority specified
// Base priority = User specified priority
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
}
// Task will be created with escalated priority = base priority. We will
// update the escalated priority with the right rules in
// updateNewChildWithParentAndGroupState when we link the child into
// the parent task/task group since we'll have the right
// synchronization then.
}
if (isUnspecified(basePriority)) {
basePriority = JobPriority::Default;
}
SWIFT_TASK_DEBUG_LOG("Task's base priority = %#zx", basePriority);
size_t headerSize, amountToAllocate;
std::tie(headerSize, amountToAllocate) = amountToAllocateForHeaderAndTask(
parent, group, futureResultType, initialContextSize);
unsigned initialSlabSize = 512;
void *allocation = nullptr;
if (asyncLet) {
assert(parent);
// If there isn't enough room in the fixed async let allocation to
// set up the initial context, then we'll have to allocate more space
// from the parent.
if (asyncLet->getSizeOfPreallocatedSpace() < amountToAllocate) {
hasAsyncLetResultBuffer = false;
}
// DEPRECATED. This is separated from the above condition because we
// also have to handle an older async let ABI that did not provide
// space for the initial slab in the compiler-generated preallocation.
if (!hasAsyncLetResultBuffer) {
allocation = _swift_task_alloc_specific(parent,
amountToAllocate + initialSlabSize);
} else {
allocation = asyncLet->getPreallocatedSpace();
assert(asyncLet->getSizeOfPreallocatedSpace() >= amountToAllocate
&& "async let does not preallocate enough space for child task");
initialSlabSize = asyncLet->getSizeOfPreallocatedSpace()
- amountToAllocate;
}
} else if (runInlineOption && runInlineOption->getAllocation()) {
// NOTE: If the space required for the task and initial context was
// greater than SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES,
// getAllocation will return nullptr and we'll fall back to malloc to
// allocate the buffer.
//
// This was already checked in swift_task_run_inline.
size_t runInlineBufferBytes = runInlineOption->getAllocationBytes();
assert(amountToAllocate <= runInlineBufferBytes);
allocation = runInlineOption->getAllocation();
initialSlabSize = runInlineBufferBytes - amountToAllocate;
} else {
allocation = malloc(amountToAllocate);
}
SWIFT_TASK_DEBUG_LOG("allocate task %p, parent = %p, slab %u", allocation,
parent, initialSlabSize);
AsyncContext *initialContext =
reinterpret_cast<AsyncContext*>(
reinterpret_cast<char*>(allocation) + headerSize);
// We can't just use `function` because it uses the new async function entry
// ABI -- passing parameters, closure context, indirect result addresses
// directly -- but AsyncTask->ResumeTask expects the signature to be
// `void (*, *, swiftasync *)`.
// Instead we use an adapter. This adaptor should use the storage prefixed to
// the async context to get at the parameters.
// See e.g. FutureAsyncContextPrefix.
if (futureResultType.isNull() || taskCreateFlags.isDiscardingTask()) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(AsyncContextPrefix));
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(function);
#pragma clang diagnostic pop
asyncContextPrefix->closureContext = closureContext;
function = non_future_adapter;
assert(sizeof(AsyncContextPrefix) == 3 * sizeof(void *));
} else {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncGenericClosureEntryPoint *>(function);
#pragma clang diagnostic pop
function = future_adapter;
asyncContextPrefix->closureContext = closureContext;
assert(sizeof(FutureAsyncContextPrefix) == 4 * sizeof(void *));
}
// Only attempt to inherit parent's executor preference if we didn't set one
// explicitly, which we've recorded in the flag by noticing a task create
// option higher up in this func.
if (!jobFlags.task_hasInitialTaskExecutorPreference()) {
// do we have a parent we can inherit the task executor from?
if (parent) {
auto parentTaskExecutor = parent->getPreferredTaskExecutor();
if (parentTaskExecutor.isDefined()) {
jobFlags.task_setHasInitialTaskExecutorPreference(true);
taskExecutor = parentTaskExecutor;
}
}
}
// Initialize the task so that resuming it will run the given
// function on the initial context.
AsyncTask *task = nullptr;
bool captureCurrentVoucher = !taskIsDetached(taskCreateFlags, jobFlags);
if (asyncLet) {
// Initialize the refcount bits to "immortal", so that
// ARC operations don't have any effect on the task.
task = new (allocation)
AsyncTask(taskHeapMetadataPtr, InlineRefCounts::Immortal, jobFlags,
function, initialContext, captureCurrentVoucher);
} else {
task = new (allocation) AsyncTask(taskHeapMetadataPtr, jobFlags, function,
initialContext, captureCurrentVoucher);
}
// Initialize the child fragment if applicable.
if (parent) {
auto childFragment = task->childFragment();
::new (childFragment) AsyncTask::ChildFragment(parent);
}
// Initialize the group child fragment if applicable.
if (group) {
auto groupChildFragment = task->groupChildFragment();
::new (groupChildFragment) AsyncTask::GroupChildFragment(group);
}
// Initialize the future fragment if applicable.
if (!futureResultType.isNull()) {
assert(task->isFuture());
auto futureFragment = task->futureFragment();
::new (futureFragment) FutureFragment(futureResultType);
// Set up the context for the future so there is no error, and a successful
// result will be written into the future fragment's storage.
auto futureAsyncContextPrefix =
reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
futureAsyncContextPrefix->indirectResult = futureFragment->getStoragePtr();
}
SWIFT_TASK_DEBUG_LOG("creating task %p ID %" PRIu64
" with parent %p at base pri %zu",
task, task->getTaskId(), parent, basePriority);
// Configure the initial context.
// Initialize the parent context pointer to null.
initialContext->Parent = nullptr;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
// Initialize the resumption funclet pointer (async return address) to
// the final funclet for completing the task.
// Inline tasks are unmanaged, non-throwing, and use a non-escaping
// task function. The final funclet doesn't expect to get passed an error,
// and it doesn't clean up either the function or the task directly.
if (runInlineOption) {
initialContext->ResumeParent = &completeInlineTask;
// `async let` tasks are unmanaged and use a non-escaping task function.
// The final funclet shouldn't release the task or the task function.
} else if (asyncLet) {
initialContext->ResumeParent =
reinterpret_cast<TaskContinuationFunction*>(&completeTask);
// If we have a non-null closure context and the task function is not
// consumed by calling it, use a final funclet that releases both the
// task and the closure context.
} else if (closureContext && !taskCreateFlags.isTaskFunctionConsumed()) {
initialContext->ResumeParent =
reinterpret_cast<TaskContinuationFunction*>(&completeTaskWithClosure);
// Otherwise, just release the task.
} else {
initialContext->ResumeParent =
reinterpret_cast<TaskContinuationFunction*>(&completeTaskAndRelease);
}
#pragma clang diagnostic pop
// Initialize the task-local allocator and our other private runtime
// state for the task.
if ((asyncLet || (runInlineOption && runInlineOption->getAllocation())) &&
initialSlabSize > 0) {
assert(parent || (runInlineOption && runInlineOption->getAllocation()));
void *initialSlab = (char*)allocation + amountToAllocate;
task->Private.initializeWithSlab(basePriority, initialSlab,
initialSlabSize);
} else {
task->Private.initialize(basePriority);
}
// Perform additional linking between parent and child task.
if (parent) {
// If the parent was already cancelled, we carry this flag forward to the child.
//
// In a task group we would not have allowed the `add` to create a child anymore,
// however better safe than sorry and `async let` are not expressed as task groups,
// so they may have been spawned in any case still.
if ((group && group->isCancelled()) || swift_task_isCancelled(parent))
swift_task_cancel(task);
// Inside a task group, we may have to perform some defensive copying,
// check if doing so is necessary, and initialize storage using partial
// defensive copies if necessary.
if (group) {
assert(parent && "a task created in a group must be a child task");
}
// Initialize task locals with a link to the parent task.
//
// Inside a task group, we may have to perform some defensive copying,
// and initialize storage using partial defensive copies if necessary.
//
// If we were going to copy ALL values anyway, we don't need to
// perform this defensive partial copying. In practice, we currently
// do not have child tasks which force copying, but we could.
assert(!taskCreateFlags.copyTaskLocals() &&
"Currently we don't have child tasks which force copying task "
"locals; unexpected attempt to combine the two!");
task->_private().Local.initializeLinkParent(task, parent);
}
// FIXME: add discarding flag
// FIXME: add task executor
concurrency::trace::task_create(
task, parent, group, asyncLet,
static_cast<uint8_t>(task->Flags.getPriority()),
task->Flags.task_isChildTask(), task->Flags.task_isFuture(),
task->Flags.task_isGroupChildTask(), task->Flags.task_isAsyncLetTask());
// Attach to the group, if needed.
if (group) {
swift_taskGroup_attachChild(group, task);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// We need to take a retain here to keep the child task for the task group
// alive. In the non-task-to-thread model, we'd always take this retain
// below since we'd enqueue the child task. But since we're not going to be
// enqueueing the child task in this model, we need to take this +1 to
// balance out the release that exists after the task group child task
// creation
swift_retain(task);
#endif
}
// If we're supposed to copy task locals, do so now.
if (taskCreateFlags.copyTaskLocals()) {
swift_task_localsCopyTo(task);
}
// Push the async let task status record.
if (asyncLet) {
asyncLet_addImpl(task, asyncLet, !hasAsyncLetResultBuffer);
}
// Task executor preference
// If the task does not have a specific executor set already via create
// options, and there is a task executor preference set in the parent, we
// inherit it by deep-copying the preference record. if
// (shouldPushTaskExecutorPreferenceRecord || taskExecutor.isDefined()) {
if (jobFlags.task_hasInitialTaskExecutorPreference()) {
// Implementation note: we must do this AFTER `swift_taskGroup_attachChild`
// because the group takes a fast-path when attaching the child record.
assert(jobFlags.task_hasInitialTaskExecutorPreference());
task->pushInitialTaskExecutorPreference(
taskExecutor, /*owned=*/taskExecutorIsOwned);
}
// If we're supposed to enqueue the task, do so now.
if (taskCreateFlags.enqueueJob()) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
assert(false && "Should not be enqueuing tasks in task-to-thread model");
#endif
swift_retain(task);
task->flagAsAndEnqueueOnExecutor(
serialExecutor);
}
return {task, initialContext};
}
/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function) {
auto fnPtr =
reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
(void *)fnPtr, ptrauth_key_process_independent_data, AuthDiscriminator);
#endif
return {reinterpret_cast<typename AsyncSignature::FunctionType *>(
fnPtr->Function.get()),
fnPtr->ExpectedContextSize};
}
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
SWIFT_CC(swift)
void swift::swift_task_run_inline(OpaqueValue *result, void *closureAFP,
OpaqueValue *closureContext,
const Metadata *futureResultTypeMetadata) {
// Ensure that we're currently in a synchronous context.
if (swift_task_getCurrent()) {
swift_Concurrency_fatalError(0, "called runInline within an async context");
}
ResultTypeInfo futureResultType;
#if !SWIFT_CONCURRENCY_EMBEDDED
futureResultType.metadata = futureResultTypeMetadata;
#endif
// Unpack the asynchronous function pointer.
FutureAsyncSignature::FunctionType *closure;
size_t closureContextSize;
std::tie(closure, closureContextSize) =
getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureAFP);
// If the initial task and initial async frame aren't too big, allocate enough
// stack space for them and for use as the initial task slab.
//
// If they are too big, swift_task_create_common will fall back to malloc.
size_t candidateAllocationBytes = SWIFT_TASK_RUN_INLINE_INITIAL_CONTEXT_BYTES;
size_t minimumAllocationSize =
amountToAllocateForHeaderAndTask(/*parent=*/nullptr, /*group=*/nullptr,
futureResultType, closureContextSize)
.second;
void *allocation = nullptr;
size_t allocationBytes = 0;
if (minimumAllocationSize <= candidateAllocationBytes) {
allocationBytes = candidateAllocationBytes;
allocation = alloca(allocationBytes);
}
// Create a task to run the closure. Pass a RunInlineTaskOptionRecord
// containing a pointer to the allocation enabling us to provide our stack
// allocation rather than swift_task_create_common having to malloc it.
RunInlineTaskOptionRecord option(allocation, allocationBytes);
size_t taskCreateFlags = 1 << TaskCreateFlags::Task_IsInlineTask;
auto taskAndContext = swift_task_create_common(
taskCreateFlags, &option, futureResultTypeMetadata,
reinterpret_cast<TaskContinuationFunction *>(closure), closureContext,
/*initialContextSize=*/closureContextSize);
// Run the task.
swift_job_run(taskAndContext.Task, SerialExecutorRef::generic());
// Under the task-to-thread concurrency model, the task should always have
// completed by this point.
// Copy the result out to our caller.
auto *futureResult = taskAndContext.Task->futureFragment()->getStoragePtr();
futureResultType.vw_initializeWithCopy(result, futureResult);
// Destroy the task.
taskAndContext.Task->~AsyncTask();
}
#endif
SWIFT_CC(swift)
AsyncTaskAndContext swift::swift_task_create(
size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
void *closureEntry, HeapObject *closureContext) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
if (taskCreateFlags.isDiscardingTask()) {
ThinNullaryAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize) =
getAsyncClosureEntryPointAndContextSize<
ThinNullaryAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncThinNullaryFunction>(closureEntry);
return swift_task_create_common(
rawTaskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
} else {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize) =
getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction>(closureEntry);
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
return swift_task_create_common(
rawTaskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
#pragma clang diagnostic pop
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_waitImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, TaskContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
static void swift_task_future_waitImpl(
OpaqueValue *result,
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
TaskContinuationFunction *resumeFn,
AsyncContext *callContext) {
// Suspend the waiting task.
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_future_wait_resume_adapter;
waitingTask->ResumeContext = callContext;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_waitImpl(
result, callerContext, task, resumeFn, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
// Run the task with a successful result.
auto future = task->futureFragment();
future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
return resumeFn(callerContext);
}
case FutureFragment::Status::Error:
swift_Concurrency_fatalError(0, "future reported an error, but wait cannot throw");
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
void swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
auto waitingTask = swift_task_getCurrent();
// Suspend the waiting task.
waitingTask->ResumeTask = task_wait_throwing_resume_adapter;
waitingTask->ResumeContext = callContext;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wcast-function-type-mismatch"
auto resumeFn = reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
#pragma clang diagnostic pop
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_wait_throwingImpl(
result, callerContext, task, resumeFunction, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
auto future = task->futureFragment();
future->getResultType().vw_initializeWithCopy(result, future->getStoragePtr());
return resumeFunction(callerContext, nullptr /*error*/);
}
case FutureFragment::Status::Error: {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
// Run the task with an error result.
auto future = task->futureFragment();
auto error = future->getError();
swift_errorRetain(error);
return resumeFunction(callerContext, error);
#endif
}
}
}
size_t swift::swift_task_getJobFlags(AsyncTask *task) {
return task->Flags.getOpaqueValue();
}
// This function exists primarily for the purpose of the concurrency runtime
// unit tests and does not serve a functional purpose.
SWIFT_CC(swift)
static AsyncTask *swift_task_suspendImpl() {
auto task = swift_task_getCurrent();
task->flagAsSuspendedOnContinuation(nullptr);
_swift_task_clearCurrent();
return task;
}
SWIFT_CC(swift)
static void swift_task_enqueueTaskOnExecutorImpl(AsyncTask *task,
SerialExecutorRef executor) {
// TODO: is 'swift_task_enqueueTaskOnExecutorImpl' used at all, outside tests?
task->flagAsAndEnqueueOnExecutor(executor);
}
namespace continuationChecking {
enum class State : uint8_t { Uninitialized, On, Off };
#if !SWIFT_CONCURRENCY_EMBEDDED
static std::atomic<State> CurrentState;
#endif
static LazyMutex ActiveContinuationsLock;
static Lazy<std::unordered_set<AsyncTask *>> ActiveContinuations;
static bool isEnabled() {
#if !SWIFT_CONCURRENCY_EMBEDDED
auto state = CurrentState.load(std::memory_order_relaxed);
if (state == State::Uninitialized) {
bool enabled =
runtime::environment::concurrencyValidateUncheckedContinuations();
state = enabled ? State::On : State::Off;
CurrentState.store(state, std::memory_order_relaxed);
}
return state == State::On;
#else
return false;
#endif
}
static void init(AsyncTask *task) {
if (!isEnabled())
return;
LazyMutex::ScopedLock guard(ActiveContinuationsLock);
auto result = ActiveContinuations.get().insert(task);
auto inserted = std::get<1>(result);
if (!inserted)
swift_Concurrency_fatalError(
0,
"Initializing continuation for task %p that was already initialized.\n",
task);
}
static void willResume(AsyncTask *task) {
if (!isEnabled())
return;
LazyMutex::ScopedLock guard(ActiveContinuationsLock);
auto removed = ActiveContinuations.get().erase(task);
if (!removed)
swift_Concurrency_fatalError(
0,
"Resuming continuation for task %p that is not awaited "
"(may have already been resumed).\n",
task);
}
} // namespace continuationChecking
SWIFT_CC(swift)
static AsyncTask *swift_continuation_initImpl(ContinuationAsyncContext *context,
AsyncContinuationFlags flags) {
context->Flags = ContinuationAsyncContext::FlagsType();
if (flags.canThrow()) context->Flags.setCanThrow(true);
if (flags.isExecutorSwitchForced())
context->Flags.setIsExecutorSwitchForced(true);
context->ErrorResult = nullptr;
// Set the generic executor as the target executor unless there's
// an executor override.
if (!flags.hasExecutorOverride())
context->ResumeToExecutor = SerialExecutorRef::generic();
// We can initialize this with a relaxed store because resumption
// must happen-after this call.
context->AwaitSynchronization.store(flags.isPreawaited()
? ContinuationStatus::Awaited
: ContinuationStatus::Pending,
std::memory_order_relaxed);
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
context->Cond = nullptr;
#endif
AsyncTask *task;
// A preawait immediately suspends the task.
if (flags.isPreawaited()) {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
task->flagAsSuspendedOnContinuation(context);
_swift_task_clearCurrent();
} else {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
}
task->ResumeContext = context;
task->ResumeTask = context->ResumeParent;
continuationChecking::init(task);
concurrency::trace::task_continuation_init(task, context);
return task;
}
SWIFT_CC(swiftasync)
static void swift_continuation_awaitImpl(ContinuationAsyncContext *context) {
#ifndef NDEBUG
auto task = swift_task_getCurrent();
assert(task && "awaiting continuation without a task");
assert(task->ResumeContext == context);
assert(task->ResumeTask == context->ResumeParent);
#endif
concurrency::trace::task_continuation_await(context);
auto &sync = context->AwaitSynchronization;
auto oldStatus = sync.load(std::memory_order_acquire);
assert((oldStatus == ContinuationStatus::Pending ||
oldStatus == ContinuationStatus::Resumed) &&
"awaiting a corrupt or already-awaited continuation");
// If the status is already Resumed, we can resume immediately.
if (oldStatus == ContinuationStatus::Resumed) {
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
// Load the current task (we already did this in assertions builds).
#ifdef NDEBUG
auto task = swift_task_getCurrent();
#endif
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task to thread model, we do not suspend the task that is waiting on
// the continuation resumption. Instead we simply block the thread on a
// condition variable keep the task alive on the thread.
//
// This condition variable can be allocated on the stack of the blocking
// thread - with the address of it published to the resuming thread via the
// context. We do this in a new scope.
do {
ConditionVariable Cond;
context->Cond = &Cond;
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
// Flag the task as suspended on the continuation.
task->flagAsSuspendedOnContinuation(context);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// If the cmpxchg is successful, the store release also publishes the write to
// the Cond in the ContinuationAsyncContext to any concurrent accessing
// thread.
//
// If it failed, then someone concurrently resumed the continuation in which
// case, we don't care about publishing the Cond in the
// ContinuationAsyncContext anyway.
#endif
// Try to transition to Awaited
bool success =
sync.compare_exchange_strong(oldStatus, ContinuationStatus::Awaited,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire);
if (success) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// This lock really protects nothing but we need to hold it
// while calling the condition wait
Cond.lock();
// Condition variables can have spurious wakeups so we need to check this in
// a do-while loop.
do {
Cond.wait();
oldStatus = sync.load(std::memory_order_relaxed);
} while (oldStatus != ContinuationStatus::Resumed);
Cond.unlock();
#else
// If that succeeded, we have nothing to do since we've successfully
// suspended the task
_swift_task_clearCurrent();
return;
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
// If it failed, it should be because someone concurrently resumed
// (note that the compare-exchange above is strong).
assert(oldStatus == ContinuationStatus::Resumed &&
"continuation was concurrently corrupted or awaited");
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// Since the condition variable is stack allocated, we don't need to do
// anything here to clean up. But we do have to end the scope that we
// created the condition variable in so that it'll be destroyed before
// we try to tail-call.
} while (false);
#else
// Restore the running state of the task and resume it.
task->flagAsRunning();
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
static void resumeTaskAfterContinuation(AsyncTask *task,
ContinuationAsyncContext *context) {
auto &sync = context->AwaitSynchronization;
auto status = sync.load(std::memory_order_acquire);
assert(status != ContinuationStatus::Resumed &&
"continuation was already resumed");
// Make sure TSan knows that the resume call happens-before the task
// restarting.
_swift_tsan_release(static_cast<Job *>(task));
// The status should be either Pending or Awaited.
//
// Case 1: Status is Pending
// No one has awaited us, we just need to set it to Resumed; if that fails
// (with a strong cmpxchg), it should be because the original thread
// concurrently set it to Awaited, in which case, we fall into Case 2.
//
// Case 2: Status is Awaited
// This is probably the more frequently hit case.
// In task-to-thread model, we update status to be Resumed and signal the
// waiting thread. In regular model, we immediately enqueue the task and can
// skip updates to the continuation state since there shouldn't be a racing
// attempt to resume the continuation.
if (status == ContinuationStatus::Pending &&
sync.compare_exchange_strong(status, ContinuationStatus::Resumed,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
return;
}
assert(status == ContinuationStatus::Awaited &&
"detected concurrent attempt to resume continuation");
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// If we see status == ContinuationStatus::Awaited, then we should also be
// seeing a pointer to the cond var since we're doing a load acquire on sync
// which pairs with the store release in swift_continuation_awaitImpl
assert(context->Cond != nullptr);
sync.store(ContinuationStatus::Resumed, std::memory_order_relaxed);
context->Cond->signal();
#else
// TODO: maybe in some mode we should set the status to Resumed here
// to make a stronger best-effort attempt to catch racing attempts to
// resume the continuation?
task->flagAsAndEnqueueOnExecutor(context->ResumeToExecutor);
#endif /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
}
SWIFT_CC(swift)
static void swift_continuation_resumeImpl(AsyncTask *task) {
continuationChecking::willResume(task);
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeImpl(AsyncTask *task) {
continuationChecking::willResume(task);
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeWithErrorImpl(AsyncTask *task,
/* +1 */ SwiftError *error) {
continuationChecking::willResume(task);
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, true);
context->ErrorResult = error;
resumeTaskAfterContinuation(task, context);
}
bool swift::swift_task_isCancelled(AsyncTask *task) {
return task->isCancelled();
}
SWIFT_CC(swift)
static CancellationNotificationStatusRecord*
swift_task_addCancellationHandlerImpl(
CancellationNotificationStatusRecord::FunctionType handler,
void *context) {
void *allocation =
swift_task_alloc(sizeof(CancellationNotificationStatusRecord));
auto unsigned_handler = swift_auth_code(handler, 3848);
auto *record = ::new (allocation)
CancellationNotificationStatusRecord(unsigned_handler, context);
bool fireHandlerNow = false;
addStatusRecordToSelf(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
if (oldStatus.isCancelled()) {
fireHandlerNow = true;
// We don't fire the cancellation handler here since this function needs
// to be idempotent
}
return true;
});
if (fireHandlerNow) {
record->run();
}
return record;
}
SWIFT_CC(swift)
static void swift_task_removeCancellationHandlerImpl(
CancellationNotificationStatusRecord *record) {
removeStatusRecordFromSelf(record);
swift_task_dealloc(record);
}
SWIFT_CC(swift)
static EscalationNotificationStatusRecord*
swift_task_addPriorityEscalationHandlerImpl(
EscalationNotificationStatusRecord::FunctionType handler,
void *context) {
void *allocation =
swift_task_alloc(sizeof(EscalationNotificationStatusRecord));
auto unsigned_handler = swift_auth_code(handler, 62877);
auto *record = ::new (allocation)
EscalationNotificationStatusRecord(handler, context);
addStatusRecordToSelf(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
return true;
});
return record;
}
SWIFT_CC(swift)
static void swift_task_removePriorityEscalationHandlerImpl(
EscalationNotificationStatusRecord *record) {
removeStatusRecordFromSelf(record);
swift_task_dealloc(record);
}
SWIFT_CC(swift)
static NullaryContinuationJob*
swift_task_createNullaryContinuationJobImpl(
size_t priority,
AsyncTask *continuation) {
auto *job = swift_cxx_newObject<NullaryContinuationJob>(swift_task_getCurrent(),
static_cast<JobPriority>(priority), continuation);
return job;
}
SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
swift_reportError(0, message);
}
// This has moved; the implementation is now in the executor; the declaration
// needs to be here because unlike other things implemented by the executor,
// this function is a compatibility override hook.
extern "C" SWIFT_RUNTIME_ATTRIBUTE_NORETURN SWIFT_CC(swift)
void swift_task_asyncMainDrainQueueImpl();
SWIFT_CC(swift)
void (*swift::swift_task_asyncMainDrainQueue_hook)(
swift_task_asyncMainDrainQueue_original original,
swift_task_asyncMainDrainQueue_override compatOverride) = nullptr;
SWIFT_CC(swift)
static void swift_task_startOnMainActorImpl(AsyncTask* task) {
AsyncTask * originalTask = _swift_task_clearCurrent();
SerialExecutorRef mainExecutor = swift_task_getMainExecutor();
if (!swift_task_isCurrentExecutor(mainExecutor))
swift_Concurrency_fatalError(0, "Not on the main executor");
swift_retain(task);
swift_job_run(task, mainExecutor);
_swift_task_setCurrent(originalTask);
}
#define OVERRIDE_TASK COMPATIBILITY_OVERRIDE
#ifdef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
/// The original COMPATIBILITY_OVERRIDE defined in CompatibilityOverride.h
/// returns the result of the impl function and override function. This results
/// in a warning emitted for noreturn functions. Overriding the override macro
/// to not return.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace, \
typedArgs, namedArgs) \
attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) { \
static Override_##name Override; \
static swift_once_t Predicate; \
swift_once( \
&Predicate, [](void *) { Override = getOverride_##name(); }, nullptr); \
if (swift_##name##_hook) { \
swift_##name##_hook(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs) \
swift_##name##Impl, \
Override); \
abort(); \
} \
if (Override != nullptr) \
Override(COMPATIBILITY_UNPAREN_WITH_COMMA(namedArgs) \
swift_##name##Impl); \
swift_##name##Impl COMPATIBILITY_PAREN(namedArgs); \
}
#else // ifndef SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
// Call directly through to the original implementation when we don't support
// overrides.
#define HOOKED_OVERRIDE_TASK_NORETURN(name, attrs, ccAttrs, namespace, \
typedArgs, namedArgs) \
attrs ccAttrs void namespace swift_##name COMPATIBILITY_PAREN(typedArgs) { \
if (swift_##name##_hook) { \
swift_##name##_hook(swift_##name##Impl, nullptr); \
abort(); \
} \
swift_##name##Impl COMPATIBILITY_PAREN(namedArgs); \
}
#endif // #else SWIFT_STDLIB_SUPPORT_BACK_DEPLOYMENT
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"