Files
swift-mirror/lib/SILGen/SILGenPattern.cpp
Michael Gottesman f4e1b2a8f2 [move-only] Update SILGen/MoveCheckers so that vars are emitted in eagerly projected box form.
This is the first slice of bringing up escaping closure support. The support is
based around introducing a new type of SILGen VarLoc: a VarLoc with a box and
without a value. Because the VarLoc only has a box, we have to in SILGen always
eagerly reproject out the address from the box. The reason why I am doing this
is that it makes it easy for the move checker to distinguish in between
different accesses to the box that we want to check separately. As such every
time that we open the box, we insert a mark_must_check
[assignable_but_not_consumable] on that project. If allocbox_to_stack manages to
determine that the box can be stack allocated, we eliminate all of the
mark_must_check and place a new mark_must_check [consumable_and_assignable] on
the alloc_stack.  The end result is that we get the old model that we had before
and also can support escaping closures.
2023-02-20 11:04:21 -08:00

3231 lines
120 KiB
C++

//===--- SILGenPattern.cpp - Pattern matching codegen ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "patternmatch-silgen"
#include "Cleanup.h"
#include "ExitableFullExpr.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGen.h"
#include "Scope.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/SILOptions.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormattedStream.h"
using namespace swift;
using namespace Lowering;
//===----------------------------------------------------------------------===//
// Pattern Utilities
//===----------------------------------------------------------------------===//
// TODO: These routines should probably be refactored into their own file since
// they have nothing to do with the implementation of SILGenPattern
// specifically.
/// Shallow-dump a pattern node one level deep for debug purposes.
static void dumpPattern(const Pattern *p, llvm::raw_ostream &os) {
if (!p) {
// We use null to represent a synthetic wildcard.
os << '_';
return;
}
p = p->getSemanticsProvidingPattern();
switch (p->getKind()) {
case PatternKind::Any:
os << '_';
return;
case PatternKind::Expr:
os << "<expr>";
return;
case PatternKind::Named:
os << "var " << cast<NamedPattern>(p)->getBoundName();
return;
case PatternKind::Tuple: {
unsigned numFields = cast<TuplePattern>(p)->getNumElements();
if (numFields == 0)
os << "()";
else if (numFields == 1)
os << "(_)";
else {
os << '(';
for (unsigned i = 0; i < numFields - 1; ++i)
os << ',';
os << ')';
}
return;
}
case PatternKind::Is:
os << "is ";
cast<IsPattern>(p)->getCastType()->print(os);
break;
case PatternKind::EnumElement: {
auto eep = cast<EnumElementPattern>(p);
os << '.' << eep->getName();
return;
}
case PatternKind::OptionalSome:
os << ".some";
return;
case PatternKind::Bool:
os << (cast<BoolPattern>(p)->getValue() ? "true" : "false");
return;
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
llvm_unreachable("not semantic");
}
}
/// Is the given specializable pattern directly refutable, as opposed
/// to containing some refutability in a nested position?
static bool isDirectlyRefutablePattern(const Pattern *p) {
if (!p) return false;
switch (p->getKind()) {
case PatternKind::Any:
case PatternKind::Named:
case PatternKind::Expr:
llvm_unreachable("non-specializable patterns");
// Tuple and nominal-type patterns are not themselves directly refutable.
case PatternKind::Tuple:
return false;
// isa and enum-element patterns are refutable, at least in theory.
case PatternKind::Is:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
return true;
// Recur into simple wrapping patterns.
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return isDirectlyRefutablePattern(p->getSemanticsProvidingPattern());
}
llvm_unreachable("bad pattern");
}
const unsigned AlwaysRefutable = ~0U;
/// Return the number of times a pattern must be specialized
/// before becoming irrefutable.
///
/// \return AlwaysRefutable if the pattern is never irrefutable
static unsigned getNumSpecializationsRecursive(const Pattern *p, unsigned n) {
// n is partially here to make simple cases tail-recursive, but it
// also gives us a simple opportunity to bail out early when we see
// an always-refutable pattern.
if (n == AlwaysRefutable) return n;
switch (p->getKind()) {
// True wildcards.
case PatternKind::Any:
case PatternKind::Named:
return n;
// Expressions are always-refutable wildcards.
case PatternKind::Expr:
return AlwaysRefutable;
// Tuple and nominal-type patterns are not themselves directly refutable.
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(p);
for (auto &elt : tuple->getElements())
n = getNumSpecializationsRecursive(elt.getPattern(), n);
return n;
}
// isa and enum-element patterns are refutable, at least in theory.
case PatternKind::Is: {
auto isa = cast<IsPattern>(p);
++n;
if (auto sub = isa->getSubPattern())
return getNumSpecializationsRecursive(sub, n);
return n;
}
case PatternKind::EnumElement: {
auto en = cast<EnumElementPattern>(p);
++n;
if (en->hasSubPattern())
n = getNumSpecializationsRecursive(en->getSubPattern(), n);
return n;
}
case PatternKind::OptionalSome: {
auto en = cast<OptionalSomePattern>(p);
return getNumSpecializationsRecursive(en->getSubPattern(), n+1);
}
case PatternKind::Bool:
return n+1;
// Recur into simple wrapping patterns.
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return getNumSpecializationsRecursive(p->getSemanticsProvidingPattern(), n);
}
llvm_unreachable("bad pattern");
}
/// Return the number of times a pattern must be specialized
/// before becoming irrefutable.
///
/// \return AlwaysRefutable if the pattern is never irrefutable
static unsigned getNumSpecializations(const Pattern *p) {
return (p ? getNumSpecializationsRecursive(p, 0) : 0);
}
/// True if a pattern is a wildcard, meaning it matches any value. '_' and
/// variable patterns are wildcards. We also consider ExprPatterns to be
/// wildcards; we test the match expression as a guard outside of the normal
/// pattern clause matrix. When destructuring wildcard patterns, we also use
/// nullptr to represent newly-constructed wildcards.
static bool isWildcardPattern(const Pattern *p) {
if (!p)
return true;
switch (p->getKind()) {
// Simple wildcards.
case PatternKind::Any:
case PatternKind::Expr:
case PatternKind::Named:
return true;
// Non-wildcards.
case PatternKind::Tuple:
case PatternKind::Is:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
return false;
// Recur into simple wrapping patterns.
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
return isWildcardPattern(p->getSemanticsProvidingPattern());
}
llvm_unreachable("Unhandled PatternKind in switch.");
}
/// Check to see if the given pattern is a specializing pattern,
/// and return a semantic pattern for it.
Pattern *getSpecializingPattern(Pattern *p) {
// Empty entries are basically AnyPatterns.
if (!p) return nullptr;
p = p->getSemanticsProvidingPattern();
return (isWildcardPattern(p) ? nullptr : p);
}
/// Given a pattern stored in a clause matrix, check to see whether it
/// can be specialized the same way as the first one.
static Pattern *getSimilarSpecializingPattern(Pattern *p, Pattern *first) {
// Empty entries are basically AnyPatterns.
if (!p) return nullptr;
assert(first && getSpecializingPattern(first) == first);
// Map down to the semantics-providing pattern.
p = p->getSemanticsProvidingPattern();
// If the patterns are exactly the same kind, we might be able to treat them
// similarly.
switch (p->getKind()) {
case PatternKind::EnumElement:
case PatternKind::OptionalSome: {
// If one is an OptionalSomePattern and one is an EnumElementPattern, then
// they are the same since the OptionalSomePattern is just sugar for
// .Some(x).
if ((isa<OptionalSomePattern>(p) && isa<EnumElementPattern>(first)) ||
(isa<OptionalSomePattern>(first) && isa<EnumElementPattern>(p)))
return p;
LLVM_FALLTHROUGH;
}
case PatternKind::Tuple:
case PatternKind::Named:
case PatternKind::Any:
case PatternKind::Bool:
case PatternKind::Expr: {
// These kinds are only similar to the same kind.
if (p->getKind() == first->getKind())
return p;
return nullptr;
}
case PatternKind::Is: {
auto pIs = cast<IsPattern>(p);
// 'is' patterns are only similar to matches to the same type.
if (auto firstIs = dyn_cast<IsPattern>(first)) {
if (firstIs->getCastType()->isEqual(pIs->getCastType()))
return p;
}
return nullptr;
}
case PatternKind::Paren:
case PatternKind::Binding:
case PatternKind::Typed:
llvm_unreachable("not semantic");
}
llvm_unreachable("Unhandled PatternKind in switch.");
}
//===----------------------------------------------------------------------===//
// SILGenPattern Emission
//===----------------------------------------------------------------------===//
namespace {
/// A row which we intend to specialize.
struct RowToSpecialize {
/// The pattern from this row which we are specializing upon.
swift::Pattern *Pattern;
/// The index of the target row.
unsigned RowIndex;
/// Whether the row will be irrefutable after this specialization.
bool Irrefutable;
/// Profile Count of hte row we intend to specialize.
ProfileCounter Count;
};
/// Changes that we wish to apply to a row which we have specialized.
struct SpecializedRow {
/// The patterns which should replace the specialized pattern.
SmallVector<Pattern *, 4> Patterns;
/// The index of the target row.
unsigned RowIndex;
};
/// An array of arguments.
using ArgArray = ArrayRef<ConsumableManagedValue>;
/// A callback which dispatches a failure case.
using FailureHandler =
std::function<void(SILLocation failureLoc)>;
/// A callback which redispatches a set of specialized rows.
using SpecializationHandler =
std::function<void(ArgArray values, ArrayRef<SpecializedRow> rowChanges,
const FailureHandler &contDest)>;
class ClauseMatrix;
class ClauseRow;
/// A class controlling the emission of the decision tree for a pattern match
/// statement (switch, if/let, or while/let condition).
///
/// The value cleanup rules during pattern match emission are complicated
/// because we're trying to allow as much borrowing/forwarding of
/// values as possible, so that we only need to actually copy/retain
/// values as late as possible. This means we end up having to do
/// a pretty delicate dance to manage the active set of cleanups.
///
/// We split values into three categories:
/// - TakeAlways (which are owned by the current portion of the
/// decision tree)
/// - CopyOnSuccess (which are not owned at all by the current
/// portion of the decision tree)
/// - TakeOnSuccess (which are owned only if the decision tree
/// actually passes all guards and enters a case block)
/// In particular, it is important that a TakeOnSuccess value not be
/// destructively modified unless success is assured.
///
/// Whenever the decision tree branches, it must forward values down
/// correctly. A TakeAlways value becomes TakeOnSuccess for all but
/// last branch of the tree.
///
/// Values should be forwarded down the decision tree with the
/// appropriate cleanups. CopyOnSuccess values should not have
/// attached cleanups. TakeAlways or TakeOnSuccess values should have
/// cleanups when their types are non-trivial. When a value is
/// forwarded down into a branch of the decision tree, its cleanup
/// might be deactivated within that subtree; to protect against the
/// cleanup being removed when this happens, the cleanup must be first
/// put in the PersistentlyActive state before the emission of the
/// subtree, then restored to its current state when the subtree is
/// finished.
///
/// The set of active cleanups should always be instantaneously
/// consistent: that is, there should always be exactly one cleanup
/// tracking a +1 value. It's okay to deactivate a cleanup for a
/// TakeOnSuccess value and then introduce new cleanups for all of its
/// subobjects. Jumps outside of the decision tree entirely will be
/// fine: the jump will simply destroy the subobjects instead of the
/// aggregate. However, jumps to somewhere else within the decision
/// tree require careful attention if the jump could lead to a
/// cleanups depth outside the subobject cleanups (causing them to be
/// run) but inside the old cleanup (in which case it will be
/// reactivated). Therefore, such borrowings must be "unforwarded"
/// during the emission of such jumps by disabling the new cleanups
/// and re-enabling the outer cleanup. It's okay to re-enable
/// cleanups like this because these jumps only occur when a branch of
/// the decision tree fails with a non-exhaustive match, which means
/// the value should have been passed down as TakeOnSuccess, and the
/// decision tree is not allowed to destructively modify objects that
/// are TakeOnSuccess when failure is still a possibility.
class PatternMatchEmission {
PatternMatchEmission(const PatternMatchEmission &) = delete;
PatternMatchEmission &operator=(const PatternMatchEmission &) = delete;
SILGenFunction &SGF;
/// PatternMatchStmt - The 'switch', or do-catch statement that we're emitting
/// this pattern match for.
Stmt *PatternMatchStmt;
CleanupsDepth PatternMatchStmtDepth;
llvm::MapVector<CaseStmt*, std::pair<SILBasicBlock*, bool>> SharedCases;
llvm::DenseMap<VarDecl*, SILValue> Temporaries;
using CompletionHandlerTy =
llvm::function_ref<void(PatternMatchEmission &, ArgArray, ClauseRow &)>;
CompletionHandlerTy CompletionHandler;
public:
PatternMatchEmission(SILGenFunction &SGF, Stmt *S,
CompletionHandlerTy completionHandler)
: SGF(SGF), PatternMatchStmt(S),
CompletionHandler(completionHandler) {}
Optional<SILLocation> getSubjectLocationOverride(SILLocation loc) const {
if (auto *Switch = dyn_cast<SwitchStmt>(PatternMatchStmt))
if (!Switch->isImplicit())
return SILLocation(Switch->getSubjectExpr());
return None;
}
void emitDispatch(ClauseMatrix &matrix, ArgArray args,
const FailureHandler &failure);
void initSharedCaseBlockDest(CaseStmt *caseBlock, bool hasFallthroughTo);
void emitAddressOnlyAllocations();
void emitAddressOnlyInitialization(VarDecl *dest, SILValue value);
JumpDest getSharedCaseBlockDest(CaseStmt *caseStmt);
void emitSharedCaseBlocks(llvm::function_ref<void(CaseStmt *)> bodyEmitter);
void emitCaseBody(CaseStmt *caseBlock);
SILValue getAddressOnlyTemporary(VarDecl *decl) {
auto found = Temporaries.find(decl);
assert(found != Temporaries.end());
return found->second;
}
private:
void emitWildcardDispatch(ClauseMatrix &matrix, ArgArray args, unsigned row,
const FailureHandler &failure);
void bindRefutablePatterns(const ClauseRow &row, ArgArray args,
const FailureHandler &failure);
void emitGuardBranch(SILLocation loc, Expr *guard,
const FailureHandler &failure);
void bindIrrefutablePatterns(const ClauseRow &row, ArgArray args,
bool forIrrefutableRow, bool hasMultipleItems);
void bindVariable(Pattern *pattern, VarDecl *var,
ConsumableManagedValue value, bool isIrrefutable,
bool hasMultipleItems);
void emitSpecializedDispatch(ClauseMatrix &matrix, ArgArray args,
unsigned &lastRow, unsigned column,
const FailureHandler &failure);
void emitTupleObjectDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure);
void emitTupleDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure);
void emitIsDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure);
void emitEnumElementObjectDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure,
ProfileCounter defaultCaseCount);
void emitEnumElementDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure,
ProfileCounter defaultCaseCount);
void emitBoolDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleSpec,
const FailureHandler &failure);
};
/// A handle to a row in a clause matrix. Does not own memory; use of the
/// ClauseRow must be dominated by its originating ClauseMatrix.
///
/// TODO: This should be refactored into a more general formulation that uses a
/// child template pattern to inject our logic. This will then allow us to
/// inject "mock" objects in a unittest file.
class ClauseRow {
friend class ClauseMatrix;
Stmt *ClientData;
Pattern *CasePattern;
Expr *CaseGuardExpr;
/// HasFallthroughTo - True if there is a fallthrough into this case.
bool HasFallthroughTo;
/// The number of remaining specializations until this row becomes
/// irrefutable.
unsigned NumRemainingSpecializations;
SmallVector<Pattern*, 4> Columns;
public:
ClauseRow(Stmt *clientData, Pattern *CasePattern, Expr *CaseGuardExpr,
bool HasFallthroughTo)
: ClientData(clientData),
CasePattern(CasePattern),
CaseGuardExpr(CaseGuardExpr),
HasFallthroughTo(HasFallthroughTo) {
Columns.push_back(CasePattern);
if (CaseGuardExpr)
NumRemainingSpecializations = AlwaysRefutable;
else
NumRemainingSpecializations = getNumSpecializations(Columns[0]);
}
template<typename T>
T *getClientData() const {
return static_cast<T*>(ClientData);
}
Pattern *getCasePattern() const { return CasePattern; }
Expr *getCaseGuardExpr() const { return CaseGuardExpr; }
bool hasFallthroughTo() const { return HasFallthroughTo; }
ArrayRef<Pattern *> getColumns() const {
return Columns;
}
MutableArrayRef<Pattern *> getColumns() {
return Columns;
}
/// Specialize the given column to the given array of new columns.
///
/// Places the new columns using the column-specialization algorithm.
void specializeInPlace(unsigned column, ArrayRef<Pattern *> newColumns) {
// We assume that this method always removes one level of pattern
// and replacing it with its direct sub-patterns. Therefore, we
// can adjust the number of remaining specializations very easily.
//
// We don't need to test whether NumRemainingSpecializations is
// AlwaysRefutable before decrementing because we only ever test
// this value against zero.
if (isDirectlyRefutablePattern(Columns[column]))
--NumRemainingSpecializations;
if (newColumns.size() == 1) {
Columns[column] = newColumns[0];
} else if (newColumns.empty()) {
if (column + 1 == Columns.size()) {
Columns.pop_back();
} else {
Columns[column] = Columns.pop_back_val();
}
} else {
Columns[column] = newColumns[0];
Columns.append(newColumns.begin() + 1, newColumns.end());
}
}
/// Is this row currently irrefutable?
bool isIrrefutable() const {
return NumRemainingSpecializations == 0;
}
/// Will this row be irrefutable after we single-step specialize the
/// given column?
bool isIrrefutableAfterSpecializing(unsigned column) const {
if (NumRemainingSpecializations == 1)
return isDirectlyRefutablePattern(Columns[column]);
return NumRemainingSpecializations == 0;
}
Pattern * const *begin() const {
return getColumns().begin();
}
Pattern * const *end() const {
return getColumns().end();
}
Pattern **begin() {
return getColumns().begin();
}
Pattern **end() {
return getColumns().end();
}
Pattern *operator[](unsigned column) const {
return getColumns()[column];
}
Pattern *&operator[](unsigned column) {
return getColumns()[column];
}
unsigned columns() const {
return Columns.size();
}
LLVM_ATTRIBUTE_USED void dump() const { return print(llvm::errs()); }
void print(llvm::raw_ostream &out) const;
};
/// A clause matrix. This matrix associates subpattern rows to their
/// corresponding guard expressions, and associates destination basic block
/// and columns to their associated subject value.
class ClauseMatrix {
SmallVector<ClauseRow *, 4> Rows;
ClauseMatrix(const ClauseMatrix &) = delete;
ClauseMatrix &operator=(const ClauseMatrix &) = delete;
ClauseMatrix() = default;
public:
/// Create a clause matrix from the given pattern-row storage.
/// (actively matched values) and enough initial capacity for the
/// given number of rows. The clause matrix will be initialized with zero rows
/// and a column for every occurrence. Rows can be added using addRows.
explicit ClauseMatrix(MutableArrayRef<ClauseRow> rows) {
for (ClauseRow &row : rows) {
Rows.push_back(&row);
}
}
ClauseMatrix(ClauseMatrix &&) = default;
ClauseMatrix &operator=(ClauseMatrix &&) = default;
unsigned rows() const { return Rows.size(); }
ClauseRow &operator[](unsigned row) {
return *Rows[row];
}
const ClauseRow &operator[](unsigned row) const {
return *Rows[row];
}
/// Destructively specialize the rows of this clause matrix. The
/// rows should not be used in this matrix afterwards.
ClauseMatrix specializeRowsInPlace(unsigned column,
ArrayRef<SpecializedRow> newRows) {
assert(!newRows.empty() && "specializing for an empty set of rows?");
ClauseMatrix innerMatrix;
for (unsigned i = 0, e = newRows.size(); i != e; ++i) {
assert((i == 0 || newRows[i - 1].RowIndex < newRows[i].RowIndex) &&
"specialized rows are out of order?");
ClauseRow *rowData = Rows[newRows[i].RowIndex];
rowData->specializeInPlace(column, newRows[i].Patterns);
innerMatrix.Rows.push_back(rowData);
}
return innerMatrix;
}
LLVM_ATTRIBUTE_USED void dump() const { return print(llvm::errs()); }
void print(llvm::raw_ostream &out) const;
};
} // end anonymous namespace
void ClauseRow::print(llvm::raw_ostream &out) const {
out << "[ ";
for (const Pattern *column : *this) {
dumpPattern(column, out);
out << ' ';
}
out << "]\n";
}
void ClauseMatrix::print(llvm::raw_ostream &out) const {
if (Rows.empty()) { return; }
// Tabulate the strings for each column, row-major.
// We need to pad the strings out like a real matrix.
SmallVector<std::vector<std::string>, 4> patternStrings;
SmallVector<size_t, 4> columnSizes;
patternStrings.resize(Rows.size());
llvm::formatted_raw_ostream fos(out);
for (unsigned r = 0, rend = rows(); r < rend; ++r) {
const ClauseRow &row = (*this)[r];
auto &rowStrings = patternStrings[r];
// Make sure that column sizes has an entry for all our columns.
if (row.columns() > columnSizes.size())
columnSizes.resize(row.columns(), 0);
rowStrings.reserve(row.columns());
for (unsigned c = 0, cend = row.columns(); c < cend; ++c) {
rowStrings.push_back("");
std::string &str = rowStrings.back();
{
llvm::raw_string_ostream ss(str);
dumpPattern(row[c], ss);
ss.flush();
}
columnSizes[c] = std::max(columnSizes[c], str.size());
}
}
for (unsigned r = 0, rend = rows(); r < rend; ++r) {
fos << "[ ";
for (unsigned c = 0, cend = patternStrings[r].size(); c < cend; ++c) {
unsigned start = fos.getColumn();
fos << patternStrings[r][c];
fos.PadToColumn(start + columnSizes[c] + 1);
}
fos << "]\n";
}
fos.flush();
}
/// Forward a value down into a branch of the decision tree that may
/// fail and lead back to other branch(es).
///
/// Essentially equivalent to forwardIntoIrrefutableSubtree, except it
/// converts AlwaysTake to TakeOnSuccess.
static ConsumableManagedValue
forwardIntoSubtree(SILGenFunction &SGF, SILLocation loc,
CleanupStateRestorationScope &scope,
ConsumableManagedValue outerCMV) {
ManagedValue outerMV = outerCMV.getFinalManagedValue();
if (!outerMV.hasCleanup()) return outerCMV;
auto consumptionKind = outerCMV.getFinalConsumption();
(void)consumptionKind;
// If we have an object and it is take always, we need to borrow the value
// since our subtree does not own the value.
if (outerMV.getType().isObject()) {
assert(consumptionKind == CastConsumptionKind::TakeAlways &&
"Object without cleanup that is not take_always?!");
return {outerMV.borrow(SGF, loc), CastConsumptionKind::BorrowAlways};
}
// Only address only values use TakeOnSuccess.
assert(outerMV.getType().isAddressOnly(SGF.F) &&
"TakeOnSuccess can only be used with address only values");
assert((consumptionKind == CastConsumptionKind::TakeAlways ||
consumptionKind == CastConsumptionKind::TakeOnSuccess) &&
"non-+1 consumption with a cleanup?");
scope.pushCleanupState(outerMV.getCleanup(),
CleanupState::PersistentlyActive);
// Success means that we won't end up in the other branch,
// but failure doesn't.
return {outerMV, CastConsumptionKind::TakeOnSuccess};
}
/// Forward a value down into an irrefutable branch of the decision tree.
///
/// Essentially equivalent to forwardIntoSubtree, except it preserves
/// AlwaysTake consumption.
static void forwardIntoIrrefutableSubtree(SILGenFunction &SGF,
CleanupStateRestorationScope &scope,
ConsumableManagedValue outerCMV) {
ManagedValue outerMV = outerCMV.getFinalManagedValue();
if (!outerMV.hasCleanup()) return;
assert(outerCMV.getFinalConsumption() != CastConsumptionKind::CopyOnSuccess
&& "copy-on-success value with cleanup?");
scope.pushCleanupState(outerMV.getCleanup(),
CleanupState::PersistentlyActive);
}
namespace {
class ArgForwarderBase {
SILGenFunction &SGF;
CleanupStateRestorationScope Scope;
protected:
ArgForwarderBase(SILGenFunction &SGF) : SGF(SGF), Scope(SGF.Cleanups) {}
ConsumableManagedValue forward(ConsumableManagedValue value,
SILLocation loc) {
return forwardIntoSubtree(SGF, loc, Scope, value);
}
void forwardIntoIrrefutable(ConsumableManagedValue value) {
return forwardIntoIrrefutableSubtree(SGF, Scope, value);
}
};
/// A RAII-ish object for forwarding a bunch of arguments down to one
/// side of a branch.
class ArgForwarder : private ArgForwarderBase {
ArgArray OuterArgs;
SmallVector<ConsumableManagedValue, 4> ForwardedArgsBuffer;
public:
ArgForwarder(SILGenFunction &SGF, ArgArray outerArgs, SILLocation loc,
bool isFinalUse)
: ArgForwarderBase(SGF), OuterArgs(outerArgs) {
// If this is a final use along this path, we don't need to change
// any of the args. However, we do need to make sure that the
// cleanup state gets restored later, because being final on this
// path isn't the same as being final along all paths.
if (isFinalUse) {
for (auto &outerArg : outerArgs)
forwardIntoIrrefutable(outerArg);
} else {
ForwardedArgsBuffer.reserve(outerArgs.size());
for (auto &outerArg : outerArgs)
ForwardedArgsBuffer.push_back(forward(outerArg, loc));
}
}
ArgArray getForwardedArgs() const {
if (didForwardArgs()) return ForwardedArgsBuffer;
return OuterArgs;
}
private:
bool didForwardArgs() const { return !ForwardedArgsBuffer.empty(); }
};
/// A RAII-ish object for forwarding a bunch of arguments down to one
/// side of a branch.
class SpecializedArgForwarder : private ArgForwarderBase {
ArgArray OuterArgs;
bool IsFinalUse;
SmallVector<ConsumableManagedValue, 4> ForwardedArgsBuffer;
public:
/// Construct a specialized arg forwarder for a (locally) successful
/// dispatch.
SpecializedArgForwarder(SILGenFunction &SGF, ArgArray outerArgs,
unsigned column, ArgArray newArgs, SILLocation loc,
bool isFinalUse)
: ArgForwarderBase(SGF), OuterArgs(outerArgs), IsFinalUse(isFinalUse) {
assert(column < outerArgs.size());
ForwardedArgsBuffer.reserve(outerArgs.size() - 1 + newArgs.size());
// Place the new columns with the column-specialization algorithm:
// - place the first new column (if any) in the same position as the
// original column;
// - if there are no new columns, and the removed column was not
// the last column, the last column is moved to the removed column.
// The outer columns before the specialized column.
for (unsigned i = 0, e = column; i != e; ++i)
ForwardedArgsBuffer.push_back(forward(outerArgs[i], loc));
// The specialized column.
if (!newArgs.empty()) {
ForwardedArgsBuffer.push_back(newArgs[0]);
newArgs = newArgs.slice(1);
} else if (column + 1 < outerArgs.size()) {
ForwardedArgsBuffer.push_back(forward(outerArgs.back(), loc));
outerArgs = outerArgs.slice(0, outerArgs.size() - 1);
}
// The rest of the outer columns.
for (unsigned i = column + 1, e = outerArgs.size(); i != e; ++i)
ForwardedArgsBuffer.push_back(forward(outerArgs[i], loc));
// The rest of the new args.
ForwardedArgsBuffer.append(newArgs.begin(), newArgs.end());
}
/// Returns the forward arguments. The new rows are placed using
/// the column-specialization algorithm.
ArgArray getForwardedArgs() const {
return ForwardedArgsBuffer;
}
private:
ConsumableManagedValue forward(ConsumableManagedValue value,
SILLocation loc) {
if (IsFinalUse) {
ArgForwarderBase::forwardIntoIrrefutable(value);
return value;
} else {
return ArgForwarderBase::forward(value, loc);
}
}
};
/// A RAII-ish object for undoing the forwarding of cleanups along a
/// failure path.
class ArgUnforwarder {
SILGenFunction &SGF;
CleanupStateRestorationScope Scope;
public:
ArgUnforwarder(SILGenFunction &SGF) : SGF(SGF), Scope(SGF.Cleanups) {}
static bool requiresUnforwarding(SILGenFunction &SGF,
ConsumableManagedValue operand) {
return operand.hasCleanup() &&
operand.getFinalConsumption()
== CastConsumptionKind::TakeOnSuccess;
}
/// Given that an aggregate was divided into a set of borrowed
/// values which are now being tracked individually, temporarily
/// disable all of the borrowed-value cleanups and restore the
/// aggregate cleanup.
void unforwardBorrowedValues(ConsumableManagedValue aggregate,
ArgArray subobjects) {
if (!requiresUnforwarding(SGF, aggregate))
return;
Scope.pushCleanupState(aggregate.getCleanup(), CleanupState::Active);
for (auto &subobject : subobjects) {
if (subobject.hasCleanup())
Scope.pushCleanupState(subobject.getCleanup(), CleanupState::Dormant);
}
}
};
} // end anonymous namespace
/// Return the dispatchable length of the given column.
static unsigned getConstructorPrefix(const ClauseMatrix &matrix,
unsigned firstRow, unsigned column) {
assert(firstRow < matrix.rows() &&
"getting column constructor prefix in matrix with no rows remaining?");
// Require the first row to be a non-wildcard.
auto first = getSpecializingPattern(matrix[firstRow][column]);
if (!first) return 0;
// Then count the number of rows with the same kind of pattern.
unsigned row = firstRow + 1;
for (unsigned rend = matrix.rows(); row < rend; ++row) {
if (!getSimilarSpecializingPattern(matrix[row][column], first))
break;
}
return row - firstRow;
}
/// Select the "necessary column", Maranget's term for the column
/// most likely to give an optimal decision tree.
///
/// \return None if we didn't find a meaningful necessary column
static Optional<unsigned>
chooseNecessaryColumn(const ClauseMatrix &matrix, unsigned firstRow) {
assert(firstRow < matrix.rows() &&
"choosing necessary column of matrix with no rows remaining?");
// First of all, if we have zero or one columns, this is trivial
// to decide.
auto numColumns = matrix[firstRow].columns();
if (numColumns <= 1) {
if (numColumns == 1 && !isWildcardPattern(matrix[firstRow][0])) {
return 0;
}
return None;
}
// Use the "constructor prefix" heuristic from Maranget to pick the
// necessary column. The column with the most pattern nodes prior to a
// wildcard turns out to be a good and cheap-to-calculate heuristic for
// generating an optimal decision tree. We ignore patterns that aren't
// similar to the head pattern.
Optional<unsigned> bestColumn;
unsigned longestConstructorPrefix = 0;
for (unsigned c = 0; c != numColumns; ++c) {
unsigned constructorPrefix = getConstructorPrefix(matrix, firstRow, c);
if (constructorPrefix > longestConstructorPrefix) {
longestConstructorPrefix = constructorPrefix;
bestColumn = c;
}
}
return bestColumn;
}
/// Recursively emit a decision tree from the given pattern matrix.
void PatternMatchEmission::emitDispatch(ClauseMatrix &clauses, ArgArray args,
const FailureHandler &outerFailure) {
if (clauses.rows() == 0) {
SGF.B.createUnreachable(SILLocation(PatternMatchStmt));
return;
}
unsigned firstRow = 0;
while (true) {
// If there are no rows remaining, then we fail.
if (firstRow == clauses.rows()) {
outerFailure(clauses[clauses.rows() - 1].getCasePattern());
return;
}
// Try to find a "necessary column".
Optional<unsigned> column = chooseNecessaryColumn(clauses, firstRow);
// Emit the subtree in its own scope.
ExitableFullExpr scope(SGF, CleanupLocation(PatternMatchStmt));
auto innerFailure = [&](SILLocation loc) {
if (firstRow == clauses.rows()) return outerFailure(loc);
SGF.Cleanups.emitBranchAndCleanups(scope.getExitDest(), loc);
};
// If there is no necessary column, just emit the first row.
if (!column) {
unsigned wildcardRow = firstRow++;
emitWildcardDispatch(clauses, args, wildcardRow, innerFailure);
} else {
// Otherwise, specialize on the necessary column.
emitSpecializedDispatch(clauses, args, firstRow, column.value(),
innerFailure);
}
assert(!SGF.B.hasValidInsertionPoint());
SILBasicBlock *contBB = scope.exit();
// If the continuation block has no uses, ...
if (contBB->pred_empty()) {
// If we have no more rows to emit, clear the IP and destroy the
// continuation block.
if (firstRow == clauses.rows()) {
SGF.B.clearInsertionPoint();
SGF.eraseBasicBlock(contBB);
return;
}
// Otherwise, if there is no fallthrough, then the next row is
// unreachable: emit a dead code diagnostic if:
// 1) It's for a 'default' case (since Space Engine already handles
// unreachable enum case patterns) or it's for a enum case which
// has expression patterns since redundancy checking for such
// patterns isn't sufficiently done by the Space Engine.
// 2) It's for a case statement in a do-catch.
if (!clauses[firstRow].hasFallthroughTo()) {
SourceLoc Loc;
bool isDefault = false;
bool isParentDoCatch = false;
bool caseHasExprPattern = false;
if (auto *S = clauses[firstRow].getClientData<Stmt>()) {
Loc = S->getStartLoc();
if (auto *CS = dyn_cast<CaseStmt>(S)) {
caseHasExprPattern = llvm::any_of(
CS->getCaseLabelItems(), [&](const CaseLabelItem item) {
return item.getPattern()->getKind() == PatternKind::Expr;
});
isParentDoCatch = CS->getParentKind() == CaseParentKind::DoCatch;
isDefault = CS->isDefault();
}
} else {
Loc = clauses[firstRow].getCasePattern()->getStartLoc();
}
if (isParentDoCatch || isDefault || caseHasExprPattern) {
SGF.SGM.diagnose(Loc, diag::unreachable_case, isDefault);
}
}
}
}
}
/// Emit the decision tree for a row containing only non-specializing
/// patterns.
///
/// \param matrixArgs - appropriate for the entire clause matrix, not
/// just this one row
void PatternMatchEmission::emitWildcardDispatch(ClauseMatrix &clauses,
ArgArray matrixArgs,
unsigned row,
const FailureHandler &failure) {
// Get appropriate arguments.
ArgForwarder forwarder(SGF, matrixArgs, clauses[row].getCasePattern(),
/*isFinalUse*/ row + 1 == clauses.rows());
ArgArray args = forwarder.getForwardedArgs();
// Bind all the refutable patterns first. We want to do this first
// so that we can treat the rest of the bindings as inherently
// successful if we don't have a guard. This approach assumes that
// expression patterns can't refer to bound arguments.
bindRefutablePatterns(clauses[row], args, failure);
// Okay, the rest of the bindings are irrefutable if there isn't a guard.
Expr *guardExpr = clauses[row].getCaseGuardExpr();
bool hasGuard = guardExpr != nullptr;
assert(!hasGuard || !clauses[row].isIrrefutable());
auto stmt = clauses[row].getClientData<Stmt>();
assert(isa<CaseStmt>(stmt));
auto *caseStmt = dyn_cast<CaseStmt>(stmt);
bool hasMultipleItems =
caseStmt && (clauses[row].hasFallthroughTo() ||
caseStmt->getCaseLabelItems().size() > 1);
// Bind the rest of the patterns.
bindIrrefutablePatterns(clauses[row], args, !hasGuard, hasMultipleItems);
// Emit the guard branch, if it exists.
if (guardExpr) {
this->emitGuardBranch(guardExpr, guardExpr, failure);
}
// Enter the row.
CompletionHandler(*this, args, clauses[row]);
assert(!SGF.B.hasValidInsertionPoint());
}
/// Bind all the refutable patterns in the given row.
void PatternMatchEmission::
bindRefutablePatterns(const ClauseRow &row, ArgArray args,
const FailureHandler &failure) {
assert(row.columns() == args.size());
for (unsigned i = 0, e = args.size(); i != e; ++i) {
if (!row[i]) // We use null patterns to mean artificial AnyPatterns
continue;
Pattern *pattern = row[i]->getSemanticsProvidingPattern();
switch (pattern->getKind()) {
// Irrefutable patterns that we'll handle in a later pass.
case PatternKind::Any:
break;
case PatternKind::Named:
break;
case PatternKind::Expr: {
ExprPattern *exprPattern = cast<ExprPattern>(pattern);
DebugLocOverrideRAII LocOverride{SGF.B,
getSubjectLocationOverride(pattern)};
FullExpr scope(SGF.Cleanups, CleanupLocation(pattern));
bindVariable(pattern, exprPattern->getMatchVar(), args[i],
/*isForSuccess*/ false, /* hasMultipleItems */ false);
emitGuardBranch(pattern, exprPattern->getMatchExpr(), failure);
break;
}
default:
llvm_unreachable("bad pattern kind");
}
}
}
/// Bind all the irrefutable patterns in the given row, which is nothing
/// but wildcard patterns.
///
/// Note that forIrrefutableRow can be true even if !row.isIrrefutable()
/// because we might have already bound all the refutable parts.
void PatternMatchEmission::bindIrrefutablePatterns(const ClauseRow &row,
ArgArray args,
bool forIrrefutableRow,
bool hasMultipleItems) {
assert(row.columns() == args.size());
for (unsigned i = 0, e = args.size(); i != e; ++i) {
if (!row[i]) // We use null patterns to mean artificial AnyPatterns
continue;
Pattern *pattern = row[i]->getSemanticsProvidingPattern();
switch (pattern->getKind()) {
case PatternKind::Any: // We can just drop Any values.
break;
case PatternKind::Expr: // Ignore expression patterns, which we should have
// bound in an earlier pass.
break;
case PatternKind::Named: {
NamedPattern *named = cast<NamedPattern>(pattern);
bindVariable(pattern, named->getDecl(), args[i], forIrrefutableRow,
hasMultipleItems);
break;
}
default:
llvm_unreachable("bad pattern kind");
}
}
}
/// Should we take control of the mang
static bool shouldTake(ConsumableManagedValue value, bool isIrrefutable) {
switch (value.getFinalConsumption()) {
case CastConsumptionKind::TakeAlways: return true;
case CastConsumptionKind::TakeOnSuccess: return isIrrefutable;
case CastConsumptionKind::CopyOnSuccess: return false;
case CastConsumptionKind::BorrowAlways: return false;
}
llvm_unreachable("bad consumption kind");
}
/// Bind a variable into the current scope.
void PatternMatchEmission::bindVariable(Pattern *pattern, VarDecl *var,
ConsumableManagedValue value,
bool isIrrefutable,
bool hasMultipleItems) {
// If this binding is one of multiple patterns, each individual binding
// will just be let, and then the chosen value will get forwarded into
// a var box in the final shared case block.
bool immutable = var->isLet() || hasMultipleItems;
// Initialize the variable value.
InitializationPtr init = SGF.emitInitializationForVarDecl(var, immutable);
// Do not emit debug descriptions at this stage.
//
// If there are multiple let bindings, the value is forwarded to the case
// block via a phi. Emitting duplicate debug values for the incoming values
// leads to bogus debug info -- we must emit the debug value only on the phi.
//
// If there's only one let binding, we still want to wait until we can nest
// the scope for the case body under the scope for the pattern match.
init->setEmitDebugValueOnInit(false);
auto mv = value.getFinalManagedValue();
if (shouldTake(value, isIrrefutable)) {
mv.forwardInto(SGF, pattern, init.get());
} else {
mv.copyInto(SGF, pattern, init.get());
}
}
/// Evaluate a guard expression and, if it returns false, branch to
/// the given destination.
void PatternMatchEmission::emitGuardBranch(SILLocation loc, Expr *guard,
const FailureHandler &failure) {
SILBasicBlock *falseBB = SGF.B.splitBlockForFallthrough();
SILBasicBlock *trueBB = SGF.B.splitBlockForFallthrough();
// Emit the match test.
SILValue testBool;
{
FullExpr scope(SGF.Cleanups, CleanupLocation(guard));
testBool = SGF.emitRValueAsSingleValue(guard).getUnmanagedValue();
}
// Extract the i1 from the Bool struct.
auto i1Value = SGF.emitUnwrapIntegerResult(loc, testBool);
SGF.B.createCondBranch(loc, i1Value, trueBB, falseBB);
SGF.B.setInsertionPoint(falseBB);
failure(loc);
SGF.B.setInsertionPoint(trueBB);
}
/// Perform specialized dispatch on the particular column.
///
/// \param matrixArgs - appropriate for the entire clause matrix, not
/// just these specific rows
void PatternMatchEmission::emitSpecializedDispatch(ClauseMatrix &clauses,
ArgArray matrixArgs,
unsigned &lastRow,
unsigned column,
const FailureHandler &failure) {
// HEY! LISTEN!
//
// When a pattern specializes its submatrix (like an 'as' or enum element
// pattern), it *must* chain the FailureHandler for its inner submatrixes
// through our `failure` handler if it manipulates any cleanup state.
// Here's an example from emitEnumElementDispatch:
//
// const FailureHandler *innerFailure = &failure;
// FailureHandler specializedFailure = [&](SILLocation loc) {
// ArgUnforwarder unforwarder(SGF);
// unforwarder.unforwardBorrowedValues(src, origCMV);
// failure(loc);
// };
//
// if (ArgUnforwarder::requiresUnforwarding(src))
// innerFailure = &specializedFailure;
//
// Note that the inner failure handler either is exactly the outer failure
// or performs the work necessary to clean up after the failed specialized
// decision tree immediately before chaining onto the outer failure.
// It is specifically NOT correct to do something like this:
//
// /* DON'T DO THIS */
// ExitableFullExpr scope;
// FailureHandler innerFailure = [&](SILLocation loc) {
// emitBranchAndCleanups(scope, loc);
// };
// ...
// /* DON'T DO THIS */
// scope.exit();
// ArgUnforwarder unforwarder(SGF);
// unforwarder.unforwardBorrowedValues(src, origCMV);
// failure(loc);
// /* DON'T DO THIS */
//
// since the cleanup state changes performed by ArgUnforwarder will
// occur too late.
unsigned firstRow = lastRow;
// Collect the rows to specialize.
SmallVector<RowToSpecialize, 4> rowsToSpecialize;
auto addRowToSpecialize = [&](Pattern *pattern, unsigned rowIndex) {
assert(getSpecializingPattern(clauses[rowIndex][column]) == pattern);
bool irrefutable = clauses[rowIndex].isIrrefutableAfterSpecializing(column);
auto caseBlock = clauses[rowIndex].getClientData<CaseStmt>();
ProfileCounter count = ProfileCounter();
if (caseBlock) {
count = SGF.loadProfilerCount(caseBlock);
}
rowsToSpecialize.push_back({pattern, rowIndex, irrefutable, count});
};
ProfileCounter defaultCaseCount = ProfileCounter();
Pattern *firstSpecializer = getSpecializingPattern(clauses[firstRow][column]);
assert(firstSpecializer && "specializing unspecializable row?");
addRowToSpecialize(firstSpecializer, firstRow);
// Take a prefix of rows that share the same semantic kind of pattern.
for (++lastRow; lastRow != clauses.rows(); ++lastRow) {
Pattern *specializer =
getSimilarSpecializingPattern(clauses[lastRow][column], firstSpecializer);
if (!specializer) {
auto caseBlock = clauses[lastRow].getClientData<CaseStmt>();
if (caseBlock) {
defaultCaseCount = SGF.loadProfilerCount(caseBlock);
}
break;
}
addRowToSpecialize(specializer, lastRow);
}
assert(lastRow - firstRow == rowsToSpecialize.size());
// Forward just the specialized argument right now. We'll forward
// the rest in the handler.
bool isFinalUse = (lastRow == clauses.rows());
ArgForwarder outerForwarder(SGF, matrixArgs[column], firstSpecializer,
isFinalUse);
auto arg = outerForwarder.getForwardedArgs()[0];
SpecializationHandler handler = [&](ArrayRef<ConsumableManagedValue> newArgs,
ArrayRef<SpecializedRow> rows,
const FailureHandler &innerFailure) {
// These two operations must follow the same rules for column
// placement because 'arguments' are parallel to the matrix columns.
// We use the column-specialization algorithm described in
// specializeInPlace.
ClauseMatrix innerClauses = clauses.specializeRowsInPlace(column, rows);
SpecializedArgForwarder innerForwarder(SGF, matrixArgs, column, newArgs,
firstSpecializer, isFinalUse);
ArgArray innerArgs = innerForwarder.getForwardedArgs();
emitDispatch(innerClauses, innerArgs, innerFailure);
};
switch (firstSpecializer->getKind()) {
case PatternKind::Any:
case PatternKind::Expr:
case PatternKind::Named:
llvm_unreachable("cannot specialize wildcard pattern");
case PatternKind::Paren:
case PatternKind::Typed:
case PatternKind::Binding:
llvm_unreachable("non-semantic pattern kind!");
case PatternKind::Tuple:
return emitTupleDispatch(rowsToSpecialize, arg, handler, failure);
case PatternKind::Is:
return emitIsDispatch(rowsToSpecialize, arg, handler, failure);
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
return emitEnumElementDispatch(rowsToSpecialize, arg, handler, failure,
defaultCaseCount);
case PatternKind::Bool:
return emitBoolDispatch(rowsToSpecialize, arg, handler, failure);
}
llvm_unreachable("bad pattern kind");
}
/// Given that we've broken down a source value into this subobject,
/// and that we were supposed to use the given consumption rules on
/// it, construct an appropriate managed value.
static ConsumableManagedValue
getManagedSubobject(SILGenFunction &SGF, SILValue value,
const TypeLowering &valueTL,
CastConsumptionKind consumption) {
switch (consumption) {
case CastConsumptionKind::BorrowAlways:
case CastConsumptionKind::CopyOnSuccess:
return {ManagedValue::forUnmanaged(value), consumption};
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::TakeOnSuccess:
return {SGF.emitManagedRValueWithCleanup(value, valueTL), consumption};
}
llvm_unreachable("covered switch");
}
/// Given that we've broken down a source value into this subobject,
/// and that we were supposed to use the given consumption rules on
/// it, construct an appropriate managed value.
static ConsumableManagedValue
getManagedSubobject(SILGenFunction &SGF, ManagedValue value,
CastConsumptionKind consumption) {
switch (consumption) {
case CastConsumptionKind::BorrowAlways:
case CastConsumptionKind::CopyOnSuccess:
return {value.unmanagedBorrow(), consumption};
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::TakeOnSuccess: {
auto loc = RegularLocation::getAutoGeneratedLocation();
return {value.ensurePlusOne(SGF, loc), consumption};
}
}
llvm_unreachable("covered switch");
}
static ConsumableManagedValue
emitReabstractedSubobject(SILGenFunction &SGF, SILLocation loc,
ConsumableManagedValue value,
const TypeLowering &valueTL,
AbstractionPattern abstraction,
CanType substFormalType) {
// Return if there's no abstraction. (The first condition is just
// a fast path.)
if (value.getType().getASTType() == substFormalType ||
value.getType() == SGF.getLoweredType(substFormalType))
return value;
// Otherwise, turn to +1 and re-abstract.
ManagedValue mv = SGF.getManagedValue(loc, value);
return ConsumableManagedValue::forOwned(
SGF.emitOrigToSubstValue(loc, mv, abstraction, substFormalType));
}
void PatternMatchEmission::emitTupleObjectDispatch(
ArrayRef<RowToSpecialize> rows, ConsumableManagedValue src,
const SpecializationHandler &handleCase,
const FailureHandler &outerFailure) {
// Construct the specialized rows.
SmallVector<SpecializedRow, 4> specializedRows;
specializedRows.resize(rows.size());
for (unsigned i = 0, e = rows.size(); i != e; ++i) {
specializedRows[i].RowIndex = rows[i].RowIndex;
auto pattern = cast<TuplePattern>(rows[i].Pattern);
for (auto &elt : pattern->getElements()) {
specializedRows[i].Patterns.push_back(elt.getPattern());
}
}
auto firstPat = rows[0].Pattern;
SILLocation loc = firstPat;
// Final consumption here will be either BorrowAlways or TakeAlways.
ManagedValue v = src.getFinalManagedValue();
SmallVector<ConsumableManagedValue, 8> destructured;
SGF.B.emitDestructureValueOperation(
loc, v, [&](unsigned index, ManagedValue v) {
destructured.push_back({v, src.getFinalConsumption()});
});
// Since we did all of our work at +0, we just send down the outer failure.
handleCase(destructured, specializedRows, outerFailure);
}
/// Perform specialized dispatch for tuples.
///
/// This is simple; all the tuples have the same structure.
void PatternMatchEmission::
emitTupleDispatch(ArrayRef<RowToSpecialize> rows, ConsumableManagedValue src,
const SpecializationHandler &handleCase,
const FailureHandler &outerFailure) {
auto firstPat = rows[0].Pattern;
SILLocation loc = firstPat;
// If our source is an address that is loadable, perform a load_borrow.
if (src.getType().isAddress() && src.getType().isLoadable(SGF.F)) {
// We should only see take_on_success if we have a base type that is address
// only.
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"Can only occur if base type is address only?!");
src = {SGF.B.createLoadBorrow(loc, src.getFinalManagedValue()),
CastConsumptionKind::BorrowAlways};
}
// Then if we have an object...
if (src.getType().isObject()) {
// Make sure that if we have a copy_on_success, non-trivial value that we do
// not have a value with @owned ownership.
assert((!src.getType().isTrivial(SGF.F) ||
src.getFinalConsumption() != CastConsumptionKind::CopyOnSuccess ||
src.getOwnershipKind() != OwnershipKind::Owned) &&
"@owned value without cleanup + copy_on_success");
// We should only see take_on_success if we have a base type that is address
// only.
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"Can only occur if base type is address only?!");
// Then perform a forward or reborrow destructure on the object.
return emitTupleObjectDispatch(rows, src, handleCase, outerFailure);
}
// Construct the specialized rows.
SmallVector<SpecializedRow, 4> specializedRows;
specializedRows.resize(rows.size());
for (unsigned i = 0, e = rows.size(); i != e; ++i) {
specializedRows[i].RowIndex = rows[i].RowIndex;
auto pattern = cast<TuplePattern>(rows[i].Pattern);
for (auto &elt : pattern->getElements()) {
specializedRows[i].Patterns.push_back(elt.getPattern());
}
}
// At this point we know that we must have an address only type, since we
// would have loaded it earlier.
SILValue v = src.getFinalManagedValue().forward(SGF);
assert(v->getType().isAddressOnly(SGF.F) &&
"Loadable values were handled earlier");
// The destructured tuple that we pass off to our sub pattern. This may
// contain values that we have performed a load_borrow from subsequent to
// "performing a SILGenPattern borrow".
SmallVector<ConsumableManagedValue, 4> subPatternArgs;
// An array of values that have the same underlying values as our
// subPatternArgs, but may have a different cleanup and final consumption
// kind. These are at +1 and are unforwarded.
SmallVector<ConsumableManagedValue, 4> unforwardArgs;
// Break down the values.
auto tupleSILTy = v->getType();
for (unsigned i : range(tupleSILTy.castTo<TupleType>()->getNumElements())) {
SILType fieldTy = tupleSILTy.getTupleElementType(i);
auto &fieldTL = SGF.getTypeLowering(fieldTy);
SILValue member = SGF.B.createTupleElementAddr(loc, v, i, fieldTy);
// Inline constructor.
auto memberCMV = ([&]() -> ConsumableManagedValue {
if (!fieldTL.isLoadable()) {
// If we have an address only type, just get the managed
// subobject.
return getManagedSubobject(SGF, member, fieldTL,
src.getFinalConsumption());
}
// If we have a loadable type, then we have a loadable sub-type of the
// underlying address only tuple.
auto memberMV = ManagedValue::forUnmanaged(member);
switch (src.getFinalConsumption()) {
case CastConsumptionKind::TakeAlways: {
// If our original source value is take always, perform a load [take].
return {SGF.B.createLoadTake(loc, memberMV),
CastConsumptionKind::TakeAlways};
}
case CastConsumptionKind::TakeOnSuccess: {
// If we have a take_on_success, we propagate down the member as a +1
// address value and do not load.
//
// DISCUSSION: Unforwarding objects violates ownership since
// unforwarding relies on forwarding an aggregate into subvalues and
// on failure disabling the subvalue cleanups and re-enabling the
// cleanup for the aggregate (which was already destroyed). So we are
// forced to use an address here so we can forward/unforward this
// value. We maintain our invariants that loadable types are always
// loaded and are never take on success by passing down to our
// subPattern a borrow of this value. See below.
return getManagedSubobject(SGF, member, fieldTL,
src.getFinalConsumption());
}
case CastConsumptionKind::CopyOnSuccess: {
// We translate copy_on_success => borrow_always.
auto memberMV = ManagedValue::forUnmanaged(member);
return {SGF.B.createLoadBorrow(loc, memberMV),
CastConsumptionKind::BorrowAlways};
}
case CastConsumptionKind::BorrowAlways: {
llvm_unreachable(
"Borrow always can only occur along object only code paths");
}
}
llvm_unreachable("covered switch");
}());
// If we aren't loadable, add to the unforward array.
if (!fieldTL.isLoadable()) {
unforwardArgs.push_back(memberCMV);
} else {
// If we have a loadable type that we didn't load, we must have had a
// take_on_success address. This means that our parent cleanup is
// currently persistently active, so we needed to propagate an active +1
// cleanup on our address so we can take if we actually succeed. That
// being said, we do not want to pass objects with take_on_success into
// the actual subtree. So we perform a load_borrow at this point. This
// will ensure that we will always finish the end_borrow before we jumped
// to a failure point, but at the same time the original +1 value will be
// appropriately destroyed/forwarded around.
if (memberCMV.getType().isAddress()) {
unforwardArgs.push_back(memberCMV);
auto val = memberCMV.getFinalManagedValue();
memberCMV = {SGF.B.createLoadBorrow(loc, val),
CastConsumptionKind::BorrowAlways};
}
}
subPatternArgs.push_back(memberCMV);
}
// Maybe revert to the original cleanups during failure branches.
const FailureHandler *innerFailure = &outerFailure;
FailureHandler specializedFailure = [&](SILLocation loc) {
ArgUnforwarder unforwarder(SGF);
unforwarder.unforwardBorrowedValues(src, unforwardArgs);
outerFailure(loc);
};
if (ArgUnforwarder::requiresUnforwarding(SGF, src))
innerFailure = &specializedFailure;
// Recurse.
handleCase(subPatternArgs, specializedRows, *innerFailure);
}
static CanType getTargetType(const RowToSpecialize &row) {
auto type = cast<IsPattern>(row.Pattern)->getCastType();
return type->getCanonicalType();
}
static ConsumableManagedValue
emitCastOperand(SILGenFunction &SGF, SILLocation loc,
ConsumableManagedValue src, CanType sourceType,
CanType targetType,
SmallVectorImpl<ConsumableManagedValue> &borrowedValues) {
// Reabstract to the most general abstraction, and put it into a
// temporary if necessary.
// Figure out if we need the value to be in a temporary.
bool requiresAddress =
!canSILUseScalarCheckedCastInstructions(SGF.SGM.M, sourceType, targetType);
AbstractionPattern abstraction = SGF.SGM.M.Types.getMostGeneralAbstraction();
auto &srcAbstractTL = SGF.getTypeLowering(abstraction, sourceType);
bool hasAbstraction = (src.getType() != srcAbstractTL.getLoweredType());
// Fast path: no re-abstraction required.
if (!hasAbstraction && (!requiresAddress || src.getType().isAddress())) {
return src;
}
// We know that we must have a loadable type at this point since address only
// types do not need reabstraction and are addresses. So we should have exited
// above already.
assert(src.getType().isLoadable(SGF.F) &&
"Should have a loadable value at this point");
// Since our finalValue is loadable, we could not have had a take_on_success
// here.
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"Loadable types can not have take_on_success?!");
std::unique_ptr<TemporaryInitialization> init;
SGFContext ctx;
if (requiresAddress) {
init = SGF.emitTemporary(loc, srcAbstractTL);
ctx = SGFContext(init.get());
}
// This will always produce a +1 take always value no matter what src's
// ownership is.
ManagedValue finalValue = SGF.getManagedValue(loc, src);
if (hasAbstraction) {
// Reabstract the value if we need to. This should produce a +1 value as
// well.
finalValue =
SGF.emitSubstToOrigValue(loc, finalValue, abstraction, sourceType, ctx);
}
assert(finalValue.isPlusOne(SGF));
// If we at this point do not require an address, return final value. We know
// that it is a +1 take always value.
if (!requiresAddress) {
return ConsumableManagedValue::forOwned(finalValue);
}
// At this point, we know that we have a non-address only type since we are
// materializing an object into memory and addresses can not be stored into
// memory.
SGF.B.emitStoreValueOperation(loc, finalValue.forward(SGF),
init->getAddress(),
StoreOwnershipQualifier::Init);
init->finishInitialization(SGF);
// We know that either our initial value was already take_always or we made a
// copy of the underlying value. In either case, we now have a take_always +1
// value.
return ConsumableManagedValue::forOwned(init->getManagedAddress());
}
/// Perform specialized dispatch for a sequence of IsPatterns.
void PatternMatchEmission::emitIsDispatch(ArrayRef<RowToSpecialize> rows,
ConsumableManagedValue src,
const SpecializationHandler &handleCase,
const FailureHandler &failure) {
CanType sourceType = rows[0].Pattern->getType()->getCanonicalType();
CanType targetType = getTargetType(rows[0]);
// Make any abstraction modifications necessary for casting.
SmallVector<ConsumableManagedValue, 4> borrowedValues;
ConsumableManagedValue operand = emitCastOperand(
SGF, rows[0].Pattern, src, sourceType, targetType, borrowedValues);
// Emit the 'is' check.
// Build the specialized-rows array.
SmallVector<SpecializedRow, 4> specializedRows;
specializedRows.reserve(rows.size());
for (auto &row : rows) {
assert(getTargetType(row) == targetType
&& "can only specialize on one type at a time");
auto is = cast<IsPattern>(row.Pattern);
specializedRows.push_back({});
specializedRows.back().RowIndex = row.RowIndex;
specializedRows.back().Patterns.push_back(is->getSubPattern());
}
SILLocation loc = rows[0].Pattern;
ConsumableManagedValue castOperand = operand.asBorrowedOperand(SGF, loc);
// Chain inner failures onto the outer failure.
const FailureHandler *innerFailure = &failure;
FailureHandler specializedFailure = [&](SILLocation loc) {
ArgUnforwarder unforwarder(SGF);
unforwarder.unforwardBorrowedValues(src, borrowedValues);
failure(loc);
};
if (ArgUnforwarder::requiresUnforwarding(SGF, src))
innerFailure = &specializedFailure;
// Perform a conditional cast branch.
SGF.emitCheckedCastBranch(
loc, castOperand, sourceType, targetType, SGFContext(),
// Success block: recurse.
[&](ManagedValue castValue) {
handleCase(ConsumableManagedValue::forOwned(castValue), specializedRows,
*innerFailure);
assert(!SGF.B.hasValidInsertionPoint() && "did not end block");
},
// Failure block: branch out to the continuation block.
[&](Optional<ManagedValue> mv) { (*innerFailure)(loc); }, rows[0].Count);
}
namespace {
struct CaseInfo {
SmallVector<SpecializedRow, 2> SpecializedRows;
Pattern *FirstMatcher;
bool Irrefutable = false;
};
class CaseBlocks {
// These vectors are completely parallel, but the switch instructions want
// only the first two, so we split them up.
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 4> CaseBBs;
SmallVector<ProfileCounter, 4> CaseCounts;
SmallVector<CaseInfo, 4> CaseInfos;
SILBasicBlock *DefaultBB = nullptr;
public:
/// Create destination blocks for switching over the cases in an enum
/// defined by \p rows.
CaseBlocks(SILGenFunction &SGF,
ArrayRef<RowToSpecialize> rows,
CanType sourceType,
SILBasicBlock *curBB);
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>>
getCaseBlocks() const {
return CaseBBs;
}
ArrayRef<ProfileCounter> getCounts() const { return CaseCounts; }
SILBasicBlock *getDefaultBlock() const { return DefaultBB; }
void forEachCase(llvm::function_ref<void(EnumElementDecl *,
SILBasicBlock *,
const CaseInfo &)> op) const {
for_each(CaseBBs, CaseInfos,
[op](std::pair<EnumElementDecl *, SILBasicBlock *> casePair,
const CaseInfo &info) {
op(casePair.first, casePair.second, info);
});
}
bool hasAnyRefutableCase() const {
return llvm::any_of(CaseInfos, [](const CaseInfo &info) {
return !info.Irrefutable;
});
}
};
} // end anonymous namespace
CaseBlocks::CaseBlocks(
SILGenFunction &SGF,
ArrayRef<RowToSpecialize> rows,
CanType sourceType,
SILBasicBlock *curBB) {
CaseBBs.reserve(rows.size());
CaseInfos.reserve(rows.size());
CaseCounts.reserve(rows.size());
auto enumDecl = sourceType.getEnumOrBoundGenericEnum();
llvm::SmallDenseMap<EnumElementDecl *, unsigned, 16> caseToIndex;
for (auto &row : rows) {
EnumElementDecl *formalElt;
Pattern *subPattern = nullptr;
if (auto eep = dyn_cast<EnumElementPattern>(row.Pattern)) {
formalElt = eep->getElementDecl();
subPattern = eep->getSubPattern();
} else {
auto *osp = cast<OptionalSomePattern>(row.Pattern);
formalElt = osp->getElementDecl();
subPattern = osp->getSubPattern();
}
assert(formalElt->getParentEnum() == enumDecl);
unsigned index = CaseInfos.size();
auto insertionResult = caseToIndex.insert({formalElt, index});
if (!insertionResult.second) {
index = insertionResult.first->second;
} else {
curBB = SGF.createBasicBlockAfter(curBB);
CaseBBs.push_back({formalElt, curBB});
CaseInfos.push_back(CaseInfo());
CaseInfos.back().FirstMatcher = row.Pattern;
CaseCounts.push_back(row.Count);
}
assert(caseToIndex[formalElt] == index);
assert(CaseBBs[index].first == formalElt);
auto &info = CaseInfos[index];
info.Irrefutable = (info.Irrefutable || row.Irrefutable);
info.SpecializedRows.push_back(SpecializedRow());
auto &specRow = info.SpecializedRows.back();
specRow.RowIndex = row.RowIndex;
// Use the row pattern, if it has one.
if (subPattern) {
specRow.Patterns.push_back(subPattern);
// It's also legal to write:
// case .Some { ... }
// which is an implicit wildcard.
} else {
specRow.Patterns.push_back(nullptr);
}
}
assert(CaseBBs.size() == CaseInfos.size());
// Check to see if the enum may have values beyond the cases we can see
// at compile-time. This includes future cases (for resilient enums) and
// random values crammed into C enums.
bool canAssumeExhaustive =
enumDecl->isEffectivelyExhaustive(SGF.getModule().getSwiftModule(),
SGF.F.getResilienceExpansion());
if (canAssumeExhaustive) {
// Check that Sema didn't let any cases slip through.
canAssumeExhaustive = llvm::all_of(enumDecl->getAllElements(),
[&](const EnumElementDecl *elt) {
return caseToIndex.count(elt);
});
}
if (!canAssumeExhaustive)
DefaultBB = SGF.createBasicBlockAfter(curBB);
}
/// Perform specialized dispatch for a sequence of EnumElementPattern or an
/// OptionalSomePattern.
void PatternMatchEmission::emitEnumElementObjectDispatch(
ArrayRef<RowToSpecialize> rows, ConsumableManagedValue src,
const SpecializationHandler &handleCase, const FailureHandler &outerFailure,
ProfileCounter defaultCastCount) {
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"SIL ownership does not support TakeOnSuccess");
CanType sourceType = rows[0].Pattern->getType()->getCanonicalType();
// Collect the cases and specialized rows.
CaseBlocks blocks{SGF, rows, sourceType, SGF.B.getInsertionBB()};
RegularLocation loc(PatternMatchStmt, rows[0].Pattern, SGF.SGM.M);
SILValue srcValue = src.getFinalManagedValue().forward(SGF);
auto *sei = SGF.B.createSwitchEnum(loc, srcValue, blocks.getDefaultBlock(),
blocks.getCaseBlocks(), blocks.getCounts(),
defaultCastCount);
// Okay, now emit all the cases.
blocks.forEachCase([&](EnumElementDecl *elt, SILBasicBlock *caseBB,
const CaseInfo &caseInfo) {
SILLocation loc = caseInfo.FirstMatcher;
auto &specializedRows = caseInfo.SpecializedRows;
SGF.B.setInsertionPoint(caseBB);
// We're in conditionally-executed code; enter a scope.
Scope scope(SGF.Cleanups, CleanupLocation(loc));
// Create a BB argument or 'unchecked_take_enum_data_addr'
// instruction to receive the enum case data if it has any.
SILType eltTy;
bool hasNonVoidAssocValue = false;
bool hasAssocValue = elt->hasAssociatedValues();
ManagedValue caseResult;
auto caseConsumption = CastConsumptionKind::BorrowAlways;
if (hasAssocValue) {
eltTy = src.getType().getEnumElementType(elt, SGF.SGM.M,
SGF.getTypeExpansionContext());
hasNonVoidAssocValue = !eltTy.getASTType()->isVoid();
caseResult = SGF.B.createForwardedTermResult(eltTy);
// The consumption kind of a switch enum's source and its case result can
// differ. For example, a TakeAlways source may have no ownership because
// it holds a trivial value, but its nontrivial result may be
// Guaranteed. For valid OSSA, we reconcile it with the case result
// value's ownership here.
if (caseResult.getOwnershipKind() == OwnershipKind::Owned)
caseConsumption = CastConsumptionKind::TakeAlways;
}
ConsumableManagedValue eltCMV;
// Void (i.e. empty) cases.
//
if (!hasNonVoidAssocValue) {
// Inline constructor.
eltCMV = [&]() -> ConsumableManagedValue {
// If we have an associated value, rather than no payload at all, we
// still need to create the argument. So do that instead of creating the
// empty-tuple. Otherwise, we need to create undef or the empty-tuple.
if (hasAssocValue) {
return {caseResult, caseConsumption};
}
// Otherwise, try to avoid making an empty tuple value if it's obviously
// going to be ignored. This assumes that we won't even try to touch the
// value in such cases, although we may touch the cleanup (enough to see
// that it's not present).
bool hasNonAny =
llvm::any_of(specializedRows, [&](const SpecializedRow &row) {
auto *p = row.Patterns[0];
return p && !isa<AnyPattern>(p->getSemanticsProvidingPattern());
});
if (hasNonAny) {
return ConsumableManagedValue::forUnmanaged(SGF.emitEmptyTuple(loc));
}
return ConsumableManagedValue::forUnmanaged(
SILUndef::get(SGF.SGM.Types.getEmptyTupleType(), SGF.F));
}();
// Okay, specialize on the argument.
} else {
auto *eltTL = &SGF.getTypeLowering(eltTy);
eltCMV = {caseResult, caseConsumption};
// If the payload is boxed, project it.
if (elt->isIndirect() || elt->getParentEnum()->isIndirect()) {
ManagedValue boxedValue =
SGF.B.createProjectBox(loc, eltCMV.getFinalManagedValue(), 0);
eltTL = &SGF.getTypeLowering(boxedValue.getType());
if (eltTL->isLoadable() || !SGF.silConv.useLoweredAddresses()) {
boxedValue = SGF.B.createLoadBorrow(loc, boxedValue);
eltCMV = {boxedValue, CastConsumptionKind::BorrowAlways};
} else {
// Otherwise, we have an address only payload and we use
// copy on success instead.
eltCMV = {boxedValue, CastConsumptionKind::CopyOnSuccess};
}
}
// Reabstract to the substituted type, if needed.
CanType substEltTy =
sourceType
->getTypeOfMember(SGF.SGM.M.getSwiftModule(), elt,
elt->getArgumentInterfaceType())
->getCanonicalType();
AbstractionPattern origEltTy =
(elt->getParentEnum()->isOptionalDecl()
? AbstractionPattern(substEltTy)
: SGF.SGM.M.Types.getAbstractionPattern(elt));
// If we reabstracted, we may have a +1 value returned. We are ok with
// that as long as it is TakeAlways.
eltCMV = emitReabstractedSubobject(SGF, loc, eltCMV, *eltTL, origEltTy,
substEltTy);
}
handleCase(eltCMV, specializedRows, outerFailure);
assert(!SGF.B.hasValidInsertionPoint() && "did not end block");
});
// Emit the default block if we needed one.
if (SILBasicBlock *defaultBB = blocks.getDefaultBlock()) {
SGF.B.setInsertionPoint(defaultBB);
ManagedValue::forForwardedRValue(SGF, sei->createDefaultResult());
outerFailure(rows.back().Pattern);
}
}
/// Perform specialized dispatch for a sequence of EnumElementPattern or an
/// OptionalSomePattern.
void PatternMatchEmission::emitEnumElementDispatch(
ArrayRef<RowToSpecialize> rows, ConsumableManagedValue src,
const SpecializationHandler &handleCase, const FailureHandler &outerFailure,
ProfileCounter defaultCaseCount) {
// Why do we need to do this here (I just cargo-culted this).
RegularLocation loc(PatternMatchStmt, rows[0].Pattern, SGF.SGM.M);
// If our source is an address that is loadable, perform a load_borrow.
if (src.getType().isAddress() && src.getType().isLoadable(SGF.F)) {
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"Can only have take_on_success with address only values");
src = {SGF.B.createLoadBorrow(loc, src.getFinalManagedValue()),
CastConsumptionKind::BorrowAlways};
}
// If we have an object...
if (src.getType().isObject()) {
// Do a quick assert that we do not have take_on_success. This should only
// be passed take_on_success if src is an address only type.
assert(src.getFinalConsumption() != CastConsumptionKind::TakeOnSuccess &&
"Can only have take_on_success with address only values");
if (src.getType().isAddressOnly(SGF.F) &&
src.getOwnershipKind() == OwnershipKind::Guaranteed) {
// If it's an opaque value with guaranteed ownership, we need to copy.
src = src.copy(SGF, PatternMatchStmt);
}
// Finally perform the enum element dispatch.
return emitEnumElementObjectDispatch(rows, src, handleCase, outerFailure,
defaultCaseCount);
}
// After this point we now that we must have an address only type.
assert(src.getType().isAddressOnly(SGF.F) &&
"Should have an address only type here");
CanType sourceType = rows[0].Pattern->getType()->getCanonicalType();
// Collect the cases and specialized rows.
CaseBlocks blocks{SGF, rows, sourceType, SGF.B.getInsertionBB()};
// We lack a SIL instruction to nondestructively project data from an
// address-only enum, so we can only do so in place if we're allowed to take
// the source always. Copy the source if we can't.
switch (src.getFinalConsumption()) {
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::CopyOnSuccess:
case CastConsumptionKind::BorrowAlways:
// No change to src necessary.
break;
case CastConsumptionKind::TakeOnSuccess:
// If any of the specialization cases is refutable, we must copy.
if (!blocks.hasAnyRefutableCase())
break;
src = ConsumableManagedValue(ManagedValue::forUnmanaged(src.getValue()),
CastConsumptionKind::CopyOnSuccess);
break;
}
// Emit the switch_enum_addr instruction.
//
// NOTE: switch_enum_addr does not actually consume the underlying value.
SGF.B.createSwitchEnumAddr(loc, src.getValue(), blocks.getDefaultBlock(),
blocks.getCaseBlocks(), blocks.getCounts(),
defaultCaseCount);
// Okay, now emit all the cases.
blocks.forEachCase([&](EnumElementDecl *eltDecl, SILBasicBlock *caseBB,
const CaseInfo &caseInfo) {
SILLocation loc = caseInfo.FirstMatcher;
auto &specializedRows = caseInfo.SpecializedRows;
SGF.B.setInsertionPoint(caseBB);
// We need to make sure our cleanup stays around long enough for us to emit
// our destroy, so setup a cleanup state restoration scope for each case.
CleanupStateRestorationScope srcScope(SGF.Cleanups);
forwardIntoIrrefutableSubtree(SGF, srcScope, src);
// We're in conditionally-executed code; enter a scope.
Scope scope(SGF.Cleanups, CleanupLocation(loc));
// Create a BB argument or 'unchecked_take_enum_data_addr'
// instruction to receive the enum case data if it has any.
SILType eltTy;
bool hasElt = false;
if (eltDecl->hasAssociatedValues()) {
eltTy = src.getType().getEnumElementType(eltDecl, SGF.SGM.M,
SGF.getTypeExpansionContext());
hasElt = !eltTy.getASTType()->isVoid();
}
ConsumableManagedValue eltCMV, origCMV;
// Empty cases. Try to avoid making an empty tuple value if it's
// obviously going to be ignored. This assumes that we won't even
// try to touch the value in such cases, although we may touch the
// cleanup (enough to see that it's not present).
if (!hasElt) {
bool hasNonAny = false;
for (auto &specRow : specializedRows) {
auto pattern = specRow.Patterns[0];
if (pattern &&
!isa<AnyPattern>(pattern->getSemanticsProvidingPattern())) {
hasNonAny = true;
break;
}
}
// Forward src along this path so we don't emit a destroy_addr on our
// subject value for this case.
//
// FIXME: Do we actually want to do this? SILGen tests today assume this
// pattern. It might be worth leaving the destroy_addr there to create
// additional liveness information. For now though, we maintain the
// current behavior.
src.getFinalManagedValue().forward(SGF);
SILValue result;
if (hasNonAny) {
result = SGF.emitEmptyTuple(loc);
} else {
result = SILUndef::get(SGF.SGM.Types.getEmptyTupleType(), SGF.F);
}
origCMV = ConsumableManagedValue::forUnmanaged(result);
eltCMV = origCMV;
// Okay, specialize on the argument.
} else {
auto *eltTL = &SGF.getTypeLowering(eltTy);
// Normally we'd just use the consumption of the source
// because the difference between TakeOnSuccess and TakeAlways
// doesn't matter for irrefutable rows. But if we need to
// re-abstract, we'll see a lot of benefit from figuring out
// that we can use TakeAlways here.
auto eltConsumption = src.getFinalConsumption();
if (caseInfo.Irrefutable &&
eltConsumption == CastConsumptionKind::TakeOnSuccess) {
eltConsumption = CastConsumptionKind::TakeAlways;
}
ManagedValue eltValue;
// We can only project destructively from an address-only enum, so
// copy the value if we can't consume it.
// TODO: Should have a more efficient way to copy payload
// nondestructively from an enum.
switch (eltConsumption) {
case CastConsumptionKind::TakeAlways: {
auto finalValue = src.getFinalManagedValue();
eltValue = SGF.B.createUncheckedTakeEnumDataAddr(loc, finalValue,
eltDecl, eltTy);
break;
}
case CastConsumptionKind::BorrowAlways:
// If we reach this point, we know that we have a loadable
// element type from an enum with mixed address
// only/loadable cases. Since we had an address only type,
// we assume that we will not have BorrowAlways since
// address only types do not support BorrowAlways.
llvm_unreachable("not allowed");
case CastConsumptionKind::CopyOnSuccess: {
auto temp = SGF.emitTemporary(loc, SGF.getTypeLowering(src.getType()));
SGF.B.createCopyAddr(loc, src.getValue(), temp->getAddress(), IsNotTake,
IsInitialization);
temp->finishInitialization(SGF);
// We can always take from the copy.
eltConsumption = CastConsumptionKind::TakeAlways;
eltValue = SGF.B.createUncheckedTakeEnumDataAddr(
loc, temp->getManagedAddress(), eltDecl, eltTy);
break;
}
// We can't conditionally take, since UncheckedTakeEnumDataAddr
// invalidates the enum.
case CastConsumptionKind::TakeOnSuccess:
llvm_unreachable("not allowed");
}
// If we have a loadable payload despite the enum being address only, load
// the value. This invariant makes it easy to specialize code for
// ownership.
if (eltTL->isLoadable()) {
// If we do not have a loadable value, just use getManagedSubobject
// Load a loadable data value.
if (eltConsumption == CastConsumptionKind::CopyOnSuccess) {
eltValue = SGF.B.createLoadBorrow(loc, eltValue);
eltConsumption = CastConsumptionKind::BorrowAlways;
} else {
assert(eltConsumption == CastConsumptionKind::TakeAlways);
eltValue = SGF.B.createLoadTake(loc, eltValue);
}
origCMV = {eltValue, eltConsumption};
} else {
origCMV = getManagedSubobject(SGF, eltValue, eltConsumption);
}
eltCMV = origCMV;
// If the payload is boxed, project it.
if (eltDecl->isIndirect() || eltDecl->getParentEnum()->isIndirect()) {
ManagedValue boxedValue =
SGF.B.createProjectBox(loc, origCMV.getFinalManagedValue(), 0);
eltTL = &SGF.getTypeLowering(boxedValue.getType());
if (eltTL->isLoadable()) {
boxedValue = SGF.B.createLoadBorrow(loc, boxedValue);
eltCMV = {boxedValue, CastConsumptionKind::BorrowAlways};
} else {
// The boxed value may be shared, so we always have to copy it.
eltCMV = getManagedSubobject(SGF, boxedValue.getValue(), *eltTL,
CastConsumptionKind::CopyOnSuccess);
}
}
// Reabstract to the substituted type, if needed.
CanType substEltTy =
sourceType->getTypeOfMember(SGF.SGM.M.getSwiftModule(), eltDecl,
eltDecl->getArgumentInterfaceType())
->getCanonicalType();
AbstractionPattern origEltTy =
(eltDecl->getParentEnum()->isOptionalDecl()
? AbstractionPattern(substEltTy)
: SGF.SGM.M.Types.getAbstractionPattern(eltDecl));
eltCMV = emitReabstractedSubobject(SGF, loc, eltCMV, *eltTL,
origEltTy, substEltTy);
}
const FailureHandler *innerFailure = &outerFailure;
FailureHandler specializedFailure = [&](SILLocation loc) {
ArgUnforwarder unforwarder(SGF);
unforwarder.unforwardBorrowedValues(src, origCMV);
outerFailure(loc);
};
if (ArgUnforwarder::requiresUnforwarding(SGF, src))
innerFailure = &specializedFailure;
handleCase(eltCMV, specializedRows, *innerFailure);
assert(!SGF.B.hasValidInsertionPoint() && "did not end block");
});
// Emit the default block if we needed one.
if (SILBasicBlock *defaultBB = blocks.getDefaultBlock()) {
SGF.B.setInsertionPoint(defaultBB);
outerFailure(rows.back().Pattern);
}
}
/// Perform specialized dispatch for a sequence of EnumElementPattern or an
/// OptionalSomePattern.
void PatternMatchEmission::
emitBoolDispatch(ArrayRef<RowToSpecialize> rows, ConsumableManagedValue src,
const SpecializationHandler &handleCase,
const FailureHandler &outerFailure) {
struct CaseInfo {
Pattern *FirstMatcher;
bool Irrefutable = false;
SmallVector<SpecializedRow, 2> SpecializedRows;
};
SILBasicBlock *curBB = SGF.B.getInsertionBB();
auto &Context = SGF.getASTContext();
// Collect the cases and specialized rows.
//
// These vectors are completely parallel, but the switch
// instructions want only the first information, so we split them up.
SmallVector<std::pair<SILValue, SILBasicBlock*>, 4> caseBBs;
SmallVector<CaseInfo, 4> caseInfos;
SILBasicBlock *defaultBB = nullptr;
caseBBs.reserve(rows.size());
caseInfos.reserve(rows.size());
// Create destination blocks for all the cases.
unsigned caseToIndex[2] = { ~0U, ~0U };
for (auto &row : rows) {
bool isTrue = cast<BoolPattern>(row.Pattern)->getValue();
unsigned index = caseInfos.size();
if (caseToIndex[isTrue] != ~0U) {
// We already had an entry for this bool value.
index = caseToIndex[isTrue];
} else {
caseToIndex[isTrue] = index;
curBB = SGF.createBasicBlockAfter(curBB);
auto *IL = SGF.B.createIntegerLiteral(PatternMatchStmt,
SILType::getBuiltinIntegerType(1, Context),
isTrue ? 1 : 0);
caseBBs.push_back({SILValue(IL), curBB});
caseInfos.resize(caseInfos.size() + 1);
caseInfos.back().FirstMatcher = row.Pattern;
}
auto &info = caseInfos[index];
info.Irrefutable = (info.Irrefutable || row.Irrefutable);
info.SpecializedRows.resize(info.SpecializedRows.size() + 1);
auto &specRow = info.SpecializedRows.back();
specRow.RowIndex = row.RowIndex;
specRow.Patterns.push_back(nullptr);
}
assert(caseBBs.size() == caseInfos.size());
// Check to see if we need a default block.
if (caseBBs.size() < 2)
defaultBB = SGF.createBasicBlockAfter(curBB);
// Emit the switch_value
RegularLocation loc(PatternMatchStmt, rows[0].Pattern, SGF.SGM.M);
SILValue srcValue = src.getFinalManagedValue().forward(SGF);
// Extract the i1 from the Bool struct.
auto i1Value = SGF.emitUnwrapIntegerResult(loc, srcValue);
SGF.B.createSwitchValue(loc, i1Value, defaultBB, caseBBs);
// Okay, now emit all the cases.
for (unsigned i = 0, e = caseInfos.size(); i != e; ++i) {
auto &caseInfo = caseInfos[i];
auto &specializedRows = caseInfo.SpecializedRows;
SILBasicBlock *caseBB = caseBBs[i].second;
SGF.B.setInsertionPoint(caseBB);
// We're in conditionally-executed code; enter a scope.
Scope scope(SGF.Cleanups, CleanupLocation(loc));
SILValue result
= SILUndef::get(SGF.SGM.Types.getEmptyTupleType(), SGF.F);
ConsumableManagedValue CMV =
ConsumableManagedValue::forUnmanaged(result);
handleCase(CMV, specializedRows, outerFailure);
assert(!SGF.B.hasValidInsertionPoint() && "did not end block");
}
// Emit the default block if we needed one.
if (defaultBB) {
SGF.B.setInsertionPoint(defaultBB);
outerFailure(rows.back().Pattern);
}
}
/// Emit the body of a case statement at the current insertion point.
void PatternMatchEmission::emitCaseBody(CaseStmt *caseBlock) {
SGF.emitStmt(caseBlock->getBody());
// Implicitly break out of the pattern match statement.
if (SGF.B.hasValidInsertionPoint()) {
// Case blocks without trailing braces have a line location of the last
// instruction in the case block.
SILLocation cleanupLoc =
RegularLocation::getAutoGeneratedLocation(caseBlock->getEndLoc());
if (auto *braces = dyn_cast<BraceStmt>(caseBlock->getBody()))
if (braces->getNumElements() == 1 &&
dyn_cast_or_null<DoStmt>(braces->getFirstElement().dyn_cast<Stmt *>()))
cleanupLoc = CleanupLocation(caseBlock);
SGF.emitBreakOutOf(cleanupLoc, PatternMatchStmt);
}
}
void PatternMatchEmission::initSharedCaseBlockDest(CaseStmt *caseBlock,
bool hasFallthroughTo) {
auto result = SharedCases.insert({caseBlock, {nullptr, hasFallthroughTo}});
assert(result.second);
auto *block = SGF.createBasicBlock();
result.first->second.first = block;
// Add args for any pattern variables if we have any.
for (auto *vd : caseBlock->getCaseBodyVariablesOrEmptyArray()) {
if (!vd->hasName())
continue;
// We don't pass address-only values in basic block arguments.
SILType ty = SGF.getLoweredType(vd->getType());
if (ty.isAddressOnly(SGF.F))
continue;
block->createPhiArgument(ty, OwnershipKind::Owned, vd);
}
}
/// Retrieve the jump destination for a shared case block.
JumpDest PatternMatchEmission::getSharedCaseBlockDest(CaseStmt *caseBlock) {
auto result = SharedCases.find(caseBlock);
assert(result != SharedCases.end());
auto *block = result->second.first;
assert(block);
return JumpDest(block, PatternMatchStmtDepth,
CleanupLocation(PatternMatchStmt));
}
void PatternMatchEmission::emitAddressOnlyAllocations() {
for (auto &entry : SharedCases) {
CaseStmt *caseBlock = entry.first;
// If we have a shared case with bound decls, setup the arguments for the
// shared block by emitting the temporary allocation used for the arguments
// of the shared block.
for (auto *vd : caseBlock->getCaseBodyVariablesOrEmptyArray()) {
if (!vd->hasName())
continue;
SILType ty = SGF.getLoweredType(vd->getType());
if (!ty.isAddressOnly(SGF.F))
continue;
assert(!Temporaries[vd]);
Temporaries[vd] = SGF.emitTemporaryAllocation(vd, ty);
}
}
// Now we have all of our cleanups entered, so we can record the
// depth.
PatternMatchStmtDepth = SGF.getCleanupsDepth();
}
void PatternMatchEmission::
emitAddressOnlyInitialization(VarDecl *dest, SILValue value) {
auto found = Temporaries.find(dest);
assert(found != Temporaries.end());
if (SGF.useLoweredAddresses()) {
SGF.B.createCopyAddr(dest, value, found->second, IsNotTake,
IsInitialization);
return;
}
auto copy = SGF.B.createCopyValue(dest, value);
SGF.B.createStore(dest, copy, found->second, StoreOwnershipQualifier::Init);
}
/// Emit all the shared case statements.
void PatternMatchEmission::emitSharedCaseBlocks(
llvm::function_ref<void(CaseStmt *)> bodyEmitter) {
for (auto &entry : SharedCases) {
CaseStmt *caseBlock = entry.first;
SILBasicBlock *caseBB = entry.second.first;
bool hasFallthroughTo = entry.second.second;
assert(caseBB->empty());
// If this case can only have one predecessor, then merge it into that
// predecessor. We rely on the SIL CFG here, because unemitted shared case
// blocks might fallthrough into this one.
if (!hasFallthroughTo && caseBlock->getCaseLabelItems().size() == 1) {
SILBasicBlock *predBB = caseBB->getSinglePredecessorBlock();
assert(predBB && "Should only have 1 predecessor because it isn't shared");
assert(isa<BranchInst>(predBB->getTerminator()) &&
"Should have uncond branch to shared block");
predBB->getTerminator()->eraseFromParent();
caseBB->eraseFromParent();
// Emit the case body into the predecessor's block.
SGF.B.setInsertionPoint(predBB);
} else {
// If we did not need a shared case block, we shouldn't have emitted one.
assert(!caseBB->pred_empty() &&
"Shared case block without predecessors?!");
// Otherwise, move the block to after the first predecessor.
auto predBB = *caseBB->pred_begin();
SGF.F.moveBlockAfter(caseBB, predBB);
// Then emit the case body into the caseBB.
SGF.B.setInsertionPoint(caseBB);
}
// Make sure that before/after we emit the case body we have emitted all
// cleanups we created within.
assert(SGF.getCleanupsDepth() == PatternMatchStmtDepth);
SWIFT_DEFER { assert(SGF.getCleanupsDepth() == PatternMatchStmtDepth); };
if (!caseBlock->hasCaseBodyVariables()) {
emitCaseBody(caseBlock);
continue;
}
// If we have a shared case with bound decls, then the case stmt pattern has
// the order of variables that are the incoming BB arguments. Setup the
// VarLocs to point to the incoming args and setup initialization so any
// args needing Cleanup will get that as well.
LexicalScope scope(SGF, CleanupLocation(caseBlock));
unsigned argIndex = 0;
for (auto *vd : caseBlock->getCaseBodyVariables()) {
if (!vd->hasName())
continue;
SILType ty = SGF.getLoweredType(vd->getType());
// Initialize mv at +1. We always pass values in at +1 for today into
// shared blocks.
ManagedValue mv;
if (ty.isAddressOnly(SGF.F)) {
// There's no basic block argument, since we don't allow basic blocks
// to have address arguments.
//
// Instead, we map the variable to a temporary alloc_stack in
// emitAddressOnlyAllocations(), and store into it at each
// predecessor block.
//
// There's nothing to do here, since the value should already have
// been initialized on entry.
auto found = Temporaries.find(vd);
assert(found != Temporaries.end());
mv = SGF.emitManagedRValueWithCleanup(found->second);
} else {
SILValue arg = caseBB->getArgument(argIndex++);
assert(arg->getOwnershipKind() == OwnershipKind::Owned ||
arg->getOwnershipKind() == OwnershipKind::None);
mv = SGF.emitManagedRValueWithCleanup(arg);
}
// Emit a debug description of the incoming arg, nested within the scope
// for the pattern match.
SILDebugVariable dbgVar(vd->isLet(), /*ArgNo=*/0);
SGF.B.emitDebugDescription(vd, mv.getValue(), dbgVar);
if (vd->isLet()) {
// Just emit a let and leave the cleanup alone.
SGF.VarLocs[vd].value = mv.getValue();
continue;
}
// Otherwise, the pattern variables were all emitted as lets and one got
// passed in. Since we have a var, alloc a box for the var and forward in
// the chosen value.
SGF.VarLocs.erase(vd);
auto newVar = SGF.emitInitializationForVarDecl(vd, vd->isLet());
newVar->copyOrInitValueInto(SGF, vd, mv, /*isInit*/ true);
newVar->finishInitialization(SGF);
}
// Now that we have setup all of the VarLocs correctly, emit the shared case
// body.
bodyEmitter(caseBlock);
}
}
/// Context info used to emit FallthroughStmts.
/// Since fallthrough-able case blocks must not bind variables, they are always
/// emitted in the outermost scope of the switch.
class Lowering::PatternMatchContext {
public:
PatternMatchEmission &Emission;
};
namespace {
struct UnexpectedEnumCaseInfo {
CanType subjectTy;
ManagedValue metatype;
ManagedValue rawValue;
NullablePtr<const EnumDecl> singleObjCEnum;
UnexpectedEnumCaseInfo(CanType subjectTy, ManagedValue metatype,
ManagedValue rawValue, const EnumDecl *singleObjCEnum)
: subjectTy(subjectTy), metatype(metatype), rawValue(rawValue),
singleObjCEnum(singleObjCEnum) {
assert(isa<MetatypeInst>(metatype));
assert(bool(rawValue) && isa<UncheckedTrivialBitCastInst>(rawValue));
assert(singleObjCEnum->hasRawType());
}
UnexpectedEnumCaseInfo(CanType subjectTy, ManagedValue valueMetatype)
: subjectTy(subjectTy), metatype(valueMetatype), rawValue(),
singleObjCEnum() {
assert(isa<ValueMetatypeInst>(valueMetatype));
}
bool isSingleObjCEnum() const { return singleObjCEnum.isNonNull(); }
void cleanupInstsIfUnused() {
auto f = [](SILValue v) {
if (!v->use_empty())
return;
cast<SingleValueInstruction>(v)->eraseFromParent();
};
f(metatype.getValue());
if (rawValue)
f(rawValue.getValue());
}
};
} // end anonymous namespace
static void emitDiagnoseOfUnexpectedEnumCaseValue(SILGenFunction &SGF,
SILLocation loc,
UnexpectedEnumCaseInfo ueci) {
ASTContext &ctx = SGF.getASTContext();
auto diagnoseFailure = ctx.getDiagnoseUnexpectedEnumCaseValue();
if (!diagnoseFailure) {
SGF.B.createUnconditionalFail(loc, "unexpected enum case");
return;
}
auto genericSig = diagnoseFailure->getGenericSignature();
auto subs = SubstitutionMap::get(
genericSig,
[&](SubstitutableType *type) -> Type {
auto genericParam = cast<GenericTypeParamType>(type);
assert(genericParam->getDepth() == 0);
assert(genericParam->getIndex() < 2);
switch (genericParam->getIndex()) {
case 0:
return ueci.subjectTy;
case 1:
return ueci.singleObjCEnum.get()->getRawType();
default:
llvm_unreachable("wrong generic signature for expected case value");
}
},
LookUpConformanceInSignature(genericSig.getPointer()));
SGF.emitApplyOfLibraryIntrinsic(
loc, diagnoseFailure, subs,
{ueci.metatype, ueci.rawValue.materialize(SGF, loc)}, SGFContext());
}
static void emitDiagnoseOfUnexpectedEnumCase(SILGenFunction &SGF,
SILLocation loc,
UnexpectedEnumCaseInfo ueci) {
ASTContext &ctx = SGF.getASTContext();
auto diagnoseFailure = ctx.getDiagnoseUnexpectedEnumCase();
if (!diagnoseFailure) {
SGF.B.createUnconditionalFail(loc, "unexpected enum case");
return;
}
auto diagnoseSignature = diagnoseFailure->getGenericSignature();
auto genericArgsMap = SubstitutionMap::get(
diagnoseSignature,
[&](SubstitutableType *type) -> Type { return ueci.subjectTy; },
LookUpConformanceInSignature(diagnoseSignature.getPointer()));
SGF.emitApplyOfLibraryIntrinsic(loc, diagnoseFailure, genericArgsMap,
ueci.metatype, SGFContext());
}
static void switchCaseStmtSuccessCallback(SILGenFunction &SGF,
PatternMatchEmission &emission,
ArgArray argArray, ClauseRow &row) {
auto caseBlock = row.getClientData<CaseStmt>();
SGF.emitProfilerIncrement(caseBlock);
// Certain case statements can be entered along multiple paths, either because
// they have multiple labels or because of fallthrough. When we need multiple
// entrance path, we factor the paths with a shared block.
//
// If we don't have a fallthrough or a multi-pattern 'case', we can emit the
// body inline. Emit the statement here and bail early.
if (!row.hasFallthroughTo() && caseBlock->getCaseLabelItems().size() == 1) {
// Debug values for case body variables must be nested within a scope for
// the case block to avoid name conflicts.
DebugScope scope(SGF, CleanupLocation(caseBlock));
// If we have case body vars, set them up to point at the matching var
// decls.
if (caseBlock->hasCaseBodyVariables()) {
// Since we know that we only have one case label item, grab its pattern
// vars and use that to update expected with the right SILValue.
//
// TODO: Do we need a copy here?
SmallVector<VarDecl *, 4> patternVars;
row.getCasePattern()->collectVariables(patternVars);
for (auto *expected : caseBlock->getCaseBodyVariables()) {
if (!expected->hasName())
continue;
for (auto *vd : patternVars) {
if (!vd->hasName() || vd->getName() != expected->getName()) {
continue;
}
// Ok, we found a match. Update the VarLocs for the case block.
auto v = SGF.VarLocs[vd];
SGF.VarLocs[expected] = v;
// Emit a debug description for the variable, nested within a scope
// for the pattern match.
SILDebugVariable dbgVar(vd->isLet(), /*ArgNo=*/0);
SGF.B.emitDebugDescription(vd, v.getValueOrBoxedValue(SGF), dbgVar);
}
}
}
emission.emitCaseBody(caseBlock);
return;
}
// Ok, at this point we know that we have a multiple entrance block. Grab our
// shared destination in preparation for branching to it.
//
// NOTE: We do not emit anything yet, since we will emit the shared block
// later.
JumpDest sharedDest = emission.getSharedCaseBlockDest(caseBlock);
// If we do not have any bound decls, we do not need to setup any
// variables. Just jump to the shared destination.
if (!caseBlock->hasCaseBodyVariables()) {
// Don't emit anything yet, we emit it at the cleanup level of the switch
// statement.
JumpDest sharedDest = emission.getSharedCaseBlockDest(caseBlock);
SGF.Cleanups.emitBranchAndCleanups(sharedDest, caseBlock);
return;
}
// Generate the arguments from this row's pattern in the case block's expected
// order, and keep those arguments from being cleaned up, as we're passing the
// +1 along to the shared case block dest. (The cleanups still happen, as they
// are threaded through here messily, but the explicit retains here counteract
// them, and then the retain/release pair gets optimized out.)
SmallVector<SILValue, 4> args;
SmallVector<VarDecl *, 4> patternVars;
row.getCasePattern()->collectVariables(patternVars);
for (auto *expected : caseBlock->getCaseBodyVariables()) {
if (!expected->hasName())
continue;
for (auto *var : patternVars) {
if (!var->hasName() || var->getName() != expected->getName())
continue;
SILValue value = SGF.VarLocs[var].getValueOrBoxedValue(SGF);
SILType type = value->getType();
// If we have an address-only type, initialize the temporary
// allocation. We're not going to pass the address as a block
// argument.
if (type.isAddressOnly(SGF.F)) {
emission.emitAddressOnlyInitialization(expected, value);
break;
}
// If we have a loadable address, perform a load [copy].
if (type.isAddress()) {
value = SGF.B.emitLoadValueOperation(SGF.CurrentSILLoc, value,
LoadOwnershipQualifier::Copy);
args.push_back(value);
break;
}
value = SGF.B.emitCopyValueOperation(SGF.CurrentSILLoc, value);
args.push_back(value);
break;
}
}
// Now that we have initialized our arguments, branch to the shared dest.
SGF.Cleanups.emitBranchAndCleanups(sharedDest, caseBlock, args);
}
void SILGenFunction::emitSwitchStmt(SwitchStmt *S) {
LLVM_DEBUG(llvm::dbgs() << "emitting switch stmt\n";
S->dump(llvm::dbgs());
llvm::dbgs() << '\n');
auto subjectTy = S->getSubjectExpr()->getType();
// If the subject expression is uninhabited, we're already dead.
// Emit an unreachable in place of the switch statement.
if (subjectTy->isStructurallyUninhabited()) {
emitIgnoredExpr(S->getSubjectExpr());
B.createUnreachable(S);
return;
}
auto completionHandler = [this](PatternMatchEmission &emission,
ArgArray argArray, ClauseRow &row) {
return switchCaseStmtSuccessCallback(*this, emission, argArray, row);
};
PatternMatchEmission emission(*this, S, completionHandler);
// Add a row for each label of each case.
SmallVector<ClauseRow, 8> clauseRows;
clauseRows.reserve(S->getRawCases().size());
bool hasFallthrough = false;
for (auto caseBlock : S->getCases()) {
// If the previous block falls through into this block or we have multiple
// case label items, create a shared case block to generate the shared
// block.
if (hasFallthrough || caseBlock->getCaseLabelItems().size() > 1) {
emission.initSharedCaseBlockDest(caseBlock, hasFallthrough);
}
for (auto &labelItem : caseBlock->getCaseLabelItems()) {
clauseRows.emplace_back(caseBlock,
const_cast<Pattern*>(labelItem.getPattern()),
const_cast<Expr*>(labelItem.getGuardExpr()),
hasFallthrough);
}
hasFallthrough = caseBlock->hasFallthroughDest();
}
// Emit alloc_stacks for address-only variables appearing in
// multiple-entry case blocks.
emission.emitAddressOnlyAllocations();
SILBasicBlock *contBB = createBasicBlock();
JumpDest contDest(contBB, Cleanups.getCleanupsDepth(), CleanupLocation(S));
LexicalScope switchScope(*this, CleanupLocation(S));
// Enter a break/continue scope. If we wanted a continue
// destination, it would probably be out here.
BreakContinueDestStack.push_back({S, contDest, JumpDest(S)});
PatternMatchContext switchContext = { emission };
SwitchStack.push_back(&switchContext);
// Emit the subject value. If at +1, dispatching will consume it. If it is at
// +0, we just forward down borrows.
ManagedValue subjectMV = emitRValueAsSingleValue(
S->getSubjectExpr(), SGFContext::AllowGuaranteedPlusZero);
// Inline constructor for subject.
auto subject = ([&]() -> ConsumableManagedValue {
// If we have a noImplicitCopy value, ensure plus one and convert
// it. Switches always consume move only values.
//
// NOTE: We purposely do not do this for pure move only types since for them
// we emit everything at +0 and then run the BorrowToDestructure transform
// upon them. The reason that we do this is that internally to
// SILGenPattern, we always attempt to move from +1 -> +0 meaning that even
// if we start at +1, we will go back to +0 given enough patterns to go
// through. It is simpler to just let SILGenPattern do what it already wants
// to do, rather than fight it or try to resusitate the "fake owned borrow"
// path that we still use for address only types (and that we want to delete
// once we have opaque values).
if (subjectMV.getType().isMoveOnly() && subjectMV.getType().isObject()) {
if (subjectMV.getType().isMoveOnlyWrapped()) {
subjectMV = B.createOwnedMoveOnlyWrapperToCopyableValue(
S, subjectMV.ensurePlusOne(*this, S));
} else {
// If we have a pure move only type and it is owned, borrow it so that
// BorrowToDestructure can handle it.
if (subjectMV.getOwnershipKind() == OwnershipKind::Owned) {
subjectMV = subjectMV.borrow(*this, S);
}
}
}
// If we have a plus one value...
if (subjectMV.isPlusOne(*this)) {
// And we have an address that is loadable, perform a load [take].
if (subjectMV.getType().isAddress() &&
subjectMV.getType().isLoadable(F)) {
subjectMV = B.createLoadTake(S, subjectMV);
}
return {subjectMV, CastConsumptionKind::TakeAlways};
}
// If we have a loadable address and +0, perform a load borrow.
if (subjectMV.getType().isAddress() &&
subjectMV.getType().isLoadable(F)) {
subjectMV = B.createLoadBorrow(S, subjectMV);
}
// If then we have an object, return it at +0.
// For opaque values, return at +1
if (subjectMV.getType().isObject()) {
if (subjectMV.getType().isAddressOnly(F)) {
return {subjectMV.copy(*this, S), CastConsumptionKind::TakeAlways};
}
return {subjectMV, CastConsumptionKind::BorrowAlways};
}
// If we have an address only type returned without a cleanup, we
// need to do a copy just to be safe. So for efficiency we pass it
// down take_always.
return {subjectMV.copy(*this, S), CastConsumptionKind::TakeAlways};
}());
// If we need to diagnose an unexpected enum case or unexpected enum case
// value, we need access to a value metatype for the subject. Emit this state
// now before we emit the actual switch to ensure that the subject has not
// been consumed.
auto unexpectedEnumCaseInfo = ([&]() -> UnexpectedEnumCaseInfo {
SILLocation loc = RegularLocation::getAutoGeneratedLocation();
CanType canSubjectTy = subjectTy->getCanonicalType();
CanType metatypeType = MetatypeType::get(canSubjectTy)->getCanonicalType();
SILType loweredMetatypeType =
getLoweredType(AbstractionPattern::getOpaque(), metatypeType);
ManagedValue value = subject.getFinalManagedValue();
if (auto *singleEnumDecl = canSubjectTy->getEnumOrBoundGenericEnum()) {
if (singleEnumDecl->isObjC()) {
auto metatype = ManagedValue::forUnmanaged(
B.createMetatype(loc, loweredMetatypeType));
// Bitcast the enum value to its raw type. (This is only safe for @objc
// enums.)
SILType loweredRawType = getLoweredType(singleEnumDecl->getRawType());
assert(loweredRawType.isTrivial(F));
assert(loweredRawType.isObject());
auto rawValue =
B.createUncheckedTrivialBitCast(loc, value, loweredRawType);
return {canSubjectTy, metatype, rawValue, singleEnumDecl};
}
}
return {canSubjectTy,
B.createValueMetatype(loc, loweredMetatypeType, value)};
}());
auto failure = [&](SILLocation location) {
// If we fail to match anything, we trap. This can happen with a switch
// over an @objc enum, which may contain any value of its underlying type,
// or a switch over a non-frozen Swift enum when the user hasn't written a
// catch-all case.
SWIFT_DEFER { B.createUnreachable(location); };
// Special case: if it's a single @objc enum, we can print the raw value.
if (unexpectedEnumCaseInfo.isSingleObjCEnum()) {
emitDiagnoseOfUnexpectedEnumCaseValue(*this, location,
unexpectedEnumCaseInfo);
return;
}
emitDiagnoseOfUnexpectedEnumCase(*this, location, unexpectedEnumCaseInfo);
};
// Set up an initial clause matrix.
ClauseMatrix clauses(clauseRows);
// Recursively specialize and emit the clause matrix.
emission.emitDispatch(clauses, subject, failure);
assert(!B.hasValidInsertionPoint());
switchScope.pop();
// Then emit the case blocks shared by multiple pattern cases.
emission.emitSharedCaseBlocks(
[&](CaseStmt *caseStmt) { emission.emitCaseBody(caseStmt); });
// Bookkeeping.
SwitchStack.pop_back();
BreakContinueDestStack.pop_back();
// If the continuation block has no predecessors, this
// point is not reachable.
if (contBB->pred_empty()) {
eraseBasicBlock(contBB);
} else {
B.emitBlock(contBB);
}
// Now that we have emitted everything, see if our unexpected enum case info
// metatypes were actually used. If not, delete them.
unexpectedEnumCaseInfo.cleanupInstsIfUnused();
}
void SILGenFunction::emitSwitchFallthrough(FallthroughStmt *S) {
assert(!SwitchStack.empty() && "fallthrough outside of switch?!");
PatternMatchContext *context = SwitchStack.back();
// Get the destination block.
CaseStmt *destCaseStmt = S->getFallthroughDest();
JumpDest sharedDest = context->Emission.getSharedCaseBlockDest(destCaseStmt);
// If our destination case doesn't have any bound decls, there is no rebinding
// to do. Just jump to the shared dest.
if (!destCaseStmt->hasCaseBodyVariables()) {
Cleanups.emitBranchAndCleanups(sharedDest, S);
return;
}
// Generate branch args to pass along current vars to fallthrough case.
SmallVector<SILValue, 4> args;
CaseStmt *fallthroughSourceStmt = S->getFallthroughSource();
for (auto *expected : destCaseStmt->getCaseBodyVariables()) {
if (!expected->hasName())
continue;
// The type checker enforces that if our destination case has variables then
// our fallthrough source must as well.
for (auto *var : fallthroughSourceStmt->getCaseBodyVariables()) {
if (!var->hasName() || var->getName() != expected->getName()) {
continue;
}
auto varLoc = VarLocs[var];
SILValue value = varLoc.getValueOrBoxedValue(*this);
if (value->getType().isAddressOnly(F)) {
context->Emission.emitAddressOnlyInitialization(expected, value);
break;
}
if (varLoc.box) {
SILValue argValue = B.emitLoadValueOperation(
CurrentSILLoc, value, LoadOwnershipQualifier::Copy);
args.push_back(argValue);
break;
}
auto argValue = B.emitCopyValueOperation(CurrentSILLoc, value);
args.push_back(argValue);
break;
}
}
Cleanups.emitBranchAndCleanups(sharedDest, S, args);
}
void SILGenFunction::emitCatchDispatch(DoCatchStmt *S, ManagedValue exn,
ArrayRef<CaseStmt *> clauses,
JumpDest catchFallthroughDest) {
auto completionHandler = [&](PatternMatchEmission &emission,
ArgArray argArray, ClauseRow &row) {
auto clause = row.getClientData<CaseStmt>();
emitProfilerIncrement(clause->getBody());
// Certain catch clauses can be entered along multiple paths because they
// have multiple labels. When we need multiple entrance path, we factor the
// paths with a shared block.
//
// If we don't have a multi-pattern 'catch', we can emit the
// body inline. Emit the statement here and bail early.
if (clause->getCaseLabelItems().size() == 1) {
// Debug values for catch clause variables must be nested within a scope for
// the catch block to avoid name conflicts.
DebugScope scope(*this, CleanupLocation(clause));
// If we have case body vars, set them up to point at the matching var
// decls.
if (clause->hasCaseBodyVariables()) {
// Since we know that we only have one case label item, grab its pattern
// vars and use that to update expected with the right SILValue.
//
// TODO: Do we need a copy here?
SmallVector<VarDecl *, 4> patternVars;
row.getCasePattern()->collectVariables(patternVars);
for (auto *expected : clause->getCaseBodyVariables()) {
if (!expected->hasName())
continue;
for (auto *vd : patternVars) {
if (!vd->hasName() || vd->getName() != expected->getName()) {
continue;
}
// Ok, we found a match. Update the VarLocs for the case block.
auto v = VarLocs[vd];
VarLocs[expected] = v;
// Emit a debug description of the incoming arg, nested within the scope
// for the pattern match.
SILDebugVariable dbgVar(vd->isLet(), /*ArgNo=*/0);
B.emitDebugDescription(vd, v.getValueOrBoxedValue(*this), dbgVar);
}
}
}
emitStmt(clause->getBody());
// If we fell out of the catch clause, branch to the fallthrough dest.
if (B.hasValidInsertionPoint()) {
Cleanups.emitBranchAndCleanups(catchFallthroughDest, clause->getBody());
}
return;
}
// Ok, at this point we know that we have a multiple entrance block. Grab
// our shared destination in preparation for branching to it.
//
// NOTE: We do not emit anything yet, since we will emit the shared block
// later.
JumpDest sharedDest = emission.getSharedCaseBlockDest(clause);
// If we do not have any bound decls, we do not need to setup any
// variables. Just jump to the shared destination.
if (!clause->hasCaseBodyVariables()) {
// Don't emit anything yet, we emit it at the cleanup level of the switch
// statement.
JumpDest sharedDest = emission.getSharedCaseBlockDest(clause);
Cleanups.emitBranchAndCleanups(sharedDest, clause);
return;
}
// Generate the arguments from this row's pattern in the case block's
// expected order, and keep those arguments from being cleaned up, as we're
// passing the +1 along to the shared case block dest. (The cleanups still
// happen, as they are threaded through here messily, but the explicit
// retains here counteract them, and then the retain/release pair gets
// optimized out.)
SmallVector<SILValue, 4> args;
SmallVector<VarDecl *, 4> patternVars;
row.getCasePattern()->collectVariables(patternVars);
for (auto *expected : clause->getCaseBodyVariables()) {
if (!expected->hasName())
continue;
for (auto *var : patternVars) {
if (!var->hasName() || var->getName() != expected->getName())
continue;
SILValue value = VarLocs[var].getValueOrBoxedValue(*this);
SILType type = value->getType();
// If we have an address-only type, initialize the temporary
// allocation. We're not going to pass the address as a block
// argument.
if (type.isAddressOnly(F)) {
emission.emitAddressOnlyInitialization(expected, value);
break;
}
// If we have a loadable address, perform a load [copy].
if (type.isAddress()) {
value = B.emitLoadValueOperation(CurrentSILLoc, value,
LoadOwnershipQualifier::Copy);
args.push_back(value);
break;
}
value = B.emitCopyValueOperation(CurrentSILLoc, value);
args.push_back(value);
break;
}
}
// Now that we have initialized our arguments, branch to the shared dest.
Cleanups.emitBranchAndCleanups(sharedDest, clause, args);
};
LLVM_DEBUG(llvm::dbgs() << "emitting catch dispatch\n"; S->dump(llvm::dbgs());
llvm::dbgs() << '\n');
PatternMatchEmission emission(*this, S, completionHandler);
// Add a row for each label of each case.
SmallVector<ClauseRow, 8> clauseRows;
clauseRows.reserve(S->getCatches().size());
for (auto caseBlock : S->getCatches()) {
// If we have multiple case label items, create a shared case block to
// generate the shared block.
if (caseBlock->getCaseLabelItems().size() > 1) {
emission.initSharedCaseBlockDest(caseBlock, /*hasFallthrough*/ false);
}
for (auto &labelItem : caseBlock->getCaseLabelItems()) {
clauseRows.emplace_back(caseBlock,
const_cast<Pattern *>(labelItem.getPattern()),
const_cast<Expr *>(labelItem.getGuardExpr()),
/*hasFallthrough*/ false);
}
}
// Emit alloc_stacks for address-only variables appearing in
// multiple-entry case blocks.
emission.emitAddressOnlyAllocations();
Scope stmtScope(Cleanups, CleanupLocation(S));
assert(exn.getType().isObject() &&
"Error is special and should always be an object");
// Our model is that sub-cases get the exception at +0 and the throw (if we
// need to rethrow the exception) gets the exception at +1 since we need to
// trampoline it's ownership to our caller.
ConsumableManagedValue subject = {exn.borrow(*this, S),
CastConsumptionKind::BorrowAlways};
auto failure = [&](SILLocation location) {
// If we fail to match anything, just rethrow the exception.
// If the throw destination is not valid, then the PatternMatchEmission
// logic is emitting an unreachable block but didn't prune the failure BB.
// Mark it as such.
if (!ThrowDest.isValid()) {
B.createUnreachable(S);
return;
}
// Since we borrowed exn before sending it to our subcases, we know that it
// must be at +1 at this point. That being said, SILGenPattern will
// potentially invoke this for each of the catch statements, so we need to
// copy before we pass it into the throw.
CleanupStateRestorationScope scope(Cleanups);
if (exn.hasCleanup()) {
scope.pushCleanupState(exn.getCleanup(),
CleanupState::PersistentlyActive);
}
emitThrow(S, exn);
};
// Set up an initial clause matrix.
ClauseMatrix clauseMatrix(clauseRows);
// Recursively specialize and emit the clause matrix.
emission.emitDispatch(clauseMatrix, subject, failure);
assert(!B.hasValidInsertionPoint());
stmtScope.pop();
// Then emit the case blocks shared by multiple pattern cases.
emission.emitSharedCaseBlocks([&](CaseStmt *caseStmt) {
emitStmt(caseStmt->getBody());
// If we fell out of the catch clause, branch to the fallthrough dest.
if (B.hasValidInsertionPoint()) {
Cleanups.emitBranchAndCleanups(catchFallthroughDest, caseStmt->getBody());
}
});
}