Files
swift-mirror/lib/AST/DiagnosticEngine.cpp
2022-05-29 21:55:31 +03:00

1398 lines
50 KiB
C++

//===--- DiagnosticEngine.cpp - Diagnostic Display Engine -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the DiagnosticEngine class, which manages any diagnostics
// emitted by Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Config.h"
#include "swift/Localization/LocalizationFormat.h"
#include "swift/Parse/Lexer.h" // bad dependency
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
namespace {
enum class DiagnosticOptions {
/// No options.
none,
/// The location of this diagnostic points to the beginning of the first
/// token that the parser considers invalid. If this token is located at the
/// beginning of the line, then the location is adjusted to point to the end
/// of the previous token.
///
/// This behavior improves experience for "expected token X" diagnostics.
PointsToFirstBadToken,
/// After a fatal error subsequent diagnostics are suppressed.
Fatal,
/// An API or ABI breakage diagnostic emitted by the API digester.
APIDigesterBreakage,
/// A deprecation warning or error.
Deprecation,
/// A diagnostic warning about an unused element.
NoUsage,
};
struct StoredDiagnosticInfo {
DiagnosticKind kind : 2;
bool pointsToFirstBadToken : 1;
bool isFatal : 1;
bool isAPIDigesterBreakage : 1;
bool isDeprecation : 1;
bool isNoUsage : 1;
constexpr StoredDiagnosticInfo(DiagnosticKind k, bool firstBadToken,
bool fatal, bool isAPIDigesterBreakage,
bool deprecation, bool noUsage)
: kind(k), pointsToFirstBadToken(firstBadToken), isFatal(fatal),
isAPIDigesterBreakage(isAPIDigesterBreakage), isDeprecation(deprecation),
isNoUsage(noUsage) {}
constexpr StoredDiagnosticInfo(DiagnosticKind k, DiagnosticOptions opts)
: StoredDiagnosticInfo(k,
opts == DiagnosticOptions::PointsToFirstBadToken,
opts == DiagnosticOptions::Fatal,
opts == DiagnosticOptions::APIDigesterBreakage,
opts == DiagnosticOptions::Deprecation,
opts == DiagnosticOptions::NoUsage) {}
};
// Reproduce the DiagIDs, as we want both the size and access to the raw ids
// themselves.
enum LocalDiagID : uint32_t {
#define DIAG(KIND, ID, Options, Text, Signature) ID,
#include "swift/AST/DiagnosticsAll.def"
NumDiags
};
} // end anonymous namespace
// TODO: categorization
static const constexpr StoredDiagnosticInfo storedDiagnosticInfos[] = {
#define ERROR(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Error, DiagnosticOptions::Options),
#define WARNING(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Warning, DiagnosticOptions::Options),
#define NOTE(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Note, DiagnosticOptions::Options),
#define REMARK(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Remark, DiagnosticOptions::Options),
#include "swift/AST/DiagnosticsAll.def"
};
static_assert(sizeof(storedDiagnosticInfos) / sizeof(StoredDiagnosticInfo) ==
LocalDiagID::NumDiags,
"array size mismatch");
static constexpr const char * const diagnosticStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const debugDiagnosticStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) Text " [" #ID "]",
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const diagnosticIDStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature) #ID,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const fixItStrings[] = {
#define DIAG(KIND, ID, Options, Text, Signature)
#define FIXIT(ID, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a fix-it>",
};
#define EDUCATIONAL_NOTES(DIAG, ...) \
static constexpr const char *const DIAG##_educationalNotes[] = {__VA_ARGS__, \
nullptr};
#include "swift/AST/EducationalNotes.def"
// NOTE: sadly, while GCC and Clang support array designators in C++, they are
// not part of the standard at the moment, so Visual C++ doesn't support them.
// This construct allows us to provide a constexpr array initialized to empty
// values except in the cases that EducationalNotes.def are provided, similar to
// what the C array would have looked like.
template<int N>
struct EducationalNotes {
constexpr EducationalNotes() : value() {
for (auto i = 0; i < N; ++i) value[i] = {};
#define EDUCATIONAL_NOTES(DIAG, ...) \
value[LocalDiagID::DIAG] = DIAG##_educationalNotes;
#include "swift/AST/EducationalNotes.def"
}
const char *const *value[N];
};
static constexpr EducationalNotes<LocalDiagID::NumDiags> _EducationalNotes = EducationalNotes<LocalDiagID::NumDiags>();
static constexpr auto educationalNotes = _EducationalNotes.value;
DiagnosticState::DiagnosticState() {
// Initialize our ignored diagnostics to default
ignoredDiagnostics.resize(LocalDiagID::NumDiags);
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceRange SR) {
return CharSourceRange(SM, SR.Start, Lexer::getLocForEndOfToken(SM, SR.End));
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceLoc Start,
SourceLoc End) {
return CharSourceRange(SM, Start, End);
}
/// Extract a character at \p Loc. If \p Loc is the end of the buffer,
/// return '\f'.
static char extractCharAfter(SourceManager &SM, SourceLoc Loc) {
auto chars = SM.extractText({Loc, 1});
return chars.empty() ? '\f' : chars[0];
}
/// Extract a character immediately before \p Loc. If \p Loc is the
/// start of the buffer, return '\f'.
static char extractCharBefore(SourceManager &SM, SourceLoc Loc) {
// We have to be careful not to go off the front of the buffer.
auto bufferID = SM.findBufferContainingLoc(Loc);
auto bufferRange = SM.getRangeForBuffer(bufferID);
if (bufferRange.getStart() == Loc)
return '\f';
auto chars = SM.extractText({Loc.getAdvancedLoc(-1), 1}, bufferID);
assert(!chars.empty() && "Couldn't extractText with valid range");
return chars[0];
}
InFlightDiagnostic &InFlightDiagnostic::highlight(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && R.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, R));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::highlightChars(SourceLoc Start,
SourceLoc End) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, Start, End));
return *this;
}
/// Add an insertion fix-it to the currently-active diagnostic. The
/// text is inserted immediately *after* the token specified.
///
InFlightDiagnostic &
InFlightDiagnostic::fixItInsertAfter(SourceLoc L, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
L = Lexer::getLocForEndOfToken(Engine->SourceMgr, L);
return fixItInsert(L, FormatString, Args);
}
/// Add a token-based removal fix-it to the currently-active
/// diagnostic.
InFlightDiagnostic &InFlightDiagnostic::fixItRemove(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
// Convert from a token range to a CharSourceRange, which points to the end of
// the token we want to remove.
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're removing something (e.g. a keyword), do a bit of extra work to
// make sure that we leave the code in a good place, without extraneous white
// space around its hole. Specifically, check to see there is whitespace
// before and after the end of range. If so, nuke the space afterward to keep
// things consistent.
if (extractCharAfter(SM, charRange.getEnd()) == ' ' &&
isspace(extractCharBefore(SM, charRange.getStart()))) {
charRange = CharSourceRange(charRange.getStart(),
charRange.getByteLength()+1);
}
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(charRange, {}, {}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplace(SourceRange R, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange, FormatString, Args));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItReplace(SourceRange R,
StringRef Str) {
if (Str.empty())
return fixItRemove(R);
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're replacing with something that wants spaces around it, do a bit of
// extra work so that we don't suggest extra spaces.
// FIXME: This could probably be applied to structured fix-its as well.
if (Str.back() == ' ') {
if (isspace(extractCharAfter(SM, charRange.getEnd())))
Str = Str.drop_back();
}
if (!Str.empty() && Str.front() == ' ') {
if (isspace(extractCharBefore(SM, charRange.getStart())))
Str = Str.drop_front();
}
return fixItReplace(R, "%0", {Str});
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplaceChars(SourceLoc Start, SourceLoc End,
StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(toCharSourceRange(Engine->SourceMgr, Start, End),
FormatString, Args));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItExchange(SourceRange R1,
SourceRange R2) {
assert(IsActive && "Cannot modify an inactive diagnostic");
auto &SM = Engine->SourceMgr;
// Convert from a token range to a CharSourceRange
auto charRange1 = toCharSourceRange(SM, R1);
auto charRange2 = toCharSourceRange(SM, R2);
// Extract source text.
auto text1 = SM.extractText(charRange1);
auto text2 = SM.extractText(charRange2);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange1, "%0", {text2}));
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange2, "%0", {text1}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::limitBehavior(DiagnosticBehavior limit) {
Engine->getActiveDiagnostic().setBehaviorLimit(limit);
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::warnUntilSwiftVersion(unsigned majorVersion) {
if (!Engine->languageVersion.isVersionAtLeast(majorVersion)) {
limitBehavior(DiagnosticBehavior::Warning)
.wrapIn(diag::error_in_future_swift_version, majorVersion);
}
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::wrapIn(const Diagnostic &wrapper) {
// Save current active diagnostic into WrappedDiagnostics, ignoring state
// so we don't get a None return or influence future diagnostics.
DiagnosticState tempState;
Engine->state.swap(tempState);
llvm::SaveAndRestore<DiagnosticBehavior>
limit(Engine->getActiveDiagnostic().BehaviorLimit,
DiagnosticBehavior::Unspecified);
Engine->WrappedDiagnostics.push_back(
*Engine->diagnosticInfoForDiagnostic(Engine->getActiveDiagnostic()));
Engine->state.swap(tempState);
auto &wrapped = Engine->WrappedDiagnostics.back();
// Copy and update its arg list.
Engine->WrappedDiagnosticArgs.emplace_back(wrapped.FormatArgs);
wrapped.FormatArgs = Engine->WrappedDiagnosticArgs.back();
// Overwrite the ID and argument with those from the wrapper.
Engine->getActiveDiagnostic().ID = wrapper.ID;
Engine->getActiveDiagnostic().Args = wrapper.Args;
// Set the argument to the diagnostic being wrapped.
assert(wrapper.getArgs().front().getKind() == DiagnosticArgumentKind::Diagnostic);
Engine->getActiveDiagnostic().Args.front() = &wrapped;
return *this;
}
void InFlightDiagnostic::flush() {
if (!IsActive)
return;
IsActive = false;
if (Engine)
Engine->flushActiveDiagnostic();
}
void Diagnostic::addChildNote(Diagnostic &&D) {
assert(storedDiagnosticInfos[(unsigned)D.ID].kind == DiagnosticKind::Note &&
"Only notes can have a parent.");
assert(storedDiagnosticInfos[(unsigned)ID].kind != DiagnosticKind::Note &&
"Notes can't have children.");
ChildNotes.push_back(std::move(D));
}
bool DiagnosticEngine::isDiagnosticPointsToFirstBadToken(DiagID ID) const {
return storedDiagnosticInfos[(unsigned) ID].pointsToFirstBadToken;
}
bool DiagnosticEngine::isAPIDigesterBreakageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isAPIDigesterBreakage;
}
bool DiagnosticEngine::isDeprecationDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isDeprecation;
}
bool DiagnosticEngine::isNoUsageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isNoUsage;
}
bool DiagnosticEngine::finishProcessing() {
bool hadError = false;
for (auto &Consumer : Consumers) {
hadError |= Consumer->finishProcessing();
}
return hadError;
}
/// Skip forward to one of the given delimiters.
///
/// \param Text The text to search through, which will be updated to point
/// just after the delimiter.
///
/// \param Delim The first character delimiter to search for.
///
/// \param FoundDelim On return, true if the delimiter was found, or false
/// if the end of the string was reached.
///
/// \returns The string leading up to the delimiter, or the empty string
/// if no delimiter is found.
static StringRef
skipToDelimiter(StringRef &Text, char Delim, bool *FoundDelim = nullptr) {
unsigned Depth = 0;
if (FoundDelim)
*FoundDelim = false;
unsigned I = 0;
for (unsigned N = Text.size(); I != N; ++I) {
if (Text[I] == '{') {
++Depth;
continue;
}
if (Depth > 0) {
if (Text[I] == '}')
--Depth;
continue;
}
if (Text[I] == Delim) {
if (FoundDelim)
*FoundDelim = true;
break;
}
}
assert(Depth == 0 && "Unbalanced {} set in diagnostic text");
StringRef Result = Text.substr(0, I);
Text = Text.substr(I + 1);
return Result;
}
/// Handle the integer 'select' modifier. This is used like this:
/// %select{foo|bar|baz}2. This means that the integer argument "%2" has a
/// value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void formatSelectionArgument(StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned SelectedIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
bool foundPipe = false;
do {
assert((!ModifierArguments.empty() || foundPipe) &&
"Index beyond bounds in %select modifier");
StringRef Text = skipToDelimiter(ModifierArguments, '|', &foundPipe);
if (SelectedIndex == 0) {
DiagnosticEngine::formatDiagnosticText(Out, Text, Args, FormatOpts);
break;
}
--SelectedIndex;
} while (true);
}
static bool isInterestingTypealias(Type type) {
// Dig out the typealias declaration, if there is one.
TypeAliasDecl *aliasDecl = nullptr;
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer()))
aliasDecl = aliasTy->getDecl();
else
return false;
if (type->isVoid())
return false;
// The 'Swift.AnyObject' typealias is not 'interesting'.
if (aliasDecl->getName() ==
aliasDecl->getASTContext().getIdentifier("AnyObject") &&
(aliasDecl->getParentModule()->isStdlibModule() ||
aliasDecl->getParentModule()->isBuiltinModule())) {
return false;
}
// Compatibility aliases are only interesting insofar as their underlying
// types are interesting.
if (aliasDecl->isCompatibilityAlias()) {
auto underlyingTy = aliasDecl->getUnderlyingType();
return isInterestingTypealias(underlyingTy);
}
// Builtin types are never interesting typealiases.
if (type->is<BuiltinType>()) return false;
return true;
}
/// Walks the type recursively desugaring types to display, but skipping
/// `GenericTypeParamType` because we would lose association with its original
/// declaration and end up presenting the parameter in τ_0_0 format on
/// diagnostic.
static Type getAkaTypeForDisplay(Type type) {
return type.transform([](Type visitTy) -> Type {
if (isa<SugarType>(visitTy.getPointer()) &&
!isa<GenericTypeParamType>(visitTy.getPointer()))
return getAkaTypeForDisplay(visitTy->getDesugaredType());
return visitTy;
});
}
/// Decide whether to show the desugared type or not. We filter out some
/// cases to avoid too much noise.
static bool shouldShowAKA(Type type, StringRef typeName) {
// Canonical types are already desugared.
if (type->isCanonical())
return false;
// Only show 'aka' if there's a typealias involved; other kinds of sugar
// are easy enough for people to read on their own.
if (!type.findIf(isInterestingTypealias))
return false;
// If they are textually the same, don't show them. This can happen when
// they are actually different types, because they exist in different scopes
// (e.g. everyone names their type parameters 'T').
if (typeName == getAkaTypeForDisplay(type).getString())
return false;
return true;
}
/// If a type is part of an argument list which includes another, distinct type
/// with the same string representation, it should be qualified during
/// formatting.
static bool typeSpellingIsAmbiguous(Type type,
ArrayRef<DiagnosticArgument> Args,
PrintOptions &PO) {
for (auto arg : Args) {
if (arg.getKind() == DiagnosticArgumentKind::Type) {
auto argType = arg.getAsType();
if (argType && argType->getWithoutParens().getPointer() != type.getPointer() &&
argType->getWithoutParens().getString(PO) == type.getString(PO)) {
// Currently, existential types are spelled the same way
// as protocols and compositions. We can remove this once
// existenials are printed with 'any'.
if (type->is<ExistentialType>() || argType->isExistentialType()) {
auto constraint = type;
if (auto existential = type->getAs<ExistentialType>())
constraint = existential->getConstraintType();
auto argConstraint = argType;
if (auto existential = argType->getAs<ExistentialType>())
argConstraint = existential->getConstraintType();
if (constraint.getPointer() != argConstraint.getPointer())
return true;
continue;
}
return true;
}
}
}
return false;
}
/// Determine whether this is the main actor type.
static bool isMainActor(Type type) {
if (auto nominal = type->getAnyNominal()) {
if (nominal->getName().is("MainActor") &&
nominal->getParentModule()->getName() ==
nominal->getASTContext().Id_Concurrency)
return true;
}
return false;
}
void swift::printClangDeclName(const clang::NamedDecl *ND,
llvm::raw_ostream &os) {
#if SWIFT_BUILD_ONLY_SYNTAXPARSERLIB
return; // not needed for the parser library.
#endif
ND->getNameForDiagnostic(os, ND->getASTContext().getPrintingPolicy(), false);
}
/// Format a single diagnostic argument and write it to the given
/// stream.
static void formatDiagnosticArgument(StringRef Modifier,
StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned ArgIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
const DiagnosticArgument &Arg = Args[ArgIndex];
switch (Arg.getKind()) {
case DiagnosticArgumentKind::Integer:
if (Modifier == "select") {
assert(Arg.getAsInteger() >= 0 && "Negative selection index");
formatSelectionArgument(ModifierArguments, Args, Arg.getAsInteger(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsInteger() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for integer argument");
Out << Arg.getAsInteger();
}
break;
case DiagnosticArgumentKind::Unsigned:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args, Arg.getAsUnsigned(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsUnsigned() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for unsigned argument");
Out << Arg.getAsUnsigned();
}
break;
case DiagnosticArgumentKind::String:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
Arg.getAsString().empty() ? 0 : 1, FormatOpts,
Out);
} else {
assert(Modifier.empty() && "Improper modifier for string argument");
Out << Arg.getAsString();
}
break;
case DiagnosticArgumentKind::Identifier:
assert(Modifier.empty() && "Improper modifier for identifier argument");
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsIdentifier().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ObjCSelector:
assert(Modifier.empty() && "Improper modifier for selector argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsObjCSelector()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ValueDecl:
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsValueDecl()->getName().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::FullyQualifiedType:
case DiagnosticArgumentKind::Type: {
assert(Modifier.empty() && "Improper modifier for Type argument");
// Strip extraneous parentheses; they add no value.
Type type;
bool needsQualification = false;
// Compute the appropriate print options for this argument.
auto printOptions = PrintOptions::forDiagnosticArguments();
if (Arg.getKind() == DiagnosticArgumentKind::Type) {
type = Arg.getAsType()->getWithoutParens();
if (type.isNull()) {
// FIXME: We should never receive a nullptr here, but this is causing
// crashes (rdar://75740683). Remove once ParenType never contains
// nullptr as the underlying type.
Out << "<null>";
break;
}
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = typeSpellingIsAmbiguous(type, Args, printOptions);
} else {
assert(Arg.getKind() == DiagnosticArgumentKind::FullyQualifiedType);
type = Arg.getAsFullyQualifiedType().getType()->getWithoutParens();
if (type.isNull()) {
// FIXME: We should never receive a nullptr here, but this is causing
// crashes (rdar://75740683). Remove once ParenType never contains
// nullptr as the underlying type.
Out << "<null>";
break;
}
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = true;
}
// If a type has an unresolved type, print it with syntax sugar removed for
// clarity. For example, print `Array<_>` instead of `[_]`.
if (type->hasUnresolvedType()) {
type = type->getWithoutSyntaxSugar();
}
if (needsQualification &&
isa<OpaqueTypeArchetypeType>(type.getPointer()) &&
cast<ArchetypeType>(type.getPointer())->isRoot()) {
auto opaqueTypeDecl = type->castTo<OpaqueTypeArchetypeType>()->getDecl();
llvm::SmallString<256> NamingDeclText;
llvm::raw_svector_ostream OutNaming(NamingDeclText);
auto namingDecl = opaqueTypeDecl->getNamingDecl();
if (namingDecl->getDeclContext()->isTypeContext()) {
auto selfTy = namingDecl->getDeclContext()->getSelfInterfaceType();
selfTy->print(OutNaming);
OutNaming << '.';
}
namingDecl->getName().printPretty(OutNaming);
auto descriptiveKind = opaqueTypeDecl->getDescriptiveKind();
Out << llvm::format(FormatOpts.OpaqueResultFormatString.c_str(),
type->getString(printOptions).c_str(),
Decl::getDescriptiveKindName(descriptiveKind).data(),
NamingDeclText.c_str());
} else {
printOptions.FullyQualifiedTypes = needsQualification;
std::string typeName = type->getString(printOptions);
if (shouldShowAKA(type, typeName)) {
llvm::SmallString<256> AkaText;
llvm::raw_svector_ostream OutAka(AkaText);
getAkaTypeForDisplay(type)->print(OutAka, printOptions);
Out << llvm::format(FormatOpts.AKAFormatString.c_str(),
typeName.c_str(), AkaText.c_str());
} else {
Out << FormatOpts.OpeningQuotationMark << typeName
<< FormatOpts.ClosingQuotationMark;
}
}
break;
}
case DiagnosticArgumentKind::TypeRepr:
assert(Modifier.empty() && "Improper modifier for TypeRepr argument");
assert(Arg.getAsTypeRepr() && "TypeRepr argument is null");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsTypeRepr()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::PatternKind:
assert(Modifier.empty() && "Improper modifier for PatternKind argument");
Out << Arg.getAsPatternKind();
break;
case DiagnosticArgumentKind::SelfAccessKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsSelfAccessKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for SelfAccessKind argument");
Out << Arg.getAsSelfAccessKind();
}
break;
case DiagnosticArgumentKind::ReferenceOwnership:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsReferenceOwnership()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for ReferenceOwnership argument");
Out << Arg.getAsReferenceOwnership();
}
break;
case DiagnosticArgumentKind::StaticSpellingKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsStaticSpellingKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for StaticSpellingKind argument");
Out << Arg.getAsStaticSpellingKind();
}
break;
case DiagnosticArgumentKind::DescriptiveDeclKind:
assert(Modifier.empty() &&
"Improper modifier for DescriptiveDeclKind argument");
Out << Decl::getDescriptiveKindName(Arg.getAsDescriptiveDeclKind());
break;
case DiagnosticArgumentKind::DeclAttribute:
assert(Modifier.empty() &&
"Improper modifier for DeclAttribute argument");
if (Arg.getAsDeclAttribute()->isDeclModifier())
Out << FormatOpts.OpeningQuotationMark
<< Arg.getAsDeclAttribute()->getAttrName()
<< FormatOpts.ClosingQuotationMark;
else
Out << '@' << Arg.getAsDeclAttribute()->getAttrName();
break;
case DiagnosticArgumentKind::VersionTuple:
assert(Modifier.empty() &&
"Improper modifier for VersionTuple argument");
Out << Arg.getAsVersionTuple().getAsString();
break;
case DiagnosticArgumentKind::LayoutConstraint:
assert(Modifier.empty() && "Improper modifier for LayoutConstraint argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsLayoutConstraint()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ActorIsolation:
assert(Modifier.empty() && "Improper modifier for ActorIsolation argument");
switch (auto isolation = Arg.getAsActorIsolation()) {
case ActorIsolation::ActorInstance:
Out << "actor-isolated";
break;
case ActorIsolation::GlobalActor:
case ActorIsolation::GlobalActorUnsafe: {
Type globalActor = isolation.getGlobalActor();
if (isMainActor(globalActor)) {
Out << "main actor-isolated";
} else {
Out << "global actor " << FormatOpts.OpeningQuotationMark
<< globalActor.getString()
<< FormatOpts.ClosingQuotationMark << "-isolated";
}
break;
}
case ActorIsolation::Independent:
case ActorIsolation::Unspecified:
Out << "nonisolated";
break;
}
break;
case DiagnosticArgumentKind::Diagnostic: {
assert(Modifier.empty() && "Improper modifier for Diagnostic argument");
auto diagArg = Arg.getAsDiagnostic();
DiagnosticEngine::formatDiagnosticText(Out, diagArg->FormatString,
diagArg->FormatArgs);
break;
}
case DiagnosticArgumentKind::ClangDecl:
assert(Modifier.empty() && "Improper modifier for ClangDecl argument");
Out << FormatOpts.OpeningQuotationMark;
printClangDeclName(Arg.getAsClangDecl(), Out);
Out << FormatOpts.ClosingQuotationMark;
break;
}
}
/// Format the given diagnostic text and place the result in the given
/// buffer.
void DiagnosticEngine::formatDiagnosticText(
llvm::raw_ostream &Out, StringRef InText, ArrayRef<DiagnosticArgument> Args,
DiagnosticFormatOptions FormatOpts) {
while (!InText.empty()) {
size_t Percent = InText.find('%');
if (Percent == StringRef::npos) {
// Write the rest of the string; we're done.
Out.write(InText.data(), InText.size());
break;
}
// Write the string up to (but not including) the %, then drop that text
// (including the %).
Out.write(InText.data(), Percent);
InText = InText.substr(Percent + 1);
// '%%' -> '%'.
if (InText[0] == '%') {
Out.write('%');
InText = InText.substr(1);
continue;
}
// Parse an optional modifier.
StringRef Modifier;
{
size_t Length = InText.find_if_not(isalpha);
Modifier = InText.substr(0, Length);
InText = InText.substr(Length);
}
if (Modifier == "error") {
Out << StringRef("<<INTERNAL ERROR: encountered %error in diagnostic text>>");
continue;
}
// Parse the optional argument list for a modifier, which is brace-enclosed.
StringRef ModifierArguments;
if (InText[0] == '{') {
InText = InText.substr(1);
ModifierArguments = skipToDelimiter(InText, '}');
}
// Find the digit sequence, and parse it into an argument index.
size_t Length = InText.find_if_not(isdigit);
unsigned ArgIndex;
bool IndexParseFailed = InText.substr(0, Length).getAsInteger(10, ArgIndex);
if (IndexParseFailed) {
Out << StringRef("<<INTERNAL ERROR: unparseable argument index in diagnostic text>>");
continue;
}
InText = InText.substr(Length);
if (ArgIndex >= Args.size()) {
Out << StringRef("<<INTERNAL ERROR: out-of-range argument index in diagnostic text>>");
continue;
}
// Convert the argument to a string.
formatDiagnosticArgument(Modifier, ModifierArguments, Args, ArgIndex,
FormatOpts, Out);
}
}
static DiagnosticKind toDiagnosticKind(DiagnosticBehavior behavior) {
switch (behavior) {
case DiagnosticBehavior::Unspecified:
llvm_unreachable("unspecified behavior");
case DiagnosticBehavior::Ignore:
llvm_unreachable("trying to map an ignored diagnostic");
case DiagnosticBehavior::Error:
case DiagnosticBehavior::Fatal:
return DiagnosticKind::Error;
case DiagnosticBehavior::Note:
return DiagnosticKind::Note;
case DiagnosticBehavior::Warning:
return DiagnosticKind::Warning;
case DiagnosticBehavior::Remark:
return DiagnosticKind::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
static
DiagnosticBehavior toDiagnosticBehavior(DiagnosticKind kind, bool isFatal) {
switch (kind) {
case DiagnosticKind::Note:
return DiagnosticBehavior::Note;
case DiagnosticKind::Error:
return isFatal ? DiagnosticBehavior::Fatal : DiagnosticBehavior::Error;
case DiagnosticKind::Warning:
return DiagnosticBehavior::Warning;
case DiagnosticKind::Remark:
return DiagnosticBehavior::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
// A special option only for compiler writers that causes Diagnostics to assert
// when a failure diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnError("swift-diagnostics-assert-on-error",
llvm::cl::init(false));
// A special option only for compiler writers that causes Diagnostics to assert
// when a warning diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnWarning("swift-diagnostics-assert-on-warning",
llvm::cl::init(false));
DiagnosticBehavior DiagnosticState::determineBehavior(const Diagnostic &diag) {
// We determine how to handle a diagnostic based on the following rules
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
// 2) If current state dictates a certain behavior, follow that
// 3) If the user ignored this specific diagnostic, follow that
// 4) If the user substituted a different behavior for this behavior, apply
// that change
// 5) Update current state for use during the next diagnostic
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
auto diagInfo = storedDiagnosticInfos[(unsigned)diag.getID()];
DiagnosticBehavior lvl =
std::max(toDiagnosticBehavior(diagInfo.kind, diagInfo.isFatal),
diag.getBehaviorLimit());
assert(lvl != DiagnosticBehavior::Unspecified);
// 2) If current state dictates a certain behavior, follow that
// Notes relating to ignored diagnostics should also be ignored
if (previousBehavior == DiagnosticBehavior::Ignore
&& lvl == DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// Suppress diagnostics when in a fatal state, except for follow-on notes
if (fatalErrorOccurred)
if (!showDiagnosticsAfterFatalError && lvl != DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// 3) If the user ignored this specific diagnostic, follow that
if (ignoredDiagnostics[(unsigned)diag.getID()])
lvl = DiagnosticBehavior::Ignore;
// 4) If the user substituted a different behavior for this behavior, apply
// that change
if (lvl == DiagnosticBehavior::Warning) {
if (warningsAsErrors)
lvl = DiagnosticBehavior::Error;
if (suppressWarnings)
lvl = DiagnosticBehavior::Ignore;
}
// 5) Update current state for use during the next diagnostic
if (lvl == DiagnosticBehavior::Fatal) {
fatalErrorOccurred = true;
anyErrorOccurred = true;
} else if (lvl == DiagnosticBehavior::Error) {
anyErrorOccurred = true;
}
assert((!AssertOnError || !anyErrorOccurred) && "We emitted an error?!");
assert((!AssertOnWarning || (lvl != DiagnosticBehavior::Warning)) &&
"We emitted a warning?!");
previousBehavior = lvl;
return lvl;
}
void DiagnosticEngine::flushActiveDiagnostic() {
assert(ActiveDiagnostic && "No active diagnostic to flush");
handleDiagnostic(std::move(*ActiveDiagnostic));
ActiveDiagnostic.reset();
}
void DiagnosticEngine::handleDiagnostic(Diagnostic &&diag) {
if (TransactionCount == 0) {
emitDiagnostic(diag);
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
} else {
onTentativeDiagnosticFlush(diag);
TentativeDiagnostics.emplace_back(std::move(diag));
}
}
void DiagnosticEngine::clearTentativeDiagnostics() {
TentativeDiagnostics.clear();
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
}
void DiagnosticEngine::emitTentativeDiagnostics() {
for (auto &diag : TentativeDiagnostics) {
emitDiagnostic(diag);
}
clearTentativeDiagnostics();
}
void DiagnosticEngine::forwardTentativeDiagnosticsTo(
DiagnosticEngine &targetEngine) {
for (auto &diag : TentativeDiagnostics) {
targetEngine.handleDiagnostic(std::move(diag));
}
clearTentativeDiagnostics();
}
/// Returns the access level of the least accessible PrettyPrintedDeclarations
/// buffer that \p decl should appear in.
///
/// This is always \c Public unless \p decl is a \c ValueDecl and its
/// access level is below \c Public. (That can happen with @testable and
/// @_private imports.)
static AccessLevel getBufferAccessLevel(const Decl *decl) {
AccessLevel level = AccessLevel::Public;
if (auto *VD = dyn_cast<ValueDecl>(decl))
level = VD->getFormalAccessScope().accessLevelForDiagnostics();
if (level > AccessLevel::Public) level = AccessLevel::Public;
return level;
}
Optional<DiagnosticInfo>
DiagnosticEngine::diagnosticInfoForDiagnostic(const Diagnostic &diagnostic) {
auto behavior = state.determineBehavior(diagnostic);
if (behavior == DiagnosticBehavior::Ignore)
return None;
// Figure out the source location.
SourceLoc loc = diagnostic.getLoc();
if (loc.isInvalid() && diagnostic.getDecl()) {
const Decl *decl = diagnostic.getDecl();
// If a declaration was provided instead of a location, and that declaration
// has a location we can point to, use that location.
loc = decl->getLoc();
if (loc.isInvalid()) {
// There is no location we can point to. Pretty-print the declaration
// so we can point to it.
SourceLoc ppLoc = PrettyPrintedDeclarations[decl];
if (ppLoc.isInvalid()) {
class TrackingPrinter : public StreamPrinter {
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries;
AccessLevel bufferAccessLevel;
public:
TrackingPrinter(
SmallVectorImpl<std::pair<const Decl *, uint64_t>> &Entries,
raw_ostream &OS, AccessLevel bufferAccessLevel) :
StreamPrinter(OS), Entries(Entries),
bufferAccessLevel(bufferAccessLevel) {}
void printDeclLoc(const Decl *D) override {
if (getBufferAccessLevel(D) == bufferAccessLevel)
Entries.push_back({ D, OS.tell() });
}
};
SmallVector<std::pair<const Decl *, uint64_t>, 8> entries;
llvm::SmallString<128> buffer;
llvm::SmallString<128> bufferName;
{
// The access level of the buffer we want to print. Declarations below
// this access level will be omitted from the buffer; declarations
// above it will be printed, but (except for Open declarations in the
// Public buffer) will not be recorded in PrettyPrintedDeclarations as
// the "true" SourceLoc for the declaration.
AccessLevel bufferAccessLevel = getBufferAccessLevel(decl);
// Figure out which declaration to print. It's the top-most
// declaration (not a module).
const Decl *ppDecl = decl;
auto dc = decl->getDeclContext();
// FIXME: Horrible, horrible hackaround. We're not getting a
// DeclContext everywhere we should.
if (!dc) {
return None;
}
while (!dc->isModuleContext()) {
switch (dc->getContextKind()) {
case DeclContextKind::Module:
llvm_unreachable("Not in a module context!");
break;
case DeclContextKind::FileUnit:
case DeclContextKind::TopLevelCodeDecl:
break;
case DeclContextKind::ExtensionDecl:
ppDecl = cast<ExtensionDecl>(dc);
break;
case DeclContextKind::GenericTypeDecl:
ppDecl = cast<GenericTypeDecl>(dc);
break;
case DeclContextKind::SerializedLocal:
case DeclContextKind::Initializer:
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::AbstractFunctionDecl:
case DeclContextKind::SubscriptDecl:
case DeclContextKind::EnumElementDecl:
break;
}
dc = dc->getParent();
}
// Build the module name path (in reverse), which we use to
// build the name of the buffer.
SmallVector<StringRef, 4> nameComponents;
while (dc) {
nameComponents.push_back(cast<ModuleDecl>(dc)->getName().str());
dc = dc->getParent();
}
for (unsigned i = nameComponents.size(); i; --i) {
bufferName += nameComponents[i-1];
bufferName += '.';
}
if (auto value = dyn_cast<ValueDecl>(ppDecl)) {
bufferName += value->getBaseName().userFacingName();
} else if (auto ext = dyn_cast<ExtensionDecl>(ppDecl)) {
bufferName += ext->getExtendedType().getString();
}
// If we're using a lowered access level, give the buffer a distinct
// name.
if (bufferAccessLevel != AccessLevel::Public) {
assert(bufferAccessLevel < AccessLevel::Public
&& "Above-public access levels should use public buffer");
bufferName += " (";
bufferName += getAccessLevelSpelling(bufferAccessLevel);
bufferName += ")";
}
// Pretty-print the declaration we've picked.
llvm::raw_svector_ostream out(buffer);
TrackingPrinter printer(entries, out, bufferAccessLevel);
llvm::SaveAndRestore<bool> isPrettyPrinting(
IsPrettyPrintingDecl, true);
ppDecl->print(
printer,
PrintOptions::printForDiagnostics(
bufferAccessLevel,
decl->getASTContext().TypeCheckerOpts.PrintFullConvention));
}
// Build a buffer with the pretty-printed declaration.
auto bufferID = SourceMgr.addMemBufferCopy(buffer, bufferName);
auto memBufferStartLoc = SourceMgr.getLocForBufferStart(bufferID);
// Go through all of the pretty-printed entries and record their
// locations.
for (auto entry : entries) {
PrettyPrintedDeclarations[entry.first] =
memBufferStartLoc.getAdvancedLoc(entry.second);
}
// Grab the pretty-printed location.
ppLoc = PrettyPrintedDeclarations[decl];
}
loc = ppLoc;
}
}
StringRef Category;
if (isAPIDigesterBreakageDiagnostic(diagnostic.getID()))
Category = "api-digester-breaking-change";
else if (isDeprecationDiagnostic(diagnostic.getID()))
Category = "deprecation";
else if (isNoUsageDiagnostic(diagnostic.getID()))
Category = "no-usage";
return DiagnosticInfo(
diagnostic.getID(), loc, toDiagnosticKind(behavior),
diagnosticStringFor(diagnostic.getID(), getPrintDiagnosticNames()),
diagnostic.getArgs(), Category, getDefaultDiagnosticLoc(),
/*child note info*/ {}, diagnostic.getRanges(), diagnostic.getFixIts(),
diagnostic.isChildNote());
}
void DiagnosticEngine::emitDiagnostic(const Diagnostic &diagnostic) {
if (auto info = diagnosticInfoForDiagnostic(diagnostic)) {
SmallVector<DiagnosticInfo, 1> childInfo;
auto childNotes = diagnostic.getChildNotes();
for (unsigned i : indices(childNotes)) {
auto child = diagnosticInfoForDiagnostic(childNotes[i]);
assert(child);
assert(child->Kind == DiagnosticKind::Note &&
"Expected child diagnostics to all be notes?!");
childInfo.push_back(*child);
}
TinyPtrVector<DiagnosticInfo *> childInfoPtrs;
for (unsigned i : indices(childInfo)) {
childInfoPtrs.push_back(&childInfo[i]);
}
info->ChildDiagnosticInfo = childInfoPtrs;
SmallVector<std::string, 1> educationalNotePaths;
auto associatedNotes = educationalNotes[(uint32_t)diagnostic.getID()];
while (associatedNotes && *associatedNotes) {
SmallString<128> notePath(getDiagnosticDocumentationPath());
llvm::sys::path::append(notePath, *associatedNotes);
educationalNotePaths.push_back(notePath.str().str());
++associatedNotes;
}
info->EducationalNotePaths = educationalNotePaths;
for (auto &consumer : Consumers) {
consumer->handleDiagnostic(SourceMgr, *info);
}
}
// For compatibility with DiagnosticConsumers which don't know about child
// notes. These can be ignored by consumers which do take advantage of the
// grouping.
for (auto &childNote : diagnostic.getChildNotes())
emitDiagnostic(childNote);
}
DiagnosticKind DiagnosticEngine::declaredDiagnosticKindFor(const DiagID id) {
return storedDiagnosticInfos[(unsigned)id].kind;
}
llvm::StringRef
DiagnosticEngine::diagnosticStringFor(const DiagID id,
bool printDiagnosticNames) {
auto defaultMessage = printDiagnosticNames
? debugDiagnosticStrings[(unsigned)id]
: diagnosticStrings[(unsigned)id];
if (auto producer = localization.get()) {
auto localizedMessage = producer->getMessageOr(id, defaultMessage);
return localizedMessage;
}
return defaultMessage;
}
llvm::StringRef
DiagnosticEngine::diagnosticIDStringFor(const DiagID id) {
return diagnosticIDStrings[(unsigned)id];
}
const char *InFlightDiagnostic::fixItStringFor(const FixItID id) {
return fixItStrings[(unsigned)id];
}
void DiagnosticEngine::setBufferIndirectlyCausingDiagnosticToInput(
SourceLoc loc) {
// If in the future, nested BufferIndirectlyCausingDiagnosticRAII need be
// supported, the compiler will need a stack for
// bufferIndirectlyCausingDiagnostic.
assert(bufferIndirectlyCausingDiagnostic.isInvalid() &&
"Buffer should not already be set.");
bufferIndirectlyCausingDiagnostic = loc;
assert(bufferIndirectlyCausingDiagnostic.isValid() &&
"Buffer must be valid for previous assertion to work.");
}
void DiagnosticEngine::resetBufferIndirectlyCausingDiagnostic() {
bufferIndirectlyCausingDiagnostic = SourceLoc();
}
DiagnosticSuppression::DiagnosticSuppression(DiagnosticEngine &diags)
: diags(diags)
{
consumers = diags.takeConsumers();
}
DiagnosticSuppression::~DiagnosticSuppression() {
for (auto consumer : consumers)
diags.addConsumer(*consumer);
}
bool DiagnosticSuppression::isEnabled(const DiagnosticEngine &diags) {
return diags.getConsumers().empty();
}
BufferIndirectlyCausingDiagnosticRAII::BufferIndirectlyCausingDiagnosticRAII(
const SourceFile &SF)
: Diags(SF.getASTContext().Diags) {
auto id = SF.getBufferID();
if (!id)
return;
auto loc = SF.getASTContext().SourceMgr.getLocForBufferStart(*id);
if (loc.isValid())
Diags.setBufferIndirectlyCausingDiagnosticToInput(loc);
}
void DiagnosticEngine::onTentativeDiagnosticFlush(Diagnostic &diagnostic) {
for (auto &argument : diagnostic.Args) {
if (argument.getKind() != DiagnosticArgumentKind::String)
continue;
auto content = argument.getAsString();
if (content.empty())
continue;
auto I = TransactionStrings.insert(content).first;
argument = DiagnosticArgument(StringRef(I->getKeyData()));
}
}
EncodedDiagnosticMessage::EncodedDiagnosticMessage(StringRef S)
: Message(Lexer::getEncodedStringSegment(S, Buf, /*IsFirstSegment=*/true,
/*IsLastSegment=*/true,
/*IndentToStrip=*/~0U)) {}
std::pair<unsigned, DeclName>
swift::getAccessorKindAndNameForDiagnostics(const ValueDecl *D) {
// This should always be one more than the last AccessorKind supported in
// the diagnostics. If you need to change it, change the assertion below as
// well.
static const unsigned NOT_ACCESSOR_INDEX = 2;
if (auto *accessor = dyn_cast<AccessorDecl>(D)) {
DeclName Name = accessor->getStorage()->getName();
assert(accessor->isGetterOrSetter());
return {static_cast<unsigned>(accessor->getAccessorKind()), Name};
}
return {NOT_ACCESSOR_INDEX, D->getName()};
}