Files
swift-mirror/lib/AST/RequirementMachine/MinimalConformances.cpp

968 lines
33 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- MinimalConformances.cpp - Reasoning about conformance rules ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm to find a minimal set of conformance
// rules (V1.[P1] => V1), ..., (Vn.[Pn] => Vn) whose left hand sides
// _generate_ the set of conformance-valid terms.
//
// That is, any valid term of the form T.[P] where T.[P] reduces to T can be
// written as a product of terms (Vi.[Pi]), where each Vi.[Pi] is a left hand
// side of a minimal conformance.
//
// A "conformance-valid" rewrite system is one where if we can write
// T == U.V for arbitrary non-empty U and V, then U.[domain(V)] is joinable
// with U.
//
// If this holds, then starting with a term T.[P] that is joinable with T, we
// can reduce T to canonical form T', and find the unique rule (V.[P] => V) such
// that T' == U.V. Then we repeat this process with U.[domain(V)], which is
// known to be joinable with U, since T is conformance-valid.
//
// Iterating this process produces a decomposition of T.[P] as a product of
// left hand sides of conformance rules. Some of those rules are not minimal;
// they are added by completion, or they are redundant rules written by the
// user.
//
// Using the rewrite loops that generate the homotopy relation on rewrite paths,
// decompositions can be found for all "derived" conformance rules, producing
// a set of minimal conformances.
//
// There are two small complications to handle implementation details of
// Swift generics:
//
// 1) Inherited witness tables must be derivable by following other protocol
// refinement requirements only, without looking at non-Self associated
// types. This is expressed by saying that the minimal conformance
// equations for a protocol refinement can only be written in terms of
// other protocol refinements; conformance paths involving non-Self
// associated types are not considered.
//
// 2) The subject type of each conformance requirement must be derivable at
// runtime as well, so for each minimal conformance, it must be
// possible to write down a conformance path for the parent type without
// using any minimal conformance recursively in the parent path of
// itself.
//
// The minimal conformances algorithm finds fewer conformance requirements to be
// redundant than homotopy reduction, which is why homotopy reduction only
// deletes non-protocol conformance requirements.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Finds all protocol conformance rules appearing in a rewrite loop, both
/// in empty context, and with a non-empty left context. Applications of rules
/// with a non-empty right context are ignored.
///
/// The rules are organized by protocol. For each protocol, the first element
/// of the pair stores conformance rules that appear without context. The
/// second element of the pair stores rules that appear with non-empty left
/// context. For each such rule, the left prefix is also stored alongside.
void RewriteLoop::findProtocolConformanceRules(
llvm::SmallDenseMap<const ProtocolDecl *,
ProtocolConformanceRules, 2> &result,
const RewriteSystem &system) const {
auto redundantRules = findRulesAppearingOnceInEmptyContext(system);
bool foundAny = false;
for (unsigned ruleID : redundantRules) {
const auto &rule = system.getRule(ruleID);
if (auto *proto = rule.isAnyConformanceRule()) {
if (rule.isIdentityConformanceRule()) {
result[proto].SawIdentityConformance = true;
continue;
}
result[proto].RulesInEmptyContext.push_back(ruleID);
foundAny = true;
}
}
if (!foundAny)
return;
RewritePathEvaluator evaluator(Basepoint);
// Now look for rewrite steps with conformance rules in empty right context,
// that is something like X.(Y.[P] => Y) (or it's inverse, X.(Y => Y.[P])).
for (const auto &step : Path) {
if (!evaluator.isInContext()) {
switch (step.Kind) {
case RewriteStep::Rule: {
const auto &rule = system.getRule(step.getRuleID());
if (rule.isIdentityConformanceRule())
break;
if (auto *proto = rule.isAnyConformanceRule()) {
if (step.StartOffset > 0 &&
step.EndOffset == 0) {
// Record the prefix term that is left unchanged by this rewrite step.
//
// In the above example where the rewrite step is X.(Y.[P] => Z),
// the prefix term is 'X'.
const auto &term = evaluator.getCurrentTerm();
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
result[proto].RulesInContext.emplace_back(prefix, step.getRuleID());
}
}
break;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
break;
}
}
evaluator.apply(step, system);
}
}
namespace {
/// Utility class to encapsulate some shared state.
class MinimalConformances {
const RewriteSystem &System;
RewriteContext &Context;
DebugOptions Debug;
// All conformance rules in the current minimization domain, sorted by
// (isExplicit(), getLHS()), with non-explicit rules with longer left hand
// sides coming first.
//
// The idea here is that we want less canonical rules to be eliminated first,
// but we prefer to eliminate non-explicit rules, in an attempt to keep protocol
// conformance rules in the same protocol as they were originally defined in.
SmallVector<unsigned, 4> ConformanceRules;
// Maps a conformance rule in the current minimization domain to a conformance
// path deriving the subject type's base type. For example, consider the
// following conformance rule:
//
// T.[P:A].[Q:B].[R] => T.[P:A].[Q:B]
//
// The subject type is T.[P:A].[Q:B]; in order to derive the metadata, we need
// the witness table for T.[P:A] : [Q] first, by computing a conformance access
// path for the term T.[P:A].[Q], known as the 'parent path'.
llvm::MapVector<unsigned, SmallVector<unsigned, 2>> ParentPaths;
// Maps a conformance rule in the current minimization domain to a list of paths.
// Each path in the list is a unique derivation of the conformance in terms of
// other conformance rules.
llvm::MapVector<unsigned, std::vector<SmallVector<unsigned, 2>>> ConformancePaths;
// The set of conformance rules (from all minimization domains) which are protocol
// refinements, that is rules of the form [P].[Q] => [P].
llvm::DenseSet<unsigned> ProtocolRefinements;
// This is the computed result set of redundant conformance rules in the current
// minimization domain.
llvm::DenseSet<unsigned> &RedundantConformances;
void decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term,
SmallVectorImpl<unsigned> &result) const;
void decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, unsigned ruleID,
SmallVectorImpl<unsigned> &result) const;
bool isConformanceRuleRecoverable(
llvm::SmallDenseSet<unsigned, 4> &visited,
unsigned ruleID) const;
bool isDerivedViaCircularConformanceRule(
const std::vector<SmallVector<unsigned, 2>> &paths) const;
bool isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
const llvm::SmallVectorImpl<unsigned> &path) const;
bool isValidRefinementPath(
const llvm::SmallVectorImpl<unsigned> &path) const;
void dumpConformancePath(
llvm::raw_ostream &out,
const SmallVectorImpl<unsigned> &path) const;
void dumpMinimalConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const;
public:
explicit MinimalConformances(const RewriteSystem &system,
llvm::DenseSet<unsigned> &redundantConformances)
: System(system),
Context(system.getRewriteContext()),
Debug(system.getDebugOptions()),
RedundantConformances(redundantConformances) {}
void collectConformanceRules();
void computeCandidateConformancePaths();
void dumpMinimalConformanceEquations(llvm::raw_ostream &out) const;
void verifyMinimalConformanceEquations() const;
void computeMinimalConformances();
void verifyMinimalConformances() const;
void dumpMinimalConformances(llvm::raw_ostream &out) const;
};
} // end namespace
/// Write the term as a product of left hand sides of protocol conformance
/// rules.
///
/// The term should be irreducible, except for a protocol symbol at the end.
void
MinimalConformances::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, SmallVectorImpl<unsigned> &result) const {
assert(term.back().getKind() == Symbol::Kind::Protocol);
// If T is canonical and T.[P] => T, then by confluence, T.[P]
// reduces to T in a single step, via a rule V.[P] => V, where
// T == U.V.
RewritePath steps;
bool simplified = System.simplify(term, &steps);
if (!simplified) {
llvm::errs() << "Term does not conform to protocol: " << term << "\n";
System.dump(llvm::errs());
abort();
}
assert(steps.size() == 1 &&
"Canonical conformance term should simplify in one step");
const auto &step = *steps.begin();
#ifndef NDEBUG
const auto &rule = System.getRule(step.getRuleID());
assert(rule.isAnyConformanceRule());
assert(!rule.isIdentityConformanceRule());
#endif
assert(step.Kind == RewriteStep::Rule);
assert(step.EndOffset == 0);
assert(!step.Inverse);
// If |U| > 0, recurse with the term U.[domain(V)]. Since T is
// canonical, we know that U is canonical as well.
if (step.StartOffset > 0) {
// Build the term U.
MutableTerm prefix(term.begin(), term.begin() + step.StartOffset);
decomposeTermIntoConformanceRuleLeftHandSides(
prefix, step.getRuleID(), result);
} else {
result.push_back(step.getRuleID());
}
}
/// Given a term U and a rule (V.[P] => V), write U.[domain(V)] as a
/// product of left hand sdies of conformance rules. The term U should
/// be irreducible.
void
MinimalConformances::decomposeTermIntoConformanceRuleLeftHandSides(
MutableTerm term, unsigned ruleID,
SmallVectorImpl<unsigned> &result) const {
const auto &rule = System.getRule(ruleID);
assert(rule.isAnyConformanceRule());
assert(!rule.isIdentityConformanceRule());
// Compute domain(V).
const auto &lhs = rule.getLHS();
auto protocol = Symbol::forProtocol(lhs[0].getProtocol(), Context);
// A same-type requirement of the form 'Self.Foo == Self' can induce a
// conformance rule [P].[P] => [P], and we can end up with a minimal
// conformance decomposition of the form
//
// (V.[Q] => V) := [P].(V'.[Q] => V'),
//
// where domain(V) == [P]. Don't recurse on [P].[P] here since it won't
// yield anything useful, instead just return with (V'.[Q] => V').
if (term.size() == 1 && term[0] == protocol) {
result.push_back(ruleID);
return;
}
// Build the term U.[domain(V)].
term.add(protocol);
decomposeTermIntoConformanceRuleLeftHandSides(term, result);
// Add the rule V => V.[P].
result.push_back(ruleID);
}
static const ProtocolDecl *getParentConformanceForTerm(Term lhs) {
// The last element is a protocol symbol, because this is the left hand side
// of a conformance rule.
assert(lhs.back().getKind() == Symbol::Kind::Protocol ||
lhs.back().getKind() == Symbol::Kind::ConcreteConformance);
// The second to last symbol is either an associated type, protocol or generic
// parameter symbol.
assert(lhs.size() >= 2);
auto parentSymbol = lhs[lhs.size() - 2];
switch (parentSymbol.getKind()) {
case Symbol::Kind::AssociatedType: {
// In a conformance rule of the form [P:T].[Q] => [P:T], the parent type is
// trivial.
if (lhs.size() == 2)
return nullptr;
// If we have a rule of the form X.[P:Y].[Q] => X.[P:Y] with non-empty X,
// then the parent type is X.[P].
return parentSymbol.getProtocol();
}
case Symbol::Kind::GenericParam:
case Symbol::Kind::Protocol:
// The parent type is trivial (either a generic parameter, or the protocol
// 'Self' type).
return nullptr;
case Symbol::Kind::Name:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
break;
}
llvm::errs() << "Bad symbol in " << lhs << "\n";
abort();
}
/// Collect conformance rules and parent paths, and record an initial
/// equation where each conformance is equivalent to itself.
void MinimalConformances::collectConformanceRules() {
// Prepare the initial set of equations.
for (unsigned ruleID : indices(System.getRules())) {
const auto &rule = System.getRule(ruleID);
if (rule.isPermanent())
continue;
if (rule.isRedundant())
continue;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
continue;
if (rule.containsUnresolvedSymbols())
continue;
if (!rule.isAnyConformanceRule())
continue;
// Save protocol refinement relations in a side table.
if (rule.isProtocolRefinementRule(Context))
ProtocolRefinements.insert(ruleID);
if (!System.isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
ConformanceRules.push_back(ruleID);
auto lhs = rule.getLHS();
// Record a parent path if the subject type itself requires a non-trivial
// conformance path to derive.
if (auto *parentProto = getParentConformanceForTerm(lhs)) {
MutableTerm mutTerm(lhs.begin(), lhs.end() - 2);
assert(!mutTerm.empty());
mutTerm.add(Symbol::forProtocol(parentProto, Context));
// Get a conformance path for X.[P] and record it.
decomposeTermIntoConformanceRuleLeftHandSides(mutTerm, ParentPaths[ruleID]);
}
}
// Sort the list of conformance rules in reverse order; we're going to try
// to minimize away less canonical rules first.
std::stable_sort(ConformanceRules.begin(), ConformanceRules.end(),
[&](unsigned lhs, unsigned rhs) -> bool {
const auto &lhsRule = System.getRule(lhs);
const auto &rhsRule = System.getRule(rhs);
if (lhsRule.isExplicit() != rhsRule.isExplicit())
return !lhsRule.isExplicit();
auto result = lhsRule.getLHS().compare(rhsRule.getLHS(), Context);
// Concrete conformance rules are unordered if they name the
// same protocol but have different types. This can come up
// if we have a class inheritance relationship 'Derived : Base',
// and Base conforms to a protocol:
//
// T.[Base : P] => T
// T.[Derived : P] => T
return (result ? *result > 0 : 0);
});
Context.ConformanceRulesHistogram.add(ConformanceRules.size());
}
/// Use homotopy information to discover all ways of writing the left hand side
/// of each conformance rule as a product of left hand sides of other conformance
/// rules.
///
/// Each conformance rule (Vi.[P] => Vi) can always be written in terms of itself,
/// so the first term of each disjunction is always (Vi.[P] => Vi).
///
/// Conformance rules can also be circular, so not every choice of disjunctions
/// produces a valid result; for example, if you have these definitions:
///
/// protocol P {
/// associatedtype T : P
/// }
///
/// struct G<X, Y> where X : P, X.T == Y, Y : P, Y.T == X {}
///
/// We have three conformance rules:
///
/// [P:T].[P] => [P:T]
/// <X>.[P] => <X>
/// <Y>.[P] => <Y>
///
/// The first rule, <X>.[P] => <X> has an alternate conformance path:
///
/// (<Y>.[P]).([P:T].[P])
///
/// The second rule similarly has an alternate conformance path:
///
/// (<X>.[P]).([P:T].[P])
///
/// This gives us the following initial set of candidate conformance paths:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P]) (<Y>.[P]).([P:T].[P])
/// <Y>.[P] := (<Y>.[P]) (<X>.[P]).([P:T].[P])
///
/// One valid solution is the following set of assignments:
///
/// [P:T].[P] := ([P:T].[P])
/// <X>.[P] := (<X>.[P])
/// <Y>.[P] := (<X>.[P]).([P:T].[P])
///
/// That is, we can choose to eliminate <X>.[P], but not <Y>.[P], or vice
/// versa; but it is never valid to eliminate both.
void MinimalConformances::computeCandidateConformancePaths() {
for (unsigned loopID : indices(System.getLoops())) {
const auto &loop = System.getLoops()[loopID];
if (loop.isDeleted())
continue;
llvm::SmallDenseMap<const ProtocolDecl *,
ProtocolConformanceRules, 2> result;
loop.findProtocolConformanceRules(result, System);
if (result.empty())
continue;
if (Debug.contains(DebugFlags::MinimalConformances)) {
llvm::dbgs() << "Candidate homotopy generator: (#" << loopID << ") ";
loop.dump(llvm::dbgs(), System);
llvm::dbgs() << "\n";
}
for (const auto &pair : result) {
const auto *proto = pair.first;
const auto &inEmptyContext = pair.second.RulesInEmptyContext;
const auto &inContext = pair.second.RulesInContext;
bool sawIdentityConformance = pair.second.SawIdentityConformance;
// No rules appear without context.
if (inEmptyContext.empty())
continue;
if (Debug.contains(DebugFlags::MinimalConformances)) {
llvm::dbgs() << "* Protocol " << proto->getName() << ":\n";
llvm::dbgs() << "** Conformance rules not in context:\n";
for (unsigned ruleID : inEmptyContext) {
llvm::dbgs() << "-- (#" << ruleID << ") " << System.getRule(ruleID) << "\n";
}
llvm::dbgs() << "** Conformance rules in context:\n";
for (auto pair : inContext) {
llvm::dbgs() << "-- " << pair.first;
unsigned ruleID = pair.second;
llvm::dbgs() << " (#" << ruleID << ") " << System.getRule(ruleID) << "\n";
}
if (sawIdentityConformance) {
llvm::dbgs() << "** Equivalent to identity conformance\n";
}
llvm::dbgs() << "\n";
}
// Two conformance rules in empty context (T.[P] => T) and (T'.[P] => T)
// are interchangeable, and contribute a trivial pair of conformance
// equations expressing that each one can be written in terms of the
// other:
//
// (T.[P] => T) := (T'.[P])
// (T'.[P] => T') := (T.[P])
for (unsigned candidateRuleID : inEmptyContext) {
for (unsigned otherRuleID : inEmptyContext) {
if (otherRuleID == candidateRuleID)
continue;
SmallVector<unsigned, 2> path;
path.push_back(otherRuleID);
ConformancePaths[candidateRuleID].push_back(path);
}
}
// If a rewrite loop contains a conformance rule (T.[P] => T) together
// with the identity conformance ([P].[P] => [P]), both in empty context,
// the conformance rule (T.[P] => T) is equivalent to the *empty product*
// of conformance rules; that is, it is trivially redundant.
if (sawIdentityConformance) {
for (unsigned candidateRuleID : inEmptyContext) {
SmallVector<unsigned, 2> emptyPath;
ConformancePaths[candidateRuleID].push_back(emptyPath);
}
}
// Suppose a rewrite loop contains a conformance rule (T.[P] => T) in
// empty context, and a conformance rule (V.[P] => V) in non-empty left
// context U.
//
// The rewrite loop looks something like this:
//
// ... ⊗ (T.[P] => T) ⊗ ... ⊗ U.(V => V.[P]) ⊗ ...
// ^ ^
// | |
// + basepoint ========================= basepoint +
//
// We can decompose U into a product of conformance rules:
//
// (V1.[P1] => V1)...(Vn.[Pn] => Vn),
//
// Note that (V1)...(Vn) is canonically equivalent to U.
//
// Now, we can record a candidate decomposition of (T.[P] => T) as a
// product of conformance rules:
//
// (T.[P] => T) := (V1.[P1] => V1)...(Vn.[Pn] => Vn).(V.[P] => V)
//
// Again, note that (V1)...(Vn).V is canonically equivalent to U.V,
// and therefore T.
for (auto pair : inContext) {
// We have a term U, and a rule V.[P] => V.
SmallVector<unsigned, 2> conformancePath;
// Simplify U to get U'.
MutableTerm term = pair.first;
(void) System.simplify(term);
// Write U'.[domain(V)] as a product of left hand sides of protocol
// conformance rules.
decomposeTermIntoConformanceRuleLeftHandSides(term, pair.second,
conformancePath);
// This decomposition defines a conformance access path for each
// conformance rule we saw in empty context.
for (unsigned otherRuleID : inEmptyContext)
ConformancePaths[otherRuleID].push_back(conformancePath);
}
}
}
for (const auto &pair : ConformancePaths) {
if (pair.second.size() > 1)
Context.MinimalConformancesHistogram.add(pair.second.size());
}
}
/// If \p ruleID is redundant, determines if it can be expressed without
/// without any of the conformance rules determined to be redundant so far.
///
/// If the rule is not redundant, determines if its parent path can
/// also be recovered.
bool MinimalConformances::isConformanceRuleRecoverable(
llvm::SmallDenseSet<unsigned, 4> &visited,
unsigned ruleID) const {
if (RedundantConformances.count(ruleID)) {
SWIFT_DEFER {
visited.erase(ruleID);
};
visited.insert(ruleID);
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
return false;
bool foundValidConformancePath = false;
for (const auto &otherPath : found->second) {
if (isValidConformancePath(visited, otherPath)) {
foundValidConformancePath = true;
break;
}
}
if (!foundValidConformancePath)
return false;
} else {
auto found = ParentPaths.find(ruleID);
if (found != ParentPaths.end()) {
SWIFT_DEFER {
visited.erase(ruleID);
};
visited.insert(ruleID);
// If 'req' is based on some other conformance requirement
// `T.[P.]A : Q', we want to make sure that we have a
// non-redundant derivation for 'T : P'.
if (!isValidConformancePath(visited, found->second))
return false;
}
}
return true;
}
/// Determines if \p path can be expressed without any of the conformance
/// rules determined to be redundant so far, by possibly substituting
/// any occurrences of the redundant rules with alternate definitions
/// appearing in the set of known conformancePaths.
///
/// The conformance path map sends conformance rules to a list of
/// disjunctions, where each disjunction is a product of other conformance
/// rules.
bool MinimalConformances::isValidConformancePath(
llvm::SmallDenseSet<unsigned, 4> &visited,
const llvm::SmallVectorImpl<unsigned> &path) const {
for (unsigned ruleID : path) {
if (visited.count(ruleID) > 0)
return false;
if (!isConformanceRuleRecoverable(visited, ruleID))
return false;
}
return true;
}
/// Rules of the form [P].[Q] => [P] encode protocol refinement and can only
/// be redundant if they're equivalent to a sequence of other protocol
/// refinements.
///
/// This helps ensure that the inheritance clause of a protocol is complete
/// and correct, allowing name lookup to find associated types of inherited
/// protocols while building the protocol requirement signature.
bool MinimalConformances::isValidRefinementPath(
const llvm::SmallVectorImpl<unsigned> &path) const {
for (unsigned ruleID : path) {
if (ProtocolRefinements.count(ruleID) == 0)
return false;
}
return true;
}
void MinimalConformances::dumpMinimalConformanceEquations(
llvm::raw_ostream &out) const {
out << "Initial set of equations:\n";
for (const auto &pair : ConformancePaths) {
out << "- ";
dumpMinimalConformanceEquation(out, pair.first, pair.second);
out << "\n";
}
out << "Parent paths:\n";
for (const auto &pair : ParentPaths) {
out << "- " << System.getRule(pair.first).getLHS() << ": ";
dumpConformancePath(out, pair.second);
out << "\n";
}
}
void MinimalConformances::dumpConformancePath(
llvm::raw_ostream &out,
const SmallVectorImpl<unsigned> &path) const {
if (path.empty()) {
out << "1";
return;
}
for (unsigned ruleID : path)
out << "(" << System.getRule(ruleID).getLHS() << ")";
}
void MinimalConformances::dumpMinimalConformanceEquation(
llvm::raw_ostream &out,
unsigned baseRuleID,
const std::vector<SmallVector<unsigned, 2>> &paths) const {
out << System.getRule(baseRuleID).getLHS() << " := ";
bool first = true;
for (const auto &path : paths) {
if (!first)
out << " ";
else
first = false;
dumpConformancePath(out, path);
}
}
void MinimalConformances::verifyMinimalConformanceEquations() const {
for (const auto &pair : ConformancePaths) {
const auto &rule = System.getRule(pair.first);
auto *proto = rule.getLHS().back().getProtocol();
MutableTerm baseTerm(rule.getRHS());
(void) System.simplify(baseTerm);
for (const auto &path : pair.second) {
if (path.empty())
continue;
const auto &otherRule = System.getRule(path.back());
auto *otherProto = otherRule.getLHS().back().getProtocol();
if (proto != otherProto) {
llvm::errs() << "Invalid equation: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Mismatched conformance:\n";
llvm::errs() << "Base rule: " << rule << "\n";
llvm::errs() << "Final rule: " << otherRule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
MutableTerm otherTerm;
for (unsigned i : indices(path)) {
unsigned otherRuleID = path[i];
const auto &rule = System.getRule(otherRuleID);
bool isLastElement = (i == path.size() - 1);
if ((isLastElement && !rule.isAnyConformanceRule()) ||
(!isLastElement && !rule.isProtocolConformanceRule())) {
llvm::errs() << "Equation term is not a conformance rule: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Term: " << rule << "\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
otherTerm.append(rule.getRHS());
}
(void) System.simplify(otherTerm);
if (baseTerm != otherTerm) {
llvm::errs() << "Invalid equation: ";
dumpMinimalConformanceEquation(llvm::errs(),
pair.first, pair.second);
llvm::errs() << "\n";
llvm::errs() << "Invalid conformance path:\n";
llvm::errs() << "Expected: " << baseTerm << "\n";
llvm::errs() << "Got: " << otherTerm << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
abort();
}
}
}
}
bool MinimalConformances::isDerivedViaCircularConformanceRule(
const std::vector<SmallVector<unsigned, 2>> &paths) const {
for (const auto &path : paths) {
if (!path.empty() &&
System.getRule(path.back()).isCircularConformanceRule())
return true;
}
return false;
}
/// Find a set of minimal conformances by marking all non-minimal
/// conformances redundant.
///
/// In the first pass, we only consider conformance requirements that are
/// made redundant by concrete conformances.
void MinimalConformances::computeMinimalConformances() {
// First, mark any concrete conformances derived via a circular
// conformance as redundant upfront. See the comment at the top of
// Rule::isCircularConformanceRule() for an explanation of this.
for (unsigned ruleID : ConformanceRules) {
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
continue;
const auto &paths = found->second;
if (System.getRule(ruleID).isProtocolConformanceRule())
continue;
if (isDerivedViaCircularConformanceRule(paths))
RedundantConformances.insert(ruleID);
}
// Now, visit each conformance rule, trying to make it redundant by
// deriving a path in terms of other non-redundant conformance rules.
//
// Note that the ConformanceRules vector is sorted in descending
// canonical term order, so less canonical rules are eliminated first.
for (unsigned ruleID : ConformanceRules) {
auto found = ConformancePaths.find(ruleID);
if (found == ConformancePaths.end())
continue;
const auto &rule = System.getRule(ruleID);
const auto &paths = found->second;
bool isProtocolRefinement = ProtocolRefinements.count(ruleID) > 0;
for (const auto &path : paths) {
// Only consider a protocol refinement rule to be redundant if it is
// witnessed by a composition of other protocol refinement rules.
if (isProtocolRefinement && !isValidRefinementPath(path)) {
if (Debug.contains(DebugFlags::MinimalConformances)) {
llvm::dbgs() << "Not a refinement path: ";
dumpConformancePath(llvm::errs(), path);
llvm::dbgs() << "\n";
}
continue;
}
llvm::SmallDenseSet<unsigned, 4> visited;
visited.insert(ruleID);
if (isValidConformancePath(visited, path)) {
if (Debug.contains(DebugFlags::MinimalConformances)) {
llvm::dbgs() << "Redundant rule: ";
llvm::dbgs() << rule.getLHS();
llvm::dbgs() << "\n";
llvm::dbgs() << "-- via valid path: ";
dumpConformancePath(llvm::errs(), path);
llvm::dbgs() << "\n";
}
RedundantConformances.insert(ruleID);
break;
}
}
}
}
/// Check invariants.
void MinimalConformances::verifyMinimalConformances() const {
for (const auto &pair : ConformancePaths) {
unsigned ruleID = pair.first;
const auto &rule = System.getRule(ruleID);
if (RedundantConformances.count(ruleID) > 0) {
// Check that redundant conformances are recoverable via
// minimal conformances.
llvm::SmallDenseSet<unsigned, 4> visited;
if (!isConformanceRuleRecoverable(visited, ruleID)) {
llvm::errs() << "Redundant conformance is not recoverable:\n";
llvm::errs() << rule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
dumpMinimalConformances(llvm::errs());
abort();
}
continue;
}
if (rule.containsUnresolvedSymbols()) {
llvm::errs() << "Minimal conformance contains unresolved symbols: ";
llvm::errs() << rule << "\n\n";
dumpMinimalConformanceEquations(llvm::errs());
dumpMinimalConformances(llvm::errs());
abort();
}
}
}
void MinimalConformances::dumpMinimalConformances(
llvm::raw_ostream &out) const {
out << "Minimal conformances:\n";
for (unsigned ruleID : ConformanceRules) {
if (RedundantConformances.count(ruleID) > 0)
continue;
out << "- " << System.getRule(ruleID) << "\n";
}
}
/// Computes minimal conformances, assuming that homotopy reduction has
/// already eliminated all redundant rewrite rules that are not
/// conformance rules.
void RewriteSystem::computeMinimalConformances(
llvm::DenseSet<unsigned> &redundantConformances) {
MinimalConformances builder(*this, redundantConformances);
builder.collectConformanceRules();
builder.computeCandidateConformancePaths();
if (Debug.contains(DebugFlags::MinimalConformances)) {
builder.dumpMinimalConformanceEquations(llvm::dbgs());
}
builder.verifyMinimalConformanceEquations();
builder.computeMinimalConformances();
builder.verifyMinimalConformances();
if (Debug.contains(DebugFlags::MinimalConformances)) {
builder.dumpMinimalConformances(llvm::dbgs());
}
}