Files
swift-mirror/lib/Serialization/Deserialization.cpp
Slava Pestov 2c6b9f71b6 AST: Change TypeAliasDecls to store an interface type as their underlying type
- TypeAliasDecl::getAliasType() is gone. Now, getDeclaredInterfaceType()
  always returns the NameAliasType.

- NameAliasTypes now always desugar to the underlying type as an
  interface type.

- The NameAliasType of a generic type alias no longer desugars to an
  UnboundGenericType; call TypeAliasDecl::getUnboundGenericType() if you
  want that.

- The "lazy mapTypeOutOfContext()" hack for deserialized TypeAliasDecls
  is gone.

- The process of constructing a synthesized TypeAliasDecl is much simpler
  now; instead of calling computeType(), setInterfaceType() and then
  setting the recursive properties in the right order, just call
  setUnderlyingType(), passing it either an interface type or a
  contextual type.

  In particular, many places weren't setting the recursive properties,
  such as the ClangImporter and deserialization. This meant that queries
  such as hasArchetype() or hasTypeParameter() would return incorrect
  results on NameAliasTypes, which caused various subtle problems.

- Finally, add some more tests for generic typealiases, most of which
  fail because they're still pretty broken.
2016-12-15 22:46:15 -08:00

4501 lines
148 KiB
C++

//===--- Deserialization.cpp - Loading a serialized AST -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Serialization/ModuleFile.h"
#include "swift/Serialization/ModuleFormat.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Parse/Parser.h"
#include "swift/Serialization/BCReadingExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace swift::serialization;
StringRef swift::getNameOfModule(const ModuleFile *MF) {
return MF->Name;
}
namespace {
struct IDAndKind {
const Decl *D;
DeclID ID;
};
static raw_ostream &operator<<(raw_ostream &os, IDAndKind &&pair) {
return os << Decl::getKindName(pair.D->getKind())
<< "Decl #" << pair.ID;
}
class PrettyDeclDeserialization : public llvm::PrettyStackTraceEntry {
const ModuleFile *MF;
const ModuleFile::Serialized<Decl*> &DeclOrOffset;
DeclID ID;
decls_block::RecordKind Kind;
public:
PrettyDeclDeserialization(ModuleFile *module,
const ModuleFile::Serialized<Decl*> &declOrOffset,
DeclID DID, decls_block::RecordKind kind)
: MF(module), DeclOrOffset(declOrOffset), ID(DID), Kind(kind) {
}
static const char *getRecordKindString(decls_block::RecordKind Kind) {
switch (Kind) {
#define RECORD(Id) case decls_block::Id: return #Id;
#include "swift/Serialization/DeclTypeRecordNodes.def"
}
llvm_unreachable("Unhandled RecordKind in switch.");
}
virtual void print(raw_ostream &os) const override {
if (!DeclOrOffset.isComplete()) {
os << "While deserializing decl #" << ID << " ("
<< getRecordKindString(Kind) << ")";
} else {
os << "While deserializing ";
if (auto VD = dyn_cast<ValueDecl>(DeclOrOffset.get())) {
os << "'" << VD->getName() << "' (" << IDAndKind{VD, ID} << ")";
} else if (auto ED = dyn_cast<ExtensionDecl>(DeclOrOffset.get())) {
os << "extension of '" << ED->getExtendedType() << "' ("
<< IDAndKind{ED, ID} << ")";
} else {
os << IDAndKind{DeclOrOffset.get(), ID};
}
}
os << "in '" << getNameOfModule(MF) << "'\n";
}
};
class PrettyXRefTrace : public llvm::PrettyStackTraceEntry {
class PathPiece {
public:
enum class Kind {
Value,
Type,
Operator,
OperatorFilter,
Accessor,
Extension,
GenericParam,
Unknown
};
private:
Kind kind;
void *data;
template <typename T>
T getDataAs() const {
return llvm::PointerLikeTypeTraits<T>::getFromVoidPointer(data);
}
public:
template <typename T>
PathPiece(Kind K, T value)
: kind(K),
data(llvm::PointerLikeTypeTraits<T>::getAsVoidPointer(value)) {}
void print(raw_ostream &os) const {
switch (kind) {
case Kind::Value:
os << getDataAs<Identifier>();
break;
case Kind::Type:
os << "with type " << getDataAs<Type>();
break;
case Kind::Extension:
if (getDataAs<Module *>())
os << "in an extension in module '" << getDataAs<Module *>()->getName()
<< "'";
else
os << "in an extension in any module";
break;
case Kind::Operator:
os << "operator " << getDataAs<Identifier>();
break;
case Kind::OperatorFilter:
switch (getDataAs<uintptr_t>()) {
case Infix:
os << "(infix)";
break;
case Prefix:
os << "(prefix)";
break;
case Postfix:
os << "(postfix)";
break;
default:
os << "(unknown operator filter)";
break;
}
break;
case Kind::Accessor:
switch (getDataAs<uintptr_t>()) {
case Getter:
os << "(getter)";
break;
case Setter:
os << "(setter)";
break;
case MaterializeForSet:
os << "(materializeForSet)";
break;
case Addressor:
os << "(addressor)";
break;
case MutableAddressor:
os << "(mutableAddressor)";
break;
case WillSet:
os << "(willSet)";
break;
case DidSet:
os << "(didSet)";
break;
default:
os << "(unknown accessor kind)";
break;
}
break;
case Kind::GenericParam:
os << "generic param #" << getDataAs<uintptr_t>();
break;
case Kind::Unknown:
os << "unknown xref kind " << getDataAs<uintptr_t>();
break;
}
}
};
private:
Module &baseM;
SmallVector<PathPiece, 8> path;
public:
PrettyXRefTrace(Module &M) : baseM(M) {}
void addValue(Identifier name) {
path.push_back({ PathPiece::Kind::Value, name });
}
void addType(Type ty) {
path.push_back({ PathPiece::Kind::Type, ty });
}
void addOperator(Identifier name) {
path.push_back({ PathPiece::Kind::Operator, name });
}
void addOperatorFilter(uint8_t fixity) {
path.push_back({ PathPiece::Kind::OperatorFilter,
static_cast<uintptr_t>(fixity) });
}
void addAccessor(uint8_t kind) {
path.push_back({ PathPiece::Kind::Accessor,
static_cast<uintptr_t>(kind) });
}
void addExtension(Module *M) {
path.push_back({ PathPiece::Kind::Extension, M });
}
void addGenericParam(uintptr_t index) {
path.push_back({ PathPiece::Kind::GenericParam, index });
}
void addUnknown(uintptr_t kind) {
path.push_back({ PathPiece::Kind::Unknown, kind });
}
virtual void print(raw_ostream &os) const override {
os << "Cross-reference to module '" << baseM.getName() << "'\n";
for (auto &piece : path) {
os << "\t... ";
piece.print(os);
os << "\n";
}
}
};
class PrettyStackTraceModuleFile : public llvm::PrettyStackTraceEntry {
const char *Action;
const ModuleFile *MF;
public:
explicit PrettyStackTraceModuleFile(const char *action, ModuleFile *module)
: Action(action), MF(module) {}
void print(raw_ostream &os) const override {
os << Action << " \'" << getNameOfModule(MF) << "'\n";
}
};
} // end anonymous namespace
/// Skips a single record in the bitstream.
///
/// Returns true if the next entry is a record of type \p recordKind.
/// Destroys the stream position if the next entry is not a record.
static bool skipRecord(llvm::BitstreamCursor &cursor, unsigned recordKind) {
auto next = cursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return false;
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
#if NDEBUG
cursor.skipRecord(next.ID);
return true;
#else
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
return kind == recordKind;
#endif
}
/// Translate from the serialization DefaultArgumentKind enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::DefaultArgumentKind>
getActualDefaultArgKind(uint8_t raw) {
switch (static_cast<serialization::DefaultArgumentKind>(raw)) {
case serialization::DefaultArgumentKind::None:
return swift::DefaultArgumentKind::None;
case serialization::DefaultArgumentKind::Normal:
return swift::DefaultArgumentKind::Normal;
case serialization::DefaultArgumentKind::Inherited:
return swift::DefaultArgumentKind::Inherited;
case serialization::DefaultArgumentKind::Column:
return swift::DefaultArgumentKind::Column;
case serialization::DefaultArgumentKind::File:
return swift::DefaultArgumentKind::File;
case serialization::DefaultArgumentKind::Line:
return swift::DefaultArgumentKind::Line;
case serialization::DefaultArgumentKind::Function:
return swift::DefaultArgumentKind::Function;
case serialization::DefaultArgumentKind::DSOHandle:
return swift::DefaultArgumentKind::DSOHandle;
case serialization::DefaultArgumentKind::Nil:
return swift::DefaultArgumentKind::Nil;
case serialization::DefaultArgumentKind::EmptyArray:
return swift::DefaultArgumentKind::EmptyArray;
case serialization::DefaultArgumentKind::EmptyDictionary:
return swift::DefaultArgumentKind::EmptyDictionary;
}
return None;
}
ParameterList *ModuleFile::readParameterList() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch);
assert(recordID == PARAMETERLIST);
(void) recordID;
unsigned numParams;
decls_block::ParameterListLayout::readRecord(scratch, numParams);
SmallVector<ParamDecl*, 8> params;
for (unsigned i = 0; i != numParams; ++i) {
scratch.clear();
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch);
assert(recordID == PARAMETERLIST_ELT);
(void) recordID;
DeclID paramID;
bool isVariadic;
uint8_t rawDefaultArg;
decls_block::ParameterListEltLayout::readRecord(scratch, paramID,
isVariadic, rawDefaultArg);
auto decl = cast<ParamDecl>(getDecl(paramID));
decl->setVariadic(isVariadic);
// Decode the default argument kind.
// FIXME: Default argument expression, if available.
if (auto defaultArg = getActualDefaultArgKind(rawDefaultArg))
decl->setDefaultArgumentKind(*defaultArg);
params.push_back(decl);
}
return ParameterList::create(getContext(), params);
}
Pattern *ModuleFile::maybeReadPattern(DeclContext *owningDC) {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
/// Local function to record the type of this pattern.
auto recordPatternType = [&](Pattern *pattern, Type type) {
if (type->hasTypeParameter())
pattern->setDelayedInterfaceType(type, owningDC);
else
pattern->setType(type);
};
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (kind) {
case decls_block::PAREN_PATTERN: {
bool isImplicit;
ParenPatternLayout::readRecord(scratch, isImplicit);
Pattern *subPattern = maybeReadPattern(owningDC);
assert(subPattern);
auto result = new (getContext()) ParenPattern(SourceLoc(),
subPattern,
SourceLoc(),
isImplicit);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(ParenType::get(getContext(),
interfaceType), owningDC);
else
result->setType(ParenType::get(getContext(), subPattern->getType()));
restoreOffset.reset();
return result;
}
case decls_block::TUPLE_PATTERN: {
TypeID tupleTypeID;
unsigned count;
bool isImplicit;
TuplePatternLayout::readRecord(scratch, tupleTypeID, count, isImplicit);
SmallVector<TuplePatternElt, 8> elements;
for ( ; count > 0; --count) {
scratch.clear();
next = DeclTypeCursor.advance();
assert(next.Kind == llvm::BitstreamEntry::Record);
kind = DeclTypeCursor.readRecord(next.ID, scratch);
assert(kind == decls_block::TUPLE_PATTERN_ELT);
// FIXME: Add something for this record or remove it.
IdentifierID labelID;
TuplePatternEltLayout::readRecord(scratch, labelID);
Identifier label = getIdentifier(labelID);
Pattern *subPattern = maybeReadPattern(owningDC);
assert(subPattern);
elements.push_back(TuplePatternElt(label, SourceLoc(), subPattern));
}
auto result = TuplePattern::create(getContext(), SourceLoc(),
elements, SourceLoc(), isImplicit);
recordPatternType(result, getType(tupleTypeID));
restoreOffset.reset();
return result;
}
case decls_block::NAMED_PATTERN: {
DeclID varID;
TypeID typeID;
bool isImplicit;
NamedPatternLayout::readRecord(scratch, varID, typeID, isImplicit);
auto var = cast<VarDecl>(getDecl(varID));
auto result = new (getContext()) NamedPattern(var, isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::ANY_PATTERN: {
TypeID typeID;
bool isImplicit;
AnyPatternLayout::readRecord(scratch, typeID, isImplicit);
auto result = new (getContext()) AnyPattern(SourceLoc(), isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::TYPED_PATTERN: {
TypeID typeID;
bool isImplicit;
TypedPatternLayout::readRecord(scratch, typeID, isImplicit);
Pattern *subPattern = maybeReadPattern(owningDC);
assert(subPattern);
auto result = new (getContext()) TypedPattern(subPattern, TypeLoc(),
isImplicit);
recordPatternType(result, getType(typeID));
restoreOffset.reset();
return result;
}
case decls_block::VAR_PATTERN: {
bool isImplicit, isLet;
VarPatternLayout::readRecord(scratch, isLet, isImplicit);
Pattern *subPattern = maybeReadPattern(owningDC);
assert(subPattern);
auto result = new (getContext()) VarPattern(SourceLoc(), isLet, subPattern,
isImplicit);
if (Type interfaceType = subPattern->getDelayedInterfaceType())
result->setDelayedInterfaceType(interfaceType, owningDC);
else
result->setType(subPattern->getType());
restoreOffset.reset();
return result;
}
default:
return nullptr;
}
}
SILLayout *ModuleFile::readSILLayout(llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
auto next = Cursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
unsigned kind = Cursor.readRecord(next.ID, scratch);
switch (kind) {
case decls_block::SIL_LAYOUT: {
unsigned numFields;
ArrayRef<uint64_t> types;
decls_block::SILLayoutLayout::readRecord(scratch, numFields, types);
SmallVector<SILField, 4> fields;
for (auto fieldInfo : types.slice(0, numFields)) {
bool isMutable = fieldInfo & 0x80000000U;
auto typeId = fieldInfo & 0x7FFFFFFFU;
fields.push_back(
SILField(getType(typeId)->getCanonicalType(),
isMutable));
}
SmallVector<GenericTypeParamType*, 4> genericParams;
for (auto typeId : types.slice(numFields)) {
auto type = getType(typeId)->castTo<GenericTypeParamType>();
genericParams.push_back(type);
}
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
CanGenericSignature sig;
if (!genericParams.empty() || !requirements.empty()) {
sig = GenericSignature::get(genericParams, requirements)
->getCanonicalSignature();
}
return SILLayout::get(getContext(), sig, fields);
}
default:
error();
return nullptr;
}
}
ProtocolConformanceRef ModuleFile::readConformance(
llvm::BitstreamCursor &Cursor,
GenericEnvironment *genericEnv) {
using namespace decls_block;
SmallVector<uint64_t, 16> scratch;
auto next = Cursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
unsigned kind = Cursor.readRecord(next.ID, scratch);
switch (kind) {
case ABSTRACT_PROTOCOL_CONFORMANCE: {
DeclID protoID;
AbstractProtocolConformanceLayout::readRecord(scratch, protoID);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
return ProtocolConformanceRef(proto);
}
case SPECIALIZED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
unsigned numSubstitutions;
SpecializedProtocolConformanceLayout::readRecord(scratch, conformingTypeID,
numSubstitutions);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(getAssociatedModule(),
conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading specialized conformance for",
conformingType);
// Read the substitutions.
SmallVector<Substitution, 4> substitutions;
while (numSubstitutions--) {
auto sub = maybeReadSubstitution(Cursor, genericEnv);
assert(sub.hasValue() && "Missing substitution?");
substitutions.push_back(*sub);
}
ProtocolConformanceRef genericConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to", genericConformance.getRequirement());
assert(genericConformance.isConcrete() && "Abstract generic conformance?");
auto conformance =
ctx.getSpecializedConformance(conformingType,
genericConformance.getConcrete(),
ctx.AllocateCopy(substitutions));
return ProtocolConformanceRef(conformance);
}
case INHERITED_PROTOCOL_CONFORMANCE: {
TypeID conformingTypeID;
InheritedProtocolConformanceLayout::readRecord(scratch, conformingTypeID);
ASTContext &ctx = getContext();
Type conformingType = getType(conformingTypeID);
if (genericEnv) {
conformingType = genericEnv->mapTypeIntoContext(getAssociatedModule(),
conformingType);
}
PrettyStackTraceType trace(getAssociatedModule()->getASTContext(),
"reading inherited conformance for",
conformingType);
ProtocolConformanceRef inheritedConformance =
readConformance(Cursor, genericEnv);
PrettyStackTraceDecl traceTo("... to",
inheritedConformance.getRequirement());
assert(inheritedConformance.isConcrete() &&
"Abstract inherited conformance?");
auto conformance =
ctx.getInheritedConformance(conformingType,
inheritedConformance.getConcrete());
return ProtocolConformanceRef(conformance);
}
case NORMAL_PROTOCOL_CONFORMANCE_ID: {
NormalConformanceID conformanceID;
NormalProtocolConformanceIdLayout::readRecord(scratch, conformanceID);
return ProtocolConformanceRef(readNormalConformance(conformanceID));
}
case PROTOCOL_CONFORMANCE_XREF: {
DeclID protoID;
DeclID nominalID;
ModuleID moduleID;
ProtocolConformanceXrefLayout::readRecord(scratch, protoID, nominalID,
moduleID);
auto nominal = cast<NominalTypeDecl>(getDecl(nominalID));
PrettyStackTraceDecl trace("cross-referencing conformance for", nominal);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
PrettyStackTraceDecl traceTo("... to", proto);
auto module = getModule(moduleID);
SmallVector<ProtocolConformance *, 2> conformances;
nominal->lookupConformance(module, proto, conformances);
PrettyStackTraceModuleFile traceMsg(
"If you're seeing a crash here, check that your SDK and dependencies "
"are at least as new as the versions used to build", this);
// This would normally be an assertion but it's more useful to print the
// PrettyStackTrace here even in no-asserts builds.
if (conformances.empty())
abort();
return ProtocolConformanceRef(conformances.front());
}
// Not a protocol conformance.
default:
error();
ProtocolConformance *conformance = nullptr;
return ProtocolConformanceRef(conformance); // FIXME: this will assert
}
}
NormalProtocolConformance *ModuleFile::readNormalConformance(
NormalConformanceID conformanceID) {
auto &conformanceEntry = NormalConformances[conformanceID-1];
if (conformanceEntry.isComplete()) {
return conformanceEntry.get();
}
using namespace decls_block;
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(conformanceEntry);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, inheritedCount;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
if (kind != NORMAL_PROTOCOL_CONFORMANCE) {
error();
return nullptr;
}
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, valueCount,
typeCount, inheritedCount,
rawIDs);
ASTContext &ctx = getContext();
DeclContext *dc = getDeclContext(contextID);
Type conformingType = dc->getDeclaredTypeInContext();
PrettyStackTraceType trace(ctx, "reading conformance for", conformingType);
auto proto = cast<ProtocolDecl>(getDecl(protoID));
PrettyStackTraceDecl traceTo("... to", proto);
auto conformance = ctx.getConformance(conformingType, proto, SourceLoc(), dc,
ProtocolConformanceState::Incomplete);
// Record this conformance.
if (conformanceEntry.isComplete())
return conformance;
uint64_t offset = conformanceEntry;
conformanceEntry = conformance;
dc->getAsNominalTypeOrNominalTypeExtensionContext()
->registerProtocolConformance(conformance);
// Read inherited conformances.
InheritedConformanceMap inheritedConformances;
while (inheritedCount--) {
auto inheritedRef = readConformance(DeclTypeCursor);
assert(inheritedRef.isConcrete());
auto inherited = inheritedRef.getConcrete();
inheritedConformances[inherited->getProtocol()] = inherited;
}
// If the conformance is complete, we're done.
if (conformance->isComplete())
return conformance;
// Record the inherited conformance.
if (conformance->getInheritedConformances().empty())
for (auto inherited : inheritedConformances)
conformance->setInheritedConformance(inherited.first, inherited.second);
conformance->setState(ProtocolConformanceState::Complete);
conformance->setLazyLoader(this, offset);
return conformance;
}
Optional<Substitution>
ModuleFile::maybeReadSubstitution(llvm::BitstreamCursor &cursor,
GenericEnvironment *genericEnv) {
BCOffsetRAII lastRecordOffset(cursor);
auto entry = cursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
return None;
StringRef blobData;
SmallVector<uint64_t, 2> scratch;
unsigned recordID = cursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != decls_block::BOUND_GENERIC_SUBSTITUTION)
return None;
TypeID replacementID;
unsigned numConformances;
decls_block::BoundGenericSubstitutionLayout::readRecord(scratch,
replacementID,
numConformances);
auto replacementTy = getType(replacementID);
if (genericEnv) {
replacementTy = genericEnv->mapTypeIntoContext(getAssociatedModule(),
replacementTy);
}
SmallVector<ProtocolConformanceRef, 4> conformanceBuf;
while (numConformances--) {
conformanceBuf.push_back(readConformance(cursor));
}
lastRecordOffset.reset();
return Substitution{replacementTy,
getContext().AllocateCopy(conformanceBuf)};
}
GenericParamList *
ModuleFile::maybeGetOrReadGenericParams(serialization::DeclID genericContextID,
DeclContext *DC) {
if (genericContextID) {
Decl *genericContext = getDecl(genericContextID);
assert(genericContext && "loading PolymorphicFunctionType before its decl");
if (auto fn = dyn_cast<AbstractFunctionDecl>(genericContext))
return fn->getGenericParams();
if (auto nominal = dyn_cast<NominalTypeDecl>(genericContext))
return nominal->getGenericParams();
if (auto ext = dyn_cast<ExtensionDecl>(genericContext))
return ext->getGenericParams();
llvm_unreachable("only functions and nominals can provide generic params");
} else {
return maybeReadGenericParams(DC);
}
}
GenericParamList *ModuleFile::maybeReadGenericParams(DeclContext *DC,
GenericParamList *outerParams) {
using namespace decls_block;
assert(DC && "need a context for the decls in the list");
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch, &blobData);
if (kind != GENERIC_PARAM_LIST)
return nullptr;
SmallVector<GenericTypeParamDecl *, 8> params;
SmallVector<RequirementRepr, 8> requirements;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case GENERIC_PARAM: {
DeclID paramDeclID;
GenericParamLayout::readRecord(scratch, paramDeclID);
auto genericParam = cast<GenericTypeParamDecl>(getDecl(paramDeclID, DC));
// FIXME: There are unfortunate inconsistencies in the treatment of
// generic param decls. Currently the first request for context wins
// because we don't want to change context on-the-fly.
// Here are typical scenarios:
// (1) AST reads decl, get's scope.
// Later, readSILFunction tries to force module scope.
// (2) readSILFunction forces module scope.
// Later, readVTable requests an enclosing scope.
// ...other combinations are possible, but as long as AST lookups
// precede SIL linkage, we should be ok.
assert((genericParam->getDeclContext()->isModuleScopeContext() ||
DC->isModuleScopeContext() ||
genericParam->getDeclContext() == DC) &&
"Mismatched decl context for generic types.");
params.push_back(genericParam);
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
auto paramList = GenericParamList::create(getContext(), SourceLoc(),
params, SourceLoc(), { },
SourceLoc());
paramList->setOuterParameters(outerParams ? outerParams :
DC->getGenericParamsOfContext());
return paramList;
}
void ModuleFile::readGenericRequirements(
SmallVectorImpl<Requirement> &requirements,
llvm::BitstreamCursor &Cursor) {
using namespace decls_block;
BCOffsetRAII lastRecordOffset(Cursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = Cursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = Cursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case GENERIC_REQUIREMENT: {
uint8_t rawKind;
uint64_t rawTypeIDs[2];
GenericRequirementLayout::readRecord(scratch, rawKind,
rawTypeIDs[0], rawTypeIDs[1]);
switch (rawKind) {
case GenericRequirementKind::Conformance: {
auto subject = getType(rawTypeIDs[0]);
auto constraint = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::Conformance,
subject, constraint));
break;
}
case GenericRequirementKind::Superclass: {
auto subject = getType(rawTypeIDs[0]);
auto constraint = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::Superclass,
subject, constraint));
break;
}
case GenericRequirementKind::SameType: {
auto first = getType(rawTypeIDs[0]);
auto second = getType(rawTypeIDs[1]);
requirements.push_back(Requirement(RequirementKind::SameType,
first, second));
break;
}
default:
// Unknown requirement kind. Drop the requirement and continue, but log
// an error so that we don't actually try to generate code.
error();
}
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
}
uint64_t ModuleFile::allocateLazyGenericEnvironmentMap(
TypeSubstitutionMap &&map) {
auto storedGenericEnvMap = new TypeSubstitutionMap(std::move(map));
GenericEnvironmentMaps.push_back(
std::unique_ptr<TypeSubstitutionMap>(storedGenericEnvMap));
return reinterpret_cast<uint64_t>(storedGenericEnvMap);
}
void ModuleFile::readLazyGenericEnvironment(
llvm::PointerUnion<GenericTypeDecl *, ExtensionDecl *> typeOrExt) {
// Read the generic environment.
GenericSignature *genericSig;
TypeSubstitutionMap genericEnvMap;
std::tie(genericSig, genericEnvMap) =
readGenericEnvironmentPieces(DeclTypeCursor);
// Set up the lazy generic environment.
if (genericSig) {
auto lazyMap = allocateLazyGenericEnvironmentMap(std::move(genericEnvMap));
if (auto type = typeOrExt.dyn_cast<GenericTypeDecl *>()) {
type->setLazyGenericEnvironment(this, genericSig, lazyMap);
} else {
auto ext = typeOrExt.get<ExtensionDecl *>();
ext->setLazyGenericEnvironment(this, genericSig, lazyMap);
}
}
}
std::pair<GenericSignature *, TypeSubstitutionMap>
ModuleFile::readGenericEnvironmentPieces(
llvm::BitstreamCursor &Cursor,
Optional<ArrayRef<Requirement>> optRequirements) {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
SmallVector<GenericTypeParamType *, 4> paramTypes;
StringRef blobData;
TypeSubstitutionMap interfaceToArchetypeMap;
{
// we only want to be tracking the offset for this part of the function,
// since loading the generic signature (a) may read the record we reject,
// and (b) shouldn't have its progress erased. (That function also does its
// own internal tracking.)
BCOffsetRAII lastRecordOffset(Cursor);
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = Cursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = Cursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case GENERIC_ENVIRONMENT: {
uint64_t rawTypeIDs[2];
GenericEnvironmentLayout::readRecord(scratch,
rawTypeIDs[0], rawTypeIDs[1]);
auto paramTy = getType(rawTypeIDs[0])->castTo<GenericTypeParamType>();
auto contextTy = getType(rawTypeIDs[1]);
auto result = interfaceToArchetypeMap.insert(
std::make_pair(paramTy, contextTy));
assert(result.second);
paramTypes.push_back(paramTy);
break;
}
case SIL_GENERIC_ENVIRONMENT: {
uint64_t rawTypeIDs[2];
IdentifierID IID;
SILGenericEnvironmentLayout::readRecord(scratch, IID,
rawTypeIDs[0], rawTypeIDs[1]);
auto paramTy = getType(rawTypeIDs[0])->castTo<GenericTypeParamType>();
auto contextTy = getType(rawTypeIDs[1]);
// Cons up a sugared type for this generic parameter
Identifier name = getIdentifier(IID);
auto paramDecl = createDecl<GenericTypeParamDecl>(getAssociatedModule(),
name,
SourceLoc(),
paramTy->getDepth(),
paramTy->getIndex());
paramTy = paramDecl->getDeclaredInterfaceType()
->castTo<GenericTypeParamType>();
auto result = interfaceToArchetypeMap.insert(
std::make_pair(paramTy, contextTy));
assert(result.second);
paramTypes.push_back(paramTy);
break;
}
default:
// This record is not part of the GenericEnvironment.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
}
if (paramTypes.empty())
return { nullptr, TypeSubstitutionMap() };
ArrayRef<Requirement> requirements;
SmallVector<Requirement, 4> stackRequirements;
if (optRequirements) {
requirements = optRequirements.getValue();
} else {
// Read the generic requirements.
readGenericRequirements(stackRequirements, Cursor);
requirements = stackRequirements;
}
// We need to construct a new signature (even if the caller has one), so that
// the sugar for the parameters is stored. Without this, generic types cannot
// round-trip via textual SIL.
auto signature = GenericSignature::get(paramTypes, requirements);
assert(!interfaceToArchetypeMap.empty() &&
"no archetypes in generic function?");
return { signature, std::move(interfaceToArchetypeMap) };
}
GenericEnvironment *ModuleFile::readGenericEnvironment(
llvm::BitstreamCursor &Cursor,
Optional<ArrayRef<Requirement>> optRequirements) {
// Read the separate parts of the generic environment.
GenericSignature *genericSig;
TypeSubstitutionMap interfaceToArchetypeMap;
std::tie(genericSig, interfaceToArchetypeMap) =
readGenericEnvironmentPieces(Cursor, optRequirements);
if (!genericSig) return nullptr;
return GenericEnvironment::get(genericSig, interfaceToArchetypeMap);
}
GenericEnvironment *ModuleFile::maybeReadGenericEnvironment() {
return readGenericEnvironment(DeclTypeCursor);
}
bool ModuleFile::readMembers(SmallVectorImpl<Decl *> &Members) {
using namespace decls_block;
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record)
return true;
SmallVector<uint64_t, 16> memberIDBuffer;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, memberIDBuffer);
assert(kind == MEMBERS);
(void)kind;
ArrayRef<uint64_t> rawMemberIDs;
decls_block::MembersLayout::readRecord(memberIDBuffer, rawMemberIDs);
if (rawMemberIDs.empty())
return false;
Members.reserve(rawMemberIDs.size());
for (DeclID rawID : rawMemberIDs) {
Decl *D = getDecl(rawID);
assert(D && "unable to deserialize next member");
Members.push_back(D);
}
return false;
}
bool ModuleFile::readDefaultWitnessTable(ProtocolDecl *proto) {
using namespace decls_block;
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record)
return true;
SmallVector<uint64_t, 16> witnessIDBuffer;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, witnessIDBuffer);
assert(kind == DEFAULT_WITNESS_TABLE);
(void)kind;
ArrayRef<uint64_t> rawWitnessIDs;
decls_block::DefaultWitnessTableLayout::readRecord(
witnessIDBuffer, rawWitnessIDs);
if (rawWitnessIDs.empty())
return false;
unsigned e = rawWitnessIDs.size();
assert(e % 2 == 0 && "malformed default witness table");
(void) e;
for (unsigned i = 0, e = rawWitnessIDs.size(); i < e; i += 2) {
ValueDecl *requirement = cast<ValueDecl>(getDecl(rawWitnessIDs[i]));
assert(requirement && "unable to deserialize next requirement");
ValueDecl *witness = cast<ValueDecl>(getDecl(rawWitnessIDs[i + 1]));
assert(witness && "unable to deserialize next witness");
assert(requirement->getDeclContext() == proto);
proto->setDefaultWitness(requirement, witness);
}
return false;
}
static Optional<swift::CtorInitializerKind>
getActualCtorInitializerKind(uint8_t raw) {
switch (serialization::CtorInitializerKind(raw)) {
#define CASE(NAME) \
case serialization::CtorInitializerKind::NAME: \
return swift::CtorInitializerKind::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
return None;
}
/// Remove values from \p values that don't match the expected type or module.
///
/// Any of \p expectedTy, \p expectedModule, or \p expectedGenericSig can be
/// omitted, in which case any type or module is accepted. Values imported
/// from Clang can also appear in any module.
static void filterValues(Type expectedTy, Module *expectedModule,
CanGenericSignature expectedGenericSig, bool isType,
bool inProtocolExt,
Optional<swift::CtorInitializerKind> ctorInit,
SmallVectorImpl<ValueDecl *> &values) {
CanType canTy;
if (expectedTy)
canTy = expectedTy->getCanonicalType();
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
if (isType != isa<TypeDecl>(value))
return true;
if (!value->hasInterfaceType())
return true;
if (canTy && value->getInterfaceType()->getCanonicalType() != canTy)
return true;
// FIXME: Should be able to move a value from an extension in a derived
// module to the original definition in a base module.
if (expectedModule && !value->hasClangNode() &&
value->getModuleContext() != expectedModule)
return true;
// If we're expecting a member within a constrained extension with a
// particular generic signature, match that signature.
if (expectedGenericSig &&
value->getDeclContext()->getGenericSignatureOfContext()
->getCanonicalSignature() != expectedGenericSig)
return true;
// If we don't expect a specific generic signature, ignore anything from a
// constrained extension.
if (!expectedGenericSig &&
isa<ExtensionDecl>(value->getDeclContext()) &&
cast<ExtensionDecl>(value->getDeclContext())->isConstrainedExtension())
return true;
// If we're looking at members of a protocol or protocol extension,
// filter by whether we expect to find something in a protocol extension or
// not. This lets us distinguish between a protocol member and a protocol
// extension member that have the same type.
if (value->getDeclContext()->getAsProtocolOrProtocolExtensionContext() &&
(bool)value->getDeclContext()->getAsProtocolExtensionContext()
!= inProtocolExt)
return true;
// If we're expecting an initializer with a specific kind, and this is not
// an initializer with that kind, remove it.
if (ctorInit) {
if (!isa<ConstructorDecl>(value) ||
cast<ConstructorDecl>(value)->getInitKind() != *ctorInit)
return true;
}
return false;
});
values.erase(newEnd, values.end());
}
Decl *ModuleFile::resolveCrossReference(Module *M, uint32_t pathLen) {
using namespace decls_block;
assert(M && "missing dependency");
PrettyXRefTrace pathTrace(*M);
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
SmallVector<ValueDecl *, 8> values;
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
// Read the first path piece. This one is special because lookup is performed
// against the base module, rather than against the previous link in the path.
// In particular, operator path pieces represent actual operators here, but
// filters on operator functions when they appear later on.
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case XREF_TYPE_PATH_PIECE:
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
TypeID TID = 0;
bool isType = (recordID == XREF_TYPE_PATH_PIECE);
bool onlyInNominal = false;
bool inProtocolExt = false;
if (isType)
XRefTypePathPieceLayout::readRecord(scratch, IID, onlyInNominal);
else
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt);
Identifier name = getIdentifier(IID);
pathTrace.addValue(name);
Type filterTy = getType(TID);
if (!isType)
pathTrace.addType(filterTy);
bool retrying = false;
retry:
M->lookupQualified(ModuleType::get(M), name,
NL_QualifiedDefault | NL_KnownNoDependency,
/*typeResolver=*/nullptr, values);
filterValues(filterTy, nullptr, nullptr, isType, inProtocolExt, None,
values);
// HACK HACK HACK: Omit-needless-words hack to try to cope with
// the "NS" prefix being added/removed. No "real" compiler mode
// has to go through this path, but it's an option we toggle for
// testing.
if (values.empty() && !retrying &&
(M->getName().str() == "ObjectiveC" ||
M->getName().str() == "Foundation")) {
if (name.str().startswith("NS")) {
if (name.str().size() > 2 && name.str() != "NSCocoaError") {
auto known = getKnownFoundationEntity(name.str());
if (!known) {
name = getContext().getIdentifier(name.str().substr(2));
retrying = true;
goto retry;
}
}
} else {
SmallString<16> buffer;
buffer += "NS";
buffer += name.str();
// FIXME: Try uppercasing for non-types.
name = getContext().getIdentifier(buffer);
retrying = true;
goto retry;
}
}
break;
}
case XREF_EXTENSION_PATH_PIECE:
llvm_unreachable("can only extend a nominal");
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
IdentifierID IID;
uint8_t rawOpKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, IID, rawOpKind);
Identifier opName = getIdentifier(IID);
pathTrace.addOperator(opName);
switch (rawOpKind) {
case OperatorKind::Infix:
return M->lookupInfixOperator(opName);
case OperatorKind::Prefix:
return M->lookupPrefixOperator(opName);
case OperatorKind::Postfix:
return M->lookupPostfixOperator(opName);
case OperatorKind::PrecedenceGroup:
return M->lookupPrecedenceGroup(opName);
default:
// Unknown operator kind.
error();
return nullptr;
}
}
case XREF_GENERIC_PARAM_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE:
llvm_unreachable("only in a nominal or function");
default:
// Unknown xref kind.
pathTrace.addUnknown(recordID);
error();
return nullptr;
}
if (values.empty()) {
error();
return nullptr;
}
// Reset module filter.
M = nullptr;
/// The generic signature filter.
CanGenericSignature genericSig = nullptr;
// For remaining path pieces, filter or drill down into the results we have.
while (--pathLen) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case XREF_TYPE_PATH_PIECE:
case XREF_VALUE_PATH_PIECE:
case XREF_INITIALIZER_PATH_PIECE: {
TypeID TID = 0;
Identifier memberName;
Optional<swift::CtorInitializerKind> ctorInit;
bool isType = false;
bool onlyInNominal = false;
bool inProtocolExt = false;
switch (recordID) {
case XREF_TYPE_PATH_PIECE: {
IdentifierID IID;
XRefTypePathPieceLayout::readRecord(scratch, IID, onlyInNominal);
memberName = getIdentifier(IID);
isType = true;
break;
}
case XREF_VALUE_PATH_PIECE: {
IdentifierID IID;
XRefValuePathPieceLayout::readRecord(scratch, TID, IID, inProtocolExt);
memberName = getIdentifier(IID);
break;
}
case XREF_INITIALIZER_PATH_PIECE: {
uint8_t kind;
XRefInitializerPathPieceLayout::readRecord(scratch, TID, inProtocolExt,
kind);
memberName = getContext().Id_init;
ctorInit = getActualCtorInitializerKind(kind);
break;
}
default:
llvm_unreachable("Unhandled path piece");
}
pathTrace.addValue(memberName);
Type filterTy = getType(TID);
if (!isType)
pathTrace.addType(filterTy);
if (values.size() != 1) {
error();
return nullptr;
}
auto nominal = dyn_cast<NominalTypeDecl>(values.front());
values.clear();
if (!nominal) {
error();
return nullptr;
}
auto members = nominal->lookupDirect(memberName, onlyInNominal);
values.append(members.begin(), members.end());
filterValues(filterTy, M, genericSig, isType, inProtocolExt, ctorInit,
values);
break;
}
case XREF_EXTENSION_PATH_PIECE: {
ModuleID ownerID;
ArrayRef<uint64_t> genericParamIDs;
XRefExtensionPathPieceLayout::readRecord(scratch, ownerID,
genericParamIDs);
M = getModule(ownerID);
pathTrace.addExtension(M);
// Read the generic signature, if we have one.
if (!genericParamIDs.empty()) {
SmallVector<GenericTypeParamType *, 4> params;
SmallVector<Requirement, 5> requirements;
for (TypeID paramID : genericParamIDs) {
params.push_back(getType(paramID)->castTo<GenericTypeParamType>());
}
readGenericRequirements(requirements, DeclTypeCursor);
genericSig = GenericSignature::getCanonical(params, requirements);
}
continue;
}
case XREF_OPERATOR_OR_ACCESSOR_PATH_PIECE: {
uint8_t rawKind;
XRefOperatorOrAccessorPathPieceLayout::readRecord(scratch, None,
rawKind);
if (values.size() == 1) {
if (auto storage = dyn_cast<AbstractStorageDecl>(values.front())) {
pathTrace.addAccessor(rawKind);
switch (rawKind) {
case Getter:
values.front() = storage->getGetter();
break;
case Setter:
values.front() = storage->getSetter();
break;
case MaterializeForSet:
values.front() = storage->getMaterializeForSetFunc();
break;
case Addressor:
values.front() = storage->getAddressor();
break;
case MutableAddressor:
values.front() = storage->getMutableAddressor();
break;
case WillSet:
case DidSet:
llvm_unreachable("invalid XREF accessor kind");
default:
// Unknown accessor kind.
error();
return nullptr;
}
break;
}
}
pathTrace.addOperatorFilter(rawKind);
auto newEnd = std::remove_if(values.begin(), values.end(),
[=](ValueDecl *value) {
auto fn = dyn_cast<FuncDecl>(value);
if (!fn)
return true;
if (!fn->getOperatorDecl())
return true;
if (getStableFixity(fn->getOperatorDecl()->getKind()) != rawKind)
return true;
return false;
});
values.erase(newEnd, values.end());
break;
}
case XREF_GENERIC_PARAM_PATH_PIECE: {
if (values.size() != 1) {
error();
return nullptr;
}
uint32_t paramIndex;
XRefGenericParamPathPieceLayout::readRecord(scratch, paramIndex);
pathTrace.addGenericParam(paramIndex);
ValueDecl *base = values.front();
GenericParamList *paramList = nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(base)) {
if (genericSig) {
// Find an extension in the requested module that has the
// correct generic signature.
for (auto ext : nominal->getExtensions()) {
if (ext->getModuleContext() == M &&
ext->getGenericSignature()->getCanonicalSignature()
== genericSig) {
paramList = ext->getGenericParams();
break;
}
}
assert(paramList && "Couldn't find constrained extension");
} else {
// Simple case: use the nominal type's generic parameters.
paramList = nominal->getGenericParams();
}
} else if (auto alias = dyn_cast<TypeAliasDecl>(base)) {
paramList = alias->getGenericParams();
} else if (auto fn = dyn_cast<AbstractFunctionDecl>(base))
paramList = fn->getGenericParams();
if (!paramList || paramIndex >= paramList->size()) {
error();
return nullptr;
}
values.clear();
values.push_back(paramList->getParams()[paramIndex]);
assert(values.back());
break;
}
default:
// Unknown xref path piece.
pathTrace.addUnknown(recordID);
error();
return nullptr;
}
PrettyStackTraceModuleFile traceMsg(
"If you're seeing a crash here, check that your SDK and dependencies "
"match the versions used to build", this);
if (values.empty()) {
error();
return nullptr;
}
// Reset the module filter.
M = nullptr;
genericSig = nullptr;
}
// Make sure we /used/ the last module filter we got.
// This catches the case where the last path piece we saw was an Extension
// path piece, which is not a valid way to end a path. (Cross-references to
// extensions are not allowed because they cannot be uniquely named.)
if (M) {
error();
return nullptr;
}
// When all is said and done, we should have a single value here to return.
if (values.size() != 1) {
error();
return nullptr;
}
return values.front();
}
Identifier ModuleFile::getIdentifier(IdentifierID IID) {
if (IID == 0)
return Identifier();
size_t rawID = IID - NUM_SPECIAL_MODULES;
assert(rawID < Identifiers.size() && "invalid identifier ID");
auto identRecord = Identifiers[rawID];
if (identRecord.Offset == 0)
return identRecord.Ident;
assert(!IdentifierData.empty() && "no identifier data in module");
StringRef rawStrPtr = IdentifierData.substr(identRecord.Offset);
size_t terminatorOffset = rawStrPtr.find('\0');
assert(terminatorOffset != StringRef::npos &&
"unterminated identifier string data");
return getContext().getIdentifier(rawStrPtr.slice(0, terminatorOffset));
}
DeclContext *ModuleFile::getLocalDeclContext(DeclContextID DCID) {
assert(DCID != 0 && "invalid local DeclContext ID 0");
auto &declContextOrOffset = LocalDeclContexts[DCID-1];
if (declContextOrOffset.isComplete())
return declContextOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declContextOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch(recordID) {
case decls_block::ABSTRACT_CLOSURE_EXPR_CONTEXT: {
TypeID closureTypeID;
unsigned discriminator = 0;
bool implicit = false;
DeclContextID parentID;
decls_block::AbstractClosureExprLayout::readRecord(scratch,
closureTypeID,
implicit,
discriminator,
parentID);
DeclContext *parent = getDeclContext(parentID);
auto type = getType(closureTypeID);
declContextOrOffset = new (ctx)
SerializedAbstractClosureExpr(type, implicit, discriminator, parent);
break;
}
case decls_block::TOP_LEVEL_CODE_DECL_CONTEXT: {
DeclContextID parentID;
decls_block::TopLevelCodeDeclContextLayout::readRecord(scratch,
parentID);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx) SerializedTopLevelCodeDeclContext(parent);
break;
}
case decls_block::PATTERN_BINDING_INITIALIZER_CONTEXT: {
DeclID bindingID;
uint32_t bindingIndex;
decls_block::PatternBindingInitializerLayout::readRecord(scratch,
bindingID,
bindingIndex);
auto decl = getDecl(bindingID);
PatternBindingDecl *binding = cast<PatternBindingDecl>(decl);
if (!declContextOrOffset.isComplete())
declContextOrOffset = new (ctx)
SerializedPatternBindingInitializer(binding, bindingIndex);
break;
}
case decls_block::DEFAULT_ARGUMENT_INITIALIZER_CONTEXT: {
DeclContextID parentID;
unsigned index = 0;
decls_block::DefaultArgumentInitializerLayout::readRecord(scratch,
parentID,
index);
DeclContext *parent = getDeclContext(parentID);
declContextOrOffset = new (ctx)
SerializedDefaultArgumentInitializer(index, parent);
break;
}
default:
llvm_unreachable("Unknown record ID found when reading local DeclContext.");
}
return declContextOrOffset;
}
DeclContext *ModuleFile::getDeclContext(DeclContextID DCID) {
if (DCID == 0)
return FileContext;
assert(DCID <= DeclContexts.size() && "invalid DeclContext ID");
auto &declContextOrOffset = DeclContexts[DCID-1];
if (declContextOrOffset.isComplete())
return declContextOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declContextOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (recordID != decls_block::DECL_CONTEXT)
llvm_unreachable("Expected a DECL_CONTEXT record");
DeclContextID declOrDeclContextId;
bool isDecl;
decls_block::DeclContextLayout::readRecord(scratch, declOrDeclContextId,
isDecl);
if (!isDecl)
return getLocalDeclContext(declOrDeclContextId);
auto D = getDecl(declOrDeclContextId);
if (auto ND = dyn_cast<NominalTypeDecl>(D)) {
declContextOrOffset = ND;
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
declContextOrOffset = ED;
} else if (auto AFD = dyn_cast<AbstractFunctionDecl>(D)) {
declContextOrOffset = AFD;
} else if (auto SD = dyn_cast<SubscriptDecl>(D)) {
declContextOrOffset = SD;
} else if (auto TAD = dyn_cast<TypeAliasDecl>(D)) {
declContextOrOffset = TAD;
} else {
llvm_unreachable("Unknown Decl : DeclContext kind");
}
return declContextOrOffset;
}
Module *ModuleFile::getModule(ModuleID MID) {
if (MID < NUM_SPECIAL_MODULES) {
switch (static_cast<SpecialModuleID>(static_cast<uint8_t>(MID))) {
case BUILTIN_MODULE_ID:
return getContext().TheBuiltinModule;
case CURRENT_MODULE_ID:
return FileContext->getParentModule();
case OBJC_HEADER_MODULE_ID: {
auto clangImporter =
static_cast<ClangImporter *>(getContext().getClangModuleLoader());
return clangImporter->getImportedHeaderModule();
}
case NUM_SPECIAL_MODULES:
llvm_unreachable("implementation detail only");
}
}
return getModule(getIdentifier(MID));
}
Module *ModuleFile::getModule(ArrayRef<Identifier> name) {
if (name.empty() || name.front().empty())
return getContext().TheBuiltinModule;
// FIXME: duplicated from NameBinder::getModule
if (name.size() == 1 &&
name.front() == FileContext->getParentModule()->getName()) {
if (!ShadowedModule) {
auto importer = getContext().getClangModuleLoader();
assert(importer && "no way to import shadowed module");
ShadowedModule = importer->loadModule(SourceLoc(),
{ { name.front(), SourceLoc() } });
}
return ShadowedModule;
}
SmallVector<ImportDecl::AccessPathElement, 4> importPath;
for (auto pathElem : name)
importPath.push_back({ pathElem, SourceLoc() });
return getContext().getModule(importPath);
}
/// Translate from the Serialization associativity enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::Associativity> getActualAssociativity(uint8_t assoc) {
switch (assoc) {
case serialization::Associativity::LeftAssociative:
return swift::Associativity::Left;
case serialization::Associativity::RightAssociative:
return swift::Associativity::Right;
case serialization::Associativity::NonAssociative:
return swift::Associativity::None;
default:
return None;
}
}
static Optional<swift::StaticSpellingKind>
getActualStaticSpellingKind(uint8_t raw) {
switch (serialization::StaticSpellingKind(raw)) {
case serialization::StaticSpellingKind::None:
return swift::StaticSpellingKind::None;
case serialization::StaticSpellingKind::KeywordStatic:
return swift::StaticSpellingKind::KeywordStatic;
case serialization::StaticSpellingKind::KeywordClass:
return swift::StaticSpellingKind::KeywordClass;
}
return None;
}
static bool isDeclAttrRecord(unsigned ID) {
using namespace decls_block;
switch (ID) {
#define DECL_ATTR(NAME, CLASS, ...) case CLASS##_DECL_ATTR: return true;
#include "swift/Serialization/DeclTypeRecordNodes.def"
default: return false;
}
}
static Optional<swift::Accessibility>
getActualAccessibility(uint8_t raw) {
switch (serialization::AccessibilityKind(raw)) {
#define CASE(NAME) \
case serialization::AccessibilityKind::NAME: \
return Accessibility::NAME;
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Public)
CASE(Open)
#undef CASE
}
return None;
}
static Optional<swift::OptionalTypeKind>
getActualOptionalTypeKind(uint8_t raw) {
switch (serialization::OptionalTypeKind(raw)) {
case serialization::OptionalTypeKind::None:
return OTK_None;
case serialization::OptionalTypeKind::Optional:
return OTK_Optional;
case serialization::OptionalTypeKind::ImplicitlyUnwrappedOptional:
return OTK_ImplicitlyUnwrappedOptional;
}
return None;
}
static Optional<swift::AddressorKind>
getActualAddressorKind(uint8_t raw) {
switch (serialization::AddressorKind(raw)) {
case serialization::AddressorKind::NotAddressor:
return swift::AddressorKind::NotAddressor;
case serialization::AddressorKind::Unsafe:
return swift::AddressorKind::Unsafe;
case serialization::AddressorKind::Owning:
return swift::AddressorKind::Owning;
case serialization::AddressorKind::NativeOwning:
return swift::AddressorKind::NativeOwning;
case serialization::AddressorKind::NativePinning:
return swift::AddressorKind::NativePinning;
}
return None;
}
void ModuleFile::configureStorage(AbstractStorageDecl *decl,
unsigned rawStorageKind,
serialization::DeclID getter,
serialization::DeclID setter,
serialization::DeclID materializeForSet,
serialization::DeclID addressor,
serialization::DeclID mutableAddressor,
serialization::DeclID willSet,
serialization::DeclID didSet) {
// We currently don't serialize these locations.
SourceLoc beginLoc, endLoc;
auto makeAddressed = [&] {
decl->makeAddressed(beginLoc,
cast_or_null<FuncDecl>(getDecl(addressor)),
cast_or_null<FuncDecl>(getDecl(mutableAddressor)),
endLoc);
};
auto addTrivialAccessors = [&] {
decl->addTrivialAccessors(
cast_or_null<FuncDecl>(getDecl(getter)),
cast_or_null<FuncDecl>(getDecl(setter)),
cast_or_null<FuncDecl>(getDecl(materializeForSet)));
};
auto setObservingAccessors = [&] {
decl->setObservingAccessors(
cast_or_null<FuncDecl>(getDecl(getter)),
cast_or_null<FuncDecl>(getDecl(setter)),
cast_or_null<FuncDecl>(getDecl(materializeForSet)));
};
switch ((StorageKind) rawStorageKind) {
case StorageKind::Stored:
return;
case StorageKind::StoredWithTrivialAccessors:
addTrivialAccessors();
return;
case StorageKind::StoredWithObservers:
decl->makeStoredWithObservers(beginLoc,
cast_or_null<FuncDecl>(getDecl(willSet)),
cast_or_null<FuncDecl>(getDecl(didSet)),
endLoc);
setObservingAccessors();
return;
case StorageKind::InheritedWithObservers:
decl->makeInheritedWithObservers(beginLoc,
cast_or_null<FuncDecl>(getDecl(willSet)),
cast_or_null<FuncDecl>(getDecl(didSet)),
endLoc);
setObservingAccessors();
return;
case StorageKind::Addressed:
makeAddressed();
return;
case StorageKind::AddressedWithTrivialAccessors:
makeAddressed();
addTrivialAccessors();
return;
case StorageKind::AddressedWithObservers:
decl->makeAddressedWithObservers(beginLoc,
cast_or_null<FuncDecl>(getDecl(addressor)),
cast_or_null<FuncDecl>(getDecl(mutableAddressor)),
cast_or_null<FuncDecl>(getDecl(willSet)),
cast_or_null<FuncDecl>(getDecl(didSet)),
endLoc);
setObservingAccessors();
return;
case StorageKind::Computed:
decl->makeComputed(beginLoc,
cast_or_null<FuncDecl>(getDecl(getter)),
cast_or_null<FuncDecl>(getDecl(setter)),
cast_or_null<FuncDecl>(getDecl(materializeForSet)),
endLoc);
return;
case StorageKind::ComputedWithMutableAddress:
decl->makeComputedWithMutableAddress(beginLoc,
cast_or_null<FuncDecl>(getDecl(getter)),
cast_or_null<FuncDecl>(getDecl(setter)),
cast_or_null<FuncDecl>(getDecl(materializeForSet)),
cast_or_null<FuncDecl>(getDecl(mutableAddressor)),
endLoc);
return;
}
llvm_unreachable("bad storage kind");
}
template <typename T, typename ...Args>
T *ModuleFile::createDecl(Args &&... args) {
// Note that this method is not used for all decl kinds.
static_assert(std::is_base_of<Decl, T>::value, "not a Decl");
T *result = new (getContext()) T(std::forward<Args>(args)...);
result->setEarlyAttrValidation(true);
return result;
}
static const uint64_t lazyConformanceContextDataPositionMask = 0xFFFFFFFFFFFF;
/// Decode the context data for lazily-loaded conformances.
static std::pair<uint64_t, uint64_t> decodeLazyConformanceContextData(
uint64_t contextData) {
return std::make_pair(contextData >> 48,
contextData & lazyConformanceContextDataPositionMask);
}
/// Encode the context data for lazily-loaded conformances.
static uint64_t encodeLazyConformanceContextData(uint64_t numProtocols,
uint64_t bitPosition) {
assert(numProtocols < 0xFFFF);
assert(bitPosition < lazyConformanceContextDataPositionMask);
return (numProtocols << 48) | bitPosition;
}
Decl *ModuleFile::getDecl(DeclID DID, Optional<DeclContext *> ForcedContext) {
if (DID == 0)
return nullptr;
assert(DID <= Decls.size() && "invalid decl ID");
auto &declOrOffset = Decls[DID-1];
if (declOrOffset.isComplete())
return declOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
// Read the attributes (if any).
DeclAttribute *DAttrs = nullptr;
DeclAttribute **AttrsNext = &DAttrs;
auto AddAttribute = [&](DeclAttribute *Attr) {
// Advance the linked list.
*AttrsNext = Attr;
AttrsNext = Attr->getMutableNext();
};
unsigned recordID;
class PrivateDiscriminatorRAII {
ModuleFile &moduleFile;
Serialized<Decl *> &declOrOffset;
public:
Identifier discriminator;
PrivateDiscriminatorRAII(ModuleFile &moduleFile,
Serialized<Decl *> &declOrOffset)
: moduleFile(moduleFile), declOrOffset(declOrOffset) {}
~PrivateDiscriminatorRAII() {
if (!discriminator.empty() && declOrOffset.isComplete())
if (auto value = dyn_cast_or_null<ValueDecl>(declOrOffset.get()))
moduleFile.PrivateDiscriminatorsByValue[value] = discriminator;
}
};
class LocalDiscriminatorRAII {
Serialized<Decl *> &declOrOffset;
public:
unsigned discriminator;
LocalDiscriminatorRAII(Serialized<Decl *> &declOrOffset)
: declOrOffset(declOrOffset), discriminator(0) {}
~LocalDiscriminatorRAII() {
if (discriminator != 0 && declOrOffset.isComplete())
if (auto value = dyn_cast<ValueDecl>(declOrOffset.get()))
value->setLocalDiscriminator(discriminator);
}
};
PrivateDiscriminatorRAII privateDiscriminatorRAII{*this, declOrOffset};
LocalDiscriminatorRAII localDiscriminatorRAII(declOrOffset);
// Local function that handles the "inherited" list for a type.
auto handleInherited
= [&](TypeDecl *nominal, ArrayRef<uint64_t> rawInheritedIDs) {
auto inheritedTypes = ctx.Allocate<TypeLoc>(rawInheritedIDs.size());
for_each(inheritedTypes, rawInheritedIDs,
[this](TypeLoc &tl, uint64_t rawID) {
tl = TypeLoc::withoutLoc(getType(rawID));
});
nominal->setInherited(inheritedTypes);
nominal->setCheckedInheritanceClause();
};
while (true) {
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
error();
return nullptr;
}
recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
if (isDeclAttrRecord(recordID)) {
DeclAttribute *Attr = nullptr;
switch (recordID) {
case decls_block::SILGenName_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SILGenNameDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SILGenNameAttr(blobData, isImplicit);
break;
}
case decls_block::CDecl_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::CDeclDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) CDeclAttr(blobData, isImplicit);
break;
}
case decls_block::Alignment_DECL_ATTR: {
bool isImplicit;
unsigned alignment;
serialization::decls_block::AlignmentDeclAttrLayout::readRecord(
scratch, isImplicit, alignment);
Attr = new (ctx) AlignmentAttr(alignment, SourceLoc(), SourceRange(),
isImplicit);
break;
}
case decls_block::SwiftNativeObjCRuntimeBase_DECL_ATTR: {
bool isImplicit;
IdentifierID nameID;
serialization::decls_block::SwiftNativeObjCRuntimeBaseDeclAttrLayout
::readRecord(scratch, isImplicit, nameID);
auto name = getIdentifier(nameID);
Attr = new (ctx) SwiftNativeObjCRuntimeBaseAttr(name, SourceLoc(),
SourceRange(),
isImplicit);
break;
}
case decls_block::Semantics_DECL_ATTR: {
bool isImplicit;
serialization::decls_block::SemanticsDeclAttrLayout::readRecord(
scratch, isImplicit);
Attr = new (ctx) SemanticsAttr(blobData, isImplicit);
break;
}
case decls_block::Inline_DECL_ATTR: {
unsigned kind;
serialization::decls_block::InlineDeclAttrLayout::readRecord(
scratch, kind);
Attr = new (ctx) InlineAttr((InlineKind)kind);
break;
}
case decls_block::Effects_DECL_ATTR: {
unsigned kind;
serialization::decls_block::EffectsDeclAttrLayout::readRecord(scratch,
kind);
Attr = new (ctx) EffectsAttr((EffectsKind)kind);
break;
}
case decls_block::Available_DECL_ATTR: {
#define LIST_VER_TUPLE_PIECES(X)\
X##_Major, X##_Minor, X##_Subminor, X##_HasMinor, X##_HasSubminor
#define DEF_VER_TUPLE_PIECES(X) unsigned LIST_VER_TUPLE_PIECES(X)
#define DECODE_VER_TUPLE(X)\
if (X##_HasMinor) {\
if (X##_HasSubminor)\
X = clang::VersionTuple(X##_Major, X##_Minor, X##_Subminor);\
else\
X = clang::VersionTuple(X##_Major, X##_Minor);\
}\
else X = clang::VersionTuple(X##_Major);
bool isImplicit;
bool isUnavailable;
bool isDeprecated;
DEF_VER_TUPLE_PIECES(Introduced);
DEF_VER_TUPLE_PIECES(Deprecated);
DEF_VER_TUPLE_PIECES(Obsoleted);
unsigned platform, messageSize, renameSize;
// Decode the record, pulling the version tuple information.
serialization::decls_block::AvailableDeclAttrLayout::readRecord(
scratch, isImplicit, isUnavailable, isDeprecated,
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
platform, messageSize, renameSize);
StringRef message = blobData.substr(0, messageSize);
blobData = blobData.substr(messageSize);
StringRef rename = blobData.substr(0, renameSize);
clang::VersionTuple Introduced, Deprecated, Obsoleted;
DECODE_VER_TUPLE(Introduced)
DECODE_VER_TUPLE(Deprecated)
DECODE_VER_TUPLE(Obsoleted)
PlatformAgnosticAvailabilityKind platformAgnostic;
if (isUnavailable)
platformAgnostic = PlatformAgnosticAvailabilityKind::Unavailable;
else if (isDeprecated)
platformAgnostic = PlatformAgnosticAvailabilityKind::Deprecated;
else if (((PlatformKind)platform) == PlatformKind::none &&
(!Introduced.empty() ||
!Deprecated.empty() ||
!Obsoleted.empty()))
platformAgnostic =
PlatformAgnosticAvailabilityKind::SwiftVersionSpecific;
else
platformAgnostic = PlatformAgnosticAvailabilityKind::None;
Attr = new (ctx) AvailableAttr(
SourceLoc(), SourceRange(),
(PlatformKind)platform, message, rename,
Introduced, Deprecated, Obsoleted,
platformAgnostic, isImplicit);
break;
#undef DEF_VER_TUPLE_PIECES
#undef LIST_VER_TUPLE_PIECES
#undef DECODE_VER_TUPLE
}
case decls_block::AutoClosure_DECL_ATTR: {
bool isImplicit;
bool isEscaping;
serialization::decls_block::AutoClosureDeclAttrLayout::readRecord(
scratch, isImplicit, isEscaping);
Attr = new (ctx) AutoClosureAttr(SourceLoc(), SourceRange(),
isEscaping, isImplicit);
break;
}
case decls_block::ObjC_DECL_ATTR: {
bool isImplicit;
bool isImplicitName;
uint64_t numArgs;
ArrayRef<uint64_t> rawPieceIDs;
serialization::decls_block::ObjCDeclAttrLayout::readRecord(
scratch, isImplicit, isImplicitName, numArgs, rawPieceIDs);
SmallVector<Identifier, 4> pieces;
for (auto pieceID : rawPieceIDs)
pieces.push_back(getIdentifier(pieceID));
if (numArgs == 0)
Attr = ObjCAttr::create(ctx, None, isImplicitName);
else
Attr = ObjCAttr::create(ctx, ObjCSelector(ctx, numArgs-1, pieces),
isImplicitName);
Attr->setImplicit(isImplicit);
break;
}
case decls_block::Specialize_DECL_ATTR: {
ArrayRef<uint64_t> rawTypeIDs;
serialization::decls_block::SpecializeDeclAttrLayout::readRecord(
scratch, rawTypeIDs);
SmallVector<TypeLoc, 8> typeLocs;
for (auto tid : rawTypeIDs)
typeLocs.push_back(TypeLoc::withoutLoc(getType(tid)));
Attr = SpecializeAttr::create(ctx, SourceLoc(), SourceRange(),
typeLocs);
break;
}
#define SIMPLE_DECL_ATTR(NAME, CLASS, ...) \
case decls_block::CLASS##_DECL_ATTR: { \
bool isImplicit; \
serialization::decls_block::CLASS##DeclAttrLayout::readRecord( \
scratch, isImplicit); \
Attr = new (ctx) CLASS##Attr(isImplicit); \
break; \
}
#include "swift/AST/Attr.def"
default:
// We don't know how to deserialize this kind of attribute.
error();
return nullptr;
}
if (!Attr)
return nullptr;
AddAttribute(Attr);
} else if (recordID == decls_block::PRIVATE_DISCRIMINATOR) {
IdentifierID discriminatorID;
decls_block::PrivateDiscriminatorLayout::readRecord(scratch,
discriminatorID);
privateDiscriminatorRAII.discriminator = getIdentifier(discriminatorID);
} else if (recordID == decls_block::LOCAL_DISCRIMINATOR) {
unsigned discriminator;
decls_block::LocalDiscriminatorLayout::readRecord(scratch, discriminator);
localDiscriminatorRAII.discriminator = discriminator;
} else {
break;
}
// Advance bitstream cursor to the next record.
entry = DeclTypeCursor.advance();
// Prepare to read the next record.
scratch.clear();
}
PrettyDeclDeserialization stackTraceEntry(
this, declOrOffset, DID, static_cast<decls_block::RecordKind>(recordID));
switch (recordID) {
case decls_block::TYPE_ALIAS_DECL: {
IdentifierID nameID;
DeclContextID contextID;
TypeID underlyingTypeID, interfaceTypeID;
bool isImplicit;
uint8_t rawAccessLevel;
decls_block::TypeAliasLayout::readRecord(scratch, nameID, contextID,
underlyingTypeID, interfaceTypeID,
isImplicit, rawAccessLevel);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto alias = createDecl<TypeAliasDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), genericParams, DC);
declOrOffset = alias;
// FIXME: Do we need to read a GenericEnvironment even if we don't
// have our own generic parameters? The typealias might itself be in
// generic context.
if (genericParams) {
readLazyGenericEnvironment(alias);
}
alias->setUnderlyingType(getType(underlyingTypeID));
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
alias->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (auto interfaceType = getType(interfaceTypeID))
alias->setInterfaceType(interfaceType);
if (isImplicit)
alias->setImplicit();
alias->setCheckedInheritanceClause();
break;
}
case decls_block::GENERIC_TYPE_PARAM_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
unsigned depth;
unsigned index;
decls_block::GenericTypeParamDeclLayout::readRecord(scratch, nameID,
contextID,
isImplicit,
depth,
index);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParam = createDecl<GenericTypeParamDecl>(DC,
getIdentifier(nameID),
SourceLoc(),
depth,
index);
declOrOffset = genericParam;
if (isImplicit)
genericParam->setImplicit();
break;
}
case decls_block::ASSOCIATED_TYPE_DECL: {
IdentifierID nameID;
DeclContextID contextID;
TypeID defaultDefinitionID;
bool isImplicit;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::AssociatedTypeDeclLayout::readRecord(scratch, nameID,
contextID,
defaultDefinitionID,
isImplicit,
rawInheritedIDs);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto assocType = createDecl<AssociatedTypeDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc(), this,
defaultDefinitionID);
declOrOffset = assocType;
assocType->computeType();
assocType->setAccessibility(cast<ProtocolDecl>(DC)->getFormalAccess());
if (isImplicit)
assocType->setImplicit();
auto inherited = ctx.Allocate<TypeLoc>(rawInheritedIDs.size());
for_each(inherited, rawInheritedIDs, [this](TypeLoc &loc, uint64_t rawID) {
loc.setType(getType(rawID));
});
assocType->setInherited(inherited);
assocType->setCheckedInheritanceClause();
break;
}
case decls_block::STRUCT_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
uint8_t rawAccessLevel;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::StructLayout::readRecord(scratch, nameID, contextID,
isImplicit, rawAccessLevel,
numConformances,
rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theStruct = createDecl<StructDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), None, genericParams,
DC);
declOrOffset = theStruct;
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
theStruct->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (isImplicit)
theStruct->setImplicit();
// Read the generic environment.
readLazyGenericEnvironment(theStruct);
theStruct->computeType();
handleInherited(theStruct, rawInheritedIDs);
theStruct->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theStruct->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
break;
}
case decls_block::CONSTRUCTOR_DECL: {
DeclContextID contextID;
uint8_t rawFailability;
bool isImplicit, isObjC, hasStubImplementation, throws;
uint8_t storedInitKind, rawAccessLevel;
TypeID interfaceID;
DeclID overriddenID;
ArrayRef<uint64_t> argNameIDs;
decls_block::ConstructorLayout::readRecord(scratch, contextID,
rawFailability, isImplicit,
isObjC, hasStubImplementation,
throws, storedInitKind,
interfaceID,
overriddenID, rawAccessLevel,
argNameIDs);
auto parent = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto *genericParams = maybeReadGenericParams(parent);
if (declOrOffset.isComplete())
return declOrOffset;
// Read the generic environment.
GenericSignature *genericSig;
TypeSubstitutionMap genericEnvMap;
std::tie(genericSig, genericEnvMap) =
readGenericEnvironmentPieces(DeclTypeCursor);
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameIDs)
argNames.push_back(getIdentifier(argNameID));
OptionalTypeKind failability = OTK_None;
if (auto actualFailability = getActualOptionalTypeKind(rawFailability))
failability = *actualFailability;
DeclName name(ctx, ctx.Id_init, argNames);
auto ctor =
createDecl<ConstructorDecl>(name, SourceLoc(),
failability, /*FailabilityLoc=*/SourceLoc(),
/*Throws=*/throws, /*ThrowsLoc=*/SourceLoc(),
/*bodyParams=*/nullptr, nullptr,
genericParams, parent);
declOrOffset = ctor;
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
ctor->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
auto *bodyParams0 = readParameterList();
bodyParams0->get(0)->setImplicit(); // self is implicit.
auto *bodyParams1 = readParameterList();
assert(bodyParams0 && bodyParams1 && "missing parameters for constructor");
ctor->setParameterLists(bodyParams0->get(0), bodyParams1);
auto interfaceType = getType(interfaceID);
ctor->setInterfaceType(interfaceType);
// If there is a generic environment, lazily wire it up.
if (genericSig) {
ctor->setLazyGenericEnvironment(
this, genericSig,
allocateLazyGenericEnvironmentMap(std::move(genericEnvMap)));
}
// Set the initializer interface type of the constructor.
auto allocType = ctor->getInterfaceType();
auto selfTy = ctor->computeInterfaceSelfType(/*isInitializingCtor=*/true);
if (auto polyFn = allocType->getAs<GenericFunctionType>()) {
ctor->setInitializerInterfaceType(
GenericFunctionType::get(polyFn->getGenericSignature(),
selfTy, polyFn->getResult(),
polyFn->getExtInfo()));
} else {
auto fn = allocType->castTo<FunctionType>();
ctor->setInitializerInterfaceType(FunctionType::get(selfTy,
fn->getResult(),
fn->getExtInfo()));
}
if (auto errorConvention = maybeReadForeignErrorConvention())
ctor->setForeignErrorConvention(*errorConvention);
if (isImplicit)
ctor->setImplicit();
if (hasStubImplementation)
ctor->setStubImplementation(true);
if (auto initKind = getActualCtorInitializerKind(storedInitKind))
ctor->setInitKind(*initKind);
if (auto overridden
= dyn_cast_or_null<ConstructorDecl>(getDecl(overriddenID)))
ctor->setOverriddenDecl(overridden);
break;
}
case decls_block::VAR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC, isStatic, isLet, hasNonPatternBindingInit;
uint8_t storageKind, rawAccessLevel, rawSetterAccessLevel;
TypeID interfaceTypeID;
DeclID getterID, setterID, materializeForSetID, willSetID, didSetID;
DeclID addressorID, mutableAddressorID, overriddenID;
decls_block::VarLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, isStatic, isLet,
hasNonPatternBindingInit, storageKind,
interfaceTypeID, getterID,
setterID, materializeForSetID,
addressorID, mutableAddressorID,
willSetID, didSetID, overriddenID,
rawAccessLevel, rawSetterAccessLevel);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto var = createDecl<VarDecl>(isStatic, isLet, SourceLoc(),
getIdentifier(nameID), Type(), DC);
var->setHasNonPatternBindingInit(hasNonPatternBindingInit);
declOrOffset = var;
Type interfaceType = getType(interfaceTypeID);
var->setInterfaceType(interfaceType);
if (auto referenceStorage = interfaceType->getAs<ReferenceStorageType>())
AddAttribute(new (ctx) OwnershipAttr(referenceStorage->getOwnership()));
configureStorage(var, storageKind, getterID, setterID, materializeForSetID,
addressorID, mutableAddressorID, willSetID, didSetID);
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
var->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (var->isSettable(nullptr)) {
if (auto setterAccess = getActualAccessibility(rawSetterAccessLevel)) {
var->setSetterAccessibility(*setterAccess);
} else {
error();
return nullptr;
}
}
if (isImplicit)
var->setImplicit();
if (auto overridden = cast_or_null<VarDecl>(getDecl(overriddenID))) {
var->setOverriddenDecl(overridden);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
break;
}
case decls_block::PARAM_DECL: {
IdentifierID argNameID, paramNameID;
DeclContextID contextID;
bool isLet;
TypeID interfaceTypeID;
decls_block::ParamLayout::readRecord(scratch, argNameID, paramNameID,
contextID, isLet, interfaceTypeID);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto param = createDecl<ParamDecl>(isLet, SourceLoc(), SourceLoc(),
getIdentifier(argNameID), SourceLoc(),
getIdentifier(paramNameID), Type(), DC);
declOrOffset = param;
param->setInterfaceType(getType(interfaceTypeID));
break;
}
case decls_block::FUNC_DECL: {
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t rawStaticSpelling, rawAccessLevel, rawAddressorKind;
bool isObjC, isMutating, hasDynamicSelf, throws;
unsigned numParamPatterns;
TypeID interfaceTypeID;
DeclID associatedDeclID;
DeclID overriddenID;
DeclID accessorStorageDeclID;
bool hasCompoundName;
ArrayRef<uint64_t> nameIDs;
decls_block::FuncLayout::readRecord(scratch, contextID, isImplicit,
isStatic, rawStaticSpelling, isObjC,
isMutating, hasDynamicSelf, throws,
numParamPatterns,
interfaceTypeID, associatedDeclID,
overriddenID, accessorStorageDeclID,
hasCompoundName, rawAddressorKind,
rawAccessLevel, nameIDs);
// Resolve the name ids.
SmallVector<Identifier, 2> names;
for (auto nameID : nameIDs)
names.push_back(getIdentifier(nameID));
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// Read generic params before reading the type, because the type may
// reference generic parameters, and we want them to have a dummy
// DeclContext for now.
GenericParamList *genericParams = maybeReadGenericParams(DC);
// Read the generic environment.
GenericSignature *genericSig;
TypeSubstitutionMap genericEnvMap;
std::tie(genericSig, genericEnvMap) =
readGenericEnvironmentPieces(DeclTypeCursor);
auto staticSpelling = getActualStaticSpellingKind(rawStaticSpelling);
if (!staticSpelling.hasValue()) {
error();
return nullptr;
}
if (declOrOffset.isComplete())
return declOrOffset;
DeclName name;
if (!names.empty()) {
if (hasCompoundName)
name = DeclName(ctx, names[0],
llvm::makeArrayRef(names.begin() + 1, names.end()));
else
name = DeclName(names[0]);
}
auto fn = FuncDecl::createDeserialized(
ctx, /*StaticLoc=*/SourceLoc(), staticSpelling.getValue(),
/*FuncLoc=*/SourceLoc(), name, /*NameLoc=*/SourceLoc(),
/*Throws=*/throws, /*ThrowsLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(), genericParams,
numParamPatterns, DC);
fn->setEarlyAttrValidation();
declOrOffset = fn;
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
fn->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (auto addressorKind = getActualAddressorKind(rawAddressorKind)) {
if (*addressorKind != AddressorKind::NotAddressor)
fn->setAddressorKind(*addressorKind);
} else {
error();
return nullptr;
}
if (Decl *associated = getDecl(associatedDeclID)) {
if (auto op = dyn_cast<OperatorDecl>(associated)) {
fn->setOperatorDecl(op);
if (isa<PrefixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PrefixAttr(/*implicit*/false));
else if (isa<PostfixOperatorDecl>(op))
fn->getAttrs().add(new (ctx) PostfixAttr(/*implicit*/false));
// Note that an explicit 'infix' is not required.
}
// Otherwise, unknown associated decl kind.
}
// Set the interface type.
auto interfaceType = getType(interfaceTypeID);
fn->setInterfaceType(interfaceType);
// If there is a generic environment, lazily wire it up.
if (genericSig) {
fn->setLazyGenericEnvironment(
this, genericSig,
allocateLazyGenericEnvironmentMap(std::move(genericEnvMap)));
}
SmallVector<ParameterList*, 2> paramLists;
for (unsigned i = 0, e = numParamPatterns; i != e; ++i)
paramLists.push_back(readParameterList());
// If the first parameter list is (self), mark it implicit.
if (numParamPatterns && DC->isTypeContext())
paramLists[0]->get(0)->setImplicit();
fn->setDeserializedSignature(paramLists, TypeLoc());
if (auto errorConvention = maybeReadForeignErrorConvention())
fn->setForeignErrorConvention(*errorConvention);
if (auto overridden = cast_or_null<FuncDecl>(getDecl(overriddenID))) {
fn->setOverriddenDecl(overridden);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
fn->setStatic(isStatic);
if (isImplicit)
fn->setImplicit();
fn->setMutating(isMutating);
fn->setDynamicSelf(hasDynamicSelf);
// If we are an accessor on a var or subscript, make sure it is deserialized
// too.
getDecl(accessorStorageDeclID);
break;
}
case decls_block::PATTERN_BINDING_DECL: {
DeclContextID contextID;
bool isImplicit;
bool isStatic;
uint8_t RawStaticSpelling;
unsigned numPatterns;
ArrayRef<uint64_t> initContextIDs;
decls_block::PatternBindingLayout::readRecord(scratch, contextID,
isImplicit,
isStatic,
RawStaticSpelling,
numPatterns,
initContextIDs);
auto StaticSpelling = getActualStaticSpellingKind(RawStaticSpelling);
if (!StaticSpelling.hasValue()) {
error();
return nullptr;
}
auto dc = getDeclContext(contextID);
auto binding =
PatternBindingDecl::createDeserialized(ctx, SourceLoc(),
StaticSpelling.getValue(),
SourceLoc(), numPatterns, dc);
binding->setEarlyAttrValidation(true);
declOrOffset = binding;
binding->setStatic(isStatic);
if (isImplicit)
binding->setImplicit();
for (unsigned i = 0; i != numPatterns; ++i) {
auto pattern = maybeReadPattern(dc);
assert(pattern);
DeclContext *initContext = nullptr;
if (!initContextIDs.empty())
initContext = getDeclContext(initContextIDs[i]);
binding->setPattern(i, pattern, initContext);
}
break;
}
case decls_block::PROTOCOL_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isClassBounded, isObjC;
uint8_t rawAccessLevel;
unsigned numProtocols;
ArrayRef<uint64_t> rawProtocolAndInheritedIDs;
decls_block::ProtocolLayout::readRecord(scratch, nameID, contextID,
isImplicit, isClassBounded, isObjC,
rawAccessLevel,
numProtocols,
rawProtocolAndInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto proto = createDecl<ProtocolDecl>(DC, SourceLoc(), SourceLoc(),
getIdentifier(nameID), None);
declOrOffset = proto;
proto->setRequiresClass(isClassBounded);
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
proto->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
auto protocols = ctx.Allocate<ProtocolDecl *>(numProtocols);
for_each(protocols, rawProtocolAndInheritedIDs.slice(0, numProtocols),
[this](ProtocolDecl *&p, uint64_t rawID) {
p = cast<ProtocolDecl>(getDecl(rawID));
});
proto->setInheritedProtocols(protocols);
handleInherited(proto, rawProtocolAndInheritedIDs.slice(numProtocols));
if (auto genericParams = maybeReadGenericParams(DC))
proto->setGenericParams(genericParams);
// Read the generic environment.
readLazyGenericEnvironment(proto);
if (isImplicit)
proto->setImplicit();
proto->computeType();
proto->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
proto->setCircularityCheck(CircularityCheck::Checked);
break;
}
case decls_block::PREFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
decls_block::PrefixOperatorLayout::readRecord(scratch, nameID,
contextID);
auto DC = getDeclContext(contextID);
declOrOffset = createDecl<PrefixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc());
break;
}
case decls_block::POSTFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
decls_block::PostfixOperatorLayout::readRecord(scratch, nameID,
contextID);
auto DC = getDeclContext(contextID);
declOrOffset = createDecl<PostfixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc());
break;
}
case decls_block::INFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclContextID contextID;
DeclID precedenceGroupID;
decls_block::InfixOperatorLayout::readRecord(scratch, nameID, contextID,
precedenceGroupID);
PrecedenceGroupDecl *precedenceGroup = nullptr;
Identifier precedenceGroupName;
if (precedenceGroupID) {
precedenceGroup =
dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(precedenceGroupID));
if (precedenceGroup) {
precedenceGroupName = precedenceGroup->getName();
}
}
auto DC = getDeclContext(contextID);
auto result = createDecl<InfixOperatorDecl>(DC, SourceLoc(),
getIdentifier(nameID),
SourceLoc(), SourceLoc(),
precedenceGroupName,
SourceLoc());
result->setPrecedenceGroup(precedenceGroup);
declOrOffset = result;
break;
}
case decls_block::PRECEDENCE_GROUP_DECL: {
IdentifierID nameID;
DeclContextID contextID;
uint8_t rawAssociativity;
bool assignment;
unsigned numHigherThan;
ArrayRef<uint64_t> rawRelations;
decls_block::PrecedenceGroupLayout::readRecord(scratch, nameID, contextID,
rawAssociativity,
assignment, numHigherThan,
rawRelations);
auto DC = getDeclContext(contextID);
auto associativity = getActualAssociativity(rawAssociativity);
if (!associativity.hasValue()) {
error();
return nullptr;
}
if (numHigherThan > rawRelations.size()) {
error();
return nullptr;
}
SmallVector<PrecedenceGroupDecl::Relation, 4> higherThan;
for (auto relID : rawRelations.slice(0, numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(relID));
if (!rel) {
error();
return nullptr;
}
higherThan.push_back({SourceLoc(), rel->getName(), rel});
}
SmallVector<PrecedenceGroupDecl::Relation, 4> lowerThan;
for (auto relID : rawRelations.slice(numHigherThan)) {
PrecedenceGroupDecl *rel = nullptr;
if (relID)
rel = dyn_cast_or_null<PrecedenceGroupDecl>(getDecl(relID));
if (!rel) {
error();
return nullptr;
}
lowerThan.push_back({SourceLoc(), rel->getName(), rel});
}
declOrOffset = PrecedenceGroupDecl::create(DC, SourceLoc(), SourceLoc(),
getIdentifier(nameID),
SourceLoc(),
SourceLoc(), SourceLoc(),
*associativity,
SourceLoc(), SourceLoc(),
assignment,
SourceLoc(), higherThan,
SourceLoc(), lowerThan,
SourceLoc());
break;
}
case decls_block::CLASS_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit, isObjC, requiresStoredPropertyInits;
TypeID superclassID;
uint8_t rawAccessLevel;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::ClassLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC,
requiresStoredPropertyInits,
superclassID, rawAccessLevel,
numConformances,
rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theClass = createDecl<ClassDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), None, genericParams, DC);
declOrOffset = theClass;
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
theClass->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
theClass->setAddedImplicitInitializers();
if (isImplicit)
theClass->setImplicit();
theClass->setSuperclass(getType(superclassID));
if (requiresStoredPropertyInits)
theClass->setRequiresStoredPropertyInits(true);
// Read the generic environment.
readLazyGenericEnvironment(theClass);
theClass->computeType();
handleInherited(theClass, rawInheritedIDs);
theClass->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
theClass->setHasDestructor();
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theClass->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
theClass->setCircularityCheck(CircularityCheck::Checked);
break;
}
case decls_block::ENUM_DECL: {
IdentifierID nameID;
DeclContextID contextID;
bool isImplicit;
TypeID rawTypeID;
uint8_t rawAccessLevel;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::EnumLayout::readRecord(scratch, nameID, contextID,
isImplicit, rawTypeID, rawAccessLevel,
numConformances, rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto genericParams = maybeReadGenericParams(DC);
if (declOrOffset.isComplete())
return declOrOffset;
auto theEnum = createDecl<EnumDecl>(SourceLoc(), getIdentifier(nameID),
SourceLoc(), None, genericParams, DC);
declOrOffset = theEnum;
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
theEnum->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (isImplicit)
theEnum->setImplicit();
theEnum->setRawType(getType(rawTypeID));
// Read the generic environment.
readLazyGenericEnvironment(theEnum);
theEnum->computeType();
handleInherited(theEnum, rawInheritedIDs);
theEnum->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
theEnum->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
break;
}
case decls_block::ENUM_ELEMENT_DECL: {
IdentifierID nameID;
DeclContextID contextID;
TypeID argTypeID, interfaceTypeID;
bool isImplicit; bool isNegative;
unsigned rawValueKindID;
decls_block::EnumElementLayout::readRecord(scratch, nameID,
contextID, argTypeID,
interfaceTypeID,
isImplicit, rawValueKindID,
isNegative);
DeclContext *DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto argTy = getType(argTypeID);
if (declOrOffset.isComplete())
return declOrOffset;
auto elem = createDecl<EnumElementDecl>(SourceLoc(),
getIdentifier(nameID),
TypeLoc::withoutLoc(argTy),
SourceLoc(),
nullptr,
DC);
declOrOffset = elem;
// Deserialize the literal raw value, if any.
switch ((EnumElementRawValueKind)rawValueKindID) {
case EnumElementRawValueKind::None:
break;
case EnumElementRawValueKind::IntegerLiteral: {
auto literalText = getContext().AllocateCopy(blobData);
auto literal = new (getContext()) IntegerLiteralExpr(literalText,
SourceLoc(),
/*implicit*/ true);
if (isNegative)
literal->setNegative(SourceLoc());
elem->setRawValueExpr(literal);
}
}
auto interfaceType = getType(interfaceTypeID);
elem->setInterfaceType(interfaceType);
if (isImplicit)
elem->setImplicit();
elem->setAccessibility(std::max(cast<EnumDecl>(DC)->getFormalAccess(),
Accessibility::Internal));
break;
}
case decls_block::SUBSCRIPT_DECL: {
DeclContextID contextID;
bool isImplicit, isObjC;
TypeID interfaceTypeID;
DeclID getterID, setterID, materializeForSetID;
DeclID addressorID, mutableAddressorID, willSetID, didSetID;
DeclID overriddenID;
uint8_t rawAccessLevel, rawSetterAccessLevel;
uint8_t rawStorageKind;
ArrayRef<uint64_t> argNameIDs;
decls_block::SubscriptLayout::readRecord(scratch, contextID,
isImplicit, isObjC, rawStorageKind,
interfaceTypeID,
getterID, setterID,
materializeForSetID,
addressorID, mutableAddressorID,
willSetID, didSetID,
overriddenID, rawAccessLevel,
rawSetterAccessLevel,
argNameIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
// Resolve the name ids.
SmallVector<Identifier, 2> argNames;
for (auto argNameID : argNameIDs)
argNames.push_back(getIdentifier(argNameID));
DeclName name(ctx, ctx.Id_subscript, argNames);
auto subscript = createDecl<SubscriptDecl>(name, SourceLoc(), nullptr,
SourceLoc(), TypeLoc(), DC);
declOrOffset = subscript;
subscript->setIndices(readParameterList());
configureStorage(subscript, rawStorageKind,
getterID, setterID, materializeForSetID,
addressorID, mutableAddressorID, willSetID, didSetID);
if (auto accessLevel = getActualAccessibility(rawAccessLevel)) {
subscript->setAccessibility(*accessLevel);
} else {
error();
return nullptr;
}
if (subscript->isSettable()) {
if (auto setterAccess = getActualAccessibility(rawSetterAccessLevel)) {
subscript->setSetterAccessibility(*setterAccess);
} else {
error();
return nullptr;
}
}
auto interfaceType = getType(interfaceTypeID);
subscript->setInterfaceType(interfaceType);
if (isImplicit)
subscript->setImplicit();
if (auto overridden = cast_or_null<SubscriptDecl>(getDecl(overriddenID))) {
subscript->setOverriddenDecl(overridden);
AddAttribute(new (ctx) OverrideAttr(SourceLoc()));
}
break;
}
case decls_block::EXTENSION_DECL: {
TypeID baseID;
DeclContextID contextID;
bool isImplicit;
unsigned numConformances;
ArrayRef<uint64_t> rawInheritedIDs;
decls_block::ExtensionLayout::readRecord(scratch, baseID, contextID,
isImplicit, numConformances,
rawInheritedIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto baseTy = getType(baseID);
if (declOrOffset.isComplete())
return declOrOffset;
auto nominal = baseTy->getAnyNominal();
auto extension = ExtensionDecl::create(ctx, SourceLoc(),
TypeLoc::withoutLoc(baseTy), { },
DC, nullptr);
extension->setEarlyAttrValidation();
declOrOffset = extension;
if (isImplicit)
extension->setImplicit();
auto inheritedTypes = ctx.Allocate<TypeLoc>(rawInheritedIDs.size());
for_each(inheritedTypes, rawInheritedIDs,
[this](TypeLoc &tl, uint64_t rawID) {
tl = TypeLoc::withoutLoc(getType(rawID));
});
extension->setInherited(inheritedTypes);
extension->setCheckedInheritanceClause();
// Generic parameters.
GenericParamList *genericParams = maybeReadGenericParams(DC);
extension->setGenericParams(genericParams);
readLazyGenericEnvironment(extension);
extension->setMemberLoader(this, DeclTypeCursor.GetCurrentBitNo());
skipRecord(DeclTypeCursor, decls_block::MEMBERS);
extension->setConformanceLoader(
this,
encodeLazyConformanceContextData(numConformances,
DeclTypeCursor.GetCurrentBitNo()));
nominal->addExtension(extension);
extension->setValidated(true);
break;
}
case decls_block::DESTRUCTOR_DECL: {
DeclContextID contextID;
bool isImplicit, isObjC;
TypeID interfaceID;
decls_block::DestructorLayout::readRecord(scratch, contextID,
isImplicit, isObjC,
interfaceID);
DeclContext *DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
return declOrOffset;
auto dtor = createDecl<DestructorDecl>(ctx.Id_deinit, SourceLoc(),
/*selfpat*/nullptr, DC);
declOrOffset = dtor;
dtor->setAccessibility(std::max(cast<ClassDecl>(DC)->getFormalAccess(),
Accessibility::Internal));
auto *selfParams = readParameterList();
selfParams->get(0)->setImplicit(); // self is implicit.
assert(selfParams && "Didn't get self pattern?");
dtor->setSelfDecl(selfParams->get(0));
auto interfaceType = getType(interfaceID);
dtor->setInterfaceType(interfaceType);
if (auto genericSig = DC->getGenericSignatureOfContext()) {
dtor->setLazyGenericEnvironment(this, genericSig, /*contextData=*/1);
}
if (isImplicit)
dtor->setImplicit();
break;
}
case decls_block::XREF: {
assert(DAttrs == nullptr);
ModuleID baseModuleID;
uint32_t pathLen;
decls_block::XRefLayout::readRecord(scratch, baseModuleID, pathLen);
declOrOffset = resolveCrossReference(getModule(baseModuleID), pathLen);
break;
}
default:
// We don't know how to deserialize this kind of decl.
error();
return nullptr;
}
// Record the attributes.
if (DAttrs)
declOrOffset.get()->getAttrs().setRawAttributeChain(DAttrs);
return declOrOffset;
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::FunctionType::Representation>
getActualFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::FunctionTypeRepresentation::THE_CC: \
return swift::FunctionType::Representation::THE_CC;
CASE(Swift)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
#undef CASE
default:
return None;
}
}
/// Translate from the Serialization function type repr enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::SILFunctionType::Representation>
getActualSILFunctionTypeRepresentation(uint8_t rep) {
switch (rep) {
#define CASE(THE_CC) \
case (uint8_t)serialization::SILFunctionTypeRepresentation::THE_CC: \
return swift::SILFunctionType::Representation::THE_CC;
CASE(Thick)
CASE(Block)
CASE(Thin)
CASE(CFunctionPointer)
CASE(Method)
CASE(ObjCMethod)
CASE(WitnessMethod)
#undef CASE
default:
return None;
}
}
/// Translate from the serialization Ownership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static
Optional<swift::Ownership> getActualOwnership(serialization::Ownership raw) {
switch (raw) {
case serialization::Ownership::Strong: return swift::Ownership::Strong;
case serialization::Ownership::Unmanaged:return swift::Ownership::Unmanaged;
case serialization::Ownership::Unowned: return swift::Ownership::Unowned;
case serialization::Ownership::Weak: return swift::Ownership::Weak;
}
return None;
}
/// Translate from the serialization ParameterConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ParameterConvention> getActualParameterConvention(uint8_t raw) {
switch (serialization::ParameterConvention(raw)) {
#define CASE(ID) \
case serialization::ParameterConvention::ID: \
return swift::ParameterConvention::ID;
CASE(Indirect_In)
CASE(Indirect_Inout)
CASE(Indirect_InoutAliasable)
CASE(Indirect_In_Guaranteed)
CASE(Direct_Owned)
CASE(Direct_Unowned)
CASE(Direct_Guaranteed)
CASE(Direct_Deallocating)
#undef CASE
}
return None;
}
/// Translate from the serialization ResultConvention enumerators,
/// which are guaranteed to be stable, to the AST ones.
static
Optional<swift::ResultConvention> getActualResultConvention(uint8_t raw) {
switch (serialization::ResultConvention(raw)) {
#define CASE(ID) \
case serialization::ResultConvention::ID: return swift::ResultConvention::ID;
CASE(Indirect)
CASE(Owned)
CASE(Unowned)
CASE(UnownedInnerPointer)
CASE(Autoreleased)
#undef CASE
}
return None;
}
Type ModuleFile::getType(TypeID TID) {
if (TID == 0)
return Type();
assert(TID <= Types.size() && "invalid type ID");
auto &typeOrOffset = Types[TID-1];
if (typeOrOffset.isComplete())
return typeOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(typeOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize types represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = getContext();
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case decls_block::NAME_ALIAS_TYPE: {
DeclID underlyingID;
decls_block::NameAliasTypeLayout::readRecord(scratch, underlyingID);
auto alias = dyn_cast_or_null<TypeAliasDecl>(getDecl(underlyingID));
if (!alias) {
error();
return nullptr;
}
typeOrOffset = alias->getDeclaredInterfaceType();
break;
}
case decls_block::NOMINAL_TYPE: {
DeclID declID;
TypeID parentID;
decls_block::NominalTypeLayout::readRecord(scratch, declID, parentID);
Type parentTy = getType(parentID);
// Record the type as soon as possible. Members of a nominal type often
// try to refer back to the type.
auto nominal = cast<NominalTypeDecl>(getDecl(declID));
typeOrOffset = NominalType::get(nominal, parentTy, ctx);
assert(typeOrOffset.isComplete());
break;
}
case decls_block::PAREN_TYPE: {
TypeID underlyingID;
bool isVariadic, isAutoClosure, isEscaping;
decls_block::ParenTypeLayout::readRecord(scratch, underlyingID, isVariadic,
isAutoClosure, isEscaping);
typeOrOffset = ParenType::get(
ctx, getType(underlyingID),
ParameterTypeFlags(isVariadic, isAutoClosure, isEscaping));
break;
}
case decls_block::TUPLE_TYPE: {
// The tuple record itself is empty. Read all trailing elements.
SmallVector<TupleTypeElt, 8> elements;
while (true) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
if (recordID != decls_block::TUPLE_TYPE_ELT)
break;
IdentifierID nameID;
TypeID typeID;
bool isVariadic, isAutoClosure, isEscaping;
decls_block::TupleTypeEltLayout::readRecord(
scratch, nameID, typeID, isVariadic, isAutoClosure, isEscaping);
elements.emplace_back(
getType(typeID), getIdentifier(nameID),
ParameterTypeFlags(isVariadic, isAutoClosure, isEscaping));
}
typeOrOffset = TupleType::get(elements, ctx);
break;
}
case decls_block::FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
uint8_t rawRepresentation;
bool autoClosure, noescape, throws;
decls_block::FunctionTypeLayout::readRecord(scratch, inputID, resultID,
rawRepresentation,
autoClosure,
noescape,
throws);
auto representation = getActualFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue()) {
error();
return nullptr;
}
auto Info = FunctionType::ExtInfo(*representation,
autoClosure, noescape,
throws);
typeOrOffset = FunctionType::get(getType(inputID), getType(resultID),
Info);
break;
}
case decls_block::EXISTENTIAL_METATYPE_TYPE: {
TypeID instanceID;
uint8_t repr;
decls_block::ExistentialMetatypeTypeLayout::readRecord(scratch,
instanceID, repr);
switch (repr) {
case serialization::MetatypeRepresentation::MR_None:
typeOrOffset = ExistentialMetatypeType::get(getType(instanceID));
break;
case serialization::MetatypeRepresentation::MR_Thin:
error();
break;
case serialization::MetatypeRepresentation::MR_Thick:
typeOrOffset = ExistentialMetatypeType::get(getType(instanceID),
MetatypeRepresentation::Thick);
break;
case serialization::MetatypeRepresentation::MR_ObjC:
typeOrOffset = ExistentialMetatypeType::get(getType(instanceID),
MetatypeRepresentation::ObjC);
break;
default:
error();
break;
}
break;
}
case decls_block::METATYPE_TYPE: {
TypeID instanceID;
uint8_t repr;
decls_block::MetatypeTypeLayout::readRecord(scratch, instanceID, repr);
switch (repr) {
case serialization::MetatypeRepresentation::MR_None:
typeOrOffset = MetatypeType::get(getType(instanceID));
break;
case serialization::MetatypeRepresentation::MR_Thin:
typeOrOffset = MetatypeType::get(getType(instanceID),
MetatypeRepresentation::Thin);
break;
case serialization::MetatypeRepresentation::MR_Thick:
typeOrOffset = MetatypeType::get(getType(instanceID),
MetatypeRepresentation::Thick);
break;
case serialization::MetatypeRepresentation::MR_ObjC:
typeOrOffset = MetatypeType::get(getType(instanceID),
MetatypeRepresentation::ObjC);
break;
default:
error();
break;
}
break;
}
case decls_block::DYNAMIC_SELF_TYPE: {
TypeID selfID;
decls_block::DynamicSelfTypeLayout::readRecord(scratch, selfID);
typeOrOffset = DynamicSelfType::get(getType(selfID), ctx);
break;
}
case decls_block::LVALUE_TYPE: {
TypeID objectTypeID;
decls_block::LValueTypeLayout::readRecord(scratch, objectTypeID);
typeOrOffset = LValueType::get(getType(objectTypeID));
break;
}
case decls_block::INOUT_TYPE: {
TypeID objectTypeID;
decls_block::LValueTypeLayout::readRecord(scratch, objectTypeID);
typeOrOffset = InOutType::get(getType(objectTypeID));
break;
}
case decls_block::REFERENCE_STORAGE_TYPE: {
uint8_t rawOwnership;
TypeID referentTypeID;
decls_block::ReferenceStorageTypeLayout::readRecord(scratch, rawOwnership,
referentTypeID);
auto ownership =
getActualOwnership((serialization::Ownership) rawOwnership);
if (!ownership.hasValue()) {
error();
break;
}
typeOrOffset = ReferenceStorageType::get(getType(referentTypeID),
ownership.getValue(), ctx);
break;
}
case decls_block::ARCHETYPE_TYPE: {
TypeID parentID;
DeclID assocTypeOrNameID;
TypeID superclassID;
ArrayRef<uint64_t> rawConformanceIDs;
decls_block::ArchetypeTypeLayout::readRecord(scratch, parentID,
assocTypeOrNameID,
superclassID,
rawConformanceIDs);
ArchetypeType *parent = nullptr;
Type superclass;
SmallVector<ProtocolDecl *, 4> conformances;
if (auto parentType = getType(parentID))
parent = parentType->castTo<ArchetypeType>();
superclass = getType(superclassID);
for (DeclID protoID : rawConformanceIDs)
conformances.push_back(cast<ProtocolDecl>(getDecl(protoID)));
// See if we triggered deserialization through our conformances.
if (typeOrOffset.isComplete())
break;
ArchetypeType *archetype;
if (parent) {
auto assocTypeDecl = cast<AssociatedTypeDecl>(getDecl(assocTypeOrNameID));
archetype = ArchetypeType::getNew(ctx, parent, assocTypeDecl,
conformances, superclass);
} else {
archetype = ArchetypeType::getNew(ctx, nullptr,
getIdentifier(assocTypeOrNameID),
conformances, superclass);
}
typeOrOffset = archetype;
// Read the associated type names.
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
break;
}
scratch.clear();
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
if (kind != decls_block::ARCHETYPE_NESTED_TYPE_NAMES) {
error();
break;
}
ArrayRef<uint64_t> rawNameIDs;
decls_block::ArchetypeNestedTypeNamesLayout::readRecord(scratch,
rawNameIDs);
// Read the associated type ids.
entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
break;
}
SmallVector<uint64_t, 16> scratch2;
kind = DeclTypeCursor.readRecord(entry.ID, scratch2);
if (kind != decls_block::ARCHETYPE_NESTED_TYPES) {
error();
break;
}
ArrayRef<uint64_t> rawTypeIDs;
decls_block::ArchetypeNestedTypesLayout::readRecord(scratch2, rawTypeIDs);
// Build the nested types array.
SmallVector<std::pair<Identifier, Type>, 4> nestedTypes;
for_each(rawNameIDs, rawTypeIDs,
[&](IdentifierID nameID, TypeID nestedID) {
Type type = getType(nestedID);
nestedTypes.push_back(std::make_pair(getIdentifier(nameID), type));
});
archetype->setNestedTypes(ctx, nestedTypes);
break;
}
case decls_block::OPENED_EXISTENTIAL_TYPE: {
TypeID existentialID;
decls_block::OpenedExistentialTypeLayout::readRecord(scratch,
existentialID);
typeOrOffset = ArchetypeType::getOpened(getType(existentialID));
break;
}
case decls_block::GENERIC_TYPE_PARAM_TYPE: {
DeclID declIDOrDepth;
unsigned indexPlusOne;
decls_block::GenericTypeParamTypeLayout::readRecord(scratch, declIDOrDepth,
indexPlusOne);
if (indexPlusOne == 0) {
auto genericParam
= dyn_cast_or_null<GenericTypeParamDecl>(getDecl(declIDOrDepth));
if (!genericParam) {
error();
return nullptr;
}
// See if we triggered deserialization through our conformances.
if (typeOrOffset.isComplete())
break;
typeOrOffset = genericParam->getDeclaredInterfaceType();
break;
}
typeOrOffset = GenericTypeParamType::get(declIDOrDepth,indexPlusOne-1,ctx);
break;
}
case decls_block::PROTOCOL_COMPOSITION_TYPE: {
ArrayRef<uint64_t> rawProtocolIDs;
decls_block::ProtocolCompositionTypeLayout::readRecord(scratch,
rawProtocolIDs);
SmallVector<Type, 4> protocols;
for (TypeID protoID : rawProtocolIDs)
protocols.push_back(getType(protoID));
typeOrOffset = ProtocolCompositionType::get(ctx, protocols);
break;
}
case decls_block::DEPENDENT_MEMBER_TYPE: {
TypeID baseID;
DeclID assocTypeID;
decls_block::DependentMemberTypeLayout::readRecord(scratch, baseID,
assocTypeID);
typeOrOffset = DependentMemberType::get(
getType(baseID),
cast<AssociatedTypeDecl>(getDecl(assocTypeID)));
break;
}
case decls_block::BOUND_GENERIC_TYPE: {
DeclID declID;
TypeID parentID;
ArrayRef<uint64_t> rawArgumentIDs;
decls_block::BoundGenericTypeLayout::readRecord(scratch, declID, parentID,
rawArgumentIDs);
auto nominal = cast<NominalTypeDecl>(getDecl(declID));
auto parentTy = getType(parentID);
SmallVector<Type, 8> genericArgs;
for (TypeID type : rawArgumentIDs)
genericArgs.push_back(getType(type));
auto boundTy = BoundGenericType::get(nominal, parentTy, genericArgs);
typeOrOffset = boundTy;
break;
}
case decls_block::GENERIC_FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
uint8_t rawRep;
bool throws = false;
ArrayRef<uint64_t> genericParamIDs;
decls_block::GenericFunctionTypeLayout::readRecord(scratch,
inputID,
resultID,
rawRep,
throws,
genericParamIDs);
auto rep = getActualFunctionTypeRepresentation(rawRep);
if (!rep.hasValue()) {
error();
return nullptr;
}
// Read the generic parameters.
SmallVector<GenericTypeParamType *, 4> genericParams;
for (auto paramID : genericParamIDs) {
auto param = dyn_cast_or_null<GenericTypeParamType>(
getType(paramID).getPointer());
if (!param) {
error();
break;
}
genericParams.push_back(param);
}
// Read the generic requirements.
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
auto info = GenericFunctionType::ExtInfo(*rep, throws);
auto sig = GenericSignature::get(genericParams, requirements);
typeOrOffset = GenericFunctionType::get(sig,
getType(inputID),
getType(resultID),
info);
break;
}
case decls_block::SIL_BLOCK_STORAGE_TYPE: {
TypeID captureID;
decls_block::SILBlockStorageTypeLayout::readRecord(scratch, captureID);
typeOrOffset = SILBlockStorageType::get(getType(captureID)
->getCanonicalType());
break;
}
case decls_block::SIL_BOX_TYPE: {
SILLayoutID layoutID;
ArrayRef<uint64_t> args;
decls_block::SILBoxTypeLayout::readRecord(scratch, layoutID, args);
// Get the layout.
auto getLayout = [&]() -> SILLayout * {
assert(layoutID > 0 && layoutID <= SILLayouts.size()
&& "invalid layout ID");
auto &layoutOrOffset = SILLayouts[layoutID - 1];
if (layoutOrOffset.isComplete()) {
return layoutOrOffset;
}
BCOffsetRAII saveOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(layoutOrOffset);
auto layout = readSILLayout(DeclTypeCursor);
if (!layout) {
error();
return nullptr;
}
layoutOrOffset = layout;
return layout;
};
auto layout = getLayout();
if (!layout)
return nullptr;
SmallVector<Substitution, 4> genericArgs;
if (auto sig = layout->getGenericSignature()) {
if (args.size() != sig->getGenericParams().size()) {
error();
return nullptr;
}
TypeSubstitutionMap mappings;
for (unsigned i : indices(args)) {
mappings[sig->getGenericParams()[i]] =
getType(args[i])->getCanonicalType();
}
bool ok = true;
sig->getSubstitutions(*getAssociatedModule(), mappings,
[&](CanType depTy, Type replacementTy, ProtocolType *proto)
-> ProtocolConformanceRef {
if (replacementTy->is<SubstitutableType>()
|| replacementTy->is<DependentMemberType>())
return ProtocolConformanceRef(proto->getDecl());
auto conformance = getAssociatedModule()
->lookupConformance(replacementTy, proto->getDecl(), nullptr);
if (!conformance) {
error();
ok = false;
return ProtocolConformanceRef(proto->getDecl());
}
return *conformance;
},
genericArgs);
if (!ok)
return nullptr;
for (auto &arg : genericArgs) {
arg = Substitution(arg.getReplacement()->getCanonicalType(),
arg.getConformances());
}
} else {
if (args.size() != 0) {
error();
return nullptr;
}
}
typeOrOffset = SILBoxType::get(getContext(), layout, genericArgs);
break;
}
case decls_block::SIL_FUNCTION_TYPE: {
uint8_t rawCalleeConvention;
uint8_t rawRepresentation;
bool pseudogeneric = false;
bool hasErrorResult;
unsigned numParams;
unsigned numResults;
ArrayRef<uint64_t> variableData;
decls_block::SILFunctionTypeLayout::readRecord(scratch,
rawCalleeConvention,
rawRepresentation,
pseudogeneric,
hasErrorResult,
numParams,
numResults,
variableData);
// Process the ExtInfo.
auto representation
= getActualSILFunctionTypeRepresentation(rawRepresentation);
if (!representation.hasValue()) {
error();
return nullptr;
}
SILFunctionType::ExtInfo extInfo(*representation, pseudogeneric);
// Process the callee convention.
auto calleeConvention = getActualParameterConvention(rawCalleeConvention);
if (!calleeConvention.hasValue()) {
error();
return nullptr;
}
auto processParameter = [&](TypeID typeID, uint64_t rawConvention)
-> Optional<SILParameterInfo> {
auto convention = getActualParameterConvention(rawConvention);
auto type = getType(typeID);
if (!convention || !type) return None;
return SILParameterInfo(type->getCanonicalType(), *convention);
};
auto processResult = [&](TypeID typeID, uint64_t rawConvention)
-> Optional<SILResultInfo> {
auto convention = getActualResultConvention(rawConvention);
auto type = getType(typeID);
if (!convention || !type) return None;
return SILResultInfo(type->getCanonicalType(), *convention);
};
// Bounds check. FIXME: overflow
if (2 * numParams + 2 * numResults + 2 * unsigned(hasErrorResult)
> variableData.size()) {
error();
return nullptr;
}
unsigned nextVariableDataIndex = 0;
// Process the parameters.
SmallVector<SILParameterInfo, 8> allParams;
allParams.reserve(numParams);
for (unsigned i = 0; i != numParams; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto param = processParameter(typeID, rawConvention);
if (!param) {
error();
return nullptr;
}
allParams.push_back(*param);
}
// Process the results.
SmallVector<SILResultInfo, 8> allResults;
allParams.reserve(numResults);
for (unsigned i = 0; i != numResults; ++i) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
auto result = processResult(typeID, rawConvention);
if (!result) {
error();
return nullptr;
}
allResults.push_back(*result);
}
// Process the error result.
Optional<SILResultInfo> errorResult;
if (hasErrorResult) {
auto typeID = variableData[nextVariableDataIndex++];
auto rawConvention = variableData[nextVariableDataIndex++];
errorResult = processResult(typeID, rawConvention);
if (!errorResult) {
error();
return nullptr;
}
}
// Process the generic signature parameters.
SmallVector<GenericTypeParamType *, 8> genericParamTypes;
for (auto id : variableData.slice(nextVariableDataIndex)) {
genericParamTypes.push_back(
cast<GenericTypeParamType>(getType(id)->getCanonicalType()));
}
// Read the generic requirements, if any.
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
GenericSignature *genericSig = nullptr;
if (!genericParamTypes.empty() || !requirements.empty())
genericSig = GenericSignature::get(genericParamTypes, requirements,
/*isKnownCanonical=*/true);
typeOrOffset = SILFunctionType::get(genericSig, extInfo,
calleeConvention.getValue(),
allParams, allResults, errorResult,
ctx);
break;
}
case decls_block::ARRAY_SLICE_TYPE: {
TypeID baseID;
decls_block::ArraySliceTypeLayout::readRecord(scratch, baseID);
auto sliceTy = ArraySliceType::get(getType(baseID));
typeOrOffset = sliceTy;
break;
}
case decls_block::DICTIONARY_TYPE: {
TypeID keyID, valueID;
decls_block::DictionaryTypeLayout::readRecord(scratch, keyID, valueID);
auto dictTy = DictionaryType::get(getType(keyID), getType(valueID));
typeOrOffset = dictTy;
break;
}
case decls_block::OPTIONAL_TYPE: {
TypeID baseID;
decls_block::OptionalTypeLayout::readRecord(scratch, baseID);
auto optionalTy = OptionalType::get(getType(baseID));
typeOrOffset = optionalTy;
break;
}
case decls_block::UNCHECKED_OPTIONAL_TYPE: {
TypeID baseID;
decls_block::ImplicitlyUnwrappedOptionalTypeLayout::readRecord(scratch, baseID);
auto optionalTy = ImplicitlyUnwrappedOptionalType::get(getType(baseID));
typeOrOffset = optionalTy;
break;
}
case decls_block::UNBOUND_GENERIC_TYPE: {
DeclID genericID;
TypeID parentID;
decls_block::UnboundGenericTypeLayout::readRecord(scratch,
genericID, parentID);
auto genericDecl = cast<NominalTypeDecl>(getDecl(genericID));
typeOrOffset = UnboundGenericType::get(genericDecl, getType(parentID), ctx);
break;
}
default:
// We don't know how to deserialize this kind of type.
error();
return nullptr;
}
// Invoke the callback on the deserialized type.
DeserializedTypeCallback(typeOrOffset);
return typeOrOffset;
}
void ModuleFile::loadAllMembers(Decl *D, uint64_t contextData) {
PrettyStackTraceDecl trace("loading members for", D);
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(contextData);
SmallVector<Decl *, 16> members;
bool Err = readMembers(members);
assert(!Err && "unable to read members");
(void)Err;
IterableDeclContext *IDC;
if (auto *nominal = dyn_cast<NominalTypeDecl>(D))
IDC = nominal;
else
IDC = cast<ExtensionDecl>(D);
for (auto member : members)
IDC->addMember(member);
if (auto *proto = dyn_cast<ProtocolDecl>(D)) {
PrettyStackTraceDecl trace("reading default witness table for", D);
bool Err = readDefaultWitnessTable(proto);
assert(!Err && "unable to read default witness table");
(void)Err;
}
}
void
ModuleFile::loadAllConformances(const Decl *D, uint64_t contextData,
SmallVectorImpl<ProtocolConformance*> &conformances) {
PrettyStackTraceDecl trace("loading conformances for", D);
uint64_t numConformances;
uint64_t bitPosition;
std::tie(numConformances, bitPosition)
= decodeLazyConformanceContextData(contextData);
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(bitPosition);
while (numConformances--) {
auto conf = readConformance(DeclTypeCursor);
if (conf.isConcrete())
conformances.push_back(conf.getConcrete());
}
}
TypeLoc
ModuleFile::loadAssociatedTypeDefault(const swift::AssociatedTypeDecl *ATD,
uint64_t contextData) {
return TypeLoc::withoutLoc(getType(contextData));
}
void ModuleFile::finishNormalConformance(NormalProtocolConformance *conformance,
uint64_t contextData) {
using namespace decls_block;
// Find the conformance record.
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(contextData);
auto entry = DeclTypeCursor.advance();
assert(entry.Kind == llvm::BitstreamEntry::Record &&
"registered lazy loader incorrectly");
DeclID protoID;
DeclContextID contextID;
unsigned valueCount, typeCount, inheritedCount;
ArrayRef<uint64_t> rawIDs;
SmallVector<uint64_t, 16> scratch;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
(void) kind;
assert(kind == NORMAL_PROTOCOL_CONFORMANCE &&
"registered lazy loader incorrectly");
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
contextID, valueCount,
typeCount, inheritedCount,
rawIDs);
// Skip trailing inherited conformances.
while (inheritedCount--)
(void)readConformance(DeclTypeCursor);
ASTContext &ctx = getContext();
ArrayRef<uint64_t>::iterator rawIDIter = rawIDs.begin();
while (valueCount--) {
auto req = cast<ValueDecl>(getDecl(*rawIDIter++));
auto witness = cast_or_null<ValueDecl>(getDecl(*rawIDIter++));
assert(witness ||
req->getAttrs().hasAttribute<OptionalAttr>() ||
req->getAttrs().isUnavailable(ctx));
if (!witness) {
conformance->setWitness(req, Witness());
continue;
}
// Generic signature and environment.
GenericSignature *syntheticSig = nullptr;
GenericEnvironment *syntheticEnv = nullptr;
if (unsigned numGenericParams = *rawIDIter++) {
// Generic parameters.
SmallVector<GenericTypeParamType *, 2> genericParams;
while (numGenericParams--) {
genericParams.push_back(
getType(*rawIDIter++)->castTo<GenericTypeParamType>());
}
// Generic requirements.
SmallVector<Requirement, 4> requirements;
readGenericRequirements(requirements, DeclTypeCursor);
// Form the generic signature for the synthetic environment.
syntheticSig = GenericSignature::get(genericParams, requirements);
// Create an archetype builder, which will help us create the
// synthetic environment.
ArchetypeBuilder builder(*getAssociatedModule());
builder.addGenericSignature(syntheticSig);
builder.finalize(SourceLoc());
syntheticEnv = builder.getGenericEnvironment(syntheticSig);
}
// Requirement -> synthetic map.
SubstitutionMap reqToSyntheticMap;
bool hasReqToSyntheticMap = false;
if (unsigned numEntries = *rawIDIter++) {
hasReqToSyntheticMap = true;
while (numEntries--) {
auto first = getType(*rawIDIter++);
auto second = getType(*rawIDIter++);
reqToSyntheticMap.addSubstitution(first->getCanonicalType(), second);
if (unsigned numConformances = *rawIDIter++) {
SmallVector<ProtocolConformanceRef, 2> conformances;
while (numConformances--) {
conformances.push_back(readConformance(DeclTypeCursor));
}
reqToSyntheticMap.addConformances(first->getCanonicalType(),
ctx.AllocateCopy(conformances));
}
}
}
// Witness substitutions.
SmallVector<Substitution, 4> witnessSubstitutions;
if (unsigned numWitnessSubstitutions = *rawIDIter++) {
while (numWitnessSubstitutions--) {
auto sub = maybeReadSubstitution(DeclTypeCursor, syntheticEnv);
witnessSubstitutions.push_back(*sub);
}
}
// Handle simple witnesses.
if (witnessSubstitutions.empty() && !syntheticSig && !syntheticEnv &&
!hasReqToSyntheticMap) {
conformance->setWitness(req, Witness(witness));
continue;
}
// Set the witness.
conformance->setWitness(req, Witness(witness, witnessSubstitutions,
syntheticEnv, reqToSyntheticMap));
}
assert(rawIDIter <= rawIDs.end() && "read too much");
TypeWitnessMap typeWitnesses;
while (typeCount--) {
// FIXME: We don't actually want to allocate an archetype here; we just
// want to get an access path within the protocol.
auto first = cast<AssociatedTypeDecl>(getDecl(*rawIDIter++));
auto second = cast_or_null<TypeDecl>(getDecl(*rawIDIter++));
auto third = maybeReadSubstitution(DeclTypeCursor);
assert(third.hasValue());
typeWitnesses[first] = std::make_pair(*third, second);
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Set type witnesses.
for (auto typeWitness : typeWitnesses) {
conformance->setTypeWitness(typeWitness.first, typeWitness.second.first,
typeWitness.second.second);
}
}
GenericEnvironment *ModuleFile::loadGenericEnvironment(const Decl *decl,
uint64_t contextData) {
// Destructors always inherit the generic environment of their context, so
// return that directly.
if (auto dtor = dyn_cast<DestructorDecl>(decl)) {
assert(contextData == 1 && "Not the expected generic environment");
return dtor->getDeclContext()->getGenericEnvironmentOfContext();
}
// Dig out the pieces needed to load a generic environment.
auto interfaceToArchetypes =
reinterpret_cast<TypeSubstitutionMap *>(contextData);
GenericSignature *genericSig;
if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
genericSig = func->getGenericSignature();
else if (auto type = dyn_cast<GenericTypeDecl>(decl))
genericSig = type->getGenericSignature();
else if (auto ext = dyn_cast<ExtensionDecl>(decl))
genericSig = ext->getGenericSignature();
else
llvm_unreachable("Cannot lazily deserialize generic environment");
auto genericEnv = GenericEnvironment::get(genericSig, *interfaceToArchetypes);
interfaceToArchetypes->clear();
return genericEnv;
}
static Optional<ForeignErrorConvention::Kind>
decodeRawStableForeignErrorConventionKind(uint8_t kind) {
switch (kind) {
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroResult):
return ForeignErrorConvention::ZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonZeroResult):
return ForeignErrorConvention::NonZeroResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::ZeroPreservedResult):
return ForeignErrorConvention::ZeroPreservedResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NilResult):
return ForeignErrorConvention::NilResult;
case static_cast<uint8_t>(ForeignErrorConventionKind::NonNilError):
return ForeignErrorConvention::NonNilError;
default:
return None;
}
}
Optional<ForeignErrorConvention> ModuleFile::maybeReadForeignErrorConvention() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
BCOffsetRAII restoreOffset(DeclTypeCursor);
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return None;
unsigned recKind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (recKind) {
case FOREIGN_ERROR_CONVENTION:
restoreOffset.reset();
break;
default:
return None;
}
uint8_t rawKind;
bool isOwned;
bool isReplaced;
unsigned errorParameterIndex;
TypeID errorParameterTypeID;
TypeID resultTypeID;
ForeignErrorConventionLayout::readRecord(scratch, rawKind,
isOwned, isReplaced,
errorParameterIndex,
errorParameterTypeID,
resultTypeID);
ForeignErrorConvention::Kind kind;
if (auto optKind = decodeRawStableForeignErrorConventionKind(rawKind))
kind = *optKind;
else {
error();
return None;
}
Type errorParameterType = getType(errorParameterTypeID);
CanType canErrorParameterType;
if (errorParameterType)
canErrorParameterType = errorParameterType->getCanonicalType();
Type resultType = getType(resultTypeID);
CanType canResultType;
if (resultType)
canResultType = resultType->getCanonicalType();
auto owned = isOwned ? ForeignErrorConvention::IsOwned
: ForeignErrorConvention::IsNotOwned;
auto replaced = ForeignErrorConvention::IsReplaced_t(isOwned);
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConvention::getZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConvention::getNonZeroResult(errorParameterIndex,
owned, replaced,
canErrorParameterType,
canResultType);
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConvention::getZeroPreservedResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NilResult:
return ForeignErrorConvention::getNilResult(errorParameterIndex,
owned, replaced,
canErrorParameterType);
case ForeignErrorConvention::NonNilError:
return ForeignErrorConvention::getNonNilError(errorParameterIndex,
owned, replaced,
canErrorParameterType);
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}