Files
swift-mirror/lib/Serialization/ModuleFile.cpp
Jordan Rose 2c7858bfb2 Add an entry point for id-style lookup of a known name.
This will be used to resolve properties and method calls on objects with
dynamic-lookup ("id") type. For now, this is tested in swift-ide-test
by using the -dynamic-lookup-completion option and providing a
-code-completion-token value.

Caveats/TODOs:
- As before, since we're using the global method pool, this isn't scoped by
  module. We could do a per-module filter, but I don't know if that will
  actually buy us much.
- Again, Clang's method pool does not include methods from protocols.
- Lookup by selector name cannot find properties with a customized getter
  name. <rdar://problem/14776565>
- The Clang-side method pool is keyed by selector, but Swift wants to look
  things up by method name, which maps to the first selector piece, so we
  end up having to do a scan of all the selectors in the pool.

Swift SVN r7330
2013-08-19 21:33:33 +00:00

2482 lines
79 KiB
C++

//===--- ModuleFile.cpp - Loading a serialized module -----------*- c++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ModuleFile.h"
#include "ModuleFormat.h"
#include "swift/AST/AST.h"
#include "swift/AST/ModuleLoader.h"
#include "swift/AST/NameLookup.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Serialization/BCReadingExtras.h"
// This is a template-only header; eventually it should move to llvm/Support.
#include "clang/Basic/OnDiskHashTable.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include <functional>
using namespace swift;
using namespace swift::serialization;
static constexpr const auto AF_DontPopBlockAtEnd =
llvm::BitstreamCursor::AF_DontPopBlockAtEnd;
using ConformancePair = std::pair<ProtocolDecl *, ProtocolConformance *>;
static ModuleStatus
validateControlBlock(llvm::BitstreamCursor &cursor,
SmallVectorImpl<uint64_t> &scratch) {
// The control block is malformed until we've at least read a major version
// number.
ModuleStatus result = ModuleStatus::Malformed;
auto next = cursor.advance();
while (next.Kind != llvm::BitstreamEntry::EndBlock) {
if (next.Kind == llvm::BitstreamEntry::Error)
return ModuleStatus::Malformed;
if (next.Kind == llvm::BitstreamEntry::SubBlock) {
// Unknown metadata sub-block, possibly for use by a future version of the
// module format.
if (cursor.SkipBlock())
return ModuleStatus::Malformed;
next = cursor.advance();
continue;
}
scratch.clear();
StringRef blobData;
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
switch (kind) {
case control_block::METADATA: {
uint16_t versionMajor = scratch[0];
if (versionMajor > VERSION_MAJOR)
return ModuleStatus::FormatTooNew;
result = ModuleStatus::Valid;
break;
}
default:
// Unknown metadata record, possibly for use by a future version of the
// module format.
break;
}
next = cursor.advance();
}
return result;
}
/// Translate from the serialization DefaultArgumentKind enumerators, which are
/// guaranteed to be stable, to the AST ones.
static Optional<swift::DefaultArgumentKind>
getActualDefaultArgKind(uint8_t raw) {
switch (static_cast<serialization::DefaultArgumentKind>(raw)) {
case serialization::DefaultArgumentKind::None:
return swift::DefaultArgumentKind::None;
case serialization::DefaultArgumentKind::Normal:
return swift::DefaultArgumentKind::Normal;
case serialization::DefaultArgumentKind::Column:
return swift::DefaultArgumentKind::Column;
case serialization::DefaultArgumentKind::File:
return swift::DefaultArgumentKind::File;
case serialization::DefaultArgumentKind::Line:
return swift::DefaultArgumentKind::Line;
}
return Nothing;
}
Pattern *ModuleFile::maybeReadPattern() {
using namespace decls_block;
SmallVector<uint64_t, 8> scratch;
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (kind) {
case decls_block::PAREN_PATTERN: {
bool isImplicit;
ParenPatternLayout::readRecord(scratch, isImplicit);
Pattern *subPattern = maybeReadPattern();
assert(subPattern);
auto result = new (ModuleContext->Ctx) ParenPattern(SourceLoc(),
subPattern,
SourceLoc(),
isImplicit);
result->setType(subPattern->getType());
return result;
}
case decls_block::TUPLE_PATTERN: {
TypeID tupleTypeID;
unsigned count;
bool hasVararg;
bool isImplicit;
TuplePatternLayout::readRecord(scratch, tupleTypeID, count, hasVararg,
isImplicit);
SmallVector<TuplePatternElt, 8> elements;
for ( ; count > 0; --count) {
scratch.clear();
next = DeclTypeCursor.advance();
assert(next.Kind == llvm::BitstreamEntry::Record);
kind = DeclTypeCursor.readRecord(next.ID, scratch);
assert(kind == decls_block::TUPLE_PATTERN_ELT);
// FIXME: Add something for this record or remove it.
uint8_t rawDefaultArg;
TuplePatternEltLayout::readRecord(scratch, rawDefaultArg);
Pattern *subPattern = maybeReadPattern();
assert(subPattern);
// Decode the default argument kind.
// FIXME: Default argument expression, if available.
swift::DefaultArgumentKind defaultArgKind
= swift::DefaultArgumentKind::None;
if (auto defaultArg = getActualDefaultArgKind(rawDefaultArg))
defaultArgKind = *defaultArg;
elements.push_back(TuplePatternElt(subPattern, nullptr,
defaultArgKind));
}
auto result = TuplePattern::create(ModuleContext->Ctx, SourceLoc(),
elements, SourceLoc(), hasVararg,
SourceLoc(), isImplicit);
result->setType(getType(tupleTypeID));
return result;
}
case decls_block::NAMED_PATTERN: {
DeclID varID;
bool isImplicit;
NamedPatternLayout::readRecord(scratch, varID, isImplicit);
auto var = cast<VarDecl>(getDecl(varID));
auto result = new (ModuleContext->Ctx) NamedPattern(var, isImplicit);
if (var->hasType())
result->setType(var->getType());
return result;
}
case decls_block::ANY_PATTERN: {
TypeID typeID;
bool isImplicit;
AnyPatternLayout::readRecord(scratch, typeID, isImplicit);
auto result = new (ModuleContext->Ctx) AnyPattern(SourceLoc(), isImplicit);
result->setType(getType(typeID));
return result;
}
case decls_block::TYPED_PATTERN: {
TypeID typeID;
bool isImplicit;
TypedPatternLayout::readRecord(scratch, typeID, isImplicit);
Pattern *subPattern = maybeReadPattern();
assert(subPattern);
TypeLoc typeInfo = TypeLoc::withoutLoc(getType(typeID));
auto result = new (ModuleContext->Ctx) TypedPattern(subPattern, typeInfo,
isImplicit);
result->setType(typeInfo.getType());
return result;
}
default:
return nullptr;
}
}
ProtocolConformance *
ModuleFile::readUnderlyingConformance(ProtocolDecl *proto,
DeclID typeID,
IdentifierID moduleID) {
if (!moduleID) {
// The underlying conformance is in the following record.
return maybeReadConformance(getType(typeID))->second;
}
// Dig out the protocol conformance within the nominal declaration.
auto nominal = cast<NominalTypeDecl>(getDecl(typeID));
Module *owningModule;
if (moduleID == 1)
owningModule = ModuleContext;
else
owningModule = getModule(getIdentifier(moduleID-2));
(void)owningModule; // FIXME: Currently only used for checking.
// Search protocols
for (unsigned i = 0, n = nominal->getProtocols().size(); i != n; ++i) {
if (nominal->getProtocols()[i] == proto) {
// FIXME: Eventually, filter by owning module.
assert(nominal->getModuleContext() == owningModule);
return nominal->getConformances()[i];
}
}
// Search extensions.
for (auto ext : nominal->getExtensions()) {
for (unsigned i = 0, n = ext->getProtocols().size(); i != n; ++i) {
if (ext->getProtocols()[i] == proto) {
// FIXME: Eventually, filter by owning module.
assert(ext->getModuleContext() == owningModule);
return ext->getConformances()[i];
}
}
}
llvm_unreachable("Unable to find underlying conformance");
}
Optional<ConformancePair> ModuleFile::maybeReadConformance(Type conformingType){
using namespace decls_block;
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
SmallVector<uint64_t, 16> scratch;
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return Nothing;
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch);
switch (kind) {
case NO_CONFORMANCE: {
lastRecordOffset.reset();
DeclID protoID;
NoConformanceLayout::readRecord(scratch, protoID);
return std::make_pair(cast<ProtocolDecl>(getDecl(protoID)), nullptr);
}
case NORMAL_PROTOCOL_CONFORMANCE:
// Handled below.
break;
case SPECIALIZED_PROTOCOL_CONFORMANCE: {
DeclID protoID;
DeclID typeID;
IdentifierID moduleID;
unsigned numTypeWitnesses;
unsigned numSubstitutions;
ArrayRef<uint64_t> rawIDs;
SpecializedProtocolConformanceLayout::readRecord(scratch, protoID,
typeID,
moduleID,
numTypeWitnesses,
numSubstitutions,
rawIDs);
ASTContext &ctx = ModuleContext->Ctx;
auto proto = cast<ProtocolDecl>(getDecl(protoID));
// Read the substitutions.
SmallVector<Substitution, 4> substitutions;
while (numSubstitutions--) {
auto sub = maybeReadSubstitution();
assert(sub.hasValue() && "Missing substitution?");
substitutions.push_back(*sub);
}
// Read the type witnesses.
ArrayRef<uint64_t>::iterator rawIDIter = rawIDs.begin();
TypeWitnessMap typeWitnesses;
while (numTypeWitnesses--) {
// FIXME: We don't actually want to allocate an archetype here; we just
// want to get an access path within the protocol.
auto first = cast<TypeAliasDecl>(getDecl(*rawIDIter++));
auto second = maybeReadSubstitution();
assert(second.hasValue());
typeWitnesses[first] = *second;
}
assert(rawIDIter <= rawIDs.end() && "read too much");
ProtocolConformance *genericConformance
= readUnderlyingConformance(proto, typeID, moduleID);
// Reset the offset RAII to the end of the trailing records.
lastRecordOffset.reset();
assert(genericConformance && "Missing generic conformance?");
return { proto,
ctx.getSpecializedConformance(conformingType,
genericConformance,
substitutions,
std::move(typeWitnesses)) };
}
case INHERITED_PROTOCOL_CONFORMANCE: {
DeclID protoID;
DeclID typeID;
IdentifierID moduleID;
InheritedProtocolConformanceLayout::readRecord(scratch, protoID,
typeID,
moduleID);
ASTContext &ctx = ModuleContext->Ctx;
auto proto = cast<ProtocolDecl>(getDecl(protoID));
ProtocolConformance *inheritedConformance
= readUnderlyingConformance(proto, typeID, moduleID);
// Reset the offset RAII to the end of the trailing records.
lastRecordOffset.reset();
assert(inheritedConformance && "Missing generic conformance?");
return { proto,
ctx.getInheritedConformance(conformingType,
inheritedConformance) };
}
// Not a protocol conformance.
default:
return Nothing;
}
lastRecordOffset.reset();
DeclID protoID;
unsigned valueCount, typeCount, inheritedCount, defaultedCount;
ArrayRef<uint64_t> rawIDs;
NormalProtocolConformanceLayout::readRecord(scratch, protoID,
valueCount, typeCount,
inheritedCount, defaultedCount,
rawIDs);
InheritedConformanceMap inheritedConformances;
while (inheritedCount--) {
auto inherited = maybeReadConformance(conformingType);
assert(inherited.hasValue());
inheritedConformances.insert(inherited.getValue());
}
ASTContext &ctx = ModuleContext->Ctx;
auto proto = cast<ProtocolDecl>(getDecl(protoID));
WitnessMap witnesses;
ArrayRef<uint64_t>::iterator rawIDIter = rawIDs.begin();
while (valueCount--) {
auto first = cast<ValueDecl>(getDecl(*rawIDIter++));
auto second = cast<ValueDecl>(getDecl(*rawIDIter++));
unsigned substitutionCount = *rawIDIter++;
SmallVector<Substitution, 8> substitutions;
while (substitutionCount--) {
auto sub = maybeReadSubstitution();
assert(sub.hasValue());
substitutions.push_back(sub.getValue());
}
ProtocolConformanceWitness witness{second, ctx.AllocateCopy(substitutions)};
witnesses.insert(std::make_pair(first, witness));
}
assert(rawIDIter <= rawIDs.end() && "read too much");
TypeWitnessMap typeWitnesses;
while (typeCount--) {
// FIXME: We don't actually want to allocate an archetype here; we just
// want to get an access path within the protocol.
auto first = cast<TypeAliasDecl>(getDecl(*rawIDIter++));
auto second = maybeReadSubstitution();
assert(second.hasValue());
typeWitnesses[first] = *second;
}
assert(rawIDIter <= rawIDs.end() && "read too much");
SmallVector<ValueDecl *, 4> defaultedDefinitions;
while (defaultedCount--) {
auto decl = cast<ValueDecl>(getDecl(*rawIDIter++));
defaultedDefinitions.push_back(decl);
}
assert(rawIDIter <= rawIDs.end() && "read too much");
// Reset the offset RAII to the end of the trailing records.
lastRecordOffset.reset();
return { proto,
ctx.getConformance(conformingType, proto, ModuleContext,
std::move(witnesses),
std::move(typeWitnesses),
std::move(inheritedConformances),
defaultedDefinitions) };
}
/// Applies protocol conformances to a decl.
template <typename T>
void processConformances(ASTContext &ctx, T *decl,
ArrayRef<ConformancePair> conformances) {
SmallVector<ProtocolDecl *, 16> protoBuf;
SmallVector<ProtocolConformance *, 16> conformanceBuf;
for (auto conformancePair : conformances) {
auto proto = conformancePair.first;
auto conformance = conformancePair.second;
protoBuf.push_back(proto);
conformanceBuf.push_back(conformance);
}
decl->setProtocols(ctx.AllocateCopy(protoBuf));
decl->setConformances(ctx.AllocateCopy(conformanceBuf));
}
Optional<Substitution> ModuleFile::maybeReadSubstitution() {
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
return Nothing;
StringRef blobData;
SmallVector<uint64_t, 2> scratch;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
if (recordID != decls_block::BOUND_GENERIC_SUBSTITUTION)
return Nothing;
TypeID archetypeID, replacementID;
unsigned numConformances;
decls_block::BoundGenericSubstitutionLayout::readRecord(scratch,
archetypeID,
replacementID,
numConformances);
auto archetypeTy = getType(archetypeID)->castTo<ArchetypeType>();
auto replacementTy = getType(replacementID);
ASTContext &ctx = ModuleContext->Ctx;
SmallVector<ProtocolConformance *, 16> conformanceBuf;
while (numConformances--) {
auto conformancePair = maybeReadConformance(replacementTy);
assert(conformancePair.hasValue() && "Missing conformance");
conformanceBuf.push_back(conformancePair->second);
}
lastRecordOffset.reset();
return Substitution{archetypeTy, replacementTy,
ctx.AllocateCopy(conformanceBuf)};
}
GenericParamList *ModuleFile::maybeReadGenericParams(DeclContext *DC) {
using namespace decls_block;
assert(DC && "need a context for the decls in the list");
BCOffsetRAII lastRecordOffset(DeclTypeCursor);
SmallVector<uint64_t, 8> scratch;
StringRef blobData;
auto next = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (next.Kind != llvm::BitstreamEntry::Record)
return nullptr;
unsigned kind = DeclTypeCursor.readRecord(next.ID, scratch, &blobData);
if (kind != GENERIC_PARAM_LIST)
return nullptr;
ArrayRef<uint64_t> rawArchetypeIDs;
GenericParamListLayout::readRecord(scratch, rawArchetypeIDs);
SmallVector<ArchetypeType *, 8> archetypes;
for (TypeID next : rawArchetypeIDs)
archetypes.push_back(getType(next)->castTo<ArchetypeType>());
SmallVector<GenericParam, 8> params;
SmallVector<Requirement, 8> requirements;
while (true) {
lastRecordOffset.reset();
bool shouldContinue = true;
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
switch (recordID) {
case GENERIC_PARAM: {
DeclID paramDeclID;
GenericParamLayout::readRecord(scratch, paramDeclID);
auto typeAlias = cast<TypeAliasDecl>(getDecl(paramDeclID, DC));
params.push_back(GenericParam(typeAlias));
break;
}
case GENERIC_REQUIREMENT: {
uint8_t rawKind;
ArrayRef<uint64_t> rawTypeIDs;
GenericRequirementLayout::readRecord(scratch, rawKind, rawTypeIDs);
switch (rawKind) {
case GenericRequirementKind::Conformance: {
assert(rawTypeIDs.size() == 2);
auto subject = TypeLoc::withoutLoc(getType(rawTypeIDs[0]));
auto constraint = TypeLoc::withoutLoc(getType(rawTypeIDs[1]));
requirements.push_back(Requirement::getConformance(subject,
SourceLoc(),
constraint));
break;
}
case GenericRequirementKind::SameType: {
assert(rawTypeIDs.size() == 2);
auto first = TypeLoc::withoutLoc(getType(rawTypeIDs[0]));
auto second = TypeLoc::withoutLoc(getType(rawTypeIDs[1]));
requirements.push_back(Requirement::getSameType(first,
SourceLoc(),
second));
break;
}
default:
// Unknown requirement kind. Drop the requirement and continue, but log
// an error so that we don't actually try to generate code.
error();
}
break;
}
default:
// This record is not part of the GenericParamList.
shouldContinue = false;
break;
}
if (!shouldContinue)
break;
}
auto paramList = GenericParamList::create(ModuleContext->Ctx, SourceLoc(),
params, SourceLoc(), requirements,
SourceLoc());
paramList->setAllArchetypes(ModuleContext->Ctx.AllocateCopy(archetypes));
paramList->setOuterParameters(DC->getGenericParamsOfContext());
return paramList;
}
Optional<MutableArrayRef<Decl *>> ModuleFile::readMembers() {
using namespace decls_block;
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record)
return Nothing;
SmallVector<uint64_t, 16> memberIDBuffer;
unsigned kind = DeclTypeCursor.readRecord(entry.ID, memberIDBuffer);
assert(kind == DECL_CONTEXT);
(void)kind;
ArrayRef<uint64_t> rawMemberIDs;
decls_block::DeclContextLayout::readRecord(memberIDBuffer, rawMemberIDs);
if (rawMemberIDs.empty())
return MutableArrayRef<Decl *>();
ASTContext &ctx = ModuleContext->Ctx;
MutableArrayRef<Decl *> members(ctx.Allocate<Decl *>(rawMemberIDs.size()),
rawMemberIDs.size());
auto nextMember = members.begin();
for (DeclID rawID : rawMemberIDs) {
*nextMember = getDecl(rawID);
assert(*nextMember && "unable to deserialize next member");
++nextMember;
}
return members;
}
Identifier ModuleFile::getIdentifier(IdentifierID IID) {
if (IID == 0)
return Identifier();
assert(IID <= Identifiers.size() && "invalid identifier ID");
auto identRecord = Identifiers[IID-1];
if (identRecord.Offset == 0)
return identRecord.Ident;
assert(!IdentifierData.empty() && "no identifier data in module");
StringRef rawStrPtr = IdentifierData.substr(identRecord.Offset);
size_t terminatorOffset = rawStrPtr.find('\0');
assert(terminatorOffset != StringRef::npos &&
"unterminated identifier string data");
return ModuleContext->Ctx.getIdentifier(rawStrPtr.slice(0, terminatorOffset));
}
DeclContext *ModuleFile::getDeclContext(DeclID DID) {
if (DID == 0)
return ModuleContext;
Decl *D = getDecl(DID);
if (auto ND = dyn_cast<NominalTypeDecl>(D))
return ND;
if (auto ED = dyn_cast<ExtensionDecl>(D))
return ED;
if (auto CD = dyn_cast<ConstructorDecl>(D))
return CD;
if (auto DD = dyn_cast<DestructorDecl>(D))
return DD;
if (auto FD = dyn_cast<FuncDecl>(D))
return FD->getBody();
llvm_unreachable("unknown DeclContext kind");
}
Module *ModuleFile::getModule(Identifier name) {
if (name.empty())
return ModuleContext->Ctx.TheBuiltinModule;
// FIXME: duplicated from NameBinder::getModule
// FIXME: provide a real source location.
if (name == ModuleContext->Name) {
if (!ShadowedModule) {
auto importer = ModuleContext->Ctx.getClangModuleLoader();
assert(importer && "no way to import shadowed module (recursive xref?)");
ShadowedModule = importer->loadModule(SourceLoc(),
std::make_pair(name, SourceLoc()));
assert(ShadowedModule && "missing shadowed module");
}
return ShadowedModule;
}
// FIXME: provide a real source location.
return ModuleContext->Ctx.getModule(std::make_pair(name, SourceLoc()));
}
/// Translate from the Serialization assocativity enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::Associativity> getActualAssociativity(uint8_t assoc) {
switch (assoc) {
case serialization::Associativity::LeftAssociative:
return swift::Associativity::Left;
case serialization::Associativity::RightAssociative:
return swift::Associativity::Right;
case serialization::Associativity::NonAssociative:
return swift::Associativity::None;
default:
return Nothing;
}
}
Decl *ModuleFile::getDecl(DeclID DID, Optional<DeclContext *> ForcedContext,
Optional<std::function<void(Decl*)>> DidRecord) {
if (DID == 0)
return nullptr;
assert(DID <= Decls.size() && "invalid decl ID");
auto &declOrOffset = Decls[DID-1];
if (declOrOffset.isComplete()) {
if (DidRecord)
(*DidRecord)(declOrOffset);
return declOrOffset;
}
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(declOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize decls represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = ModuleContext->Ctx;
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case decls_block::TYPE_ALIAS_DECL: {
IdentifierID nameID;
DeclID contextID;
TypeID underlyingTypeID;
bool isGeneric;
bool isImplicit;
TypeID superclassTypeID;
decls_block::TypeAliasLayout::readRecord(scratch, nameID, contextID,
underlyingTypeID,
isGeneric, isImplicit,
superclassTypeID);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
auto underlyingType = TypeLoc::withoutLoc(getType(underlyingTypeID));
if (declOrOffset.isComplete())
break;
auto alias = new (ctx) TypeAliasDecl(SourceLoc(), getIdentifier(nameID),
SourceLoc(), underlyingType,
DC, { });
declOrOffset = alias;
if (isImplicit)
alias->setImplicit();
if (isGeneric) {
alias->setGenericParameter();
alias->setSuperclass(getType(superclassTypeID));
}
SmallVector<ConformancePair, 16> conformances;
while (auto conformance = maybeReadConformance(underlyingType.getType()))
conformances.push_back(*conformance);
processConformances(ctx, alias, conformances);
alias->setCheckedInheritanceClause();
break;
}
case decls_block::STRUCT_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit;
decls_block::StructLayout::readRecord(scratch, nameID, contextID,
isImplicit);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto genericParams = maybeReadGenericParams(DC);
auto theStruct = new (ctx) StructDecl(SourceLoc(), getIdentifier(nameID),
SourceLoc(), { }, genericParams, DC);
declOrOffset = theStruct;
if (DidRecord) {
(*DidRecord)(theStruct);
DidRecord.reset();
}
if (isImplicit)
theStruct->setImplicit();
if (genericParams)
for (auto &genericParam : *theStruct->getGenericParams())
genericParam.getAsTypeParam()->setDeclContext(theStruct);
CanType canTy = theStruct->getDeclaredTypeInContext()->getCanonicalType();
SmallVector<ConformancePair, 16> conformances;
while (auto conformance = maybeReadConformance(canTy))
conformances.push_back(*conformance);
processConformances(ctx, theStruct, conformances);
auto members = readMembers();
assert(members.hasValue() && "could not read struct members");
theStruct->setMembers(members.getValue(), SourceRange());
theStruct->setCheckedInheritanceClause();
break;
}
case decls_block::CONSTRUCTOR_DECL: {
DeclID parentID;
bool isImplicit, isObjC;
TypeID signatureID;
DeclID implicitThisID;
decls_block::ConstructorLayout::readRecord(scratch, parentID, isImplicit,
isObjC, signatureID,
implicitThisID);
auto parent = getDeclContext(parentID);
if (declOrOffset.isComplete())
break;
auto thisDecl = cast<VarDecl>(getDecl(implicitThisID, nullptr));
auto genericParams = maybeReadGenericParams(parent);
auto ctor = new (ctx) ConstructorDecl(ctx.getIdentifier("constructor"),
SourceLoc(), /*args=*/nullptr,
thisDecl, genericParams, parent);
declOrOffset = ctor;
thisDecl->setDeclContext(ctor);
Pattern *args = maybeReadPattern();
assert(args && "missing arguments for constructor");
ctor->setArguments(args);
// This must be set after recording the constructor in the map.
// A polymorphic constructor type needs to refer to the constructor to get
// its generic parameters.
ctor->setType(getType(signatureID));
if (isImplicit)
ctor->setImplicit();
ctor->setIsObjC(isObjC);
if (genericParams)
for (auto &genericParam : *ctor->getGenericParams())
genericParam.getAsTypeParam()->setDeclContext(ctor);
break;
}
case decls_block::VAR_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit, isObjC, isIBOutlet;
TypeID typeID;
DeclID getterID, setterID;
DeclID overriddenID;
decls_block::VarLayout::readRecord(scratch, nameID, contextID, isImplicit,
isObjC, isIBOutlet, typeID,
getterID, setterID, overriddenID);
auto DC = ForcedContext ? *ForcedContext : getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto var = new (ctx) VarDecl(SourceLoc(), getIdentifier(nameID),
getType(typeID), DC);
declOrOffset = var;
if (getterID || setterID) {
var->setProperty(ctx, SourceLoc(),
cast_or_null<FuncDecl>(getDecl(getterID)),
cast_or_null<FuncDecl>(getDecl(setterID)),
SourceLoc());
}
if (isImplicit)
var->setImplicit();
var->setIsObjC(isObjC);
if (isIBOutlet)
var->getMutableAttrs().IBOutlet = true;
var->setOverriddenDecl(cast_or_null<VarDecl>(getDecl(overriddenID)));
break;
}
case decls_block::FUNC_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit;
bool isClassMethod;
bool isAssignmentOrConversion;
bool isObjC, isIBAction;
TypeID signatureID;
DeclID associatedDeclID;
DeclID overriddenID;
decls_block::FuncLayout::readRecord(scratch, nameID, contextID, isImplicit,
isClassMethod, isAssignmentOrConversion,
isObjC, isIBAction, signatureID,
associatedDeclID, overriddenID);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
// Read generic params before reading the type, because the type may
// reference generic parameters, and we want them to have a dummy
// DeclContext for now.
GenericParamList *genericParams = maybeReadGenericParams(DC);
auto fn = new (ctx) FuncDecl(SourceLoc(), SourceLoc(),
getIdentifier(nameID), SourceLoc(),
genericParams, /*type=*/nullptr,
/*body=*/nullptr, DC);
declOrOffset = fn;
// This must be set after recording the constructor in the map.
// A polymorphic constructor type needs to refer to the constructor to get
// its generic parameters.
auto signature = getType(signatureID)->castTo<AnyFunctionType>();
fn->setType(signature);
SmallVector<Pattern *, 16> patternBuf;
while (Pattern *pattern = maybeReadPattern())
patternBuf.push_back(pattern);
assert(!patternBuf.empty());
size_t patternCount = patternBuf.size() / 2;
assert(patternCount * 2 == patternBuf.size() &&
"two sets of patterns don't match up");
ArrayRef<Pattern *> patterns(patternBuf);
ArrayRef<Pattern *> argPatterns = patterns.slice(0, patternCount);
ArrayRef<Pattern *> bodyPatterns = patterns.slice(patternCount);
auto body = FuncExpr::create(ctx, SourceLoc(),
argPatterns, bodyPatterns,
TypeLoc::withoutLoc(signature->getResult()),
DC);
body->setType(signature);
fn->setBody(body);
if (genericParams)
for (auto &genericParam : *fn->getGenericParams())
genericParam.getAsTypeParam()->setDeclContext(body);
fn->setOverriddenDecl(cast_or_null<FuncDecl>(getDecl(overriddenID)));
fn->setStatic(isClassMethod);
if (isImplicit)
fn->setImplicit();
if (!blobData.empty())
fn->getMutableAttrs().AsmName = ctx.AllocateCopy(blobData);
if (isAssignmentOrConversion) {
if (fn->isOperator())
fn->getMutableAttrs().Assignment = true;
else
fn->getMutableAttrs().Conversion = true;
}
fn->setIsObjC(isObjC);
if (isIBAction)
fn->getMutableAttrs().IBAction = true;
if (Decl *associated = getDecl(associatedDeclID)) {
if (auto op = dyn_cast<OperatorDecl>(associated)) {
fn->setOperatorDecl(op);
if (isa<PrefixOperatorDecl>(op))
fn->getMutableAttrs().ExplicitPrefix = true;
else if (isa<PostfixOperatorDecl>(op))
fn->getMutableAttrs().ExplicitPostfix = true;
// Note that an explicit [infix] is not required.
}
// Otherwise, unknown associated decl kind.
}
break;
}
case decls_block::PATTERN_BINDING_DECL: {
DeclID contextID;
bool isImplicit;
decls_block::PatternBindingLayout::readRecord(scratch, contextID,
isImplicit);
Pattern *pattern = maybeReadPattern();
assert(pattern);
auto binding = new (ctx) PatternBindingDecl(SourceLoc(), pattern,
/*init=*/nullptr,
getDeclContext(contextID));
declOrOffset = binding;
if (isImplicit)
binding->setImplicit();
break;
}
case decls_block::PROTOCOL_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit, isClassProtocol, isObjC;
ArrayRef<uint64_t> protocolIDs;
decls_block::ProtocolLayout::readRecord(scratch, nameID, contextID,
isImplicit, isClassProtocol, isObjC,
protocolIDs);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto proto = new (ctx) ProtocolDecl(DC, SourceLoc(), SourceLoc(),
getIdentifier(nameID), { });
declOrOffset = proto;
if (DidRecord) {
(*DidRecord)(proto);
DidRecord.reset();
}
if (isImplicit)
proto->setImplicit();
if (isClassProtocol)
proto->getMutableAttrs().ClassProtocol = true;
proto->setIsObjC(isObjC);
// Deserialize the list of protocols.
SmallVector<ProtocolDecl *, 4> protocols;
for (auto protoID : protocolIDs) {
protocols.push_back(cast<ProtocolDecl>(getDecl(protoID)));
}
proto->setProtocols(ctx.AllocateCopy(protocols));
auto members = readMembers();
assert(members.hasValue() && "could not read struct members");
proto->setMembers(members.getValue(), SourceRange());
proto->setCheckedInheritanceClause();
proto->setCircularityCheck(CircularityCheck::Checked);
break;
}
case decls_block::PREFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclID contextID;
decls_block::PrefixOperatorLayout::readRecord(scratch, nameID, contextID);
declOrOffset = new (ctx) PrefixOperatorDecl(getDeclContext(contextID),
SourceLoc(), SourceLoc(),
getIdentifier(nameID),
SourceLoc(), SourceLoc(),
SourceLoc());
break;
}
case decls_block::POSTFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclID contextID;
decls_block::PostfixOperatorLayout::readRecord(scratch, nameID, contextID);
declOrOffset = new (ctx) PostfixOperatorDecl(getDeclContext(contextID),
SourceLoc(), SourceLoc(),
getIdentifier(nameID),
SourceLoc(), SourceLoc(),
SourceLoc());
break;
}
case decls_block::INFIX_OPERATOR_DECL: {
IdentifierID nameID;
DeclID contextID;
uint8_t rawAssociativity;
unsigned precedence;
decls_block::InfixOperatorLayout::readRecord(scratch, nameID, contextID,
rawAssociativity, precedence);
auto associativity = getActualAssociativity(rawAssociativity);
if (!associativity.hasValue()) {
error();
return nullptr;
}
InfixData infixData(precedence, associativity.getValue());
declOrOffset = new (ctx) InfixOperatorDecl(getDeclContext(contextID),
SourceLoc(), SourceLoc(),
getIdentifier(nameID),
SourceLoc(), SourceLoc(),
SourceLoc(), SourceLoc(),
SourceLoc(), SourceLoc(),
SourceLoc(), infixData);
break;
}
case decls_block::CLASS_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit, isObjC;
TypeID superclassID;
decls_block::ClassLayout::readRecord(scratch, nameID, contextID,
isImplicit, isObjC, superclassID);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto genericParams = maybeReadGenericParams(DC);
auto theClass = new (ctx) ClassDecl(SourceLoc(), getIdentifier(nameID),
SourceLoc(), { }, genericParams, DC);
declOrOffset = theClass;
if (DidRecord) {
(*DidRecord)(theClass);
DidRecord.reset();
}
if (isImplicit)
theClass->setImplicit();
if (superclassID)
theClass->setSuperclass(getType(superclassID));
if (genericParams)
for (auto &genericParam : *theClass->getGenericParams())
genericParam.getAsTypeParam()->setDeclContext(theClass);
theClass->setIsObjC(isObjC);
CanType canTy = theClass->getDeclaredTypeInContext()->getCanonicalType();
SmallVector<ConformancePair, 16> conformances;
while (auto conformance = maybeReadConformance(canTy))
conformances.push_back(*conformance);
processConformances(ctx, theClass, conformances);
auto members = readMembers();
assert(members.hasValue() && "could not read class members");
theClass->setMembers(members.getValue(), SourceRange());
theClass->setCheckedInheritanceClause();
theClass->setCircularityCheck(CircularityCheck::Checked);
break;
}
case decls_block::UNION_DECL: {
IdentifierID nameID;
DeclID contextID;
bool isImplicit;
decls_block::UnionLayout::readRecord(scratch, nameID, contextID,
isImplicit);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto genericParams = maybeReadGenericParams(DC);
// FIXME Preserve the isEnum bit.
auto theUnion = new (ctx) UnionDecl(SourceLoc(),
/*isEnum*/ false,
getIdentifier(nameID),
SourceLoc(), { },
genericParams, DC);
declOrOffset = theUnion;
if (DidRecord) {
(*DidRecord)(theUnion);
DidRecord.reset();
}
if (isImplicit)
theUnion->setImplicit();
if (genericParams)
for (auto &genericParam : *theUnion->getGenericParams())
genericParam.getAsTypeParam()->setDeclContext(theUnion);
CanType canTy = theUnion->getDeclaredTypeInContext()->getCanonicalType();
SmallVector<ConformancePair, 16> conformances;
while (auto conformance = maybeReadConformance(canTy))
conformances.push_back(*conformance);
processConformances(ctx, theUnion, conformances);
auto members = readMembers();
assert(members.hasValue() && "could not read union members");
theUnion->setMembers(members.getValue(), SourceRange());
theUnion->setCheckedInheritanceClause();
break;
}
case decls_block::UNION_ELEMENT_DECL: {
IdentifierID nameID;
DeclID contextID;
TypeID argTypeID, resTypeID, ctorTypeID;
bool isImplicit;
decls_block::UnionElementLayout::readRecord(scratch, nameID, contextID,
argTypeID, resTypeID,
ctorTypeID,
isImplicit);
DeclContext *DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto argTy = getType(argTypeID);
auto resTy = getType(resTypeID);
auto elem = new (ctx) UnionElementDecl(SourceLoc(),
SourceLoc(),
getIdentifier(nameID),
TypeLoc::withoutLoc(argTy),
SourceLoc(),
TypeLoc::withoutLoc(resTy),
DC);
declOrOffset = elem;
elem->setType(getType(ctorTypeID));
if (isImplicit)
elem->setImplicit();
break;
}
case decls_block::SUBSCRIPT_DECL: {
DeclID contextID;
bool isImplicit, isObjC;
TypeID declTypeID, elemTypeID;
DeclID getterID, setterID;
DeclID overriddenID;
decls_block::SubscriptLayout::readRecord(scratch, contextID, isImplicit,
isObjC, declTypeID, elemTypeID,
getterID, setterID,
overriddenID);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
Pattern *indices = maybeReadPattern();
assert(indices);
auto elemTy = TypeLoc::withoutLoc(getType(elemTypeID));
auto getter = cast_or_null<FuncDecl>(getDecl(getterID));
auto setter = cast_or_null<FuncDecl>(getDecl(setterID));
auto subscript = new (ctx) SubscriptDecl(ctx.getIdentifier("__subscript"),
SourceLoc(), indices, SourceLoc(),
elemTy, SourceRange(),
getter, setter, DC);
declOrOffset = subscript;
subscript->setType(getType(declTypeID));
if (isImplicit)
subscript->setImplicit();
subscript->setIsObjC(isObjC);
auto overriddenDecl = cast_or_null<SubscriptDecl>(getDecl(overriddenID));
subscript->setOverriddenDecl(overriddenDecl);
if (getter)
getter->makeGetter(subscript);
if (setter)
setter->makeSetter(subscript);
break;
}
case decls_block::EXTENSION_DECL: {
TypeID baseID;
DeclID contextID;
bool isImplicit;
decls_block::ExtensionLayout::readRecord(scratch, baseID, contextID,
isImplicit);
auto DC = getDeclContext(contextID);
if (declOrOffset.isComplete())
break;
auto baseTy = TypeLoc::withoutLoc(getType(baseID));
auto extension = new (ctx) ExtensionDecl(SourceLoc(), baseTy, { }, DC);
declOrOffset = extension;
if (isImplicit)
extension->setImplicit();
CanType canBaseTy = baseTy.getType()->getCanonicalType();
SmallVector<ConformancePair, 16> conformances;
while (auto conformance = maybeReadConformance(canBaseTy))
conformances.push_back(*conformance);
processConformances(ctx, extension, conformances);
auto members = readMembers();
assert(members.hasValue() && "could not read extension members");
extension->setMembers(members.getValue(), SourceRange());
baseTy.getType()->getAnyNominal()->addExtension(extension);
extension->setCheckedInheritanceClause();
break;
}
case decls_block::DESTRUCTOR_DECL: {
DeclID parentID;
bool isImplicit, isObjC;
TypeID signatureID;
DeclID implicitThisID;
decls_block::DestructorLayout::readRecord(scratch, parentID, isImplicit,
isObjC, signatureID,
implicitThisID);
DeclContext *parent = getDeclContext(parentID);
if (declOrOffset.isComplete())
break;
auto thisDecl = cast<VarDecl>(getDecl(implicitThisID, nullptr));
auto dtor = new (ctx) DestructorDecl(ctx.getIdentifier("destructor"),
SourceLoc(), thisDecl, parent);
declOrOffset = dtor;
thisDecl->setDeclContext(dtor);
dtor->setType(getType(signatureID));
if (isImplicit)
dtor->setImplicit();
dtor->setIsObjC(isObjC);
break;
}
case decls_block::XREF: {
uint8_t kind;
TypeID expectedTypeID;
bool isWithinExtension;
ArrayRef<uint64_t> rawAccessPath;
decls_block::XRefLayout::readRecord(scratch, kind, expectedTypeID,
isWithinExtension, rawAccessPath);
// First, find the module this reference is referring to.
Module *M = getModule(getIdentifier(rawAccessPath.front()));
assert(M && "missing dependency");
rawAccessPath = rawAccessPath.slice(1);
switch (kind) {
case XRefKind::SwiftValue:
case XRefKind::SwiftGenericParameter: {
// Start by looking up the top-level decl in the module.
Module *baseModule = M;
if (isWithinExtension) {
baseModule = getModule(getIdentifier(rawAccessPath.front()));
assert(baseModule && "missing dependency");
rawAccessPath = rawAccessPath.slice(1);
}
SmallVector<ValueDecl *, 8> values;
baseModule->lookupValue(Module::AccessPathTy(),
getIdentifier(rawAccessPath.front()),
NLKind::QualifiedLookup,
values);
// FIXME: Yuck. The concept of a shadowed module needs to be moved up
// higher, and it needs to be clear whether they are always reexported.
if (auto loadedModule = dyn_cast<SerializedModule>(baseModule)) {
if (loadedModule->File && loadedModule->File->ShadowedModule) {
Module *shadowed = loadedModule->File->ShadowedModule;
shadowed->lookupValue(Module::AccessPathTy(),
getIdentifier(rawAccessPath.front()),
NLKind::QualifiedLookup, values);
}
}
rawAccessPath = rawAccessPath.slice(1);
// Then, follow the chain of nested ValueDecls until we run out of
// identifiers in the access path.
SmallVector<ValueDecl *, 8> baseValues;
for (IdentifierID nextID : rawAccessPath) {
baseValues.swap(values);
values.clear();
for (auto base : baseValues) {
if (auto nominal = dyn_cast<NominalTypeDecl>(base)) {
Identifier memberName = getIdentifier(nextID);
auto members = nominal->lookupDirect(memberName);
values.append(members.begin(), members.end());
}
}
}
// If we have a type to validate against, filter out any ValueDecls that
// don't match that type.
CanType expectedTy;
if (kind == XRefKind::SwiftValue)
if (Type maybeExpectedTy = getType(expectedTypeID))
expectedTy = maybeExpectedTy->getCanonicalType();
ValueDecl *result = nullptr;
for (auto value : values) {
if (!value->hasClangNode() && value->getModuleContext() != M)
continue;
if (expectedTy && value->getType()->getCanonicalType() != expectedTy)
continue;
if (!result || result == value) {
result = value;
continue;
}
// It's an error if more than one value has the same type.
// FIXME: Functions and constructors can overload based on parameter
// names.
error();
return nullptr;
}
// It's an error if lookup doesn't actually find anything -- that means
// the module's out of date.
if (!result) {
error();
return nullptr;
}
if (kind == XRefKind::SwiftGenericParameter) {
GenericParamList *paramList = nullptr;
if (auto nominal = dyn_cast<NominalTypeDecl>(result))
paramList = nominal->getGenericParams();
else if (auto fn = dyn_cast<FuncDecl>(result))
paramList = fn->getGenericParams();
else if (auto ctor = dyn_cast<ConstructorDecl>(result))
paramList = ctor->getGenericParams();
if (!paramList) {
error();
return nullptr;
}
if (expectedTypeID >= paramList->size()) {
error();
return nullptr;
}
result = paramList->getParams()[expectedTypeID].getDecl();
assert(result);
}
declOrOffset = result;
break;
}
case XRefKind::SwiftOperator: {
assert(rawAccessPath.size() == 1 &&
"can't import operators not at module scope");
Identifier opName = getIdentifier(rawAccessPath.back());
switch (expectedTypeID) {
case OperatorKind::Infix: {
auto op = M->lookupInfixOperator(opName);
declOrOffset = op.hasValue() ? op.getValue() : nullptr;
break;
}
case OperatorKind::Prefix: {
auto op = M->lookupPrefixOperator(opName);
declOrOffset = op.hasValue() ? op.getValue() : nullptr;
break;
}
case OperatorKind::Postfix: {
auto op = M->lookupPostfixOperator(opName);
declOrOffset = op.hasValue() ? op.getValue() : nullptr;
break;
}
default:
// Unknown operator kind.
error();
return nullptr;
}
break;
}
default:
// Unknown cross-reference kind.
error();
return nullptr;
}
break;
}
default:
// We don't know how to deserialize this kind of decl.
error();
return nullptr;
}
if (DidRecord)
(*DidRecord)(declOrOffset);
return declOrOffset;
}
/// Translate from the Serialization calling convention enum values to the AST
/// strongly-typed enum.
///
/// The former is guaranteed to be stable, but may not reflect this version of
/// the AST.
static Optional<swift::AbstractCC> getActualCC(uint8_t cc) {
switch (cc) {
#define CASE(THE_CC) \
case serialization::AbstractCC::THE_CC: \
return swift::AbstractCC::THE_CC;
CASE(C)
CASE(ObjCMethod)
CASE(Freestanding)
CASE(Method)
#undef CASE
default:
return Nothing;
}
}
/// Translate from the serialization Ownership enumerators, which are
/// guaranteed to be stable, to the AST ones.
static
Optional<swift::Ownership> getActualOwnership(serialization::Ownership raw) {
switch (raw) {
case serialization::Ownership::Strong: return swift::Ownership::Strong;
case serialization::Ownership::Unowned: return swift::Ownership::Unowned;
case serialization::Ownership::Weak: return swift::Ownership::Weak;
}
return Nothing;
}
Type ModuleFile::getType(TypeID TID) {
if (TID == 0)
return Type();
assert(TID <= Types.size() && "invalid decl ID");
auto &typeOrOffset = Types[TID-1];
if (typeOrOffset.isComplete())
return typeOrOffset;
BCOffsetRAII restoreOffset(DeclTypeCursor);
DeclTypeCursor.JumpToBit(typeOrOffset);
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
// We don't know how to serialize types represented by sub-blocks.
error();
return nullptr;
}
ASTContext &ctx = ModuleContext->Ctx;
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch, &blobData);
switch (recordID) {
case decls_block::NAME_ALIAS_TYPE: {
DeclID underlyingID;
decls_block::NameAliasTypeLayout::readRecord(scratch, underlyingID);
auto alias = dyn_cast_or_null<TypeAliasDecl>(getDecl(underlyingID));
if (!alias) {
error();
return nullptr;
}
typeOrOffset = alias->getDeclaredType();
break;
}
case decls_block::NOMINAL_TYPE: {
DeclID declID;
TypeID parentID;
decls_block::NominalTypeLayout::readRecord(scratch, declID, parentID);
Type parentTy = getType(parentID);
// Record the type as soon as possible. Members of a nominal type often
// try to refer back to the type.
getDecl(declID, Nothing, makeStackLambda([&](Decl *D) {
// FIXME: Hack for "typedef struct CGRect CGRect". In the long run we need
// something less brittle that would also handle pointer typedefs and
// typedefs that just /happen/ to match a tagged name but don't actually
// point to the tagged type.
if (auto alias = dyn_cast<TypeAliasDecl>(D))
D = alias->getUnderlyingType()->getAnyNominal();
auto nominal = cast<NominalTypeDecl>(D);
typeOrOffset = NominalType::get(nominal, parentTy, ctx);
}));
assert(typeOrOffset.isComplete());
break;
}
case decls_block::PAREN_TYPE: {
TypeID underlyingID;
decls_block::ParenTypeLayout::readRecord(scratch, underlyingID);
typeOrOffset = ParenType::get(ctx, getType(underlyingID));
break;
}
case decls_block::TUPLE_TYPE: {
// The tuple record itself is empty. Read all trailing elements.
SmallVector<TupleTypeElt, 8> elements;
while (true) {
auto entry = DeclTypeCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind != llvm::BitstreamEntry::Record)
break;
scratch.clear();
unsigned recordID = DeclTypeCursor.readRecord(entry.ID, scratch,
&blobData);
if (recordID != decls_block::TUPLE_TYPE_ELT)
break;
IdentifierID nameID;
TypeID typeID;
uint8_t rawDefArg;
bool isVararg;
decls_block::TupleTypeEltLayout::readRecord(scratch, nameID, typeID,
rawDefArg, isVararg);
DefaultArgumentKind defArg = DefaultArgumentKind::None;
if (auto actualDefArg = getActualDefaultArgKind(rawDefArg))
defArg = *actualDefArg;
elements.push_back({getType(typeID), getIdentifier(nameID), defArg,
isVararg});
}
typeOrOffset = TupleType::get(elements, ctx);
break;
}
case decls_block::FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
uint8_t rawCallingConvention;
bool autoClosure;
bool thin;
bool noreturn;
bool blockCompatible;
decls_block::FunctionTypeLayout::readRecord(scratch, inputID, resultID,
rawCallingConvention,
autoClosure, thin,
noreturn,
blockCompatible);
auto callingConvention = getActualCC(rawCallingConvention);
if (!callingConvention.hasValue()) {
error();
return nullptr;
}
auto Info = FunctionType::ExtInfo(callingConvention.getValue(),
thin,
noreturn,
autoClosure,
blockCompatible);
typeOrOffset = FunctionType::get(getType(inputID), getType(resultID),
Info, ctx);
break;
}
case decls_block::METATYPE_TYPE: {
TypeID instanceID;
decls_block::MetaTypeTypeLayout::readRecord(scratch, instanceID);
typeOrOffset = MetaTypeType::get(getType(instanceID), ctx);
break;
}
case decls_block::LVALUE_TYPE: {
TypeID objectTypeID;
bool isImplicit, isNonSettable;
decls_block::LValueTypeLayout::readRecord(scratch, objectTypeID,
isImplicit, isNonSettable);
LValueType::Qual quals;
if (isImplicit)
quals |= LValueType::Qual::Implicit;
if (isNonSettable)
quals |= LValueType::Qual::NonSettable;
typeOrOffset = LValueType::get(getType(objectTypeID), quals, ctx);
break;
}
case decls_block::REFERENCE_STORAGE_TYPE: {
uint8_t rawOwnership;
TypeID referentTypeID;
decls_block::ReferenceStorageTypeLayout::readRecord(scratch, rawOwnership,
referentTypeID);
auto ownership =
getActualOwnership((serialization::Ownership) rawOwnership);
if (!ownership.hasValue()) {
error();
break;
}
typeOrOffset = ReferenceStorageType::get(getType(referentTypeID),
ownership.getValue(), ctx);
break;
}
case decls_block::ARCHETYPE_TYPE: {
IdentifierID nameID;
bool isPrimary;
TypeID parentOrIndex;
TypeID superclassID;
ArrayRef<uint64_t> rawConformanceIDs;
decls_block::ArchetypeTypeLayout::readRecord(scratch, nameID, isPrimary,
parentOrIndex, superclassID,
rawConformanceIDs);
ArchetypeType *parent = nullptr;
Type superclass;
Optional<unsigned> index;
SmallVector<ProtocolDecl *, 4> conformances;
if (isPrimary)
index = parentOrIndex;
else
parent = getType(parentOrIndex)->castTo<ArchetypeType>();
superclass = getType(superclassID);
for (DeclID protoID : rawConformanceIDs)
conformances.push_back(cast<ProtocolDecl>(getDecl(protoID)));
// See if we triggered deserialization through our conformances.
if (typeOrOffset.isComplete())
break;
auto archetype = ArchetypeType::getNew(ctx, parent, getIdentifier(nameID),
conformances, superclass, index);
typeOrOffset = archetype;
auto entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
break;
}
scratch.clear();
unsigned kind = DeclTypeCursor.readRecord(entry.ID, scratch);
if (kind != decls_block::ARCHETYPE_NESTED_TYPE_NAMES) {
error();
break;
}
ArrayRef<uint64_t> rawNameIDs;
decls_block::ArchetypeNestedTypeNamesLayout::readRecord(scratch,
rawNameIDs);
entry = DeclTypeCursor.advance();
if (entry.Kind != llvm::BitstreamEntry::Record) {
error();
break;
}
SmallVector<uint64_t, 16> scratch2;
kind = DeclTypeCursor.readRecord(entry.ID, scratch2);
if (kind != decls_block::ARCHETYPE_NESTED_TYPES) {
error();
break;
}
ArrayRef<uint64_t> rawTypeIDs;
decls_block::ArchetypeNestedTypesLayout::readRecord(scratch2, rawTypeIDs);
SmallVector<std::pair<Identifier, ArchetypeType *>, 4> nestedTypes;
for_each(rawNameIDs, rawTypeIDs, [&](IdentifierID nameID, TypeID nestedID) {
auto nestedTy = getType(nestedID)->castTo<ArchetypeType>();
nestedTypes.push_back(std::make_pair(getIdentifier(nameID), nestedTy));
});
archetype->setNestedTypes(ctx, nestedTypes);
break;
}
case decls_block::PROTOCOL_COMPOSITION_TYPE: {
ArrayRef<uint64_t> rawProtocolIDs;
decls_block::ProtocolCompositionTypeLayout::readRecord(scratch,
rawProtocolIDs);
SmallVector<Type, 4> protocols;
for (TypeID protoID : rawProtocolIDs)
protocols.push_back(getType(protoID));
typeOrOffset = ProtocolCompositionType::get(ctx, protocols);
break;
}
case decls_block::SUBSTITUTED_TYPE: {
TypeID originalID, replacementID;
decls_block::SubstitutedTypeLayout::readRecord(scratch, originalID,
replacementID);
typeOrOffset = SubstitutedType::get(getType(originalID),
getType(replacementID),
ctx);
break;
}
case decls_block::BOUND_GENERIC_TYPE: {
DeclID declID;
TypeID parentID;
unsigned numSubstitutions;
ArrayRef<uint64_t> rawArgumentIDs;
decls_block::BoundGenericTypeLayout::readRecord(scratch, declID, parentID,
numSubstitutions,
rawArgumentIDs);
SmallVector<Type, 8> genericArgs;
for (TypeID type : rawArgumentIDs)
genericArgs.push_back(getType(type));
auto nominal = cast<NominalTypeDecl>(getDecl(declID));
auto parentTy = getType(parentID);
auto boundTy = BoundGenericType::get(nominal, parentTy, genericArgs);
typeOrOffset = boundTy;
// BoundGenericTypes get uniqued in the ASTContext, so it's possible this
// type already has its substitutions. In that case, ignore the module's.
if (boundTy->hasSubstitutions())
break;
SmallVector<Substitution, 8> substitutions;
while (numSubstitutions--) {
substitutions.push_back(*maybeReadSubstitution());
}
boundTy->setSubstitutions(ctx.AllocateCopy(substitutions));
break;
}
case decls_block::POLYMORPHIC_FUNCTION_TYPE: {
TypeID inputID;
TypeID resultID;
DeclID genericContextID;
uint8_t rawCallingConvention;
bool thin;
bool noreturn = false;
//todo add noreturn serialization.
decls_block::PolymorphicFunctionTypeLayout::readRecord(scratch,
inputID,
resultID,
genericContextID,
rawCallingConvention,
thin,
noreturn);
auto callingConvention = getActualCC(rawCallingConvention);
if (!callingConvention.hasValue()) {
error();
return nullptr;
}
Decl *genericContext = getDecl(genericContextID);
assert(genericContext && "loading PolymorphicFunctionType before its decl");
GenericParamList *paramList = nullptr;
switch (genericContext->getKind()) {
case DeclKind::Constructor:
paramList = cast<ConstructorDecl>(genericContext)->getGenericParams();
break;
case DeclKind::Func:
paramList = cast<FuncDecl>(genericContext)->getGenericParams();
break;
case DeclKind::Class:
case DeclKind::Struct:
case DeclKind::Union:
paramList = cast<NominalTypeDecl>(genericContext)->getGenericParams();
break;
default:
break;
}
assert(paramList && "missing generic params for polymorphic function");
auto Info = PolymorphicFunctionType::ExtInfo(callingConvention.getValue(),
thin,
noreturn);
typeOrOffset = PolymorphicFunctionType::get(getType(inputID),
getType(resultID),
paramList,
Info,
ctx);
break;
}
case decls_block::ARRAY_SLICE_TYPE: {
TypeID baseID, implID;
decls_block::ArraySliceTypeLayout::readRecord(scratch, baseID, implID);
auto sliceTy = ArraySliceType::get(getType(baseID), ctx);
typeOrOffset = sliceTy;
// Slice types are uniqued by the ASTContext, so they may already have
// type information. If so, ignore the information in the module.
if (!sliceTy->hasImplementationType())
sliceTy->setImplementationType(getType(implID));
break;
}
case decls_block::OPTIONAL_TYPE: {
TypeID baseID, implID;
decls_block::OptionalTypeLayout::readRecord(scratch, baseID, implID);
auto optionalTy = OptionalType::get(getType(baseID), ctx);
typeOrOffset = optionalTy;
// Optional types are uniqued by the ASTContext, so they may already have
// type information. If so, ignore the information in the module.
if (!optionalTy->hasImplementationType())
optionalTy->setImplementationType(getType(implID));
break;
}
case decls_block::ARRAY_TYPE: {
TypeID baseID;
uint64_t size;
decls_block::ArrayTypeLayout::readRecord(scratch, baseID, size);
typeOrOffset = ArrayType::get(getType(baseID), size, ctx);
break;
}
case decls_block::UNBOUND_GENERIC_TYPE: {
DeclID genericID;
TypeID parentID;
decls_block::UnboundGenericTypeLayout::readRecord(scratch,
genericID, parentID);
auto genericDecl = cast<NominalTypeDecl>(getDecl(genericID));
typeOrOffset = UnboundGenericType::get(genericDecl, getType(parentID), ctx);
break;
}
default:
// We don't know how to deserialize this kind of type.
error();
return nullptr;
}
return typeOrOffset;
}
/// Used to deserialize entries in the on-disk decl hash table.
class ModuleFile::DeclTableInfo {
public:
using internal_key_type = StringRef;
using external_key_type = Identifier;
using data_type = SmallVector<std::pair<uint8_t, DeclID>, 8>;
internal_key_type GetInternalKey(external_key_type ID) {
return ID.str();
}
uint32_t ComputeHash(internal_key_type key) {
return llvm::HashString(key);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned> ReadKeyDataLength(const uint8_t *&data) {
using namespace clang::io;
unsigned keyLength = ReadUnalignedLE16(data);
unsigned dataLength = ReadUnalignedLE16(data);
return { keyLength, dataLength };
}
static internal_key_type ReadKey(const uint8_t *data, unsigned length) {
return StringRef(reinterpret_cast<const char *>(data), length);
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
using namespace clang::io;
data_type result;
while (length > 0) {
uint8_t kind = *data++;
DeclID offset = ReadUnalignedLE32(data);
result.push_back({ kind, offset });
length -= 5;
}
return result;
}
};
std::unique_ptr<ModuleFile::SerializedDeclTable>
ModuleFile::readDeclTable(ArrayRef<uint64_t> fields, StringRef blobData) {
uint32_t tableOffset;
index_block::DeclListLayout::readRecord(fields, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
using OwnedTable = std::unique_ptr<SerializedDeclTable>;
return OwnedTable(SerializedDeclTable::Create(base + tableOffset, base));
}
static Optional<KnownProtocolKind> getActualKnownProtocol(unsigned rawKind) {
auto stableKind = static_cast<index_block::KnownProtocolKind>(rawKind);
if (stableKind != rawKind)
return Nothing;
switch (stableKind) {
#define PROTOCOL(Id) \
case index_block::Id: return KnownProtocolKind::Id;
#include "swift/AST/KnownProtocols.def"
case index_block::FORCE_DESERIALIZATION:
llvm_unreachable("must handle FORCE_DESERIALIZATION explicitly");
}
// If there's a new case value in the module file, ignore it.
return Nothing;
}
bool ModuleFile::readKnownProtocolsBlock(llvm::BitstreamCursor &cursor) {
cursor.EnterSubBlock(KNOWN_PROTOCOL_BLOCK_ID);
SmallVector<uint64_t, 8> scratch;
do {
auto next = cursor.advanceSkippingSubblocks();
switch (next.Kind) {
case llvm::BitstreamEntry::EndBlock:
return true;
case llvm::BitstreamEntry::Error:
return false;
case llvm::BitstreamEntry::SubBlock:
llvm_unreachable("subblocks skipped");
case llvm::BitstreamEntry::Record: {
scratch.clear();
unsigned rawKind = cursor.readRecord(next.ID, scratch);
DeclIDVector *list;
if (rawKind == index_block::FORCE_DESERIALIZATION) {
list = &EagerDeserializationDecls;
} else if (auto actualKind = getActualKnownProtocol(rawKind)) {
auto index = static_cast<unsigned>(actualKind.getValue());
list = &KnownProtocolAdopters[index];
} else {
// Ignore this record.
break;
}
list->append(scratch.begin(), scratch.end());
break;
}
}
} while (true);
}
bool ModuleFile::readIndexBlock(llvm::BitstreamCursor &cursor) {
cursor.EnterSubBlock(INDEX_BLOCK_ID);
SmallVector<uint64_t, 4> scratch;
StringRef blobData;
do {
auto next = cursor.advance();
switch (next.Kind) {
case llvm::BitstreamEntry::EndBlock:
return true;
case llvm::BitstreamEntry::Error:
return false;
case llvm::BitstreamEntry::SubBlock:
switch (next.ID) {
case KNOWN_PROTOCOL_BLOCK_ID:
if (!readKnownProtocolsBlock(cursor))
return false;
break;
default:
// Unknown sub-block, which this version of the compiler won't use.
if (cursor.SkipBlock())
return false;
break;
}
break;
case llvm::BitstreamEntry::Record:
scratch.clear();
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
switch (kind) {
case index_block::DECL_OFFSETS:
assert(blobData.empty());
Decls.assign(scratch.begin(), scratch.end());
break;
case index_block::TYPE_OFFSETS:
assert(blobData.empty());
Types.assign(scratch.begin(), scratch.end());
break;
case index_block::IDENTIFIER_OFFSETS:
assert(blobData.empty());
Identifiers.assign(scratch.begin(), scratch.end());
break;
case index_block::TOP_LEVEL_DECLS:
TopLevelDecls = readDeclTable(scratch, blobData);
break;
case index_block::OPERATORS:
OperatorDecls = readDeclTable(scratch, blobData);
break;
case index_block::EXTENSIONS:
ExtensionDecls = readDeclTable(scratch, blobData);
break;
case index_block::CLASS_MEMBERS:
ClassMembersByName = readDeclTable(scratch, blobData);
break;
default:
// Unknown index kind, which this version of the compiler won't use.
break;
}
break;
}
} while (true);
}
ModuleFile::ModuleFile(llvm::OwningPtr<llvm::MemoryBuffer> &&input)
: ModuleContext(nullptr),
InputFile(std::move(input)),
InputReader(reinterpret_cast<const uint8_t *>(InputFile->getBufferStart()),
reinterpret_cast<const uint8_t *>(InputFile->getBufferEnd())),
Status(ModuleStatus::Valid) {
llvm::BitstreamCursor cursor{InputReader};
for (unsigned char byte : SIGNATURE) {
if (cursor.AtEndOfStream() || cursor.Read(8) != byte)
return error();
}
// Future-proofing: make sure we validate the control block before we try to
// read any other blocks.
bool hasValidControlBlock = false;
SmallVector<uint64_t, 64> scratch;
auto topLevelEntry = cursor.advance();
while (topLevelEntry.Kind == llvm::BitstreamEntry::SubBlock) {
switch (topLevelEntry.ID) {
case llvm::bitc::BLOCKINFO_BLOCK_ID:
if (cursor.ReadBlockInfoBlock())
return error();
break;
case CONTROL_BLOCK_ID: {
cursor.EnterSubBlock(CONTROL_BLOCK_ID);
ModuleStatus err = validateControlBlock(cursor, scratch);
if (err != ModuleStatus::Valid)
return error(err);
hasValidControlBlock = true;
break;
}
case INPUT_BLOCK_ID: {
if (!hasValidControlBlock)
return error();
cursor.EnterSubBlock(INPUT_BLOCK_ID);
auto next = cursor.advance();
while (next.Kind == llvm::BitstreamEntry::Record) {
scratch.clear();
StringRef blobData;
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
switch (kind) {
case input_block::SOURCE_FILE:
assert(scratch.empty());
SourcePaths.push_back(blobData);
break;
case input_block::IMPORTED_MODULE: {
bool exported;
input_block::ImportedModuleLayout::readRecord(scratch, exported);
Dependencies.push_back({blobData, exported});
break;
}
default:
// Unknown input kind, possibly for use by a future version of the
// module format.
// FIXME: Should we warn about this?
break;
}
next = cursor.advance();
}
if (next.Kind != llvm::BitstreamEntry::EndBlock)
return error();
break;
}
case DECLS_AND_TYPES_BLOCK_ID: {
if (!hasValidControlBlock)
return error();
// The decls-and-types block is lazily loaded. Save the cursor and load
// any abbrev records at the start of the block.
DeclTypeCursor = cursor;
DeclTypeCursor.EnterSubBlock(DECLS_AND_TYPES_BLOCK_ID);
if (DeclTypeCursor.advance().Kind == llvm::BitstreamEntry::Error)
return error();
// With the main cursor, skip over the block and continue.
if (cursor.SkipBlock())
return error();
break;
}
case IDENTIFIER_DATA_BLOCK_ID: {
if (!hasValidControlBlock)
return error();
cursor.EnterSubBlock(IDENTIFIER_DATA_BLOCK_ID);
auto next = cursor.advanceSkippingSubblocks();
while (next.Kind == llvm::BitstreamEntry::Record) {
scratch.clear();
StringRef blobData;
unsigned kind = cursor.readRecord(next.ID, scratch, &blobData);
switch (kind) {
case identifier_block::IDENTIFIER_DATA:
assert(scratch.empty());
IdentifierData = blobData;
break;
default:
// Unknown identifier data, which this version of the compiler won't
// use.
break;
}
next = cursor.advanceSkippingSubblocks();
}
if (next.Kind != llvm::BitstreamEntry::EndBlock)
return error();
break;
}
case INDEX_BLOCK_ID: {
if (!hasValidControlBlock)
return error();
if (!readIndexBlock(cursor))
return error();
break;
}
case FALL_BACK_TO_TRANSLATION_UNIT_ID:
// This is a bring-up hack and will eventually go away.
Status = ModuleStatus::FallBackToTranslationUnit;
break;
default:
// Unknown top-level block, possibly for use by a future version of the
// module format.
if (cursor.SkipBlock())
return error();
break;
}
topLevelEntry = cursor.advance(AF_DontPopBlockAtEnd);
}
if (topLevelEntry.Kind != llvm::BitstreamEntry::EndBlock)
return error();
}
static NominalTypeDecl *getAnyNominal(Decl *D) {
if (auto extension = dyn_cast<ExtensionDecl>(D))
D = extension->getExtendedType()->getAnyNominal();
return dyn_cast_or_null<NominalTypeDecl>(D);
}
bool ModuleFile::associateWithModule(Module *module) {
assert(Status == ModuleStatus::Valid && "invalid module file");
assert(!ModuleContext && "already associated with an AST module");
ModuleContext = module;
ASTContext &ctx = module->Ctx;
bool missingDependency = false;
for (auto &dependency : Dependencies) {
assert(!dependency.isLoaded() && "already loaded?");
StringRef modulePath, scopePath;
llvm::tie(modulePath, scopePath) = dependency.RawAccessPath.split('\0');
auto moduleID = ctx.getIdentifier(modulePath);
assert(!moduleID.empty() &&
"invalid module name (submodules not yet supported)");
auto module = getModule(moduleID);
if (!module) {
missingDependency = true;
continue;
}
if (scopePath.empty()) {
dependency.Import = { {}, module };
} else {
auto scopeID = ctx.getIdentifier(scopePath);
assert(!scopeID.empty() &&
"invalid decl name (non-top-level decls not supported)");
auto path = Module::AccessPathTy({scopeID, SourceLoc()});
dependency.Import = { ctx.AllocateCopy(path), module };
}
}
if (missingDependency) {
error(ModuleStatus::MissingDependency);
return false;
}
// Process decls we know we want to eagerly deserialize.
for (DeclID DID : EagerDeserializationDecls) {
Decl *decl = getDecl(DID);
if (auto nominal = getAnyNominal(decl))
loadExtensions(nominal);
}
return Status == ModuleStatus::Valid;
}
ModuleFile::~ModuleFile() = default;
void ModuleFile::lookupValue(Identifier name,
SmallVectorImpl<ValueDecl*> &results) {
if (!TopLevelDecls)
return;
auto iter = TopLevelDecls->find(name);
if (iter == TopLevelDecls->end())
return;
for (auto item : *iter) {
auto VD = cast<ValueDecl>(getDecl(item.second));
// Force load our own extensions, which may contain conformances.
if (auto TD = dyn_cast<TypeDecl>(VD))
if (auto nominal = TD->getDeclaredType()->getAnyNominal())
loadExtensions(nominal);
results.push_back(VD);
}
}
OperatorDecl *ModuleFile::lookupOperator(Identifier name, DeclKind fixity) {
if (!OperatorDecls)
return nullptr;
auto iter = OperatorDecls->find(name);
if (iter == OperatorDecls->end())
return nullptr;
for (auto item : *iter) {
if (getStableFixity(fixity) == item.first)
return cast<OperatorDecl>(getDecl(item.second));
}
return nullptr;
}
void ModuleFile::getReexportedModules(
SmallVectorImpl<Module::ImportedModule> &results) {
for (auto &dep : Dependencies) {
if (!dep.IsExported)
continue;
assert(dep.isLoaded());
results.push_back(dep.Import);
}
}
void ModuleFile::lookupVisibleDecls(Module::AccessPathTy accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) {
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!TopLevelDecls)
return;
if (!accessPath.empty()) {
auto iter = TopLevelDecls->find(accessPath.front().first);
if (iter == TopLevelDecls->end())
return;
for (auto item : *iter)
consumer.foundDecl(cast<ValueDecl>(getDecl(item.second)));
}
for (auto entry : make_range(TopLevelDecls->data_begin(),
TopLevelDecls->data_end())) {
for (auto item : entry)
consumer.foundDecl(cast<ValueDecl>(getDecl(item.second)));
}
}
void ModuleFile::loadExtensions(NominalTypeDecl *nominal) {
if (!ExtensionDecls)
return;
auto iter = ExtensionDecls->find(nominal->getName());
if (iter == ExtensionDecls->end())
return;
for (auto item : *iter) {
if (item.first == getKindForTable(nominal))
(void)getDecl(item.second);
}
}
void ModuleFile::loadDeclsConformingTo(KnownProtocolKind kind) {
auto index = static_cast<unsigned>(kind);
for (DeclID DID : KnownProtocolAdopters[index]) {
Decl *D = getDecl(DID);
ModuleContext->Ctx.recordConformance(kind, D);
if (auto nominal = getAnyNominal(D))
loadExtensions(nominal);
}
}
void ModuleFile::lookupClassMember(Module::AccessPathTy accessPath,
Identifier name,
SmallVectorImpl<ValueDecl*> &results) {
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!ClassMembersByName)
return;
auto iter = ClassMembersByName->find(name);
if (iter == ClassMembersByName->end())
return;
if (!accessPath.empty()) {
for (auto item : *iter) {
auto vd = cast<ValueDecl>(getDecl(item.second));
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
results.push_back(vd);
}
return;
}
for (auto item : *iter) {
auto vd = cast<ValueDecl>(getDecl(item.second));
results.push_back(vd);
}
}
void ModuleFile::lookupClassMembers(Module::AccessPathTy accessPath,
VisibleDeclConsumer &consumer) {
assert(accessPath.size() <= 1 && "can only refer to top-level decls");
if (!ClassMembersByName)
return;
if (!accessPath.empty()) {
for (const auto &list : make_range(ClassMembersByName->data_begin(),
ClassMembersByName->data_end())) {
for (auto item : list) {
auto vd = cast<ValueDecl>(getDecl(item.second));
Type ty = vd->getDeclContext()->getDeclaredTypeOfContext();
if (auto nominal = ty->getAnyNominal())
if (nominal->getName() == accessPath.front().first)
consumer.foundDecl(vd);
}
}
return;
}
for (const auto &list : make_range(ClassMembersByName->data_begin(),
ClassMembersByName->data_end())) {
for (auto item : list)
consumer.foundDecl(cast<ValueDecl>(getDecl(item.second)));
}
}