Files
swift-mirror/stdlib/core/FloatingPoint.swift.gyb
Dmitri Hrybenko 2cc8fe40d4 stdlib/printing: replace four printing systems with one new one
The old ones were:

- print/println
- printAny
- printf
- Console

The new printing story is just print/println.  Every object can be printed.
You can customize the way it is printed by adopting Printable protocol.  Full
details in comments inside stdlib/core/OutputStream.swift.

Printing is not completely finished yet.  We still have ReplPrintable, which
should be removed, string interpolation still uses String constructors, and
printing objects that don't conform to Printable will result in printing
mangled names.


Swift SVN r18001
2014-05-13 13:07:59 +00:00

504 lines
13 KiB
Swift

%# -*- mode: swift -*-
%# Ignore the following admonition; it applies to the resulting .swift file only
//// Automatically Generated From FloatingPoint.gyb. Do Not Edit Directly
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
%{
#
# Utility code for later in this template
#
if CMAKE_SYSTEM_PROCESSOR in ('i386', 'x86_64'):
allFloatBits = [32, 64, 80]
else:
# Compile only 32-bit and 64-bit floating point on non-x86 architectures
allFloatBits = [32, 64]
# Bit counts for all int types
allIntBits = [8, 16, 32, 64, 'Int']
# Number of bits in integer literals.
builtinIntLiteralBits = 2048
# Number of bits in floating point literals.
builtinFloatLiteralBits = 64
def allInts():
for bits in allIntBits:
for signed in False, True:
yield bits,signed
def baseIntName(name):
return 'Int' if name == 'Int' else 'Int' + str(name)
def builtinIntName(name):
return 'Word' if name == 'Int' else 'Int' + str(name)
def intName(name, signed):
return ('' if signed else 'U') + baseIntName(name)
def floatName(bits):
if bits == 32:
return 'Float'
if bits == 64:
return 'Double'
if bits == 80:
return 'Float80'
def cFuncSuffix(bits):
if bits == 32:
return 'f'
if bits == 64:
return ''
if bits == 80:
return 'l'
def llvmIntrinsicSuffix(bits):
if bits == 32:
return 'f32'
if bits == 64:
return 'f64'
if bits == 80:
return 'f80'
def getInfBitPattern(bits):
if bits == 32:
return '0x7f800000'
if bits == 64:
return '0x7ff0000000000000'
return 'error'
def getQuietNaNBitPattern(bits):
if bits == 32:
return '0x7fc00000'
if bits == 64:
return '0x7ff8000000000000'
return 'error'
def getSignalingNanBitPattern(bits):
if bits == 32:
return '0x7fa00000'
if bits == 64:
return '0x7ff4000000000000'
return 'error'
def getMinNormalBitPattern(bits):
if bits == 32:
return '0x00800000'
if bits == 64:
return '0x0010000000000000'
return 'error'
def getExponentBitCount(bits):
if bits == 32:
return '8'
if bits == 64:
return '11'
return 'error'
def getSignificantBitCount(bits):
if bits == 32:
return '23'
if bits == 64:
return '52'
return 'error'
def getInfinityExponent(bits):
if bits == 32:
return '0xff'
if bits == 64:
return '0x7ff'
return 'error'
}%
% for bits in allFloatBits:
% Self = floatName(bits)
struct ${Self} {
var value: Builtin.FPIEEE${bits}
@transparent
init() {
var zero: Int64 = 0
value = Builtin.uitofp_Int64_FPIEEE${bits}(zero.value)
}
@transparent
init(_ v: Builtin.FPIEEE${bits}) {
value = v
}
@transparent
init(_ value: ${Self}) { self = value }
}
extension ${Self} : ReplPrintable {
func replPrint() {
print(self)
}
}
extension ${Self} : Printable {
var description: String {
% if bits == 64:
return _doubleToString(self)
% else:
return _doubleToString(Double(self))
% end
}
}
% if bits in allIntBits:
// Not transparent because the compiler crashes in that case.
//@transparent
extension ${Self} : FloatingPointNumber {
typealias _BitsType = UInt${bits}
static func _fromBitPattern(bits: _BitsType) -> ${Self} {
return ${Self}(Builtin.bitcast_Int${bits}_FPIEEE${bits}(bits.value))
}
func _toBitPattern() -> _BitsType {
return _BitsType(Builtin.bitcast_FPIEEE${bits}_Int${bits}(value))
}
func __getSignBit() -> Int {
return Int(_toBitPattern() >> ${bits - 1}) & 1
}
func __getBiasedExponent() -> _BitsType {
return (_toBitPattern() >> ${getSignificantBitCount(bits)}) & ${getInfinityExponent(bits)}
}
func __getSignificand() -> _BitsType {
var mask: _BitsType = (1 << ${getSignificantBitCount(bits)}) - 1
return _toBitPattern() & mask
}
static func inf() -> ${Self} {
return _fromBitPattern(${getInfBitPattern(bits)})
}
static func NaN() -> ${Self} {
return quietNaN()
}
static func quietNaN() -> ${Self} {
return _fromBitPattern(${getQuietNaNBitPattern(bits)})
}
func isSignMinus() -> Bool {
return __getSignBit() == 1
}
func isNormal() -> Bool {
var biasedExponent = __getBiasedExponent()
return biasedExponent != ${getInfinityExponent(bits)} &&
biasedExponent != 0
}
func isFinite() -> Bool {
return __getBiasedExponent() != ${getInfinityExponent(bits)}
}
func isZero() -> Bool {
// Mask out the sign bit.
var mask: _BitsType = (1 << (${bits} - 1)) - 1
return (_toBitPattern() & mask) == 0
}
func isSubnormal() -> Bool {
if __getBiasedExponent() == 0 {
return __getSignificand() != 0
}
return false
// Alternative implementation:
// return !isNan() &&
// abs(self) < ${Self}._fromBitPattern(${getMinNormalBitPattern(bits)})
//
// But because we need to check for !isNan(), and do it safely in case of
// SNaN, we need to go down to the bit level, so open-coding the combined
// condition is going to be faster.
}
func isInfinite() -> Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
return __getSignificand() == 0
}
return false
// Alternative implementation that is not safe in case of SNaN:
// return abs(self) == ${Self}.inf()
}
func isNaN() -> Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
return __getSignificand() != 0
}
return false
// Alternative implementation that is not safe in case of SNaN:
// return self != self
}
func isSignaling() -> Bool {
if __getBiasedExponent() == ${getInfinityExponent(bits)} {
// IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded
// with the first bit of the trailing significand being 0. If the first
// bit of the trailing significand field is 0, some other bit of the
// trailing significand field must be non-zero to distinguish the NaN
// from infinity.
var significand = __getSignificand()
if significand != 0 {
return (significand >> (${getSignificantBitCount(bits)} - 1)) == 0
}
}
return false
}
}
// Not @transparent because the function is too complex.
extension ${Self} /* : FloatingPointNumber */ {
var floatingPointClass: FloatingPointClassification {
get {
var biasedExponent = __getBiasedExponent()
if biasedExponent == ${getInfinityExponent(bits)} {
var significand = __getSignificand()
// This is either +/-inf or NaN.
if significand == 0 {
return isSignMinus() ? .NegativeInfinity : .PositiveInfinity
}
var isQNaN = (significand >> (${getSignificantBitCount(bits)} - 1)) == 1
return isQNaN ? .QuietNaN : .SignalingNaN
}
// OK, the number is finite.
var isMinus = isSignMinus()
if biasedExponent != 0 {
return isMinus ? .NegativeNormal : .PositiveNormal
}
// Exponent is zero.
if __getSignificand() == 0 {
return isMinus ? .NegativeZero : .PositiveZero
}
return isMinus ? .NegativeSubnormal : .PositiveSubnormal
}
}
}
% end
@transparent
extension ${Self} : _BuiltinIntegerLiteralConvertible, IntegerLiteralConvertible {
static func _convertFromBuiltinIntegerLiteral(value: Builtin.Int${builtinIntLiteralBits}) -> ${Self} {
return ${Self}(Builtin.itofp_with_overflow_Int${builtinIntLiteralBits}_FPIEEE${bits}(value))
}
static func convertFromIntegerLiteral(value: Int64) -> ${Self} {
return ${Self}(Builtin.uitofp_Int64_FPIEEE${bits}(value.value))
}
}
@transparent
extension ${Self} : _BuiltinFloatLiteralConvertible {
static func _convertFromBuiltinFloatLiteral(value: Builtin.FPIEEE${builtinFloatLiteralBits}) -> ${Self} {
% if bits == builtinFloatLiteralBits:
return ${Self}(value)
% elif bits < builtinFloatLiteralBits:
return ${Self}(Builtin.fptrunc_FPIEEE${builtinFloatLiteralBits}_FPIEEE${bits}(value))
% else:
// FIXME: This is actually losing precision <rdar://problem/14073102>.
return ${Self}(Builtin.fpext_FPIEEE${builtinFloatLiteralBits}_FPIEEE${bits}(value))
% end
}
}
@transparent
extension ${Self} : FloatLiteralConvertible {
static func convertFromFloatLiteral(value: ${Self}) -> ${Self} {
return value
}
}
@transparent
func ==(lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.fcmp_oeq_FPIEEE${bits}(lhs.value, rhs.value))
}
@transparent
func <(lhs: ${Self}, rhs: ${Self}) -> Bool {
return Bool(Builtin.fcmp_olt_FPIEEE${bits}(lhs.value, rhs.value))
}
@transparent
extension ${Self} : Comparable {
}
extension ${Self} : Hashable {
var hashValue: Int {
var asBuiltinInt = Builtin.bitcast_FPIEEE${bits}_Int${bits}(value)
% if bits >= 64:
return Int(Builtin.truncOrBitCast_Int${bits}_Word(asBuiltinInt))
% elif bits <= 32:
return Int(Builtin.sextOrBitCast_Int${bits}_Word(asBuiltinInt))
% else:
error unhandled float size ${bits}
% end
}
}
@transparent
extension ${Self} : AbsoluteValuable {
@transparent
static func abs(x: ${Self}) -> ${Self} {
return ${Self}(Builtin.int_fabs_FPIEEE${bits}(x.value))
}
}
@prefix @transparent
func -(x: ${Self}) -> ${Self} {
return ${Self}(Builtin.fneg_FPIEEE${bits}(x.value))
}
//===----------------------------------------------------------------------===//
// Explicit conversions between types.
//===----------------------------------------------------------------------===//
// Construction from integers.
@transparent
extension ${Self} {
% for (srcBits, srcSigned) in allInts():
% That = intName(srcBits, srcSigned)
% ThatBuiltinName = builtinIntName(srcBits)
% sign = 's' if srcSigned else 'u'
init(_ v: ${That}) {
value = Builtin.${sign}itofp_${ThatBuiltinName}_FPIEEE${bits}(v.value)
}
% end
}
// Construction from other floating point numbers.
@transparent
extension ${Self} {
% for srcBits in allFloatBits:
% That = floatName(srcBits)
% if Self != That:
init(_ v: ${That}) {
% if srcBits > bits:
value = Builtin.fptrunc_FPIEEE${srcBits}_FPIEEE${bits}(v.value)
% else:
value = Builtin.fpext_FPIEEE${srcBits}_FPIEEE${bits}(v.value)
% end
}
% end
% end
}
//===----------------------------------------------------------------------===//
// Standard Operator Table
//===----------------------------------------------------------------------===//
// Unary plus
@transparent @prefix
func + (rhs: ${Self}) -> ${Self} { return rhs }
@transparent @prefix @assignment
func ++ (inout rhs: ${Self}) -> ${Self} { rhs += 1.0; return rhs }
@transparent @prefix @assignment
func -- (inout rhs: ${Self}) -> ${Self} { rhs -= 1.0; return rhs }
@transparent @postfix @assignment
func ++ (inout lhs: ${Self}) -> ${Self} { let tmp = lhs; lhs += 1.0; return tmp }
@transparent @postfix @assignment
func -- (inout lhs: ${Self}) -> ${Self} { let tmp = lhs; lhs -= 1.0; return tmp }
@transparent
extension ${Self} : RandomAccessIndex {
@transparent
func succ() -> ${Self} {
return self + 1.0
}
@transparent
func pred() -> ${Self} {
return self - 1.0
}
@transparent
func distanceTo(other: ${Self}) -> ${Self}.DistanceType {
return Int(other-self)
}
@transparent
func advancedBy(amount: ${Self}.DistanceType) -> ${Self} {
return self + ${Self}(amount)
}
}
% for op, name in ('+','fadd'), ('-','fsub'),('*','fmul'), ('/','fdiv'):
@transparent
func ${op} (lhs: ${Self}, rhs: ${Self}) -> ${Self} {
return ${Self}(Builtin.${name}_FPIEEE${bits}(lhs.value, rhs.value))
}
% end
// Binary Remainder.
// The sign of the result matches the sign of the dividend.
// 1) This is consistent with '%' in C#, D, Java, and JavaScript
// 2) C99 requires this behavior for fmod*()
// 3) C++11 requires this behavior for std::fmod*()
@asmname("fmod${cFuncSuffix(bits)}")
func % (lhs: ${Self}, rhs: ${Self}) -> ${Self}
// See Bool.swift for && and ||
// In C, 120 is &&
// In C, 110 is ||
// In C, 100 is ?:
// In C, 90 is =, *=, += etc.
% for op in '+', '-', '*', '/', '%':
@transparent @assignment
func ${op}= (inout lhs: ${Self}, rhs: ${Self}) { lhs = lhs ${op} rhs }
% end
% end # for bits in allFloatBits
// Construction of integers from floating point numbers.
% for (bits, signed) in allInts():
% sign = 's' if signed else 'u'
% Self = intName(bits, signed)
% BuiltinName = builtinIntName(bits)
@transparent
extension ${Self} {
% for srcBits in allFloatBits:
% That = floatName(srcBits)
init(_ v: ${That}) {
assert(v >= ${That}(${Self}.min))
assert(v <= ${That}(${Self}.max))
value = Builtin.fpto${sign}i_FPIEEE${srcBits}_${BuiltinName}(v.value)
}
% end
}
% end
// ${'Local Variables'}:
// eval: (read-only-mode 1)
// End: