Files
swift-mirror/lib/SILOptimizer/Transforms/DeadObjectElimination.cpp
2025-08-28 20:50:33 +01:00

1309 lines
47 KiB
C++

//===--- DeadObjectElimination.cpp - Remove unused objects ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates store only alloc_ref objects that have destructors
// without side effects.
//
// The high level overview of the algorithm is that first it visits the
// destructor and attempts to prove that the destructor is well behaved, i.e. it
// does not have any side effects outside of the destructor itself. If the
// destructor can be proven to be well behaved, it then goes through the use
// list of the alloc_ref and attempts to prove that the alloc_ref does not
// escape or is used in a way that could cause side effects. If both of those
// conditions apply, the alloc_ref and its entire use graph is eliminated.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dead-object-elim"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/IndexTrie.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(DeadAllocRefEliminated,
"number of AllocRef instructions removed");
STATISTIC(DeadAllocStackEliminated,
"number of AllocStack instructions removed");
STATISTIC(DeadKeyPathEliminated,
"number of keypath instructions removed");
STATISTIC(DeadAllocApplyEliminated,
"number of allocating Apply instructions removed");
using UserList = llvm::SmallSetVector<SILInstruction *, 16>;
namespace {
/// Side effects of a destructor.
enum class DestructorEffects {
None,
/// The destructor contains a "destroyArray" builtin which destroys the tail
/// elements of the object - like in Array.
DestroysTailElems,
Unknown
};
// Analyzing the body of this class destructor is valid because the object is
// dead. This means that the object is never passed to objc_setAssociatedObject,
// so its destructor cannot be extended at runtime.
static SILFunction *getDestructor(AllocRefInstBase *ARI) {
// We can't know the destructor for an alloc_ref_dynamic instruction in
// general.
auto *dynamicAllocRef = dyn_cast<AllocRefDynamicInst>(ARI);
if (dynamicAllocRef &&
!dynamicAllocRef->isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType())
return nullptr;
// We only support classes.
ClassDecl *ClsDecl = ARI->getType().getClassOrBoundGenericClass();
if (!ClsDecl)
return nullptr;
// Look up the destructor of ClsDecl.
DestructorDecl *Destructor = ClsDecl->getDestructor();
assert(Destructor && "getDestructor() should never return a nullptr.");
// Find the destructor name via SILDeclRef.
// FIXME: When destructors get moved into vtables, update this to use the
// vtable for the class.
SILDeclRef Ref(Destructor);
SILFunction *Fn = ARI->getModule().lookUpFunction(Ref);
if (!Fn || Fn->empty()) {
LLVM_DEBUG(llvm::dbgs() << " Could not find destructor.\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << " Found destructor!\n");
// If the destructor has an objc_method calling convention, we cannot
// analyze it since it could be swapped out from under us at runtime.
if (Fn->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) {
LLVM_DEBUG(llvm::dbgs() << " Found Objective-C destructor. Can't "
"analyze!\n");
return nullptr;
}
return Fn;
}
static bool isDestroyArray(SILInstruction *inst) {
BuiltinInst *bi = dyn_cast<BuiltinInst>(inst);
return bi && bi->getBuiltinInfo().ID == BuiltinValueKind::DestroyArray;
}
/// Analyze the destructor for the class of ARI to see if any instructions in it
/// could have side effects on the program outside the destructor. If it does
/// not, then we can eliminate the destructor.
/// TODO: Most default destructors with non-trivial elements will have a
/// destroy_addr of the non-trivial element in the destructor, this analysis
/// will return as having side-effects in such cases, leading to conservative
/// results. Check if we can do better here.
static DestructorEffects doesDestructorHaveSideEffects(AllocRefInstBase *ARI) {
SILFunction *Fn = getDestructor(ARI);
// If we can't find a constructor then assume it has side effects.
if (!Fn)
return DestructorEffects::Unknown;
DestructorEffects effects = DestructorEffects::None;
// A destructor only has one argument, self.
assert(Fn->begin()->getNumArguments() == 1 &&
"Destructor should have only one argument, self.");
SILArgument *Self = Fn->begin()->getArgument(0);
LLVM_DEBUG(llvm::dbgs() << " Analyzing destructor.\n");
// For each BB in the destructor...
for (auto &BB : *Fn) {
// For each instruction I in BB...
for (auto &I : BB) {
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << I);
// If I has no side effects, we can ignore it.
if (!I.mayHaveSideEffects()) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction has no side "
"effects.\n");
continue;
}
if (auto *fl = dyn_cast<FixLifetimeInst>(&I)) {
// A fix_lifetime of self does cannot have a side effect, because in the
// destructor, Self is deleted.
if (stripCasts(fl->getOperand()) == Self)
continue;
return DestructorEffects::Unknown;
}
// RefCounting operations on Self are ok since we are already in the
// destructor. RefCountingOperations on other instructions could have side
// effects though.
if (auto *RefInst = dyn_cast<RefCountingInst>(&I)) {
if (stripCasts(RefInst->getOperand(0)) == Self) {
// For now all ref counting insts have 1 operand. Put in an assert
// just in case.
assert(RefInst->getNumOperands() == 1 &&
"Make sure RefInst only has one argument.");
LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
"Self.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation "
"not on self.\n");
return DestructorEffects::Unknown;
}
if (auto *destroy = dyn_cast<DestroyValueInst>(&I)) {
if (stripCasts(destroy->getOperand()) == Self) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
"Self.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation "
"not on self.\n");
return DestructorEffects::Unknown;
}
// dealloc_stack can be ignored.
if (isa<DeallocStackInst>(I)) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! dealloc_stack can be "
"ignored.\n");
continue;
}
if (isa<BeginBorrowInst>(I) || isa<EndBorrowInst>(I) || isa<EndLifetimeInst>(I)) {
continue;
}
// dealloc_ref on self can be ignored, but dealloc_ref on anything else
// cannot be eliminated.
if (auto *DeallocRef = dyn_cast<DeallocRefInst>(&I)) {
if (stripCasts(DeallocRef->getOperand()) == Self) {
LLVM_DEBUG(llvm::dbgs() <<" SAFE! dealloc_ref on self.\n");
continue;
} else {
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! dealloc_ref on value "
"besides self.\n");
return DestructorEffects::Unknown;
}
}
// Storing into the object can be ignored.
if (auto *SI = dyn_cast<StoreInst>(&I))
if (stripAddressProjections(SI->getDest()) == Self) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction is a store "
"into self.\n");
continue;
}
if (isDestroyArray(&I)) {
// Check if the "destroyArray" destroys the tail elements of the object,
// like in Array.
SILValue addr = I.getOperand(1);
auto *atp = dyn_cast<AddressToPointerInst>(addr);
if (!atp)
return DestructorEffects::Unknown;
auto *rta = dyn_cast<RefTailAddrInst>(atp->getOperand());
if (!rta)
return DestructorEffects::Unknown;
effects = DestructorEffects::DestroysTailElems;
if (rta->getOperand() == Self)
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Unknown instruction.\n");
// Otherwise, we can't remove the deallocation completely.
return DestructorEffects::Unknown;
}
}
// We didn't find any side effects.
return effects;
}
//===----------------------------------------------------------------------===//
// Use Graph Analysis
//===----------------------------------------------------------------------===//
/// Returns false if Inst is an instruction that would require us to keep the
/// alloc_ref alive.
static bool canZapInstruction(SILInstruction *Inst, bool acceptRefCountInsts,
bool onlyAcceptTrivialStores) {
if (isa<DestroyValueInst>(Inst)) {
return acceptRefCountInsts;
}
if (isa<CopyValueInst>(Inst) || isa<BeginBorrowInst>(Inst) ||
isa<MoveValueInst>(Inst)) {
return true;
}
if (isa<EndInitLetRefInst>(Inst) || isa<BeginDeallocRefInst>(Inst) ||
isa<FixLifetimeInst>(Inst) || isa<EndBorrowInst>(Inst) ||
isa<UpcastInst>(Inst) || isa<UncheckedRefCastInst>(Inst))
return true;
// It is ok to eliminate various retains/releases. We are either removing
// everything or nothing.
if (isa<RefCountingInst>(Inst) ||
// dealloc_partial_ref invokes releases implicitly
isa<DeallocPartialRefInst>(Inst))
return acceptRefCountInsts;
if (isa<InjectEnumAddrInst>(Inst))
return true;
if (isa<KeyPathInst>(Inst))
return true;
// We know that the destructor has no side effects so we can remove the
// deallocation instruction too.
if (isa<DeallocationInst>(Inst) || isa<AllocationInst>(Inst))
return true;
// Much like deallocation, destroy addr is safe.
if (isa<DestroyAddrInst>(Inst))
return true;
// We have already checked that we are storing into the pointer before we
// added it to the worklist. Here, in the case we are allowing non-trivial
// stores, check if the store's source is lexical, if so return false.
// Deleting a dead object with non-trivial stores, will need compensating
// destroys at the store for it's source, which will shorten the lifetime of
// the store's source.
if (auto *store = dyn_cast<StoreInst>(Inst)) {
auto storeSrc = store->getSrc();
return storeSrc->getType().isTrivial(*store->getFunction()) ||
(!onlyAcceptTrivialStores &&
(!store->getFunction()->hasOwnership() || !storeSrc->isLexical()));
}
// Conceptually this instruction has no side-effects.
if (isa<InitExistentialAddrInst>(Inst))
return true;
if (isa<BeginAccessInst>(Inst) || isa<EndAccessInst>(Inst))
return true;
// The value form of zero init is not a user of any operand. The address
// form however is easily zappable because it's always a trivial store.
if (auto bi = dyn_cast<BuiltinInst>(Inst)) {
if (bi->getBuiltinKind() == BuiltinValueKind::ZeroInitializer ||
bi->getBuiltinKind() == BuiltinValueKind::PrepareInitialization) {
return true;
}
}
// If Inst does not read or write to memory, have side effects, and is not a
// terminator, we can zap it.
if (!Inst->mayHaveSideEffects() && !Inst->mayReadFromMemory() &&
!isa<TermInst>(Inst))
return true;
// Otherwise we do not know how to handle this instruction. Be conservative
// and don't zap it.
return false;
}
/// Returns true if all stores in \p users store to the tail elements of
/// \p allocRef, which are destroyed by the \p destroyArray builtin.
static bool onlyStoresToTailObjects(BuiltinInst *destroyArray,
const UserList &users,
AllocRefInstBase *allocRef) {
// Get the number of destroyed elements.
auto *literal = dyn_cast<IntegerLiteralInst>(destroyArray->getArguments()[2]);
if (!literal || literal->getValue().getSignificantBits() > 32)
return false;
int numDestroyed = literal->getValue().getSExtValue();
SILFunction *func = destroyArray->getFunction();
SILBasicBlock *storesBlock = nullptr;
// Check if the destroyArray destroys the tail elements of allocRef.
auto destroyPath = AccessPath::compute(destroyArray->getArguments()[1]);
AccessStorage storage = destroyPath.getStorage();
if (auto *beginDealloc = dyn_cast<BeginDeallocRefInst>(storage.getRoot())) {
destroyPath = AccessPath(
storage.transformReference(beginDealloc->getAllocation()),
destroyPath.getPathNode(),
destroyPath.getOffset());
}
if (destroyPath != AccessPath::forTailStorage(allocRef))
return false;
SmallVector<AccessPath, 32> pathsToCheck;
// Check all stores to the tail elements.
for (SILInstruction *user : users) {
auto *store = dyn_cast<StoreInst>(user);
if (!store)
continue;
assert(users.count(store->getSrc()->getDefiningInstruction()) == 0 &&
"Storing a use of an array (that would mean the array escapes)?");
// All stores must be in the same block. This ensure that the stores
// dominate the destroyArray (which may be in a different block).
if (storesBlock && store->getParent() != storesBlock)
return false;
storesBlock = store->getParent();
AccessPath storePath = AccessPath::compute(store->getDest());
if (!storePath.isValid())
return false;
// We don't care about trivial stores.
if (store->getSrc()->getType().isTrivial(*func))
continue;
// Check if it's a store to the tail elements.
if (!destroyPath.contains(storePath.withOffset(0)))
return false;
// Check if the store is within the range of the destroyed array. In OSSA
// we would not need this check. Otherwise it would be a memory lifetime
// failure.
if (storePath.getOffset() < 0 || storePath.getOffset() >= numDestroyed)
return false;
pathsToCheck.push_back(storePath);
}
// In non-OSSA we have to check if two paths overlap, because we could end up
// over-releasing the stored objects.
// Group the paths by tail-element index, so that we only have to check within
// a tail-element group.
std::sort(pathsToCheck.begin(), pathsToCheck.end(), [](AccessPath p1, AccessPath p2) {
return p1.getOffset() < p2.getOffset();
});
for (unsigned i = 0, n = pathsToCheck.size(); i < n; ++i) {
for (unsigned j = i + 1;
j < n && pathsToCheck[i].getOffset() == pathsToCheck[j].getOffset(); ++j) {
if (pathsToCheck[i].mayOverlap(pathsToCheck[j]))
return false;
// Limit the number of checks to avoid quadratic complexity.
if (j > i + 8)
return false;
}
}
return true;
}
/// Analyze the use graph of AllocRef for any uses that would prevent us from
/// zapping it completely.
static bool
hasUnremovableUsers(SILInstruction *allocation, UserList *Users,
bool acceptRefCountInsts, bool onlyAcceptTrivialStores) {
SmallVector<SILInstruction *, 16> Worklist;
Worklist.push_back(allocation);
LLVM_DEBUG(llvm::dbgs() << " Analyzing Use Graph.");
SmallVector<RefElementAddrInst *, 8> refElementAddrs;
BuiltinInst *destroyArray = nullptr;
auto *allocRef = dyn_cast<AllocRefInstBase>(allocation);
while (!Worklist.empty()) {
SILInstruction *I = Worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *I);
// Insert the instruction into our InvolvedInstructions set. If we have
// already seen it, then don't reprocess all of the uses.
if (Users && !Users->insert(I)) {
LLVM_DEBUG(llvm::dbgs() << " Already seen skipping...\n");
continue;
} else if (auto *rea = dyn_cast<RefElementAddrInst>(I)) {
if (rea != allocation && !rea->getType().isTrivial(*rea->getFunction()))
refElementAddrs.push_back(rea);
} else if (allocRef && isDestroyArray(I)) {
if (destroyArray)
return true;
destroyArray = cast<BuiltinInst>(I);
} else if (!canZapInstruction(I, acceptRefCountInsts,
onlyAcceptTrivialStores)) {
LLVM_DEBUG(llvm::dbgs() << " Found instruction we can't zap...\n");
return true;
}
// At this point, we can remove the instruction as long as all of its users
// can be removed as well. Scan its users and add them to the worklist for
// recursive processing.
for (auto result : I->getResults()) {
for (auto *Op : result->getUses()) {
auto *User = Op->getUser();
// Make sure that we are only storing into our users, not storing our
// users which would be an escape.
if (auto *SI = dyn_cast<StoreInst>(User))
if (Op->get() == SI->getSrc()) {
LLVM_DEBUG(llvm::dbgs() << " Found store of pointer. "
"Failure: "
<< *SI);
return true;
}
// Otherwise, add normal instructions to the worklist for processing.
Worklist.push_back(User);
}
}
}
if (!allocation->getFunction()->hasOwnership()) {
// In non-ossa, if we found a destroy array builtin that destroys the tail
// elements, ensure all stores are to the taile elems.
if (destroyArray) {
return !onlyStoresToTailObjects(destroyArray, *Users, allocRef);
}
// In non-OSSA we cannot reliably track the lifetime of non-trivial stored
// properties. Removing the dead alloc_ref might leak a property value.
for (RefElementAddrInst *rea : refElementAddrs) {
// Re-run the check with not accepting non-trivial stores.
if (hasUnremovableUsers(rea, nullptr, acceptRefCountInsts,
/*onlyAcceptTrivialStores*/ true))
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// NonTrivial DeadObject Elimination
//===----------------------------------------------------------------------===//
/// Determine if an object is dead. Compute its original lifetime. Find the
/// lifetime endpoints reached by each store of a refcounted object into the
/// object.
///
/// TODO: Use this to remove nontrivial dead alloc_ref/alloc_stack, not just
/// dead arrays. We just need a slightly better destructor analysis to prove
/// that it only releases elements.
class DeadObjectAnalysis {
// Map each address projection of this object to a list of stores.
// Do not iterate over this map's entries.
using AddressToStoreMap =
llvm::DenseMap<IndexTrieNode*, llvm::SmallVector<StoreInst*, 4> >;
// The value of the object's address at the point of allocation.
SILValue NewAddrValue;
// Track all users that extend the lifetime of the object.
UserList AllUsers;
// Trie of stored locations.
std::unique_ptr<IndexTrieNode> AddressProjectionTrie;
// Track all stores of refcounted elements per address projection.
AddressToStoreMap StoredLocations;
// Are any uses behind a PointerToAddressInst?
bool SeenPtrToAddr;
public:
explicit DeadObjectAnalysis(SILValue V):
NewAddrValue(V), AddressProjectionTrie(nullptr), SeenPtrToAddr(false) {}
bool analyze();
ArrayRef<SILInstruction*> getAllUsers() const {
return ArrayRef<SILInstruction*>(AllUsers.begin(), AllUsers.end());
}
template<typename Visitor>
void visitStoreLocations(Visitor visitor) {
visitStoreLocations(visitor, AddressProjectionTrie.get());
}
private:
void addStore(StoreInst *Store, IndexTrieNode *AddressNode);
bool recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode *AddressNode,
bool IsInteriorAddress);
template<typename Visitor>
void visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode);
};
} // end anonymous namespace
// Record a store into this object.
void DeadObjectAnalysis::
addStore(StoreInst *Store, IndexTrieNode *AddressNode) {
if (Store->getSrc()->getType().isTrivial(*Store->getFunction()))
return;
// SSAUpdater cannot handle multiple defs in the same blocks. Therefore, we
// ensure that only one store per block is present in the StoredLocations.
auto &StoredLocs = StoredLocations[AddressNode];
for (auto &OtherSt : StoredLocs) {
// In case the object's address is stored in itself.
if (OtherSt == Store)
return;
if (OtherSt->getParent() == Store->getParent()) {
for (auto II = std::next(Store->getIterator()),
IE = Store->getParent()->end();
II != IE; ++II) {
if (&*II == OtherSt)
return; // Keep the other store.
}
// Replace OtherSt with this store.
OtherSt = Store;
return;
}
}
StoredLocations[AddressNode].push_back(Store);
}
// Collect instructions that either initialize or release any values at the
// object defined by defInst.
//
// Populates AllUsers, AddressProjectionTrie, and StoredLocations.
//
// If a use is visited that potentially causes defInst's address to
// escape, then return false without fully populating the data structures.
//
// `InteriorAddress` is true if the current address projection already includes
// a struct/ref/tuple element address. index_addr is only expected at the top
// level. The first non-index element address encountered pushes an "zero index"
// address node to represent the implicit index_addr #0. We do not support
// nested indexed data types in native SIL.
bool DeadObjectAnalysis::
recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode* AddressNode,
bool IsInteriorAddress) {
for (auto Op : DefInst->getUses()) {
auto User = Op->getUser();
// Lifetime endpoints that don't allow the address to escape.
if (isa<RefCountingInst>(User) || isa<DebugValueInst>(User) ||
isa<FixLifetimeInst>(User) || isa<DestroyValueInst>(User) ||
isa<EndBorrowInst>(User)) {
AllUsers.insert(User);
continue;
}
// Initialization points.
if (auto *Store = dyn_cast<StoreInst>(User)) {
// Bail if this address is stored to another object.
if (Store->getDest() != DefInst) {
LLVM_DEBUG(llvm::dbgs() <<" Found an escaping store: " << *User);
return false;
}
IndexTrieNode *StoreAddrNode = AddressNode;
// Push an extra zero index node for a store to noninterior address.
if (!IsInteriorAddress)
StoreAddrNode = AddressNode->getChild(0);
addStore(Store, StoreAddrNode);
AllUsers.insert(User);
continue;
}
if (auto *MDI = dyn_cast<MarkDependenceInst>(User)) {
if (!recursivelyCollectInteriorUses(MDI, AddressNode,
IsInteriorAddress)) {
return false;
}
continue;
}
if (auto *bb = dyn_cast<BeginBorrowInst>(User)) {
if (!recursivelyCollectInteriorUses(bb, AddressNode,
IsInteriorAddress)) {
return false;
}
continue;
}
if (auto PTAI = dyn_cast<PointerToAddressInst>(User)) {
// Only one pointer-to-address is allowed for safety.
if (SeenPtrToAddr)
return false;
SeenPtrToAddr = true;
if (!recursivelyCollectInteriorUses(PTAI, AddressNode, IsInteriorAddress))
return false;
continue;
}
// Recursively follow projections.
if (auto *svi = dyn_cast<SingleValueInstruction>(User)) {
ProjectionIndex PI(svi);
if (PI.isValid()) {
IndexTrieNode *ProjAddrNode = AddressNode;
bool ProjInteriorAddr = IsInteriorAddress;
if (Projection::isAddressProjection(svi)) {
if (isa<IndexAddrInst>(svi)) {
// Don't support indexing within an interior address.
if (IsInteriorAddress)
return false;
}
else if (!IsInteriorAddress) {
// Push an extra zero index node for the first interior address.
ProjAddrNode = AddressNode->getChild(0);
ProjInteriorAddr = true;
}
}
else if (IsInteriorAddress) {
// Don't expect to extract values once we've taken an address.
return false;
}
if (!recursivelyCollectInteriorUses(svi,
ProjAddrNode->getChild(PI.Index),
ProjInteriorAddr)) {
return false;
}
continue;
}
ArraySemanticsCall AS(svi);
if (AS.getKind() == ArrayCallKind::kArrayFinalizeIntrinsic) {
if (!recursivelyCollectInteriorUses(svi, AddressNode, IsInteriorAddress))
return false;
continue;
}
}
// Otherwise bail.
LLVM_DEBUG(llvm::dbgs() << " Found an escaping use: " << *User);
return false;
}
return true;
}
// Track the lifetime, release points, and released values referenced by a
// newly allocated object.
bool DeadObjectAnalysis::analyze() {
LLVM_DEBUG(llvm::dbgs() << " Analyzing nontrivial dead object: "
<< NewAddrValue);
// Populate AllValues, AddressProjectionTrie, and StoredLocations.
AddressProjectionTrie.reset(new IndexTrieNode());
if (!recursivelyCollectInteriorUses(NewAddrValue,
AddressProjectionTrie.get(), false)) {
return false;
}
// If all stores are leaves in the AddressProjectionTrie, then we can analyze
// the stores that reach the end of the object lifetime. Otherwise bail.
// This iteration order is nondeterministic but has no impact.
for (auto &AddressToStoresPair : StoredLocations) {
IndexTrieNode *Location = AddressToStoresPair.first;
if (!Location->isLeaf())
return false;
}
return true;
}
template<typename Visitor>
void DeadObjectAnalysis::
visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode) {
if (AddressNode->isLeaf()) {
auto LocI = StoredLocations.find(AddressNode);
if (LocI != StoredLocations.end())
visitor(LocI->second);
return;
}
for (auto *SubAddressNode : AddressNode->getChildren())
visitStoreLocations(visitor, SubAddressNode);
}
// At each release point, release the reaching values that have been stored to
// this address.
//
// The caller has already determined that all Stores are to the same element
// within an otherwise dead object.
static void insertReleases(ArrayRef<StoreInst*> Stores,
ArrayRef<SILInstruction*> ReleasePoints,
SILSSAUpdater &SSAUp) {
assert(!Stores.empty());
SILValue StVal = Stores.front()->getSrc();
SSAUp.initialize(StVal->getFunction(), StVal->getType(),
StVal->getOwnershipKind());
for (auto *Store : Stores)
SSAUp.addAvailableValue(Store->getParent(), Store->getSrc());
SILLocation Loc = Stores[0]->getLoc();
for (auto *RelPoint : ReleasePoints) {
SILBuilder B(RelPoint);
// This does not use the SSAUpdater::RewriteUse API because it does not do
// the right thing for local uses. We have already ensured a single store
// per block, and all release points occur after all stores. Therefore we
// can simply ask SSAUpdater for the reaching store.
SILValue RelVal = SSAUp.getValueAtEndOfBlock(RelPoint->getParent());
B.emitDestroyValueOperation(Loc, RelVal);
}
}
//===----------------------------------------------------------------------===//
// Function Processing
//===----------------------------------------------------------------------===//
/// Does this instruction perform object allocation with no other observable
/// side effect?
static bool isAllocatingApply(SILInstruction *Inst) {
ArraySemanticsCall ArrayAlloc(Inst);
return ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitialized ||
ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitializedIntrinsic;
}
namespace {
class DeadObjectElimination : public SILFunctionTransform {
llvm::DenseMap<SILType, DestructorEffects> DestructorAnalysisCache;
InstructionDeleter deleter;
DominanceInfo *domInfo = nullptr;
void removeInstructions(ArrayRef<SILInstruction*> toRemove);
/// Try to salvage the debug info for a dead instruction removed by
/// DeadObjectElimination.
///
/// Dead stores will be replaced by a debug value for the object variable,
/// using a fragment expression. By walking from the store to the allocation,
/// we can know which member of the object is being assigned, and create
/// fragments for each member. Other instructions are not salvaged.
/// Currently only supports dead stack-allocated objects.
void salvageDebugInfo(SILInstruction *toBeRemoved);
std::optional<SILDebugVariable> buildDIExpression(SILInstruction *current);
bool processAllocRef(AllocRefInstBase *ARI);
bool processAllocStack(AllocStackInst *ASI);
bool processKeyPath(KeyPathInst *KPI);
bool processAllocBox(AllocBoxInst *ABI){ return false;}
bool processAllocApply(ApplyInst *AI, DeadEndBlocks &DEBlocks);
bool insertCompensatingReleases(SILInstruction *before,
const UserList &users);
bool getDeadInstsAfterInitializerRemoved(
ApplyInst *AI, llvm::SmallVectorImpl<SILInstruction *> &ToDestroy);
bool removeAndReleaseArray(
SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks);
bool processFunction(SILFunction &Fn) {
DeadEndBlocks DEBlocks(&Fn);
DestructorAnalysisCache.clear();
LLVM_DEBUG(llvm::dbgs() << "Processing " << Fn.getName() << "\n");
bool Changed = false;
for (auto &BB : Fn) {
for (SILInstruction &inst : BB.deletableInstructions()) {
if (auto *A = dyn_cast<AllocRefInstBase>(&inst))
Changed |= processAllocRef(A);
else if (auto *A = dyn_cast<AllocStackInst>(&inst))
Changed |= processAllocStack(A);
else if (auto *KPI = dyn_cast<KeyPathInst>(&inst))
Changed |= processKeyPath(KPI);
else if (auto *A = dyn_cast<AllocBoxInst>(&inst))
Changed |= processAllocBox(A);
else if (auto *A = dyn_cast<ApplyInst>(&inst))
Changed |= processAllocApply(A, DEBlocks);
}
deleter.cleanupDeadInstructions();
}
return Changed;
}
void run() override {
assert(!domInfo);
if (processFunction(*getFunction())) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
domInfo = nullptr;
}
};
} // end anonymous namespace
void
DeadObjectElimination::removeInstructions(ArrayRef<SILInstruction*> toRemove) {
for (auto *I : toRemove) {
I->replaceAllUsesOfAllResultsWithUndef();
// Now we know that I should not have any uses... erase it from its parent.
deleter.forceDelete(I);
}
}
void DeadObjectElimination::salvageDebugInfo(SILInstruction *toBeRemoved) {
auto *SI = dyn_cast<StoreInst>(toBeRemoved);
if (!SI)
return;
auto *parent = SI->getDest()->getDefiningInstruction();
auto varInfo = buildDIExpression(parent);
if (!varInfo)
return;
// Note: The instruction should logically be in SI's scope.
// However, LLVM does not support variables and stores in different scopes,
// so we use the variable's scope.
SILBuilder Builder(SI, varInfo->Scope);
Builder.createDebugValue(SI->getLoc(), SI->getSrc(), *varInfo);
}
std::optional<SILDebugVariable>
DeadObjectElimination::buildDIExpression(SILInstruction *current) {
if (!current)
return {};
if (auto dvci = dyn_cast<AllocStackInst>(current)) {
auto var = dvci->getVarInfo();
if (!var)
return {};
if (!var->Type)
var->Type = dvci->getElementType();
return var;
}
if (auto *tupleAddr = dyn_cast<TupleElementAddrInst>(current)) {
auto *definer = tupleAddr->getOperand().getDefiningInstruction();
auto path = buildDIExpression(definer);
if (!path)
return {};
path->DIExpr.append(SILDebugInfoExpression::createTupleFragment(
tupleAddr->getTupleType(), tupleAddr->getFieldIndex()));
return path;
}
if (auto *structAddr = dyn_cast<StructElementAddrInst>(current)) {
auto *definer = structAddr->getOperand().getDefiningInstruction();
auto path = buildDIExpression(definer);
if (!path)
return {};
path->DIExpr.append(SILDebugInfoExpression::createFragment(
structAddr->getField()));
return path;
}
return {};
}
bool DeadObjectElimination::processAllocRef(AllocRefInstBase *ARI) {
// Ok, we have an alloc_ref. Check the cache to see if we have already
// computed the destructor behavior for its SILType.
DestructorEffects destructorEffects;
SILType Type = ARI->getType();
auto CacheSearchResult = DestructorAnalysisCache.find(Type);
if (CacheSearchResult != DestructorAnalysisCache.end()) {
// Ok we found a value in the cache.
destructorEffects = CacheSearchResult->second;
} else {
// We did not find a value in the cache for our destructor. Analyze the
// destructor to make sure it has no side effects. For now this only
// supports alloc_ref of classes so any alloc_ref with a reference type
// that is not a class this will return false for. Once we have analyzed
// it, set Behavior to that value and insert the value into the Cache.
//
// TODO: We should be able to handle destructors that do nothing but release
// members of the object.
destructorEffects = doesDestructorHaveSideEffects(ARI);
DestructorAnalysisCache[Type] = destructorEffects;
}
// Our destructor has no side effects, so if we can prove that no loads
// escape, then we can completely remove the use graph of this alloc_ref.
UserList UsersToRemove;
if (hasUnremovableUsers(ARI, &UsersToRemove,
/*acceptRefCountInsts=*/ destructorEffects != DestructorEffects::Unknown,
/*onlyAcceptTrivialStores*/false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
if (!ARI->getFunction()->hasOwnership()) {
// Find the instruction which releases the object's tail elements.
SILInstruction *releaseOfTailElems = nullptr;
for (SILInstruction *user : UsersToRemove) {
if (isDestroyArray(user) ||
(destructorEffects == DestructorEffects::DestroysTailElems &&
isa<RefCountingInst>(user) && user->mayRelease())) {
// Bail if we find multiple such instructions.
if (releaseOfTailElems)
return false;
releaseOfTailElems = user;
}
}
if (releaseOfTailElems) {
if (!insertCompensatingReleases(releaseOfTailElems, UsersToRemove)) {
return false;
}
}
}
if (ARI->getFunction()->hasOwnership()) {
// In ossa, we are going to delete the dead element store and insert a
// destroy_value of the store's source. This is shortening the store's
// source lifetime. Check if there was a pointer escape of the store's
// source, if so bail out.
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
if (findPointerEscape(store->getSrc())) {
return false;
}
}
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) {
continue;
}
SILBuilderWithScope(store).createDestroyValue(store->getLoc(),
store->getSrc());
}
}
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_ref.\n");
++DeadAllocRefEliminated;
return true;
}
bool DeadObjectElimination::processAllocStack(AllocStackInst *ASI) {
// Trivial types don't have destructors.
bool isTrivialType = ASI->getElementType().isTrivial(*ASI->getFunction());
// In non-ossa, only accept trivial stores if we have a non-trivial
// alloc_stack
bool onlyAcceptTrivialStores =
ASI->getFunction()->hasOwnership() ? false : !isTrivialType;
UserList UsersToRemove;
if (hasUnremovableUsers(ASI, &UsersToRemove, /*acceptRefCountInsts=*/true,
onlyAcceptTrivialStores)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
for (auto *I : UsersToRemove)
salvageDebugInfo(I);
if (ASI->getFunction()->hasOwnership()) {
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
// In ossa, we are going to delete the dead store and insert a
// destroy_value of the store's source. This is shortening the store's
// source lifetime. Check if there was a pointer escape of the store's
// source, if so bail out.
if (findPointerEscape(store->getSrc())) {
return false;
}
}
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
SILBuilderWithScope(store).createDestroyValue(store->getLoc(),
store->getSrc());
}
}
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_stack.\n");
++DeadAllocStackEliminated;
return true;
}
bool DeadObjectElimination::processKeyPath(KeyPathInst *KPI) {
UserList UsersToRemove;
if (hasUnremovableUsers(KPI, &UsersToRemove, /*acceptRefCountInsts=*/ true,
/*onlyAcceptTrivialStores*/ false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
bool hasOwnership = KPI->getFunction()->hasOwnership();
for (const Operand &Op : KPI->getPatternOperands()) {
// In non-ossa, bail out if we have non-trivial pattern operands.
if (!hasOwnership) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
return false;
continue;
}
// In ossa, bail out if we have non-trivial pattern operand values that are
// lexical.
if (Op.get()->isLexical()) {
return false;
}
}
if (KPI->getFunction()->hasOwnership()) {
for (const Operand &Op : KPI->getPatternOperands()) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
continue;
// In ossa, we are going to delete the dead keypath which was consuming
// the pattern operand and insert a destroy_value of the pattern operand
// value. This is shortening the pattern operand value's lifetime. Check
// if there was a pointer escape, if so bail out.
if (findPointerEscape(Op.get())) {
return false;
}
}
for (const Operand &Op : KPI->getPatternOperands()) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
continue;
SILBuilderWithScope(KPI).createDestroyValue(KPI->getLoc(), Op.get());
}
}
// Remove the keypath and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating keypath.\n");
++DeadKeyPathEliminated;
return true;
}
/// If AI is the version of an initializer where we pass in either an apply or
/// an alloc_ref to initialize in place, validate that we are able to continue
/// optimizing and return To
bool DeadObjectElimination::getDeadInstsAfterInitializerRemoved(
ApplyInst *AI, llvm::SmallVectorImpl<SILInstruction *> &ToDestroy) {
assert(ToDestroy.empty() && "We assume that ToDestroy is empty, so on "
"failure we can clear without worrying about the "
"caller accumulating and thus our eliminating "
"passed in state.");
SILValue Arg0 = AI->getArgument(0);
if (Arg0->getType().isExistentialType()) {
// This is a version of the initializer which receives a pre-allocated
// buffer as first argument. To completely eliminate the allocation, we must
// destroy the extra allocations as well as the initializer,
if (auto *Result = dyn_cast<ApplyInst>(Arg0)) {
ToDestroy.emplace_back(Result);
return true;
}
return false;
}
if (auto *ARI = dyn_cast<AllocRefInstBase>(Arg0)) {
if (all_of(ARI->getUses(), [&](Operand *Op) -> bool {
auto *user = Op->getUser();
if (user == AI)
return true;
if (isa<StrongReleaseInst>(user) || isa<DestroyValueInst>(user)) {
ToDestroy.emplace_back(user);
return true;
}
return false;
})) {
return true;
}
}
// We may have added elements to the array before we failed. To avoid such a
// problem, we clear the out array here. We assert at the beginning that the
// out array is empty, so this is safe.
ToDestroy.clear();
return true;
}
// Attempt to remove the array allocated at NewAddrValue and release its
// refcounted elements.
//
// This is tightly coupled with the implementation of array.uninitialized.
// The call to allocate an uninitialized array returns two values:
// (Array<E> ArrayBase, UnsafeMutable<E> ArrayElementStorage)
//
// TODO: This relies on the lowest level array.uninitialized not being
// inlined. To do better we could either run this pass before semantic inlining,
// or we could also handle calls to array.init.
bool DeadObjectElimination::removeAndReleaseArray(
SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks) {
SILValue ArrayDef = nullptr;
SILValue StorageAddress = nullptr;
if (NewArrayValue->getFunction()->hasOwnership()) {
auto *destructureTuple =
NewArrayValue->getSingleConsumingUserOfType<DestructureTupleInst>();
if (!destructureTuple) {
return false;
}
if (destructureTuple->getNumResults() != 2) {
return false;
}
ArrayDef = destructureTuple->getResult(0);
StorageAddress = destructureTuple->getResult(1);
} else {
for (auto *Op : NewArrayValue->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return false;
if (TupleElt->getFieldIndex() == 0 && !ArrayDef) {
ArrayDef = TupleElt;
} else if (TupleElt->getFieldIndex() == 1 && !StorageAddress) {
StorageAddress = TupleElt;
} else {
return false;
}
}
}
if (!ArrayDef)
return false; // No Array object to delete.
assert(!ArrayDef->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array object uses.
DeadObjectAnalysis DeadArray(ArrayDef);
if (!DeadArray.analyze())
return false;
// Require all stores to be into the array storage not the array object,
// otherwise bail.
bool HasStores = false;
DeadArray.visitStoreLocations([&](ArrayRef<StoreInst*>){ HasStores = true; });
if (HasStores)
return false;
// Remove references to empty arrays.
if (!StorageAddress) {
removeInstructions(DeadArray.getAllUsers());
return true;
}
assert(StorageAddress->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array storage uses.
DeadObjectAnalysis DeadStorage(StorageAddress);
if (!DeadStorage.analyze())
return false;
// Find array object lifetime.
ValueLifetimeAnalysis VLA(NewArrayValue, DeadArray.getAllUsers());
// Check that all storage users are in the Array's live blocks.
for (auto *User : DeadStorage.getAllUsers()) {
if (!VLA.isWithinLifetime(User))
return false;
}
// For each store location, insert releases.
SILSSAUpdater SSAUp;
ValueLifetimeAnalysis::Frontier ArrayFrontier;
if (!VLA.computeFrontier(ArrayFrontier,
ValueLifetimeAnalysis::UsersMustPostDomDef,
&DEBlocks)) {
// In theory the allocated object must be released on all paths in which
// some object initialization occurs. If not (for some reason) we bail.
return false;
}
DeadStorage.visitStoreLocations([&] (ArrayRef<StoreInst*> Stores) {
insertReleases(Stores, ArrayFrontier, SSAUp);
});
// Delete all uses of the dead array and its storage address.
removeInstructions(DeadArray.getAllUsers());
removeInstructions(DeadStorage.getAllUsers());
return true;
}
bool DeadObjectElimination::processAllocApply(ApplyInst *AI,
DeadEndBlocks &DEBlocks) {
// Currently only handle array.uninitialized
if (!isAllocatingApply(AI))
return false;
llvm::SmallVector<SILInstruction *, 8> instsDeadAfterInitializerRemoved;
if (!getDeadInstsAfterInitializerRemoved(AI,
instsDeadAfterInitializerRemoved))
return false;
if (!removeAndReleaseArray(AI, DEBlocks))
return false;
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating apply allocate(...).\n");
auto *ARI = dyn_cast<AllocRefInst>(AI->getArgument(0));
deleter.forceDeleteWithUsers(AI);
for (auto *toDelete : instsDeadAfterInitializerRemoved) {
deleter.trackIfDead(toDelete);
}
if (ARI) {
deleter.forceDeleteWithUsers(ARI);
}
++DeadAllocApplyEliminated;
return true;
}
/// Inserts releases of all stores in \p users.
/// Returns false, if this is not possible.
bool DeadObjectElimination::insertCompensatingReleases(SILInstruction *before,
const UserList &users) {
// First check if all stored values dominate the release-point.
for (SILInstruction *user : users) {
if (auto *store = dyn_cast<StoreInst>(user)) {
if (!domInfo) {
domInfo = getAnalysis<DominanceAnalysis>()->get(before->getFunction());
}
SILBasicBlock *srcBlock = store->getSrc()->getParentBlock();
if (!domInfo->dominates(srcBlock, before->getParent()))
return false;
}
}
// Second, create the releases.
for (SILInstruction *user : users) {
if (auto *store = dyn_cast<StoreInst>(user)) {
createDecrementBefore(store->getSrc(), before);
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
SILTransform *swift::createDeadObjectElimination() {
return new DeadObjectElimination();
}