Files
swift-mirror/stdlib/public/Concurrency/TaskGroup.cpp
Rokhini Prabhu 2e6baf279d Add support to addStatusRecord and removeStatusRecord so that the flags
field of an ActiveTaskStatus can also be modified while the
TaskStatusRecord list is being modified. Make the StatusRecordLock
reentrant.

Radar-Id: rdar://problem/88093007
2023-02-08 17:29:05 -08:00

1877 lines
73 KiB
C++

//===--- TaskGroup.cpp - Task Groups --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management for child tasks that are children of a task group.
//
//===----------------------------------------------------------------------===//
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "bitset"
#include "queue" // TODO: remove and replace with usage of our mpsc queue
#include "string"
#include "swift/ABI/HeapObject.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskGroup.h"
#include "swift/Basic/RelativePointer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#if !SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY
#include <mutex>
#endif
#include <assert.h>
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
using namespace swift;
#if 0
#define SWIFT_TASK_GROUP_DEBUG_LOG(group, fmt, ...) \
fprintf(stderr, "[%#lx] [%s:%d](%s) group(%p%s) " fmt "\n", \
(unsigned long)Thread::current().platformThreadId(), \
__FILE__, __LINE__, __FUNCTION__, \
group, group->isDiscardingResults() ? ",discardResults" : "", \
__VA_ARGS__)
#else
#define SWIFT_TASK_GROUP_DEBUG_LOG(group, fmt, ...) (void)0
#endif
using FutureFragment = AsyncTask::FutureFragment;
namespace {
class TaskStatusRecord;
struct TaskGroupStatus;
class AccumulatingTaskGroup;
class DiscardingTaskGroup;
/******************************************************************************/
/*************************** TASK GROUP BASE **********************************/
/******************************************************************************/
class TaskGroupBase : public TaskGroupTaskStatusRecord {
protected:
#if SWIFT_STDLIB_SINGLE_THREADED_CONCURRENCY || SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// Synchronization is simple here. In a single threaded mode, all swift tasks
// run on a single thread so no coordination is needed. In a task-to-thread
// model, only the parent task which created the task group can
//
// (a) add child tasks to a group
// (b) run the child tasks
//
// So we shouldn't need to worry about coordinating between child tasks and
// parents in a task group
void lock() const {}
void unlock() const {}
#else
// TODO: move to lockless via the status atomic (make readyQueue an mpsc_queue_t<ReadyQueueItem>)
mutable std::mutex mutex_;
void lock() const { mutex_.lock(); }
void unlock() const { mutex_.unlock(); }
#endif
/// Used for queue management, counting number of waiting and ready tasks
std::atomic<uint64_t> status;
/// The task currently waiting on `group.next()`. Since only the owning
/// task can ever be waiting on a group, this is just either a reference
/// to that task or null.
std::atomic<AsyncTask *> waitQueue;
const Metadata *successType;
explicit TaskGroupBase(const Metadata* T, uint64_t initialStatus)
: TaskGroupTaskStatusRecord(),
status(initialStatus),
waitQueue(nullptr),
successType(T) {}
TaskGroupBase(const TaskGroupBase &) = delete;
public:
virtual ~TaskGroupBase() {}
TaskStatusRecordKind getKind() const {
return Flags.getKind();
}
/// Describes the status of the group.
enum class ReadyStatus : uintptr_t {
/// The task group is empty, no tasks are pending.
/// Return immediately, there is no point in suspending.
///
/// The storage is not accessible.
Empty = 0b00,
/// A raw SwiftError is stored in the item's storage, rather than a Task with an Error inside.
///
/// Only used by DiscardingTaskGroup.
RawError = 0b01,
/// The future has completed with result (of type \c resultType).
///
/// Only used by AccumulatingTaskGroup.
Success = 0b10,
/// The future has completed by throwing an error (an \c Error existential).
///
/// Only used by AccumulatingTaskGroup.
Error = 0b11,
};
/// Status of a poll, i.e. is there a result we can return, or do we have to suspend.
enum class PollStatus : uintptr_t {
/// The group is known to be empty and we can immediately return nil.
Empty = 0b00,
/// The task has been enqueued to the groups wait queue.
MustWait = 0b01,
/// The task has completed with result (of type \c resultType).
Success = 0b10,
/// The task has completed by throwing an error (an \c Error existential).
Error = 0b11,
};
/// The result of waiting on a task group.
struct PollResult {
PollStatus status; // TODO: pack it into storage pointer or not worth it?
/// Storage for the result of the future.
///
/// When the future completed normally, this is a pointer to the storage
/// of the result value, which lives inside the future task itself.
///
/// When the future completed by throwing an error, this is the error
/// object itself.
OpaqueValue *storage;
const Metadata *successType;
/// The completed task, if necessary to keep alive until consumed by next().
///
/// # Important: swift_release
/// If if a task is returned here, the task MUST be swift_released
/// once we are done with it, to balance out the retain made before
/// when the task was enqueued into the ready queue to keep it alive
/// until a next() call eventually picks it up.
AsyncTask *retainedTask;
static PollResult get(AsyncTask *asyncTask, bool hadErrorResult) {
auto fragment = asyncTask->futureFragment();
return PollResult{
/*status*/ hadErrorResult ?
PollStatus::Error :
PollStatus::Success,
/*storage*/ hadErrorResult ?
reinterpret_cast<OpaqueValue *>(fragment->getError()) :
fragment->getStoragePtr(),
/*successType*/fragment->getResultType(),
/*task*/ asyncTask
};
}
static PollResult getEmpty(const Metadata *successType) {
return PollResult{
/*status*/PollStatus::Empty,
/*storage*/nullptr,
/*successType*/successType,
/*task*/nullptr
};
}
static PollResult getError(SwiftError *error) {
assert(error);
return PollResult{
/*status*/PollStatus::Error,
/*storage*/reinterpret_cast<OpaqueValue *>(error),
/*successType*/nullptr,
/*task*/nullptr
};
}
};
/// An item within the message queue of a group.
struct ReadyQueueItem {
/// Mask used for the low status bits in a message queue item.
static const uintptr_t statusMask = 0x03;
uintptr_t storage;
ReadyStatus getStatus() const {
return static_cast<ReadyStatus>(storage & statusMask);
}
AsyncTask *getTask() const {
assert(getStatus() != ReadyStatus::RawError && "storage did contain raw error pointer, not task!");
return reinterpret_cast<AsyncTask *>(storage & ~statusMask);
}
SwiftError *getRawError(DiscardingTaskGroup *group) const {
assert(group && "only a discarding task group uses raw errors in the ready queue");
assert(getStatus() == ReadyStatus::RawError && "storage did not contain raw error pointer!");
return reinterpret_cast<SwiftError *>(storage & ~statusMask);
}
static ReadyQueueItem get(ReadyStatus status, AsyncTask *task) {
assert(task == nullptr || task->isFuture());
return ReadyQueueItem{
reinterpret_cast<uintptr_t>(task) | static_cast<uintptr_t>(status)};
}
static ReadyQueueItem getRawError(DiscardingTaskGroup *group, SwiftError *error) {
assert(group && "only a discarding task group uses raw errors in the ready queue");
return ReadyQueueItem{
reinterpret_cast<uintptr_t>(error) | static_cast<uintptr_t>(ReadyStatus::RawError)};
}
};
/// Destroy the storage associated with the group.
virtual void destroy() = 0;
bool isAccumulatingResults() const {
return !isDiscardingResults();
}
virtual bool isDiscardingResults() const = 0;
/// Any TaskGroup always IS its own TaskRecord.
/// This allows us to easily get the group while cancellation is propagated throughout the task tree.
TaskGroupTaskStatusRecord *getTaskRecord() {
return static_cast<TaskGroupTaskStatusRecord *>(this);
}
// ==== Queue operations ----------------------------------------------------
/// Offer result of a task into this task group.
///
/// If possible, and an existing task is already waiting on next(), this will
/// schedule it immediately. If not, the result is enqueued and will be picked
/// up whenever a task calls next() the next time.
virtual void offer(AsyncTask *completed, AsyncContext *context) = 0;
/// Attempt to park the `waitingTask` in the waiting queue.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that there are no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
///
/// A `discardResults` TaskGroup is not able to wait on individual completions,
/// instead, it can only await on "all pending tasks have been processed".
///
/// There can be only at-most-one waiting task on a group at any given time,
/// and the waiting task is expected to be the parent task in which the group
/// body is running.
PollResult tryEnqueueWaitingTask(AsyncTask *waitingTask);
// Enqueue the completed task onto ready queue if there are no waiting tasks yet
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) = 0;
/// Resume waiting task with result from `completedTask`
void resumeWaitingTask(AsyncTask *completedTask, TaskGroupStatus &assumed, bool hadErrorResult);
// ==== Status manipulation -------------------------------------------------
TaskGroupStatus statusLoadRelaxed() const;
std::string statusString() const;
bool isEmpty() const;
uint64_t pendingTasks() const;
/// Compare-and-set old status to a status derived from the old one,
/// by simultaneously decrementing one Pending and one Waiting tasks.
///
/// This is used to atomically perform a waiting task completion.
/// The change is made 'relaxed' and may have to be retried.
///
/// This can be safely used in a discarding task group as well,
/// where the "ready" change will simply be ignored, since there
/// are no ready bits to change.
bool statusCompletePendingReadyWaiting(TaskGroupStatus &old);
/// Cancel the task group and all tasks within it.
///
/// Returns `true` if this is the first time cancelling the group, false otherwise.
bool isCancelled() const;
/// Set waiting status bit.
///
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus statusMarkWaitingAssumeAcquire();
/// Remove waiting status bit.
TaskGroupStatus statusRemoveWaitingRelease();
/// Cancels the group and returns true if was already cancelled before.
/// After this function returns, the group is guaranteed to be cancelled.
///
/// Prefer calling cancelAll if the intent is to cancel the group and all of its children.
///
/// \return true, if the group was already cancelled before, and false if it wasn't cancelled before (but now is).
bool statusCancel();
/// Cancel the group and all of its child tasks recursively.
/// This also sets
bool cancelAll();
virtual TaskGroupStatus statusAddPendingTaskRelaxed(bool unconditionally) = 0;
};
/// The status of a task group.
///
/// Its exact structure depends on the type of group, and therefore a group must be passed to operations
/// which may be touching the 'ready' bits; Only an "accumulating" task group maintains the 'ready' count,
/// while all kinds of group use the 'pending' count (with varying width though).
///
/// Accumulating group status:
/// [1:cancelled][1:waiting][31:ready count][31:pending count]
/// Discarding group status:
/// [1:cancelled][1:waiting][62:pending count]
struct TaskGroupStatus {
static const uint64_t cancelled = 0b1000000000000000000000000000000000000000000000000000000000000000;
static const uint64_t waiting = 0b0100000000000000000000000000000000000000000000000000000000000000;
// 31 bits for ready tasks counter
static const uint64_t maskReady = 0b0011111111111111111111111111111110000000000000000000000000000000;
static const uint64_t oneReadyTask = 0b0000000000000000000000000000000010000000000000000000000000000000;
// 31 bits for pending tasks counter, while accumulating results (default mode)
static const uint64_t maskAccumulatingPending = 0b0000000000000000000000000000000001111111111111111111111111111111;
// 62 bits for pending tasks counter, while discarding results (discardResults)
static const uint64_t maskDiscardingPending = 0b0011111111111111111111111111111111111111111111111111111111111111;
static const uint64_t onePendingTask = 0b0000000000000000000000000000000000000000000000000000000000000001;
uint64_t status;
bool isCancelled() {
return (status & cancelled) > 0;
}
bool hasWaitingTask() {
return (status & waiting) > 0;
}
unsigned int readyTasks(const TaskGroupBase* _Nonnull group) {
assert(group->isAccumulatingResults()
&& "attempted to check ready tasks on group that does not accumulate results!");
return (status & maskReady) >> 31;
}
uint64_t pendingTasks(const TaskGroupBase* _Nonnull group) {
if (group->isAccumulatingResults()) {
return (status & maskAccumulatingPending);
} else {
return (status & maskDiscardingPending);
}
}
bool isEmpty(const TaskGroupBase *group) {
return pendingTasks(group) == 0;
}
/// Status value decrementing the Ready, Pending and Waiting counters by one.
TaskGroupStatus completingPendingReadyWaiting(const TaskGroupBase* _Nonnull group) {
assert(pendingTasks(group) &&
"can only complete waiting task when pending tasks available");
assert(group->isDiscardingResults() || readyTasks(group) &&
"can only complete waiting task when ready tasks available");
assert(hasWaitingTask() &&
"can only complete waiting task when waiting task available");
uint64_t change = waiting + onePendingTask;
// only while accumulating results does the status contain "ready" bits;
// so if we're in "discard results" mode, we must not decrement the ready count,
// as there is no ready count in the status.
change += group->isAccumulatingResults() ? oneReadyTask : 0;
return TaskGroupStatus{status - change};
}
TaskGroupStatus completingPendingReady(const TaskGroupBase* _Nonnull group) {
assert(pendingTasks(group) &&
"can only complete waiting task when pending tasks available");
assert(group->isDiscardingResults() || readyTasks(group) &&
"can only complete waiting task when ready tasks available");
auto change = onePendingTask;
change += group->isAccumulatingResults() ? oneReadyTask : 0;
return TaskGroupStatus{status - change};
}
TaskGroupStatus asCancelled(bool cancel) {
return TaskGroupStatus{status | (cancel ? cancelled : 0)};
}
/// Pretty prints the status, as follows:
/// If accumulating results:
/// TaskGroupStatus{ C:{cancelled} W:{waiting task} R:{ready tasks} P:{pending tasks} {binary repr} }
/// If discarding results:
/// TaskGroupStatus{ C:{cancelled} W:{waiting task} P:{pending tasks} {binary repr} }
std::string to_string(const TaskGroupBase* _Nonnull group) {
std::string str;
str.append("TaskGroupStatus{ ");
str.append("C:"); // cancelled
str.append(isCancelled() ? "y" : "n");
str.append(" W:"); // has waiting task
str.append(hasWaitingTask() ? "y" : "n");
if (group && group->isAccumulatingResults()) {
str.append(" R:"); // ready
str.append(std::to_string(readyTasks(group)));
}
str.append(" P:"); // pending
str.append(std::to_string(pendingTasks(group)));
str.append(" " + std::bitset<64>(status).to_string());
str.append(" }");
return str;
}
/// Initially there are no waiting and no pending tasks.
static const TaskGroupStatus initial() {
return TaskGroupStatus{0};
};
};
bool TaskGroupBase::statusCompletePendingReadyWaiting(TaskGroupStatus &old) {
return status.compare_exchange_strong(
old.status, old.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_relaxed,
/*failure*/ std::memory_order_relaxed);
}
bool TaskGroupBase::isCancelled() const {
auto old = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return old.isCancelled();
}
TaskGroupStatus TaskGroupBase::statusLoadRelaxed() const {
return TaskGroupStatus{status.load(std::memory_order_relaxed)};
}
std::string TaskGroupBase::statusString() const {
return statusLoadRelaxed().to_string(this);
}
bool TaskGroupBase::isEmpty() const {
auto oldStatus = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return oldStatus.pendingTasks(this) == 0;
}
uint64_t TaskGroupBase::pendingTasks() const {
auto s = TaskGroupStatus{status.load(std::memory_order_relaxed)};
return s.pendingTasks(this);
}
TaskGroupStatus TaskGroupBase::statusMarkWaitingAssumeAcquire() {
auto old = status.fetch_or(TaskGroupStatus::waiting, std::memory_order_acquire);
return TaskGroupStatus{old | TaskGroupStatus::waiting};
}
TaskGroupStatus TaskGroupBase::statusRemoveWaitingRelease() {
auto old = status.fetch_and(~TaskGroupStatus::waiting,
std::memory_order_release);
return TaskGroupStatus{old};
}
bool TaskGroupBase::statusCancel() {
/// The cancelled bit is always the same, the first one, between all task group implementations:
const uint64_t cancelled = TaskGroupStatus::cancelled;
auto old = status.fetch_or(cancelled, std::memory_order_relaxed);
// return if the status was already cancelled before we flipped it or not
return old & cancelled;
}
/*****************************************************************************/
/************************** QUEUE IMPL ***************************************/
/*****************************************************************************/
template<typename T>
class NaiveTaskGroupQueue {
std::queue <T> queue;
public:
NaiveTaskGroupQueue() = default;
NaiveTaskGroupQueue(const NaiveTaskGroupQueue<T> &) = delete;
NaiveTaskGroupQueue &operator=(const NaiveTaskGroupQueue<T> &) = delete;
NaiveTaskGroupQueue(NaiveTaskGroupQueue<T> &&other) {
queue = std::move(other.queue);
}
virtual ~NaiveTaskGroupQueue() {}
bool dequeue(T &output) {
if (queue.empty()) {
return false;
}
output = queue.front();
queue.pop();
return true;
}
bool isEmpty() const {
return queue.empty();
}
void enqueue(const T item) {
queue.push(item);
}
};
/******************************************************************************/
/*************** ACCUMULATING (DEFAULT) TASK GROUP ****************************/
/******************************************************************************/
/// The default TaskGroup implementation, which accumulates results until they are consumed using `await next()`.
class AccumulatingTaskGroup: public TaskGroupBase {
public:
/// An item within the pending queue.
struct PendingQueueItem {
uintptr_t storage;
AsyncTask *getTask() const {
return reinterpret_cast<AsyncTask *>(storage);
}
static ReadyQueueItem get(AsyncTask *task) {
assert(task == nullptr || task->isFuture());
return ReadyQueueItem{reinterpret_cast<uintptr_t>(task)};
}
};
private:
/// Queue containing completed tasks offered into this group.
///
/// The low bits contain the status, the rest of the pointer is the
/// AsyncTask.
NaiveTaskGroupQueue<ReadyQueueItem> readyQueue;
friend class ::swift::AsyncTask;
public:
explicit AccumulatingTaskGroup(const Metadata *T)
: TaskGroupBase(T, TaskGroupStatus::initial().status),
readyQueue() {}
virtual void destroy() override;
virtual bool isDiscardingResults() const override {
return false;
}
/// Returns *assumed* new status.
///
/// If the group is not accumulating results, the "ready" count does not exist,
/// and this is just a plan load().
TaskGroupStatus statusAddReadyAssumeAcquire() {
auto old = status.fetch_add(TaskGroupStatus::oneReadyTask,
std::memory_order_acquire);
auto s = TaskGroupStatus{old + TaskGroupStatus::oneReadyTask};
assert(s.readyTasks(this) <= s.pendingTasks(this));
return s;
}
/// Add a single pending task to the status counter.
/// This is used to implement next() properly, as we need to know if there
/// are pending tasks worth suspending/waiting for or not.
///
/// Note that the group does *not* store child tasks at all, as they are
/// stored in the `TaskGroupTaskStatusRecord` inside the current task, that
/// is currently executing the group. Here we only need the counts of
/// pending/ready tasks.
///
/// If the `unconditionally` parameter is `true` the operation always successfully
/// adds a pending task, even if the group is cancelled. If the unconditionally
/// flag is `false`, the added pending count will be *reverted* before returning.
/// This is because we will NOT add a task to a cancelled group, unless doing
/// so unconditionally.
///
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus statusAddPendingTaskRelaxed(bool unconditionally) {
auto old = status.fetch_add(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
auto s = TaskGroupStatus{old + TaskGroupStatus::onePendingTask};
if (!unconditionally && s.isCancelled()) {
// revert that add, it was meaningless
auto o = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
s = TaskGroupStatus{o - TaskGroupStatus::onePendingTask};
}
return s;
}
/// Decrement the pending status count.
/// Returns the *assumed* new status, including the just performed -1.
TaskGroupStatus statusCompletePendingAssumeRelease() {
assert(this->isDiscardingResults()
&& "only a discardResults TaskGroup may use completePending, "
"since it avoids updating the ready count, which other groups need.");
auto old = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_release);
assert(TaskGroupStatus{old}.pendingTasks(this) > 0 && "attempted to decrement pending count when it was 0 already");
return TaskGroupStatus{old - TaskGroupStatus::onePendingTask};
}
virtual void offer(AsyncTask *completed, AsyncContext *context) override;
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) override;
/// Attempt to dequeue ready tasks and complete the waitingTask.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
PollResult poll(AsyncTask *waitingTask);
};
/******************************************************************************/
/********************** DISCARDING TASK GROUP *********************************/
/******************************************************************************/
class DiscardingTaskGroup: public TaskGroupBase {
public:
/// An item within the pending queue.
struct PendingQueueItem {
uintptr_t storage;
AsyncTask *getTask() const {
return reinterpret_cast<AsyncTask *>(storage);
}
static ReadyQueueItem get(AsyncTask *task) {
assert(task == nullptr || task->isFuture());
return ReadyQueueItem{reinterpret_cast<uintptr_t>(task)};
}
};
private:
/// Queue containing completed tasks offered into this group.
///
/// The low bits contain the status, the rest of the pointer is the
/// AsyncTask.
///
/// A discarding task group never actually accumulates tasks here,
/// however we use this queue to store errors from child tasks (currently at most one).
NaiveTaskGroupQueue<ReadyQueueItem> readyQueue;
friend class ::swift::AsyncTask;
public:
explicit DiscardingTaskGroup(const Metadata *T)
: TaskGroupBase(T, TaskGroupStatus::initial().status),
readyQueue() {}
virtual void destroy() override;
virtual bool isDiscardingResults() const override {
return true;
}
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus statusMarkWaitingAssumeAcquire() {
auto old = status.fetch_or(TaskGroupStatus::waiting, std::memory_order_acquire);
return TaskGroupStatus{old | TaskGroupStatus::waiting};
}
TaskGroupStatus statusRemoveWaitingRelease() {
auto old = status.fetch_and(~TaskGroupStatus::waiting,
std::memory_order_release);
return TaskGroupStatus{old};
}
/// Returns *assumed* new status.
TaskGroupStatus statusAddReadyAssumeAcquire(const DiscardingTaskGroup *group) {
assert(group->isDiscardingResults());
return TaskGroupStatus{status.load(std::memory_order_acquire)};
}
/// Add a single pending task to the status counter.
/// This is used to implement next() properly, as we need to know if there
/// are pending tasks worth suspending/waiting for or not.
///
/// Note that the group does *not* store child tasks at all, as they are
/// stored in the `TaskGroupTaskStatusRecord` inside the current task, that
/// is currently executing the group. Here we only need the counts of
/// pending/ready tasks.
///
/// If the `unconditionally` parameter is `true` the operation always successfully
/// adds a pending task, even if the group is cancelled. If the unconditionally
/// flag is `false`, the added pending count will be *reverted* before returning.
/// This is because we will NOT add a task to a cancelled group, unless doing
/// so unconditionally.
///
/// Returns *assumed* new status, including the just performed +1.
TaskGroupStatus statusAddPendingTaskRelaxed(bool unconditionally) {
auto old = status.fetch_add(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
auto s = TaskGroupStatus{old + TaskGroupStatus::onePendingTask};
if (!unconditionally && s.isCancelled()) {
// revert that add, it was meaningless
auto o = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_relaxed);
s = TaskGroupStatus{o - TaskGroupStatus::onePendingTask};
}
return s;
}
TaskGroupStatus statusLoadRelaxed() {
return TaskGroupStatus{status.load(std::memory_order_relaxed)};
}
TaskGroupStatus statusLoadAcquire() {
return TaskGroupStatus{status.load(std::memory_order_acquire)};
}
/// Compare-and-set old status to a status derived from the old one,
/// by simultaneously decrementing one Pending and one Waiting tasks.
///
/// This is used to atomically perform a waiting task completion.
bool statusCompletePendingReadyWaiting(TaskGroupStatus &old) {
return status.compare_exchange_strong(
old.status, old.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_relaxed,
/*failure*/ std::memory_order_relaxed);
}
/// Decrement the pending status count.
/// Returns the *assumed* new status, including the just performed -1.
TaskGroupStatus statusCompletePendingAssumeRelease() {
assert(this->isDiscardingResults()
&& "only a discardResults TaskGroup may use completePending, "
"since it avoids updating the ready count, which other groups need.");
auto old = status.fetch_sub(TaskGroupStatus::onePendingTask,
std::memory_order_release);
assert(TaskGroupStatus{old}.pendingTasks(this) > 0 && "attempted to decrement pending count when it was 0 already");
return TaskGroupStatus{old - TaskGroupStatus::onePendingTask};
}
virtual void offer(AsyncTask *completed, AsyncContext *context) override;
virtual void enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) override;
/// Attempt to dequeue ready tasks and complete the waitingTask.
///
/// If unable to complete the waiting task immediately (with an readily
/// available completed task), either returns an `PollStatus::Empty`
/// result if it is known that no pending tasks in the group,
/// or a `PollStatus::MustWait` result if there are tasks in flight
/// and the waitingTask eventually be woken up by a completion.
PollResult poll(AsyncTask *waitingTask);
bool offerBodyError(SwiftError* _Nonnull bodyError);
private:
/// Resume waiting task with specified error
void resumeWaitingTaskWithError(SwiftError *error, TaskGroupStatus &assumed);
};
} // end anonymous namespace
/******************************************************************************/
/************************ TASK GROUP PUBLIC API *******************************/
/******************************************************************************/
using ReadyQueueItem = TaskGroupBase::ReadyQueueItem;
using ReadyStatus = TaskGroupBase::ReadyStatus;
using PollResult = TaskGroupBase::PollResult;
using PollStatus = TaskGroupBase::PollStatus;
static_assert(sizeof(AccumulatingTaskGroup) <= sizeof(TaskGroup) &&
alignof(AccumulatingTaskGroup) <= alignof(TaskGroup),
"TaskGroupBase doesn't fit in TaskGroup");
static_assert(sizeof(DiscardingTaskGroup) <= sizeof(TaskGroup) &&
alignof(DiscardingTaskGroup) <= alignof(TaskGroup),
"DiscardingTaskGroup doesn't fit in TaskGroup");
static TaskGroupBase *asBaseImpl(TaskGroup *group) {
return reinterpret_cast<TaskGroupBase*>(group);
}
static AccumulatingTaskGroup *asAccumulatingImpl(TaskGroup *group) {
assert(group->isAccumulatingResults());
return static_cast<AccumulatingTaskGroup*>(reinterpret_cast<TaskGroupBase*>(group));
}
static DiscardingTaskGroup *asDiscardingImpl(TaskGroup *group) {
assert(group->isDiscardingResults());
return static_cast<DiscardingTaskGroup*>(reinterpret_cast<TaskGroupBase*>(group));
}
static TaskGroup *asAbstract(TaskGroupBase *group) {
return reinterpret_cast<TaskGroup*>(group);
}
static TaskGroup *asAbstract(AccumulatingTaskGroup *group) {
return reinterpret_cast<TaskGroup*>(group);
}
static TaskGroup *asAbstract(DiscardingTaskGroup *group) {
return reinterpret_cast<TaskGroup*>(group);
}
TaskGroupTaskStatusRecord *TaskGroup::getTaskRecord() {
return asBaseImpl(this)->getTaskRecord();
}
bool TaskGroup::isDiscardingResults() {
return asBaseImpl(this)->isDiscardingResults();
}
TaskGroup* TaskGroupTaskStatusRecord::getGroup() {
return reinterpret_cast<TaskGroup *>(static_cast<TaskGroupBase*>(this));
}
// =============================================================================
// ==== initialize -------------------------------------------------------------
// Initializes into the preallocated _group an actual TaskGroupBase.
SWIFT_CC(swift)
static void swift_taskGroup_initializeImpl(TaskGroup *group, const Metadata *T) {
swift_taskGroup_initializeWithFlags(0, group, T);
}
// Initializes into the preallocated _group an actual instance.
SWIFT_CC(swift)
static void swift_taskGroup_initializeWithFlagsImpl(size_t rawGroupFlags,
TaskGroup *group, const Metadata *T) {
TaskGroupFlags groupFlags(rawGroupFlags);
SWIFT_TASK_DEBUG_LOG("group(%p) create; flags: isDiscardingResults=%d",
group, groupFlags.isDiscardResults());
TaskGroupBase *impl;
if (groupFlags.isDiscardResults()) {
impl = ::new(group) DiscardingTaskGroup(T);
} else {
impl = ::new(group) AccumulatingTaskGroup(T);
}
TaskGroupTaskStatusRecord *record = impl->getTaskRecord();
assert(record->getKind() == swift::TaskStatusRecordKind::TaskGroup);
// ok, now that the group actually is initialized: attach it to the task
addStatusRecord(record, [&](ActiveTaskStatus oldStatus, ActiveTaskStatus& newStatus) {
// If the task has already been cancelled, reflect that immediately in
// the group's status.
if (oldStatus.isCancelled()) {
impl->statusCancel();
}
return true;
});
}
// =============================================================================
// ==== child task management --------------------------------------------------
void TaskGroup::addChildTask(AsyncTask *child) {
SWIFT_TASK_DEBUG_LOG("attach child task = %p to group = %p", child, this);
// Add the child task to this task group. The corresponding removal
// won't happen until the parent task successfully polls for this child
// task, either synchronously in poll (if a task is available
// synchronously) or asynchronously in offer (otherwise). In either
// case, the work ends up being non-concurrent with the parent task.
// The task status record lock is held during this operation, which
// prevents us from racing with cancellation or escalation. We don't
// need to acquire the task group lock because the child list is only
// accessed under the task status record lock.
auto base = asBaseImpl(this);
auto record = base->getTaskRecord();
record->attachChild(child);
}
void TaskGroup::removeChildTask(AsyncTask *child) {
SWIFT_TASK_DEBUG_LOG("detach child task = %p from group = %p", child, this);
auto groupRecord = asBaseImpl(this)->getTaskRecord();
// The task status record lock is held during this operation, which
// prevents us from racing with cancellation or escalation. We don't
// need to acquire the task group lock because the child list is only
// accessed under the task status record lock.
groupRecord->detachChild(child);
}
// =============================================================================
// ==== destroy ----------------------------------------------------------------
SWIFT_CC(swift)
static void swift_taskGroup_destroyImpl(TaskGroup *group) {
asBaseImpl(group)->destroy();
}
void AccumulatingTaskGroup::destroy() {
#if SWIFT_TASK_DEBUG_LOG_ENABLED
if (!this->isEmpty()) {
auto status = this->statusLoadRelaxed();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "destroy, tasks .ready = %d, .pending = %llu",
status.readyTasks(this), status.pendingTasks(this));
} else {
SWIFT_TASK_DEBUG_LOG("destroying task group = %p", this);
}
#endif
assert(this->isEmpty() && "Attempted to destroy non-empty task group!");
// First, remove the group from the task and deallocate the record
removeStatusRecord(getTaskRecord());
// No need to drain our queue here, as by the time we call destroy,
// all tasks inside the group must have been awaited on already.
// This is done in Swift's withTaskGroup function explicitly.
// destroy the group's storage
this->~AccumulatingTaskGroup();
}
void DiscardingTaskGroup::destroy() {
#if SWIFT_TASK_DEBUG_LOG_ENABLED
if (!this->isEmpty()) {
auto status = this->statusLoadRelaxed();
SWIFT_TASK_GROUP_DEBUG_LOG(this, "destroy, tasks .ready = %d, .pending = %llu",
status.readyTasks(this), status.pendingTasks(this));
} else {
SWIFT_TASK_DEBUG_LOG("destroying discarding task group = %p", this);
}
#endif
assert(this->isEmpty() && "Attempted to destroy non-empty task group!");
// First, remove the group from the task and deallocate the record
removeStatusRecord(getTaskRecord());
// No need to drain our queue here, as by the time we call destroy,
// all tasks inside the group must have been awaited on already.
// This is done in Swift's withTaskGroup function explicitly.
// destroy the group's storage
this->~DiscardingTaskGroup();
}
bool TaskGroup::isCancelled() {
return asBaseImpl(this)->isCancelled();
}
// =============================================================================
// ==== offer ------------------------------------------------------------------
static void fillGroupNextErrorResult(TaskFutureWaitAsyncContext *context,
SwiftError *error) {
context->fillWithError(error);
}
static void fillGroupNextResult(TaskFutureWaitAsyncContext *context,
PollResult result) {
/// Fill in the result value
switch (result.status) {
case PollStatus::MustWait:
assert(false && "filling a waiting status?");
return;
case PollStatus::Error: {
fillGroupNextErrorResult(context, reinterpret_cast<SwiftError *>(result.storage));
return;
}
case PollStatus::Success: {
// Initialize the result as an Optional<Success>.
const Metadata *successType = result.successType;
OpaqueValue *destPtr = context->successResultPointer;
// TODO: figure out a way to try to optimistically take the
// value out of the finished task's future, if there are no
// remaining references to it.
successType->vw_initializeWithCopy(destPtr, result.storage);
successType->vw_storeEnumTagSinglePayload(destPtr, 0, 1);
return;
}
case PollStatus::Empty: {
// Initialize the result as a .none Optional<Success>.
const Metadata *successType = result.successType;
OpaqueValue *destPtr = context->successResultPointer;
successType->vw_storeEnumTagSinglePayload(destPtr, 1, 1);
return;
}
}
}
static void fillGroupNextNilResult(TaskFutureWaitAsyncContext *context,
PollResult result) {
// Initialize the result as a .none Optional<Success>.
const Metadata *successType = result.successType;
OpaqueValue *destPtr = context->successResultPointer;
successType->vw_storeEnumTagSinglePayload(destPtr, 1, 1);
}
static void _enqueueCompletedTask(NaiveTaskGroupQueue<ReadyQueueItem> *readyQueue,
AsyncTask *completedTask,
bool hadErrorResult) {
auto readyItem = ReadyQueueItem::get(
hadErrorResult ? ReadyStatus::Error : ReadyStatus::Success,
completedTask
);
assert(completedTask == readyItem.getTask());
assert(readyItem.getTask()->isFuture());
readyQueue->enqueue(readyItem);
}
/// This can only be used by a discarding task group;
/// Other groups must enqueue a complete Task to the ready queue.
static void _enqueueRawError(DiscardingTaskGroup* _Nonnull group,
NaiveTaskGroupQueue<ReadyQueueItem> *readyQueue,
SwiftError *error) {
auto readyItem = ReadyQueueItem::getRawError(group, error);
readyQueue->enqueue(readyItem);
}
// TaskGroup is locked upon entry and exit
void AccumulatingTaskGroup::enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) {
// Retain the task while it is in the queue; it must remain alive until
// it is found by poll. This retain will balanced by the release in poll.
swift_retain(completedTask);
_enqueueCompletedTask(&readyQueue, completedTask, hadErrorResult);
}
// TaskGroup is locked upon entry and exit
void DiscardingTaskGroup::enqueueCompletedTask(AsyncTask *completedTask, bool hadErrorResult) {
if (!readyQueue.isEmpty()) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "discard task, we already have an error stored, completedTask:%p",
completedTask);
}
if (hadErrorResult) {
// we only store the FIRST error in discardResults mode
SWIFT_TASK_GROUP_DEBUG_LOG(this, "store first error, completedTask:%p", completedTask);
// continue handling as usual, which will perform the enqueue
} else {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "discard successful result, %p", completedTask);
// DO NOT RETAIN THE TASK.
// We know it is Void, so we don't need to store the result;
// By releasing tasks eagerly we're able to keep "infinite" task groups,
// running, that never consume their values. Even more-so,
return;
}
// Retain the task while it is in the queue; it must remain alive until
// it is found by poll. This retain will be balanced by the release in waitAll.
assert(hadErrorResult); // a discarding group may only store an errored task.
swift_retain(completedTask);
_enqueueCompletedTask(&readyQueue, completedTask, hadErrorResult);
}
void TaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
asBaseImpl(this)->offer(completedTask, context);
}
void AccumulatingTaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
assert(completedTask);
assert(completedTask->isFuture());
assert(completedTask->hasChildFragment());
assert(completedTask->hasGroupChildFragment());
assert(completedTask->groupChildFragment()->getGroup() == asAbstract(this));
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, completedTask:%p , status:%s", completedTask, statusString().c_str());
// The current ownership convention is that we are *not* given ownership
// of a retain on completedTask; we're called from the task completion
// handler, and the task will release itself. So if we need the task
// to survive this call (e.g. because there isn't an immediate waiting
// task), we will need to retain it, which we do in enqueueCompletedTask.
// This is wasteful, and the task completion function should be fixed to
// transfer ownership of a retain into this function, in which case we
// will need to release in the other path.
lock(); // TODO: remove fragment lock, and use status for synchronization
// Immediately increment ready count and acquire the status
//
// NOTE: If the group is `discardResults` this becomes a plain load(),
// since there is no ready count to maintain.
//
// Examples:
// W:n R:0 P:3 -> W:n R:1 P:3 // no waiter, 2 more pending tasks
// W:n R:0 P:1 -> W:n R:1 P:1 // no waiter, no more pending tasks
// W:n R:0 P:1 -> W:y R:1 P:1 // complete immediately
// W:n R:0 P:1 -> W:y R:1 P:3 // complete immediately, 2 more pending tasks
TaskGroupStatus assumed = statusAddReadyAssumeAcquire();
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
if (errorObject) {
// instead, we need to enqueue this result:
hadErrorResult = true;
}
SWIFT_TASK_GROUP_DEBUG_LOG(this, "ready: %d, pending: %u",
assumed.readyTasks(this), assumed.pendingTasks(this));
// ==== a) has waiting task, so let us complete it right away
if (assumed.hasWaitingTask()) {
resumeWaitingTask(completedTask, assumed, hadErrorResult);
unlock(); // TODO: remove fragment lock, and use status for synchronization
return;
} else {
// ==== b) enqueue completion ------------------------------------------------
//
// else, no-one was waiting (yet), so we have to instead enqueue to the message
// queue when a task polls during next() it will notice that we have a value
// ready for it, and will process it immediately without suspending.
assert(!waitQueue.load(std::memory_order_relaxed));
enqueueCompletedTask(completedTask, hadErrorResult);
unlock(); // TODO: remove fragment lock, and use status for synchronization
}
}
void DiscardingTaskGroup::offer(AsyncTask *completedTask, AsyncContext *context) {
assert(completedTask);
assert(completedTask->isFuture());
assert(completedTask->hasChildFragment());
assert(completedTask->hasGroupChildFragment());
assert(completedTask->groupChildFragment()->getGroup() == asAbstract(this));
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, completedTask:%p , status:%s", completedTask, statusString().c_str());
// The current ownership convention is that we are *not* given ownership
// of a retain on completedTask; we're called from the task completion
// handler, and the task will release itself. So if we need the task
// to survive this call (e.g. because there isn't an immediate waiting
// task), we will need to retain it, which we do in enqueueCompletedTask.
// This is wasteful, and the task completion function should be fixed to
// transfer ownership of a retain into this function, in which case we
// will need to release in the other path.
lock(); // TODO: remove fragment lock, and use status for synchronization
// Since we don't maintain ready counts in a discarding group, only load the status.
TaskGroupStatus assumed = statusLoadAcquire();
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
if (errorObject) {
// instead, we need to enqueue this result:
hadErrorResult = true;
}
/// If we're the last task we've been waiting for, and there is a waiting task on the group
bool lastPendingTaskAndWaitingTask =
assumed.pendingTasks(this) == 1 && assumed.hasWaitingTask();
// Immediately decrement the pending count.
// We can do this, since in this mode there is no ready count to keep track of,
// and we immediately discard the result.
SWIFT_TASK_GROUP_DEBUG_LOG(this, "discard result, hadError:%d, was pending:%llu",
hadErrorResult, assumed.pendingTasks(this));
// If this was the last pending task, and there is a waiting task (from waitAll),
// we must resume the task; but not otherwise. There cannot be any waiters on next()
// while we're discarding results.
if (lastPendingTaskAndWaitingTask) {
ReadyQueueItem item;
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, offered last pending task, resume waiting task:%p",
waitQueue.load(std::memory_order_relaxed));
if (readyQueue.dequeue(item)) {
switch (item.getStatus()) {
case ReadyStatus::RawError:
resumeWaitingTaskWithError(item.getRawError(this), assumed);
break;
case ReadyStatus::Error:
resumeWaitingTask(item.getTask(), assumed, /*hadErrorResult=*/true);
break;
default:
swift_Concurrency_fatalError(0, "only errors can be stored by a discarding task group, yet it wasn't an error!");
}
} else {
resumeWaitingTask(completedTask, assumed, /*hadErrorResult=*/hadErrorResult);
}
} else {
assert(!lastPendingTaskAndWaitingTask);
if (hadErrorResult && readyQueue.isEmpty()) {
// a discardResults throwing task group must retain the FIRST error it encounters.
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer error, completedTask:%p", completedTask);
enqueueCompletedTask(completedTask, /*hadErrorResult=*/hadErrorResult);
} else {
// we just are going to discard it.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
}
auto afterComplete = statusCompletePendingAssumeRelease();
(void)afterComplete; // silence "not used" warning
SWIFT_TASK_GROUP_DEBUG_LOG(this, "offer, either more pending tasks, or no waiting task, status:%s",
afterComplete.to_string(this).c_str());
}
// Discarding results mode, immediately treats a child failure as group cancellation.
// "All for one, one for all!" - any task failing must cause the group and all sibling tasks to be cancelled,
// such that the discarding group can exit as soon as possible.
if (hadErrorResult) {
cancelAll();
}
unlock();
}
/// Must be called while holding the TaskGroup lock.
void TaskGroupBase::resumeWaitingTask(
AsyncTask *completedTask,
TaskGroupStatus &assumed,
bool hadErrorResult) {
auto waitingTask = waitQueue.load(std::memory_order_acquire);
SWIFT_TASK_GROUP_DEBUG_LOG(this, "resume waiting task = %p, complete with = %p",
waitingTask, completedTask);
while (true) {
// ==== a) run waiting task directly -------------------------------------
assert(assumed.hasWaitingTask());
// assert(assumed.pendingTasks(this) && "offered to group with no pending tasks!");
// We are the "first" completed task to arrive,
// and since there is a task waiting we immediately claim and complete it.
if (waitQueue.compare_exchange_strong(
waitingTask, nullptr,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task-to-thread model, child tasks are always actually
// run synchronously on the parent task's thread. For task groups
// specifically, this means that poll() will pick a child task
// that was added to the group and run it to completion as a
// subroutine. Therefore, when we enter offer(), we know that
// the parent task is waiting and we can just return to it.
// The task-to-thread logic in poll() currently expects the child
// task to enqueue itself instead of just filling in the result in
// the waiting task. This is a little wasteful; there's no reason
// we can't just have the parent task set itself up as a waiter.
// But since it's what we're doing, we basically take the same
// path as we would if there wasn't a waiter.
enqueueCompletedTask(completedTask, hadErrorResult);
return;
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (statusCompletePendingReadyWaiting(assumed)) {
// Run the task.
auto result = PollResult::get(completedTask, hadErrorResult);
// Remove the child from the task group's running tasks list.
// The parent task isn't currently running (we're about to wake
// it up), so we're still synchronous with it. We can safely
// acquire our parent's status record lock here (which would
// ordinarily run the risk of deadlock, since e.g. cancellation
// does a parent -> child traversal while recursively holding
// locks) because we know that the child task is completed and
// we can't be holding its locks ourselves.
_swift_taskGroup_detachChild(asAbstract(this), completedTask);
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(
waitingTask->ResumeContext);
fillGroupNextResult(waitingContext, result);
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
// TODO: allow the caller to suggest an executor
waitingTask->flagAsAndEnqueueOnExecutor(ExecutorRef::generic());
return;
} // else, try again
#endif
}
}
swift_Concurrency_fatalError(0, "should have enqueued and returned.");
}
/// Must be called while holding the TaskGroup lock.
void DiscardingTaskGroup::resumeWaitingTaskWithError(
SwiftError *error,
TaskGroupStatus &assumed) {
auto waitingTask = waitQueue.load(std::memory_order_acquire);
assert(waitingTask && "cannot resume 'null' waiting task!");
SWIFT_TASK_GROUP_DEBUG_LOG(this, "resume waiting task = %p, with error = %p",
waitingTask, error);
while (true) {
// ==== a) run waiting task directly -------------------------------------
assert(assumed.hasWaitingTask());
// assert(assumed.pendingTasks(this) && "offered to group with no pending tasks!");
// We are the "first" completed task to arrive,
// and since there is a task waiting we immediately claim and complete it.
if (waitQueue.compare_exchange_strong(
waitingTask, nullptr,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task-to-thread model, child tasks are always actually
// run synchronously on the parent task's thread. For task groups
// specifically, this means that poll() will pick a child task
// that was added to the group and run it to completion as a
// subroutine. Therefore, when we enter offer(), we know that
// the parent task is waiting and we can just return to it.
// The task-to-thread logic in poll() currently expects the child
// task to enqueue itself instead of just filling in the result in
// the waiting task. This is a little wasteful; there's no reason
// we can't just have the parent task set itself up as a waiter.
// But since it's what we're doing, we basically take the same
// path as we would if there wasn't a waiter.
_enqueueRawError(this, &readyQueue, error);
return;
#else /* SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL */
if (statusCompletePendingReadyWaiting(assumed)) {
// Run the task.
auto result = PollResult::getError(error);
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(
waitingTask->ResumeContext);
fillGroupNextResult(waitingContext, result);
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
// TODO: allow the caller to suggest an executor
waitingTask->flagAsAndEnqueueOnExecutor(ExecutorRef::generic());
return;
} // else, try again
#endif
}
}
swift_Concurrency_fatalError(0, "should have enqueued and returned.");
}
SWIFT_CC(swiftasync)
static void
task_group_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureResumeEntryPoint *>(context->ResumeParent);
return resumeWithError(context->Parent, context->errorResult);
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_taskGroup_wait_next_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(_group) // Input list.
: // Clobber list, empty.
);
return;
}
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_taskGroup_waitAllImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
SwiftError *bodyError,
ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(_group) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
// =============================================================================
// ==== group.next() implementation (wait_next and groupPoll) ------------------
SWIFT_CC(swiftasync)
static void swift_taskGroup_wait_next_throwingImpl(
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext) {
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_group_wait_resume_adapter;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
context->ResumeParent =
reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
context->Parent = callerContext;
context->errorResult = nullptr;
context->successResultPointer = resultPointer;
auto group = asAccumulatingImpl(_group);
assert(group && "swift_taskGroup_wait_next_throwing was passed context without group!");
PollResult polled = group->poll(waitingTask);
switch (polled.status) {
case PollStatus::MustWait:
SWIFT_TASK_DEBUG_LOG("poll group = %p, no ready tasks, waiting task = %p",
group, waitingTask);
// The waiting task has been queued on the channel,
// there were pending tasks so it will be woken up eventually.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_taskGroup_wait_next_throwingImpl(
resultPointer, callerContext, _group, resumeFunction, rawContext);
#else /* __ARM_ARCH_7K__ */
return;
#endif /* __ARM_ARCH_7K__ */
case PollStatus::Empty:
case PollStatus::Error:
case PollStatus::Success:
SWIFT_TASK_GROUP_DEBUG_LOG(group, "poll, task = %p, ready task available = %p",
waitingTask, polled.retainedTask);
fillGroupNextResult(context, polled);
if (auto completedTask = polled.retainedTask) {
// Remove the child from the task group's running tasks list.
_swift_taskGroup_detachChild(asAbstract(group), completedTask);
// Balance the retain done by enqueueCompletedTask.
swift_release(completedTask);
}
return waitingTask->runInFullyEstablishedContext();
}
}
PollResult AccumulatingTaskGroup::poll(AsyncTask *waitingTask) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "poll, waitingTask:%p", waitingTask);
lock(); // TODO: remove group lock, and use status for synchronization
assert(isAccumulatingResults() &&
"attempted to poll TaskGroup in discard-results mode!");
PollResult result;
result.storage = nullptr;
result.successType = nullptr;
result.retainedTask = nullptr;
// Have we suspended the task?
bool hasSuspended = false;
bool haveRunOneChildTaskInline = false;
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
reevaluate_if_taskgroup_has_results:;
#endif
auto assumed = statusMarkWaitingAssumeAcquire();
if (haveRunOneChildTaskInline) {
assert(assumed.readyTasks(this));
}
// ==== 1) bail out early if no tasks are pending ----------------------------
if (assumed.isEmpty(this)) {
SWIFT_TASK_DEBUG_LOG("poll group = %p, group is empty, no pending tasks", this);
// No tasks in flight, we know no tasks were submitted before this poll
// was issued, and if we parked here we'd potentially never be woken up.
// Bail out and return `nil` from `group.next()`.
statusRemoveWaitingRelease();
result.status = PollStatus::Empty;
result.successType = this->successType;
unlock(); // TODO: remove group lock, and use status for synchronization
return result;
}
auto waitHead = waitQueue.load(std::memory_order_acquire);
// ==== 2) Ready task was polled, return with it immediately -----------------
if (assumed.readyTasks(this)) {
SWIFT_TASK_DEBUG_LOG("poll group = %p, tasks .ready = %d, .pending = %llu",
this, assumed.readyTasks(this), assumed.pendingTasks(this));
auto assumedStatus = assumed.status;
auto newStatus = TaskGroupStatus{assumedStatus};
if (status.compare_exchange_strong(
assumedStatus, newStatus.completingPendingReadyWaiting(this).status,
/*success*/ std::memory_order_relaxed,
/*failure*/ std::memory_order_acquire)) {
// We're going back to running the task, so if we suspended before,
// we need to flag it as running again.
if (hasSuspended) {
waitingTask->flagAsRunning();
}
// Success! We are allowed to poll.
ReadyQueueItem item;
bool taskDequeued = readyQueue.dequeue(item);
assert(taskDequeued); (void) taskDequeued;
auto futureFragment =
item.getStatus() == ReadyStatus::RawError ?
nullptr :
item.getTask()->futureFragment();
// Store the task in the result, so after we're done processing it may
// be swift_release'd; we kept it alive while it was in the readyQueue by
// an additional retain issued as we enqueued it there.
// Note that the task was detached from the task group when it
// completed, so we don't need to do that bit of record-keeping here.
switch (item.getStatus()) {
case ReadyStatus::Success:
// Immediately return the polled value
result.status = PollStatus::Success;
result.storage = futureFragment->getStoragePtr();
result.successType = futureFragment->getResultType();
result.retainedTask = item.getTask();
assert(result.retainedTask && "polled a task, it must be not null");
_swift_tsan_acquire(static_cast<Job *>(result.retainedTask));
unlock(); // TODO: remove fragment lock, and use status for synchronization
return result;
case ReadyStatus::Error:
// Immediately return the polled value
result.status = PollStatus::Error;
result.storage =
reinterpret_cast<OpaqueValue *>(futureFragment->getError());
result.successType = nullptr;
result.retainedTask = item.getTask();
assert(result.retainedTask && "polled a task, it must be not null");
_swift_tsan_acquire(static_cast<Job *>(result.retainedTask));
unlock(); // TODO: remove fragment lock, and use status for synchronization
return result;
case ReadyStatus::Empty:
result.status = PollStatus::Empty;
result.storage = nullptr;
result.retainedTask = nullptr;
result.successType = this->successType;
unlock(); // TODO: remove fragment lock, and use status for synchronization
return result;
case ReadyStatus::RawError:
swift_Concurrency_fatalError(0, "accumulating task group should never use raw-errors!");
}
swift_Concurrency_fatalError(0, "must return result when status compare-and-swap was successful");
} // else, we failed status-cas (some other waiter claimed a ready pending task, try again)
}
// ==== 3) Add to wait queue -------------------------------------------------
assert(assumed.readyTasks(this) == 0);
_swift_tsan_release(static_cast<Job *>(waitingTask));
while (true) {
if (!hasSuspended) {
hasSuspended = true;
waitingTask->flagAsSuspended();
}
// Put the waiting task at the beginning of the wait queue.
if (waitQueue.compare_exchange_strong(
waitHead, waitingTask,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
unlock(); // TODO: remove fragment lock, and use status for synchronization
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// The logic here is paired with the logic in TaskGroupBase::offer. Once
// we run the
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
auto childTask = getTaskRecord()->getFirstChild();
assert(childTask != NULL);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, childTask);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(childTask, ExecutorRef::generic());
haveRunOneChildTaskInline = true;
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", childTask, oldTask);
// We are back to being the parent task and now that we've run the child
// task, we should reevaluate parent task
_swift_task_setCurrent(oldTask);
goto reevaluate_if_taskgroup_has_results;
#endif
// no ready tasks, so we must wait.
result.status = PollStatus::MustWait;
_swift_task_clearCurrent();
return result;
} // else, try again
}
}
// =============================================================================
// ==== _taskGroupWaitAll implementation ---------------------------------------
SWIFT_CC(swiftasync)
static void swift_taskGroup_waitAllImpl(
OpaqueValue *resultPointer, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
TaskGroup *_group,
SwiftError *bodyError,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *rawContext) {
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_group_wait_resume_adapter;
waitingTask->ResumeContext = rawContext;
auto context = static_cast<TaskFutureWaitAsyncContext *>(rawContext);
context->ResumeParent =
reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
context->Parent = callerContext;
context->errorResult = nullptr;
context->successResultPointer = resultPointer;
auto group = asBaseImpl(_group);
SWIFT_TASK_GROUP_DEBUG_LOG(group, "waitAllImpl, waiting task = %p, bodyError = %p, status:%s",
waitingTask, bodyError, group->statusString().c_str());
PollResult polled = group->tryEnqueueWaitingTask(waitingTask);
switch (polled.status) {
case PollStatus::MustWait:
SWIFT_TASK_GROUP_DEBUG_LOG(group, "tryEnqueueWaitingTask MustWait, pending tasks exist, waiting task = %p",
waitingTask);
if (bodyError && group->isDiscardingResults()) {
auto discardingGroup = asDiscardingImpl(_group);
bool storedBodyError = discardingGroup->offerBodyError(bodyError);
if (storedBodyError) {
SWIFT_TASK_GROUP_DEBUG_LOG(
group, "tryEnqueueWaitingTask, stored error thrown by with...Group body, error = %p",
bodyError);
}
}
// The waiting task has been queued on the channel,
// there were pending tasks so it will be woken up eventually.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_taskGroup_waitAllImpl(
resultPointer, callerContext, _group, bodyError, resumeFunction, rawContext);
#else /* __ARM_ARCH_7K__ */
return;
#endif /* __ARM_ARCH_7K__ */
case PollStatus::Error:
SWIFT_TASK_GROUP_DEBUG_LOG(group, "tryEnqueueWaitingTask found error, waiting task = %p, status:%s",
waitingTask, group->statusString().c_str());
fillGroupNextResult(context, polled);
if (auto completedTask = polled.retainedTask) {
// Remove the child from the task group's running tasks list.
_swift_taskGroup_detachChild(asAbstract(group), completedTask);
// Balance the retain done by enqueueCompletedTask.
swift_release(completedTask);
}
return waitingTask->runInFullyEstablishedContext();
case PollStatus::Empty:
case PollStatus::Success:
/// Anything else than a "MustWait" can be treated as a successful poll.
/// Only if there are in flight pending tasks do we need to wait after all.
SWIFT_TASK_GROUP_DEBUG_LOG(group, "tryEnqueueWaitingTask %s, waiting task = %p, status:%s",
polled.status == TaskGroupBase::PollStatus::Empty ? "empty" : "success",
waitingTask, group->statusString().c_str());
if (bodyError) {
// None of the inner tasks have thrown, so we have to "re throw" the body error:
fillGroupNextErrorResult(context, bodyError);
} else {
fillGroupNextNilResult(context, polled);
}
return waitingTask->runInFullyEstablishedContext();
}
}
bool DiscardingTaskGroup::offerBodyError(SwiftError* _Nonnull bodyError) {
lock(); // TODO: remove group lock, and use status for synchronization
if (!readyQueue.isEmpty()) {
// already other error stored, discard this one
unlock();
return false;
}
auto readyItem = ReadyQueueItem::getRawError(this, bodyError);
readyQueue.enqueue(readyItem);
unlock();
return true;
}
PollResult TaskGroupBase::tryEnqueueWaitingTask(AsyncTask *waitingTask) {
SWIFT_TASK_GROUP_DEBUG_LOG(this, "tryEnqueueWaitingTask, status = %s", statusString().c_str());
PollResult result = PollResult::getEmpty(this->successType);
result.storage = nullptr;
result.retainedTask = nullptr;
// Have we suspended the task?
bool hasSuspended = false;
bool haveRunOneChildTaskInline = false;
reevaluate_if_TaskGroup_has_results:;
auto assumed = statusMarkWaitingAssumeAcquire();
// ==== 1) bail out early if no tasks are pending ----------------------------
if (assumed.isEmpty(this)) {
SWIFT_TASK_DEBUG_LOG("group(%p) waitAll, is empty, no pending tasks", this);
// No tasks in flight, we know no tasks were submitted before this poll
// was issued, and if we parked here we'd potentially never be woken up.
// Bail out and return `nil` from `group.next()`.
statusRemoveWaitingRelease();
return result;
}
lock(); // TODO: remove pool lock, and use status for synchronization
auto waitHead = waitQueue.load(std::memory_order_acquire);
// ==== 2) Add to wait queue -------------------------------------------------
_swift_tsan_release(static_cast<Job *>(waitingTask));
while (true) {
if (!hasSuspended) {
hasSuspended = true;
waitingTask->flagAsSuspended();
}
// Put the waiting task at the beginning of the wait queue.
if (waitQueue.compare_exchange_strong(
waitHead, waitingTask,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
unlock(); // TODO: remove fragment lock, and use status for synchronization
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// The logic here is paired with the logic in TaskGroupBase::offer. Once
// we run the
auto oldTask = _swift_task_clearCurrent();
assert(oldTask == waitingTask);
auto childTask = getTaskRecord()->getFirstChild();
assert(childTask != NULL);
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching away from running %p to now running %p", oldTask, childTask);
// Run the new task on the same thread now - this should run the new task to
// completion. All swift tasks in task-to-thread model run on generic
// executor
swift_job_run(childTask, ExecutorRef::generic());
haveRunOneChildTaskInline = true;
SWIFT_TASK_DEBUG_LOG("[RunInline] Switching back from running %p to now running %p", childTask, oldTask);
// We are back to being the parent task and now that we've run the child
// task, we should reevaluate parent task
_swift_task_setCurrent(oldTask);
goto reevaluate_if_TaskGroup_has_results;
#endif
// no ready tasks, so we must wait.
result.status = PollStatus::MustWait;
_swift_task_clearCurrent();
return result;
} // else, try again
}
}
// =============================================================================
// ==== Task Group status and flag checks -------------------------------------
SWIFT_CC(swift)
static bool swift_taskGroup_isEmptyImpl(TaskGroup *group) {
return asBaseImpl(group)->isEmpty();
}
SWIFT_CC(swift)
static bool swift_taskGroup_isCancelledImpl(TaskGroup *group) {
return asBaseImpl(group)->isCancelled();
}
// =============================================================================
// ==== cancelAll --------------------------------------------------------------
SWIFT_CC(swift)
static void swift_taskGroup_cancelAllImpl(TaskGroup *group) {
asBaseImpl(group)->cancelAll();
}
bool TaskGroupBase::cancelAll() {
SWIFT_TASK_DEBUG_LOG("cancel all tasks in group = %p", this);
// Flag the task group itself as cancelled. If this was already
// done, any existing child tasks should already have been cancelled,
// and cancellation should automatically flow to any new child tasks,
// so there's nothing else for us to do.
auto wasCancelledBefore = statusCancel();
if (wasCancelledBefore) {
return false;
}
// Cancel all the child tasks. TaskGroup is not a Sendable type,
// so cancelAll() can only be called from the owning task. This
// satisfies the precondition on cancelAllChildren().
_swift_taskGroup_cancelAllChildren(asAbstract(this));
return true;
}
SWIFT_CC(swift)
static void swift_task_cancel_group_child_tasksImpl(TaskGroup *group) {
// TaskGroup is not a Sendable type, and so this operation (which is not
// currently exposed in the API) can only be called from the owning
// task. This satisfies the precondition on cancelAllChildren().
_swift_taskGroup_cancelAllChildren(group);
}
/// Cancel all the children of the given task group.
///
/// The caller must guarantee that this is either called from the
/// owning task of the task group or while holding the owning task's
/// status record lock.
void swift::_swift_taskGroup_cancelAllChildren(TaskGroup *group) {
// Because only the owning task of the task group can modify the
// child list of a task group status record, and it can only do so
// while holding the owning task's status record lock, we do not need
// any additional synchronization within this function.
for (auto childTask: group->getTaskRecord()->children())
swift_task_cancel(childTask);
}
// =============================================================================
// ==== addPending -------------------------------------------------------------
SWIFT_CC(swift)
static bool swift_taskGroup_addPendingImpl(TaskGroup *_group, bool unconditionally) {
auto group = asBaseImpl(_group);
auto assumed = group->statusAddPendingTaskRelaxed(unconditionally);
SWIFT_TASK_DEBUG_LOG("add pending %s to group(%p), tasks pending = %d",
unconditionally ? "unconditionally" : "",
group, assumed.pendingTasks(group));
return !assumed.isCancelled();
}
#define OVERRIDE_TASK_GROUP COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH